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Preface

More than half a century ago, a far-reaching revolution started in behavioral, educa-
tional, and social measurement, which to date has also had an enormous impact on a
host of other disciplines ranging from biomedicine to marketing. At that time, item
response theory (IRT) began finding its way into these sciences. In many respects,
IRT quickly showed important benefits relative to the then conventional approach for
developing measuring instruments that was based on “classical” procedures.

Since the 1950s and the influential early work by F. Lord in IRT (for example, Lord
[1952, 1953]), more than 60 years have passed that have been filled with major method-
ological advances in this field and more generally in behavioral and social measurement.
The intervening decades have also witnessed an explosion of interest in IRT and item
response modeling (IRM) across those disciplines as well as the clinical, biomedical,
marketing, business, communication, and cognate sciences. These developments are
also a convincing testament to the rich opportunities that this measurement approach
offers to empirical scholars interested in assessing various latent constructs, traits, abili-
ties, dimensions, or variables, as well as their interrelationships. The latent variables are
only indirectly measurable, however, through their presumed manifestations in observed
behavior. This is in particular possible via use of multiple indicators or multi-item mea-
suring instruments, which have become highly popular in the behavioral and social
sciences and well beyond them.

This book has been conceptualized mainly as an introductory to intermediate level
discussion of IRT and IRM. To aid in the presentation, the book uses the software pack-
age Stata. This package offers, in addition to its recently developed IRT command,
many and decisive benefits of general purpose statistical analysis and modeling soft-
ware. After discussing fundamental concepts and relationships of special relevance to
IRT, its applications in practical settings with Stata are illustrated using examples from
the educational, behavioral, and social sciences. These examples can be readily “trans-
lated”, however, to similar utilizations of IRM also in the clinical, biomedical, business,
marketing, and related disciplines.

We find that several features set our book apart from others currently available in
the IRT field. One is that unlike a substantial number of treatments of IRT (in particular
older ones), we capitalize on the diverse connections of this field to the comprehensive
methodology of latent variable modeling as well as related applied statistics frameworks.
In many aspects, it would be fair to view this book as predominantly handling IRT and
IRM, somewhat informally stated, as part of the latent variable modeling methodology.
In particular, the discussion throughout the book benefits as often as possible from the
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conceptual relationships between IRT and factor analysis, specifically, nonlinear factor
analysis. Relatedly, whenever applicable, the important links between IRM and other
statistical modeling approaches are also pointed out, such as the generalized linear
model and especially logistic regression. Another distinguishing feature of the book is
that it is free of misconceptions about and incorrect treatments of classical test theory
(Zimmerman 1975). Regrettably, they can still be found in some measurement literature
and inhibit significantly in our opinion progress in social and behavioral measurement.
In addition, these misconceptions contribute to a compartmentalization approach that
seems to have been at times followed especially when disseminating or teaching IRT in
circles with limited or no prior familiarity with it. That approach and resulting re-
strictive focus of interest is in our view highly undesirable. The reason is that such an
approach has the potential of creating long-term disservice to the cause of behavioral
and social measurement. In this connection, we would also like to point out that unlike
many previous treatments, this book presents its discussion and developments without
any juxtaposition of IRT to classical test theory. This is because IRT does not need
this kind of “comparison” and related misconceptions to convince scholars of what it
can deliver under its assumptions (see also Raykov and Marcoulides [2016b]). A third
characteristic of the book is that it demonstrates the straightforward, user-friendly, and
highly effective Stata applications for IRT modeling. We hope to gain in this way many
new enthusiasts for this methodological field as well as IRT software across these and
related disciplines. Last but not least, our book aims to provide a coherent discussion of
IRT and IRM independently of software. The goal is thereby to highlight as often as pos-
sible and in as much detail as deemed necessary important concepts and relationships in
IRT before moving on to its applications. This was necessary because in our experience,
many individuals seem to find some features of this modeling approach more difficult to
deal with and use to their advantage than what may be seen as “conventional” applied
statistical concepts and relationships. These features include in particular the inherent
nonlinearity in studied item-trait relationships as well as produced estimates (predic-
tions) of individual trait levels and measures of uncertainty associated with them. That
difficulty in appreciating characteristic properties of IRT may have arguably resulted
from insufficient discussion and clarification of them in some alternative accounts or
presentations.

This book could be considered aimed mainly at students and researchers with lim-
ited or no prior exposure to IRT. However, we are confident that it will also be of
interest to more advanced students and scientists who are already familiar with IRT, in
particular owing to the above mentioned features in which the book does not overlap
with the majority of others available in this field. In addition, a main goal was to en-
able readers to pursue subsequently more advanced studies of this comprehensive and
complex methodological field and its applications in empirical research, as well as to
follow more technically oriented literature on IRT and IRM. Relatedly, even though the
book uses primarily examples stemming from the educational and behavioral sciences,
their treatment, as well as more generally of this measurement field, allows essentially
straightforward applications of the used methods and procedures also in other social sci-
ence settings. These include the clinical, nursing, psychiatry, biomedicine, criminology,
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organizational, marketing, and business disciplines (for example, Raykov and Calantone
[2014]).

Our book has been influenced substantially by deeply enriching interactions with a
number of colleagues over the past years. Special thanks are due to K. L. MacDonald and
R. Raciborski for their many instructive inputs on Stata uses and applications in relation
to examples used in the book, as well as on IRT and its empirical utilizations in more
general terms. The importance of the contributions also of Y. Marchenko and C. Huber
cannot be overstated, who provided instrumental support during our work on the book.
We are especially indebted to C. Huber for helpful comments and criticism on an earlier
version, which contributed markedly to its improvement. His assistance during the
book-production phase was similarly invaluable, as was that of the book editor and the
production assistant. We also wish to express our particular gratitude to M. D. Reckase,
B. O. Muthén, D. M. Dimitrov, M. Edwards, C. Lewis, R. Steyer, S. Rabe-Hesketh,
A. Skrondal, and A. Maydeu-Olivares for valuable discussions on IRT and IRM and
related applied statistics and measurement approaches. We are similarly thankful to
C. Falk, R. J. Wirth, N. Waller, R. Bowles, I. Moustaki, R. D. Bock, S. H. C. duToit,
G. T. M. Hult, and J. Jackson for insightful discussions on IRT applications and software.
We are also grateful to a number of our students in the courses we taught over the last
few years who offered very useful feedback on the lecture notes we first developed for
them, from which this book emerged. Last but not least, we are more than indebted
to our families for their continued support in lots of ways that cannot be counted. The
first author is indebted to Albena and Anna; the second author is indebted to Laura
and Katerina.

Tenko Raykov and George A. Marcoulides



 

 

 

 

 

 

 



1 What is item response theory and
item response modeling?

1.1 A definition and a fundamental concept of item re-
sponse theory and item response modeling

Item response theory (IRT) is an applied statistical and measurement discipline that is
concerned with probabilistic functions describing i) the interaction of studied persons
and the elements of a measuring instrument or item set of concern, such as items,
questions, tasks, testlets, subtests, and subscales (generically referred to henceforth as
“items”); and ii) the information contained in the data, which are obtained using the
instrument, with respect to its items and overall functioning as well as the examined
persons (Reckase 2009).

A fundamental concept in IRT is the relationship between i) the trait, construct,
ability, or latent dimension (continuum) being evaluated with the instrument, the di-
mension being typically denoted θ and often assumed unidimensional but in general
may consist of two or more components (see below); and ii) the probability of “correct”
response on a given item for a random subject with a trait or an ability level, θ, that is
designated as P (θ).1 A function of θ, which describes this probability P (θ) for an item,
is called an item characteristic curve (ICC). (Throughout this chapter, we assume that
θ is unidimensional unless otherwise indicated.) Owing to its special relevance to IRT

and item response modeling (IRM), the ICC can be viewed as one of its main concepts.
Other frequent references to it are item response curve, item characteristic function,
item response function, or item trace curve. It is important to stress that while being
defined as a probability, the ICC is not assumed to be a “static” concept but is rather
a function of the (presumed) underlying latent dimension θ. This functional relation-
ship between the probability of a particular response (“correct” response) on a given
item and the studied trait, construct, or ability, θ, can be viewed as a characteristic

1. As is common in the IRT literature, the notation θ is used throughout this book to denote i) the
studied latent trait, ability, construct, continuum, or, in general, latent dimension (or dimensions);
ii) an individual value or point on the last (for example, a subject’s latent trait or construct
score or ability level that is of interest to evaluate); and iii) the horizontal axis of figures of item
characteristic curves (ICCs) that imply the consideration or assumption of θ as a single latent
continuum or “scale”, which is at times also referred to as “θ-scale”. While this might be viewed
potentially as mixing or even as overusing the symbol θ, strictly speaking, we follow this standard
notation that has been widely used in the literature over the past several decades. The specific
meaning of its usage, in a sense mentioned in points i) through iii) in this note, is determined by
context in the pertinent discussions in the following chapters.

1



2 Chapter 1 What is item response theory and item response modeling?

element of IRT and IRM. A prototypical ICC, for the case of a single latent dimension or
continuum θ that underlies subject performance on a given set of items or measuring
instrument (and a binary scored item), is presented in figure 1.1, which also emphasizes
the extended S-shape of this curve.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

IC
C

−4 −2 0 2 4
theta

Figure 1.1. A prototypical item characteristic curve

From figure 1.1, we can see that as one moves from left to right on the horizontal
axis representing the studied latent dimension θ (referred to as “theta” on the figure),
the ICC is fairly low initially, then enters a region of notable increase in the central part
of the curve; toward the right end of the presented range of θ, the curve “stabilizes” at a
fairly high level, approaching 1 (see chapter 2 for further discussion on the ICC concept).
As will be explicated later, different items in a given measuring instrument or item set of
concern differ in general in the steepness of the curve increase in that central part of the
ICC. The extent of this increase, or curve tilt, is captured by a particular parameter of
interest in IRT and its applications in instrument construction and development, which
is referred to as item discrimination parameter. (In chapter 5, we discuss in detail this
and other item parameters.) Although the majority of applications of IRT are currently
based on models that assume the same functional class for the ICCs of all items involved
in a studied set or instrument (for example, when all items are binary or binary scored),
one can also use IRT with so-called hybrid models. These models allow subsets of items
to follow different functional classes for their ICCs, for example, when some items are
binary whereas others are ordinal and with more than two available response options
(see chapter 11).



1.1 A definition and a fundamental concept of IRT and IRM 3

While individual items are a special focus of IRT and IRM, measuring instruments
consisting of multiple items are also of particular interest. Such instruments—for in-
stance scales, tests, test batteries, surveys, questionnaires, self-reports, inventories, sub-
scales, or testlets—are highly popular in the behavioral, educational, and social sciences
(for example, Raykov and Marcoulides [2011]). Their popularity in these and cognate
disciplines is to a large degree due to their being composed of multiple components,
which provide converging pieces of information about underlying traits, abilities, and
attitudes, or in general latent dimensions that are often referred to as “constructs”.
These constructs and their relationships with one another and with other variables are
of main interest in those and related sciences. The reason is that entire theories in them
are advanced and developed in terms of such indirectly observable, latent, or hidden
variables. This is because the latter typically reflect substantively important theoret-
ical concepts of special concern in these and cognate disciplines. The latent variables
can be defined as random variables that presumably possess individual realizations in
all subjects in a studied population (or a sample from it), while no observations are
available on their realizations (for example, Bollen [1989]). These variables are un-
observed, however, because they cannot be directly measured, assessed, or evaluated.
They are assumed to be continuous throughout this book, and information about them
is collected in their manifestations, proxies, or indicators in observed behavior. (See, for
instance, Raykov, Marcoulides, and Chang [2016] and references therein for alternative
settings with discrete latent variables.) As such latent variable manifestations, one can
usually consider the responses obtained from the studied subjects on the components
or elements of instruments used to evaluate the unobserved constructs. Thereby, in the
role of instrument components, one typically uses appropriate items, such as questions,
tasks, or problems to solve (for example, McDonald [1999]).

The present book, as alluded to earlier, deals with a particular approach to the study
of the interaction of persons (respondents, examinees, patients, etc.) with measuring
instruments and especially with their elements or components (items). The aim thereby
is to optimally use the information about persons and items that is contained in the
subject responses to the items. We will be specifically concerned with these responses
on the items as well as the studied persons’ performance on the considered instruments.

As indicated above, a major focus in IRT is on the relationship between i) the
probability P of a particular type of response (such as “correct”, “true”, “present”,
endorsed, “success”, “agreed”, “applicable”, etc.) on any given item; and ii) the under-
lying presumed latent dimension (or dimensions) of interest to evaluate, such as ability,
proficiency, trait, construct, or attitude (latent continuum), typically denoted θ in IRT

contexts (see also footnote 1). That is, throughout this book, we will be especially inter-
ested in the above function P (θ) describing this relationship—called ICC as mentioned
earlier—for each of the items in a measuring instrument or item set under consideration.
With this in mind, one could define IRT in simple terms as a methodology dealing with
modeling the function P (θ), that is, expressing in quantitative terms the relationship
between θ and the above probability as a function of θ. This probability function in-
cludes specific characteristics (parameters) of the used items and of the studied subjects,
with the items usually representing a measuring instrument of interest. In fact, most
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contemporary IRT applications can be seen as essentially concerned with the following
activities (no ranking is implied in terms of their relevance):

a) postulating models about this relationship, that is, for P (θ), that involve unknown
parameters associated with the items of the instrument;

b) estimating these parameters using an available dataset obtained with the instru-
ment;

c) evaluating the (relative) fit of the models used; and,

d) based on the results of the activities in a) through c), estimating (predicting)
individual subject values for θ using plausible (selected, preferred) models, with
the values being positioned on the same “scale” or underlying latent dimension
or continuum as are particular item parameters (when θ is unidimensional; see
below).

An especially important and useful feature of IRT is that at the end of its application,
using a plausible model for an available dataset from a given item set or instrument one
obtains the following two sets of quantities that are commensurate, that is, located on
the same continuum (when unidimensional) (for example, van der Linden [2016b]):

i) a set of (estimated) quantities or parameters characterizing the items, specifically,
their difficulty parameters (see chapter 5 for a more precise definition); and

ii) a set of quantities or values (predictions, assigned values, or estimates—one per
person in unidimensional IRT and more than one in multidimensional IRT) that
characterize the extent to which each person possesses the trait or traits being
evaluated with the instrument in question (see chapters 5, 6, and 12 for further
details and examples).

Based on this discussion, we can observe the following important fact. For a given
person and binary or binary scored item (measure), the function P = P (θ) is actually
the mean of his or her response or observed or recorded score on the item. This ob-
served score is in general a random variable, and we will denote it by Y throughout
the book, also when it is nominal or ordinal with more than two possible responses (see
Raykov and Marcoulides [2013] and also chapters 3 and 11). We emphasize that it is
the latent dimension (or dimensions), θ, that is of actual interest to measure. However,
as we indicated earlier, this is not possible to achieve in any way similar to how one can
measure, say, length or weight. In particular, there is no “ruler” or (weight) “scale” that
is available to accomplish this measurement. Instead, only the crude assessment of θ is
feasible, namely, by using the above indicated measurement process using the presumed
proxies, indicators, or manifestations of θ, that is, the items or instrument components.
This process consists of administering the set of items or instrument used and recording
subject responses to them. The process produces as a result the observed (recorded,
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manifest) Y scores of the studied persons on the individual items. This complex set of
what are actually indirect measurement activities with respect to θ that yield in the end
the observed scores on the items is followed in IRM by suitable modeling and estimation
procedures that are of main concern in the remainder of the book.

As far as the ICCs are concerned, we should stress that there are infinitely many pos-
sible choices of the function P (θ) for any given item (instrument component). However,
as seen later in this book, only a few have obtained prominence and are used most of
the time in current behavioral, educational, and social research. The specifics of these
choices are attended to in later chapters.

A simple representation of the aims of IRT and IRM can be found in the following
schematic, figure 1.2. This figure is used only for conceptual purposes here and is not
meant to be a model or “causal” path diagram; that is, no causal implications are in-
tended to be drawn from it (k > 1 is the number of items in a set, test, scale, or, more
generally, measuring instrument of concern). The graphic representation in figure 1.2
makes use for the current aims of what has been often referred to as path diagram nota-
tion (for example, Raykov and Marcoulides [2006; 2011]). In this widely used notation,
i) rectangles denote observed variables, or items (that is, the variables that we collect
or record data on), while ii) ellipses symbolize the unobservable (latent) variable or
variables that we are interested in making inferences about based on the obtained data
on the items. As pointed out above, it is the latent variable, trait, or construct—in
general, latent dimensions or continua—that the observed measures presumably contain
information about. Hence, it is of interest to “extract” this information via appropriate
use of optimal statistical methods, like those offered by IRT.

Figure 1.2. A conceptual representation of the aims of item response theory and item
response modeling

In figure 1.2, on the left is what we observe, that is, have or collect or record data
on, namely, the k items usually representing a measuring instrument of concern. On the
right of this figure is what we want to make inferences about using those data—namely,
the latent trait, construct, or ability, θ. The connections between the items and θ,
represented informally by the one-way arrows in the middle of the figure, are facilitated
by the assumed ICC for each item when θ is unidimensional (see chapter 12 for the
multidimensional case). These ICCs are typically taken to be monotonically increasing
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(continuous) functions of θ. (We emphasize that these item-trait relationships need not
be assumed linear, with more details following below.)

This book mainly considers the underlying trait, ability, or construct as unidimen-
sional, that is, as a single continuum [that is, with dim(θ) = 1, where dim(·) denotes
dimensionality or number of dimensions]. In addition, however, in a later chapter, we
also provide an introduction to multidimensional IRT and IRM, where more than one
trait or abilities are of concern, that is, dim(θ) > 1 holds (see chapter 12). The book will
not deal with time-limited, timed, or speeded tests or behavior measuring procedures
or with models for continuous responses. (See van der Linden [2016a] for discussions of
such types of procedures.) In this respect, we observe that if a test is speeded (to some
“significant” degree at least), then in general, it cannot be really considered unidimen-
sional. The reason is that it will possibly be measuring the trait of initial interest as
well as the ability to perform under a speeded condition (speed performance).

1.2 The factor analysis connection

Two applied statistics and measurement fields that are closely related to IRT and also
of special relevance in the remainder of this book are classical test theory (CTT) and
factor analysis (FA). We will be concerned in more detail with them in chapter 3, but it is
useful here to highlight their links from a historical viewpoint to IRT and IRM. The basics
of CTT and FA were laid in the beginning of the past century, starting perhaps with
the far-reaching work by Spearman in two landmark papers published in the American

Journal of Psychology more than 100 years ago (Spearman 1904b,a).

For a number of years, especially in the first half and middle of the 20th century,
FA was focused on analysis of correlation matrices for observed variables measured on
an interval scale (or treated otherwise as continuous). A main characteristic of those
developments, which led to the classical (linear) FA model, was the assumed linear
relationship between observed responses and underlying continuous latent variables.
The latter variables are typically called factors in the FA context and are in general
closely related to the latent dimensions θ in IRT (see chapters 3 and 4 for more detail).
In the 1960s and 1970s, work began on extending the ideas of FA to the case of discrete
observed variables and nonlinear trait-response relationships. This research evolved
within a more general latent variable modeling (LVM) framework (for example, Muthén
[2002]) and was led by K. G. Jöreskog and his collaborators, most notably D. Sörbom,
A. Christofferson, and B. O. Muthén.

As a highlight of this early work, Muthén (1984) developed a comprehensive and
widely applicable approach to FA-based modeling of discrete responses. This approach
no longer assumed linear relationships between observed variables (indicators) and un-
derlying factors. In this connection, it is also important to emphasize the contribution
by McDonald (1967) that precipitated the extension of the FA framework to the case
of nonlinear relationships between response and latent variables. His influential work is
perhaps best understood in the context of the generalized linear model (GLIM) (see also
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McDonald [1999]; compare Raykov and Marcoulides [2011]). The GLIM is also discussed
in one of the following chapters and referred to on several occasions later in the book.

In a related development, Takane and de Leeuw (1987) showed that the single-factor
model for discrete items (binary or binary scored indicators) is equivalent to the two-
parameter normal ogive model. (See also Raykov and Marcoulides [2016b] for closely
related results and implications for the relationship between CTT and IRT.) This re-
search, which in our view unfortunately remained underappreciated throughout most
of the ensuing decades, effectively demonstrated in tandem with McDonald (1967) the
equivalence of a large class of IRT models to nonlinear FA models with discrete depen-
dent variables. Much of the discussion in the rest of this book can in fact be seen
as capitalizing on these earlier developments in the nonlinear FA and IRT fields, which
share important commonalities and overlap more than may appear at first. (For a dis-
cussion on some of these commonalities, see, for instance, Kamata and Bauer [2008] and
Raykov and Marcoulides [2016b].)

For the most part, the present book is based as mentioned on the important con-
nections that exist between LVM and, in particular, FA on the one hand and IRT and
IRM on the other hand. We find these links regrettably still not used or explicated in
many IRT treatments. The unique benefits of these connections lie in the fact that they
provide important insights into the deeper relationships between these two main applied
statistics frameworks, allowing clearer understanding of each one of them. In this way,
their links serve the aim of facilitating a more thorough understanding of IRT—as well
as of LVM—that is void of potentially misleading and in our opinion outdated views of
IRT (or of FA for that matter). It is those views, at times still disseminated among some
circles, that we find to hamper progress in either of these highly popular and closely
related applied statistical fields in contemporary behavioral and social science. These
are views that this book is free of.

1.3 What this book is, and is not, about

This book will be concerned predominantly with unidimensional IRT and IRM and will
in addition provide an introduction to multidimensional IRT (see chapter 12). Although
the book deals chiefly with binary or binary scored items, it also discusses in considerable
detail in a separate chapter polytomous items and IRT models for them (see chapter 11).

While being concerned with these theoretically and empirically important settings,
as indicated earlier, the book will not be dealing with

• speeded, timed, or time-limited tests (see, for example, van der Linden [2016a],
for a discussion of such tests);

• measuring instruments yielding continuous outcomes, that is, continuously dis-
tributed “items” (models for such instruments or components or items are re-
ferred to at times as “continuous response models”; for example, see Hambleton,
Swaminathan, and Rogers [1991] and van der Linden [2016a] for references);
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• settings with clustered (nested) data (for example, Hox [2010]);

• settings with considerable unobserved heterogeneity, so-called mixture IRT (for
example, see Lubke and Muthén [2005]; see also Raykov, Marcoulides, and Chang
[2016]);

• nonparametric IRM (for example, Sijtsma and Molenaar [2002]); and

• extended IRM with covariates (for example, Bock and Moustaki [2007]).

Based on the discussions provided in this book, it is also our goal to enable the
readers to move on subsequently to more advanced treatments and uses of IRT and IRM,
such as advanced multidimensional and polytomous IRT modeling, as well as IRM with
clustered data (multilevel IRT), latent class-based (mixture) IRT, and IRT models with
covariates.

1.4 Chapter conclusion

In broad terms, IRT can be seen as based on two postulates. One of them is that subject
responses on a given set of items or measuring instrument can be explained by one or
more latent traits, abilities, constructs, dimensions, continua, or factors. According to
the second postulate, the relationships between the item responses and these traits can
be described by appropriate probabilistic functions, which represent the ICCs in unidi-
mensional IRT (compare Hambleton, Swaminathan, and Rogers [1991]; see, for example,
figure 1.1 and chapters 2, 5, and 12). An examined person’s responses on the items are
assumed to depend thereby on i) the degree to which he or she possesses the studied
traits and ii) one or more characteristics of each of the items. This relationship is de-
scribed by specific probabilistic functions, as assumed within the IRT models, that are
postulated at the item level. IRT and IRM can thus be viewed as an applied statistical
discipline that deals with a family of models for the ICCs associated with given sets of
items or measuring instruments administered to studied persons in the unidimensional
trait or ability case. These types of models include at least one parameter for each item
and, in the general case, at least one parameter associated with each subject. There
is a strong connection between IRT and FA, especially nonlinear FA (McDonald 1967;
Takane and de Leeuw 1987). Similarly, IRT is closely related to GLIM, in particular logis-
tic regression, and to nonlinear regression (Cai and Thissen 2015). There are also strong
connections between IRT and CTT (for example, Raykov and Marcoulides [2016b]). In
fact, as will be illustrated in subsequent chapters, most popular IRT models can be
viewed as nonlinear FA models that are empirically indistinguishable from appropriate
CTT-based models in the single occasion assessment setting of relevance throughout this
book (Raykov and Marcoulides 2011). These connections will be very beneficial for our
discussions in the next few chapters as well as later in the book. The highlighting of
the particularly useful IRT-FA-CTT-GLIM-logistic regression links, free of misconceptions
about CTT and of its juxtaposition to IRT, is in fact a main distinguishing characteristic
of this book.
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We recall from chapter 2 that the graphs of the logistic and normal ogive functions are
indistinguishable for most practical purposes, after a minor rescaling of the horizontal
axis for the former (with no substantive meaning in empirical settings in general). Thus,
we can use figure 5.2 as a graphical representation of either of these functions for ICC

illustration purposes in the rest of the book. (The units on the horizontal axis of
the figure are not relevant for the present discussion.) In this figure, to prepare for
the discussion in the remainder of the current and following chapters, we denote the
horizontal axis by θ (“theta”), which is the underlying trait, construct, or ability of
central interest in (unidimensional) IRT and its applications (see also chapter 1 and
footnote 1 to it).
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Figure 5.2. A typical (in shape) item characteristic curve in logistic item response theory
models

We are now ready to discuss specific logistic IRT models that represent the over-
whelming majority of IRT applications in contemporary behavioral, educational, and
social research. These models are also used in a number of cognate disciplines ranging
from biomedicine through marketing (for example, Raykov and Calantone [2014]).

5.5 The one- and two-parameter logistic models

When a logistic function is used as an ICC in a unidimensional IRT model, the height
of the pertinent logistic curve at any given value of x, Λ(x), obtains a special meaning,
as it follows from (5.6) and is seen from figure 5.2. Specifically, this curve value Λ(x)
informs about the (assumed) proportion of persons in a population under investigation
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at that trait or ability level who can answer “correctly” the corresponding item. That
is, from (5.5) and (5.6), it follows that the associated probability of correct response on
the item is

P (θ) =

∫ x

−∞

ψ(u)du = Λ(x) (5.7)

In (5.7), Λ(x) denotes as before the standard logistic cumulative distribution func-
tion, and ψ(u) is its corresponding probability density function [compare Roussas [1997]
and see (5.5)]. Using the inverse of the logistic function (see chapter 4), (5.7) is inter-
pretable as saying the following:

x = Λ−1{P (θ)} (5.8)

We obtained (5.8) by taking the inverse function of both sides of (5.7) (namely,
its first and last part), recalling thereby that the inverse of the logistic function exists
because of the latter being monotonically increasing (see also chapter 2). We also kept
in mind that inverse functions applied successively simply annihilate or wipe out each
other, as indicated earlier.

Equation (5.8) actually states that x is a function of θ, as we can see by looking at
its right-hand side. Indeed, because the right-hand side of that equation is a function of
θ, namely, Λ−1{P (θ)}, its left-hand side is also a function of θ, that is, x is a function
of θ as well. Hence, we can rewrite (5.8) now as follows to emphasize this dependence
(see in particular the last part of the next equation):

x = Λ−1{P (θ)} = x(θ) (5.9)

We can interpret (5.9) as demonstrating the following important fact when consid-
ering the logistic function giving rise to the ICC of a binary or binary scored item of
concern. Specifically, to obtain the point x at which the value of the ICC equals a given
probability, say, P , we need to take the inverse of the function representing the cumu-
lative distribution function of the standard logistic distribution, Λ(·), at that value P .
That inverse function depends on the studied latent dimension θ, as we have just seen,
and this is why we denoted it x(θ) in (5.9).

With this discussion in mind, we can now obtain one of the most popular logistic
IRT models by taking one more “small” step as we do next.

5.5.1 The two-parameter logistic model

A widely used model in the behavioral, educational, and social sciences when there is
no guessing (or only minimal such that can be treated as negligible) on any item in
a given set or measuring instrument is based on (5.9). (For instance, such are items
involving free response or items that are administered after effective instruction in an
assessment setting.) This widely used model assumes that for a given binary or binary
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scored item, the dependence of x on the studied trait level θ as reflected in that equation
is representable by the following linear relationship:

x = a(θ − b) (5.10)

In (5.10), a and b are parameters with special interpretation that are discussed in
detail below. Because for a given item this model involves two parameters, it is referred
to generically as a two-parameter model.

With (5.4) and (5.10) in mind, if we assume the logistic function as ICC for each item
in a measuring instrument or item set of concern, from (5.7) follows that the formal
representation of the ICC, that is, of the probability of “correct” response, is

P (θ) = Λ(x) =
ex

1 + ex
=

1

1 + e−x
= 1/{1 + exp(−x)} (5.11)

That is, owing to (5.10), from (5.11), we obtain

P (θ) =
ea(θ−b)

1 + ea(θ−b)
=

1

1 + e−a(θ−b)
=

1

1 + exp{−a(θ − b)} (5.12)

An IRT model that has as associated ICCs the function in (5.12) for each in a given
set of binary or binary scored items, with in general different values for its parameters
a and b, is called a two-parameter logistic (2PL) model.

We stress that (5.12) defines an item-specific model. This model, when considered
in an empirical setting, is usually assumed for any item in an instrument or item set of
interest. That is, if the model is posited for, say, the jth item, in a set consisting of k
items (k > 1), to be more informative, one should attach the subindex j to both a and
b in the right-hand side of (5.12). This leads to the following widely used form of the
2PL model (for the jth item),

Pj(θ) =
eaj(θ−bj)

1 + eaj(θ−bj)
=

1

1 + e−aj(θ−bj)
=

1

1 + exp{−aj(θ − bj)}
(5.13)

(j = 1, . . . , k).

We will discuss in detail the meaning of the a and b parameters in the next subsection.
Before doing so, however, we observe an important fact that follows from (5.12) [see
also (5.13)]. For a fixed value of the quantity b (and θ), an increase in the quantity
a leads to an increase in the probability P (θ) (for “correct” response). Conversely, a
decrease in a then brings about a decrease in that probability. Similarly, for a fixed
value of a (and θ), an increase in the quantity b leads to a decrease in the probability
P (θ). Alternatively, a decrease in b then yields an increase in that probability.
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Keeping in mind the 2PL model, we now note a consequential link between IRT and
IRM on the one hand and our discussion in the preceding chapter on the other. More
concretely, through simple algebra on (5.13), we obtain

Pj(θ) =
eaj(θ−bj)

1 + eaj(θ−bj)
=

1

1 + exp{−aj(θ − bj)}
=

1

1 + exp{−(cj + ajθ)}
(5.14)

for the jth item, where cj = −ajbj(j = 1, . . . , k). Comparing now each of the k
equations in (5.14) with the corresponding equations (for the same items) in (4.12)
in chapter 4 defining the multivariate logistic regression model with a single observed
predictor, we can make the following observation. We can view the 2PL model, and
by implication the Rasch model as a special case of it (see further details below), as
a multivariate logistic regression model with i) a single unobserved predictor, namely,
θ; ii) intercept cj = −ajbj ; and iii) slope aj for the jth item in a set of items or
measuring instrument of concern (j = 1, . . . , k; compare Cai and Thissen [2015]). We
will provide an alternative yet equivalent view of this relationship later in the chapter,
after attending next to the particular meaning of the item parameters in this model.

5.5.2 Interpretation of the item parameters in the two-parameter logis-
tic model

What do these parameters aj and bj actually mean in the 2PL model in relation to the jth
item (j = 1, . . . , k)? The parameter aj can be shown to be directly proportional to the
steepness of the ICC at its inflection point (for example, Reckase [2009]). In particular,
the higher aj , the steeper the slope of the ICC in its central part, and conversely (see
figure 5.2). This inflection point, as mentioned in chapter 2, is located at that trait
or ability level (point on the horizontal axis in an ICC graph) where the probability of
correct response is 0.5. (See, for example, figure 2.2 in chapter 2 or figure 5.2 above.
We mention in passing that this trait or ability level or point on the θ-scale is at times
also referred to as the “midprobability” point for the considered item.) Looking at
(5.12), we readily realize that this happens precisely where θ = bj on the underlying
continuum representing the studied trait or ability. (The reason is that only at this
point, the numerator of the ratio in the right-hand side of this equation is equal to
1 and its denominator is equal to 2.) Thus, the meaning of the parameter bj is as
that position on the latent ability or construct scale (dimension or continuum), where
Pj(θ) = 0.5 holds for the probability of correct response on the jth item (see below for
additional discussion).
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Contains data from http://www.stata-press.com/data/cirtms/lsat.dta
obs: 1,000
vars: 6 3 Oct 2016 11:49
size: 24,000

storage display value
variable name type format label variable label

id float %9.0g
item1 float %9.0g
item2 float %9.0g
item3 float %9.0g
item4 float %9.0g
item5 float %9.0g

Sorted by:

In this output, Stata informs us that there are 1,000 observations on 6 variables,
with both these numbers correctly reflecting the sample size and number of items in the
original data file (lsat.dat or lsat.dta, in the ASCII or Stata format, respectively).
The variable or item order, from left to right in that file, is as the one of their listing
from top to bottom in the first column of the presented output. In particular, after
a subject identifier, denoted id as usual, the k = 5 dichotomous items follow, which
are stored in regular precision. (The remaining columns of this output pertain to data
storage and technical details that are not of particular relevance here.)

At this stage, it is important as a matter of routine to make sure that the number
of observations and variables in the read data file, which are indicated at the top of
the above output, indeed equal the sample size and number of variables in the original
dataset, respectively. As mentioned earlier, these two numbers should be known before-
hand to the researcher. That sample size and variable number check is accomplished
by inspecting the corresponding two numbers in the second and third lines from the
top of the output resulting from the Stata command describe (or d). If the number
of observations or variables in the read-in data file does not match the sample size or
the number of variables in the initial data file, the reason for this discrepancy needs
to be found and corrected before proceeding any further with the next steps outlined
below. (That is, an accessed data file with a discrepancy for either of these two numbers
should not be processed any further or analyzed until this discrepancy is resolved and
the original data file correctly read in with the software.)

A look next at the descriptive statistics of the items can also be informative, in
particular prior to commencing the IRT analyses discussed in the next section 6.2. This
is achieved with the following command (which can also be shortened to su):

. summarize item1-item5

Variable Obs Mean Std. Dev. Min Max

item1 1,000 .924 .2651307 0 1
item2 1,000 .709 .4544508 0 1
item3 1,000 .553 .4974318 0 1
item4 1,000 .763 .4254551 0 1
item5 1,000 .87 .3364717 0 1
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By examining the mean of each item, which in this dichotomous item case equals
the proportion of “correct” responses, we see from the last presented output that all
items are associated with higher than 0.5 probability for that response (denoted “1”).
The highest variance is exhibited by item 3, which is because its probability of “correct”
response is closest to 0.5 (for example, Raykov and Marcoulides [2011]).

With this initial examination of the dataset of interest, we are now ready to proceed
to fitting logistic IRT models and interpreting associated results in the next section. For
the specific aims of the present empirical illustration using the LSAT dataset, we assume
that each of the five items in it measures a particular aspect of the trait (construct)
general mental ability.

6.2 Fitting a two-parameter logistic model

As discussed in chapter 5, the 2PL model represents a general logistic model for empirical
settings with no guessing. (We assume initially no guessing on any item in a given set or
instrument of interest and will revisit this matter in a following section as well as later
in the book.) Therefore, we commence our IRT modeling effort by fitting this model.
To this end, we use the following Stata command:

. irt 2pl item1-item5

This straightforward request yields this output:

Fitting fixed-effects model:

Iteration 0: log likelihood = -2504.5114
Iteration 1: log likelihood = -2493.5307
Iteration 2: log likelihood = -2493.4367
Iteration 3: log likelihood = -2493.4367

Fitting full model:

Iteration 0: log likelihood = -2478.6867
Iteration 1: log likelihood = -2467.6539
Iteration 2: log likelihood = -2466.6565
Iteration 3: log likelihood = -2466.6536
Iteration 4: log likelihood = -2466.6536

Two-parameter logistic model Number of obs = 1,000
Log likelihood = -2466.6536
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

item1
Discrim .8256703 .2581376 3.20 0.001 .3197299 1.331611

Diff -3.358777 .8665242 -3.88 0.000 -5.057133 -1.660421

item2
Discrim .7227513 .1866698 3.87 0.000 .3568852 1.088618

Diff -1.370049 .307467 -4.46 0.000 -1.972673 -.7674249

item3
Discrim .8907338 .2326049 3.83 0.000 .4348366 1.346631

Diff -.2796988 .0996259 -2.81 0.005 -.4749621 -.0844356

item4
Discrim .6883831 .1851495 3.72 0.000 .3254968 1.05127

Diff -1.866349 .4343093 -4.30 0.000 -2.71758 -1.015118

item5
Discrim .6568946 .2099182 3.13 0.002 .2454624 1.068327

Diff -3.125751 .8711505 -3.59 0.000 -4.833174 -1.418327

As indicated at the top of this output, after several iterations, the underlying numer-
ical optimization procedure converged to the solution provided above. A main index
of relative model fit, which will be used later for comparing the 2PL model with the
1PL model and a 3PL model fit to the same dataset, is the maximized log-likelihood.
Its value may be treated, somewhat informally, as a “goodness-of-fit” measure or index
that does not explicitly account for model complexity. Hence, this index is best used for
model comparison. (For a more detailed discussion, see section 6.5 dealing with nested
models and chapter 7 for the data likelihood concept and its maximization.) We note
that in the present example, the maximized log-likelihood equals −2466.65 (rounded
off).

For each of the five analyzed items, the discrimination and difficulty parameter es-
timates follow in the subsequently presented panel of the above output. In addition,
their associated standard errors, test statistics for being equal to 0 in the population of
concern, and pertinent p-values, as well as 95% confidence intervals (CIs), are listed in
the remainder of the corresponding rows. Thereby, the information pertaining to the a
parameter (item discrimination) precedes that for the b parameter (item difficulty) for
each item in this default output layout. (This result presentation layout may arguably
be more often of interest in empirical research, but alternative ones are also available;
see below.) These findings suggest that under the 2PL model, each item has nonzero
discrimination and difficulty parameters in the studied subject population. This inter-
pretation is based on direct inspection of the last 3 columns of above output and, in
particular, their CIs, which do not contain the 0 point (suggesting none of these 10 pa-
rameters are 0 in the studied population, which as indicated earlier is of relevance with
respect to the item discrimination parameters but not the item difficulty parameters).
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If one wished a different solution presentation, reordering the lines of the last output
is also possible. For instance, if one desired to have the items first “ranked” in terms of
their a parameters in ascending order, we request it in the following way:

. estat report, byparm sort(a)

Two-parameter logistic model Number of obs = 1,000
Log likelihood = -2466.6536

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Discrim
item5 .6568946 .2099182 3.13 0.002 .2454624 1.068327
item4 .6883831 .1851495 3.72 0.000 .3254968 1.05127
item2 .7227513 .1866698 3.87 0.000 .3568852 1.088618
item1 .8256703 .2581376 3.20 0.001 .3197299 1.331611
item3 .8907338 .2326049 3.83 0.000 .4348366 1.346631

Diff
item5 -3.125751 .8711505 -3.59 0.000 -4.833174 -1.418327
item4 -1.866349 .4343093 -4.30 0.000 -2.71758 -1.015118
item2 -1.370049 .307467 -4.46 0.000 -1.972673 -.7674249
item1 -3.358777 .8665242 -3.88 0.000 -5.057133 -1.660421
item3 -.2796988 .0996259 -2.81 0.005 -.4749621 -.0844356

We note from this output that the only effect of the last-used Stata command is the
reordering of the rows in the earlier presented item results section. Hence, none of the
results associated with the fit model are changed (because no new model has been fit
to the same dataset analyzed). As we can see from the top panel of the last output, in
the used sample (dataset), item 5 is the least discriminating one, as judged by the item
discrimination parameter estimates. However, given the relatively large standard errors
compared with the differences in these estimates for the other items, one cannot suggest
from this observation only that item 5 would be the least discriminating item also in
the population. In fact, keeping in mind the relatively sizable standard errors, one may
as well suggest that the five items have very similar discrimination parameters. This is
a potentially rather interesting relationship with respect to the studied population (see
also chapter 5). We thus keep in mind this discrimination parameter similarity across
items and will pursue it in more detail in the next section.

Alternatively, if one wished instead to have the item difficulty parameter estimates
ranked in ascending order, we achieve it this way, observing also that they are all
negative here (see lower panel of output below):
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. estat report, byparm sort(b)

Two-parameter logistic model Number of obs = 1,000
Log likelihood = -2466.6536

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Discrim
item1 .8256703 .2581376 3.20 0.001 .3197299 1.331611
item5 .6568946 .2099182 3.13 0.002 .2454624 1.068327
item4 .6883831 .1851495 3.72 0.000 .3254968 1.05127
item2 .7227513 .1866698 3.87 0.000 .3568852 1.088618
item3 .8907338 .2326049 3.83 0.000 .4348366 1.346631

Diff
item1 -3.358777 .8665242 -3.88 0.000 -5.057133 -1.660421
item5 -3.125751 .8711505 -3.59 0.000 -4.833174 -1.418327
item4 -1.866349 .4343093 -4.30 0.000 -2.71758 -1.015118
item2 -1.370049 .307467 -4.46 0.000 -1.972673 -.7674249
item3 -.2796988 .0996259 -2.81 0.005 -.4749621 -.0844356

However, these 10 parameter estimates (of 5 item discrimination and 5 item difficulty
parameters) are not often easy to interpret in purely numeric terms. Thus, we could
for instance graph the corresponding item characteristic curves (ICCs) to aid with their
interpretation. We achieve it with the following Stata command:

. irtgraph icc item1-item5

This yields the graph presented in figure 6.3 [with different colors assigned as software
default to the different ICCs].
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Figure 6.3. Graph of the item characteristic curves for the k = 5 analyzed items

We notice from figure 6.3 (see also last presented output) that item 1 is the easiest
in the analyzed dataset. To observe this, imagine drawing a horizontal line at the point
symbolizing the probability of 0.5 on the vertical axis. Because this line first crosses the
ICC of item 1, as one moves from left to right on the horizontal axis, this item is easiest
here (see also figure 6.4 below). In the same way, we can also observe that item 3 seems
to be the hardest (in this dataset). This is because for item 3, the point on the horizontal
axis that corresponds to the intersection of its ICC with that imaginary horizontal line
at 0.5 probability is to the right of any such point for the remaining 4 items (see also
figure 6.4). In addition, figure 6.3 suggests that the tangents to each ICC at its inflection
point (the point of intersection of the ICC with that imaginary horizontal line at 0.5
probability) are possibly fairly close to parallel. Again, to be more confident in such an
interpretation, we need additional analyses that we will conduct in section 6.3.

To obtain more precise graphical information about possible item difficulty differ-
ences, we can request pointing out the location of the difficulty parameter estimates
on the ICC plot. We achieve this with the following command (note that it is the first
ICC graphing command with an added subcommand stated after the comma, and see
figure 6.4 for the resulting graph):


