
10 Dichotomous or binary responses

10.1 Introduction

Dichotomous or binary responses are widespread. Examples include being dead or
alive, agreeing or disagreeing with a statement, and succeeding or failing to accomplish
something. The responses are usually coded as 1 or 0, where 1 can be interpreted as the
answer “yes” and 0 as the answer “no” to some question. For instance, in section 10.2,
we will consider the employment status of women where the question is whether the
women are employed.

We start by briefly reviewing ordinary logistic and probit regression for dichotomous
responses, formulating the models both as generalized linear models, as is common in
statistics and biostatistics, and as latent-response models, which is common in econo-
metrics and psychometrics. This prepares the foundation for a discussion of various
approaches for clustered dichotomous data, with special emphasis on random-intercept
models. In this setting, the crucial distinction between conditional or subject-specific
effects and marginal or population-averaged effects is highlighted, and measures of de-
pendence and heterogeneity are described.

We also discuss special features of statistical inference for random-intercept mod-
els with clustered dichotomous responses, including maximum likelihood estimation of
model parameters, methods for assigning values to random effects, and how to obtain
different kinds of predicted probabilities. This more technical material is provided here
because the principles apply to all models discussed in this volume. However, you can
skip it (sections 10.11 through 10.13) on first reading because it is not essential for
understanding and interpreting the models.

Other approaches to clustered data with binary responses, such as fixed-intercept
models (conditional maximum likelihood) and generalized estimating equations (GEE)
are briefly discussed in section 10.14.

10.2 Single-level logit and probit regression models for di-

chotomous responses

In this section, we will introduce logit and probit models without random effects that
are appropriate for datasets without any kind of clustering. For simplicity, we will start
by considering just one covariate xi for unit (for example, subject) i. The models can
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be specified either as generalized linear models or as latent-response models. These two
approaches and their relationship are described in sections 10.2.1 and 10.2.2.

10.2.1 Generalized linear model formulation

As in models for continuous responses, we are interested in the expectation (mean) of
the response as a function of the covariate. The expectation of a binary (0 or 1) response
is just the probability that the response is 1:

E(yi|xi) = Pr(yi = 1|xi)

In linear regression, the conditional expectation of the response is modeled as a linear
function E(yi|xi) = β1 + β2xi of the covariate (see section 1.5). For dichotomous
responses, this approach may be problematic because the probability must lie between
0 and 1, whereas regression lines increase (or decrease) indefinitely as the covariate
increases (or decreases). Instead, a nonlinear function is specified in one of two ways:

Pr(yi = 1|xi) = h(β1 + β2xi)

or
g{Pr(yi = 1|xi)} = β1 + β2xi = νi

where νi (pronounced “nu”) is referred to as the linear predictor. These two formulations
are equivalent if the function h(·) is the inverse of the function g(·). Here g(·) is known as
the link function and h(·) as the inverse link function, sometimes written as g−1(·). An
appealing feature of generalized linear models is that they all involve a linear predictor
resembling linear regression (without a residual error term). Therefore, we can handle
categorical explanatory variables, interactions, and flexible curved relationships by using
dummy variables, products of variables, and polynomials or splines, just as in linear
regression.

Typical choices of link function for binary responses are the logit or probit links.
In this section, we focus on the logit link, which is used for logistic regression, whereas
both links are discussed in section 10.2.2. For the logit link, the model can be written
as

logit {Pr(yi = 1|xi)} ≡ ln

{
Pr(yi = 1|xi)

1 − Pr(yi = 1|xi)

}

︸ ︷︷ ︸
Odds(yi=1|xi)

= β1 + β2xi (10.1)

The fraction in parentheses in (10.1) represents the odds that yi =1 given xi, the ex-
pected number of 1 responses per 0 response. The odds—or in other words, the expected
number of successes per failure—is the standard way of representing the chances against
winning in gambling. It follows from (10.1) that the logit model can alternatively be
expressed as an exponential function for the odds:

Odds(yi = 1|xi) = exp(β1 + β2xi)
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Because the relationship between odds and probabilities is

Odds =
Pr

1 − Pr
and Pr =

Odds

1 + Odds

the probability that the response is 1 in the logit model is

Pr(yi = 1|xi) = logit−1(β1 + β2xi) ≡
exp(β1 + β2xi)

1 + exp(β1 + β2xi)
(10.2)

which is the inverse logit function (sometimes called logistic function) of the linear
predictor.

We have introduced two components of a generalized linear model: the linear predic-
tor and the link function. The third component is the distribution of the response given
the covariates. Letting πi ≡ Pr(yi = 1|xi), the distribution is specified as Bernoulli(πi),
or equivalently as binomial(1, πi). There is no level-1 residual ǫi in (10.1), so the re-
lationship between the probability and the covariate is deterministic. However, the re-
sponses are random because the covariate determines only the probability. Whether the
response is 0 or 1 is the result of a Bernoulli trial. A Bernoulli trial can be thought of as
tossing a biased coin with probability of heads equal to πi. It follows from the Bernoulli
distribution that the relationship between the conditional variance of the response and
its conditional mean πi, also known as the variance function, is Var(yi|xi) = πi(1− πi).
(Including a residual ǫi in the linear predictor of binary regression models would lead
to a model that is at best weakly identified1 unless the residual is shared between units
in a cluster as in the multilevel models considered later in the chapter.)

The logit link is appealing because it produces a linear model for the log of the odds,
implying a multiplicative model for the odds themselves. If we add one unit to xi, we
must add β2 to the log odds or multiply the odds by exp(β2). This can be seen by
considering a 1-unit change in xi from some value a to a+1. The corresponding change
in the log odds is

ln{Odds(yi = 1|xi = a+ 1)} − ln{Odds(yi = 1|xi = a)}
= {β1 + β2(a+ 1)} − (β1 + β2a) = β2

Exponentiating both sides, we obtain the odds ratio (OR):

exp
[
ln{Odds(yi = 1|xi = a+ 1)} − ln{Odds(yi = 1|xi = a)}

]

=
Odds(yi = 1|xi = a+ 1)

Odds(yi = 1|xi = a)
=

Pr(yi = 1|xi = a+ 1)

Pr(yi = 0|xi = a+ 1)

/
Pr(yi = 1|xi = a)

Pr(yi = 0|xi = a)

= exp(β2)

1. Formally, the model is identified by functional form. For instance, if xi is continuous, the level-1
variance has a subtle effect on the shape of the relationship between Pr(yi = 1|xi) and xi. With a
probit link, single-level models with residuals are not identified.
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Consider now the case where several covariates—for instance, x2i and x3i—are in-
cluded in the model:

logit {Pr(yi = 1|x2i, x3i)} = β1 + β2x2i + β3x3i

In this case, exp(β2) is interpreted as the odds ratio comparing x2i = a+1 with x2i = a
for given x3i (controlling for x3i), and exp(β3) is the odds ratio comparing x3i = a+ 1
with x3i = a for given x2i.

The predominant interpretation of the coefficients in logistic regression models is
in terms of odds ratios, which is natural because the log odds is a linear function of
the covariates. However, economists instead tend to interpret the coefficients in terms
of marginal effects or partial effects on the response probability, which is a nonlinear
function of the covariates. We relegate description of this approach to display 10.1,
which may be skipped.

For a continuous covariate x2i, economists often consider the partial derivative of the prob-
ability of success with respect to x2i:

∆(x2i|x3i) ≡
∂Pr(yi = 1|x2i, x3i)

∂x2i
= β2

exp(β1 + β2x2i + β3x3i)

{exp(β1 + β2xi + β3x3i)}2

A small change in x2i hence produces a change of β2
exp(β1+β2x2i+β3x3i)

{exp(β1+β2x2i+β3x3i)}2 in

Pr(yi = 1|x2i, x3i). Unlike in linear models, where the partial effect simply be-
comes β2, the derivative of the nonlinear logistic function is not constant but depends on
x2i and x3i.

For a binary covariate x3i, economists consider the difference

∆(x3i|x2i) ≡ Pr(yi = 1|x2i, x3i = 1) − Pr(yi = 1|x2i, x3i = 0)

=
exp(β1 + β2x2i + β3)

1 + exp(β1 + β2x2i + β3)
− exp(β1 + β2x2i)

1 + exp(β1 + β2x2i)

which, unlike linear models, depends on x2i.

The partial effect at the average (PEA) is obtained by substituting the sample means
x2· = 1

N

PN
i=1 xi2 and x3· = 1

N

PN
i=1 xi3 for xi2 and xi3, respectively, in the above

expressions. Note that for binary covariates, the sample means are proportions and
subjects cannot be at the average (because the proportions are between 0 and 1).

The average partial effect (APE) overcomes this problem by taking the sample means
of the individual partial effects, APE(x2i|x3i) = 1

N

PN
i=1 ∆(x2i|x3i) and APE(x3i|x2i) =

1
N

PN
i=1 ∆(x3i|x2i). Fortunately, the APE and PEA tend to be similar.

Display 10.1: Partial effects at the average (PEA) and average partial effects (APE) for
the logistic regression model, logit {Pr(yi = 1|x2i, x3i)} = β1 + β2x2i + β3x3i, where x2i

is continuous and x3i is binary.
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To illustrate logistic regression, we will consider data on married women from the
Canadian Women’s Labor Force Participation Dataset used by Fox (1997). The dataset
womenlf.dta contains women’s employment status and two explanatory variables:

• workstat: employment status
(0: not working; 1: employed part time; 2: employed full time)

• husbinc: husband’s income in $1,000

• chilpres: child present in household (dummy variable)

The dataset can be retrieved by typing

. use http://www.stata-press.com/data/mlmus3/womenlf

Fox (1997) considered a multiple logistic regression model for a woman being em-
ployed (full or part time) versus not working with covariates husbinc and chilpres

logit{Pr(yi =1|xi)} = β1 + β2x2i + β3x3i

where yi = 1 denotes employment, yi = 0 denotes not working, x2i is husbinc, x3i is
chilpres, and xi = (x2i, x3i)

′ is a vector containing both covariates.

We first merge categories 1 and 2 (employed part time and full time) of workstat

into a new category 1 for being employed,

. recode workstat 2=1

and then fit the model by maximum likelihood using Stata’s logit command:

. logit workstat husbinc chilpres

Logistic regression Number of obs = 263
LR chi2(2) = 36.42
Prob > chi2 = 0.0000

Log likelihood = -159.86627 Pseudo R2 = 0.1023

workstat Coef. Std. Err. z P>|z| [95% Conf. Interval]

husbinc -.0423084 .0197801 -2.14 0.032 -.0810768 -.0035401
chilpres -1.575648 .2922629 -5.39 0.000 -2.148473 -1.002824

_cons 1.33583 .3837632 3.48 0.000 .5836674 2.087992

The estimated coefficients are negative, so the estimated log odds of employment are
lower if the husband earns more and if there is a child in the household. At the 5%
significance level, we can reject the null hypotheses that the individual coefficients β2

and β3 are zero. The estimated coefficients and their estimated standard errors are also
given in table 10.1.
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Table 10.1: Maximum likelihood estimates for logistic regression model for women’s
labor force participation

Est (SE) OR=exp(β) (95% CI)
β1 [ cons] 1.34 (0.38)
β2 [husbinc] −0.04 (0.02) 0.96 (0.92, 1.00)
β3 [chilpres] −1.58 (0.29) 0.21 (0.12, 0.37)

Instead of considering changes in log odds, it is more informative to obtain odds
ratios, the exponentiated regression coefficients. This can be achieved by using the
logit command with the or option:

. logit workstat husbinc chilpres, or

Logistic regression Number of obs = 263
LR chi2(2) = 36.42
Prob > chi2 = 0.0000

Log likelihood = -159.86627 Pseudo R2 = 0.1023

workstat Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

husbinc .9585741 .0189607 -2.14 0.032 .9221229 .9964662
chilpres .2068734 .0604614 -5.39 0.000 .1166621 .3668421

_cons 3.80315 1.45951 3.48 0.000 1.792601 8.068699

Comparing women with and without a child at home, whose husbands have the same
income, the odds of working are estimated to be about 5 (≈1/0.2068734) times as high
for women who do not have a child at home as for women who do. Within these two
groups of women, each $1,000 increase in husband’s income reduces the odds of working
by an estimated 4% {−4% = 100%(0.9585741−1)}. Although this odds ratio looks less
important than the one for chilpres, remember that we cannot directly compare the
magnitude of the two odds ratios. The odds ratio for chilpres represents a comparison
of two distinct groups of women, whereas the odds ratio for husbinc merely expresses
the effect of a $1,000 increase in the husband’s income. A $10,000 increase would be
associated with an odds ratio of 0.66 (= 0.95874110).

The exponentiated intercept, estimated as 3.80, represents the odds of working for
women who do not have a child at home and whose husbands’ income is 0. This is not
an odds ratio as the column heading implies, but the odds when all covariates are zero.
For this reason, the exponentiated intercept was omitted from the output in earlier
releases of Stata (until Stata 12.0) when the or option was used. As for the intercept
itself, the exponentiated intercept is interpretable only if zero is a meaningful value for
all covariates.

In an attempt to make effects directly comparable and assess the relative importance
of covariates, some researchers standardize all covariates to have standard deviation 1,
thereby comparing the effects of a standard deviation change in each covariate. As
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discussed in section 1.5, there are many problems with such an approach, one of them
being the meaningless notion of a standard deviation change in a dummy variable, such
as chilpres.

The standard errors of exponentiated estimated regression coefficients should gener-
ally not be used for confidence intervals or hypothesis tests. Instead, the 95% confidence
intervals in the above output were computed by taking the exponentials of the confidence
limits for the regression coefficients β:

exp{β̂ ± 1.96×SE(β̂)}

In table 10.1, we therefore report estimated odds ratios with 95% confidence intervals
instead of standard errors.

To visualize the model, we can produce a plot of the predicted probabilities versus
husbinc, with separate curves for women with and without children at home. Plugging
in maximum likelihood estimates for the parameters in (10.2), the predicted probability
for woman i, often denoted π̂i, is given by the inverse logit of the estimated linear
predictor

π̂i ≡ P̂r(yi = 1|xi) =
exp(β̂1 + β̂2x2i + β̂3x3i)

1 + exp(β̂1 + β̂2x2i + β̂3x3i)
= logit−1(β̂1 + β̂2x2i + β̂3x3i)

(10.3)
and can be obtained for the women in the dataset by using the predict command with
the pr option:

. predict prob, pr

We can now produce the graph of predicted probabilities, shown in figure 10.1, by using

. twoway (line prob husbinc if chilpres==0, sort)
> (line prob husbinc if chilpres==1, sort lpatt(dash)),
> legend(order(1 "No child" 2 "Child"))
> xtitle("Husband’s income/$1000") ytitle("Probability that wife works")
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Figure 10.1: Predicted probability of working from logistic regression model (for range
of husbinc in dataset)

The graph is similar to the graph of the predicted means from an analysis of covari-
ance model (a linear regression model with a continuous and a dichotomous covariate;
see section 1.7) except that the curves are not exactly straight. The curves have been
plotted for the range of values of husbinc observed for the two groups of women, and
for these ranges the predicted probabilities are nearly linear functions of husbinc.

To see what the inverse logit function looks like, we will now plot the predicted prob-
abilities for a widely extended range of values of husbinc (including negative values,
although this does not make sense). This could be accomplished by inventing addi-
tional observations with more extreme values of husbinc and then using the predict

command again. More conveniently, we can also use Stata’s useful twoway plot type,
function:

. twoway (function y=invlogit(_b[husbinc]*x+_b[_cons]), range(-100 100))
> (function y=invlogit(_b[husbinc]*x+_b[chilpres]+_b[_cons]),
> range(-100 100) lpatt(dash)),
> xtitle("Husband’s income/$1000") ytitle("Probability that wife works")
> legend(order(1 "No child" 2 "Child")) xline(1) xline(45)

The estimated regression coefficients are referred to as b[husbinc], b[chilpres],
and b[ cons], and we have used Stata’s invlogit() function to obtain the predicted
probabilities given in (10.3). The resulting graph is shown in figure 10.2.
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Figure 10.2: Predicted probability of working from logistic regression model (extrapo-
lating beyond the range of husbinc in the data)

The range of husbinc actually observed in the data lies approximately between the
two vertical lines. It would not be safe to rely on predicted probabilities extrapolated
outside this range. The curves are approximately linear in the region where the linear
predictor is close to zero (and the predicted probability is close to 0.5) and then flatten
as the linear predictor becomes extreme. This flattening ensures that the predicted
probabilities remain in the permitted interval from 0 to 1.

We can fit the same model by using the glm command for generalized linear models.
The syntax is the same as that of the logit command except that we must specify the
logit link function in the link() option and the binomial distribution in the family()

option:
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. glm workstat husbinc chilpres, link(logit) family(binomial)

Generalized linear models No. of obs = 263
Optimization : ML Residual df = 260

Scale parameter = 1
Deviance = 319.7325378 (1/df) Deviance = 1.229741
Pearson = 265.9615312 (1/df) Pearson = 1.022929

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.238527
Log likelihood = -159.8662689 BIC = -1129.028

OIM
workstat Coef. Std. Err. z P>|z| [95% Conf. Interval]

husbinc -.0423084 .0197801 -2.14 0.032 -.0810768 -.0035401
chilpres -1.575648 .2922629 -5.39 0.000 -2.148473 -1.002824

_cons 1.33583 .3837634 3.48 0.000 .5836674 2.087992

To obtain estimated odds ratios, we use the eform option (for “exponentiated form”),
and to fit a probit model, we simply change the link(logit) option to link(probit).

10.2.2 Latent-response formulation

The logistic regression model and other models for dichotomous responses can also be
viewed as latent-response models. Underlying the observed dichotomous response yi

(whether the woman works or not), we imagine that there is an unobserved or latent
continuous response y∗i representing the propensity to work or the excess utility of
working as compared with not working. If this latent response is greater than 0, then
the observed response is 1; otherwise, the observed response is 0:

yi =

{
1 if y∗i > 0
0 otherwise

For simplicity, we will assume that there is one covariate xi. A linear regression model
is then specified for the latent response y∗i

y∗i = β1 + β2xi + ǫi

where ǫi is a residual error term with E(ǫi|xi) = 0 and the error terms of different
women i are independent.

The latent-response formulation has been used in various disciplines and applica-
tions. In genetics, where yi is often a phenotype or qualitative trait, y∗i is called a
liability. For attitudes measured by agreement or disagreement with statements, the
latent response can be thought of as a “sentiment” in favor of the statement. In eco-
nomics, the latent response is often called an index function. In discrete-choice settings
(see chapter 12), y∗i is the difference in utilities between alternatives.

Figure 10.3 illustrates the relationship between the latent-response formulation,
shown in the lower graph, and the generalized linear model formulation, shown in the
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upper graph in terms of a curve for the conditional probability that yi =1. The regres-
sion line in the lower graph represents the conditional expectation of y∗i given xi as a
function of xi, and the density curves represent the conditional distributions of y∗i given
xi. The dotted horizontal line at y∗i =0 represents the threshold, so yi =1 if y∗i exceeds
the threshold and yi =0 otherwise. Therefore, the areas under the parts of the density
curves that lie above the dotted line, here shaded gray, represent the probabilities that
yi =1 given xi. For the value of xi indicated by the vertical dotted line, the mean of y∗i
is 0; therefore, half the area under the density curve lies above the threshold, and the
conditional probability that yi =1 equals 0.5 at that point.

P
r(
yi

=
1|x

i)

0.5

0.0

xi

y
∗
i

Figure 10.3: Illustration of equivalence of latent-response and generalized linear model
formulations for logistic regression

We can derive the probability curve from the latent-response formulation as follows:

Pr(yi =1|xi) = Pr(y∗i > 0|xi) = Pr(β1 + β2xi + ǫi > 0|xi)

= Pr{ǫi > −(β1 + β2xi)|xi} = Pr(−ǫi ≤ β1 + β2xi|xi)

= F (β1 + β2xi)

where F (·) is the cumulative density function of −ǫi, or the area under the density
curve for −ǫi from minus infinity to β1 + β2xi. If the distribution of ǫi is symmetric,
the cumulative density function of −ǫi is the same as that of ǫi.
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Logistic regression

In logistic regression, ǫi is assumed to have a standard logistic cumulative density func-
tion given xi,

Pr(ǫi < τ |xi) =
exp(τ)

1 + exp(τ)

For this distribution, ǫi has mean zero and variance π2/3 ≈ 3.29 (note that π here
represents the famous mathematical constant pronounced “pi”, the circumference of a
circle divided by its diameter).

Probit regression

When a latent-response formulation is used, it seems natural to assume that ǫi has a
normal distribution given xi, as is typically done in linear regression. If a standard
(mean 0 and variance 1) normal distribution is assumed, the model becomes a probit
model,

Pr(yi =1|xi) = F (β1 + β2xi) = Φ(β1 + β2xi) (10.4)

Here Φ(·) is the standard normal cumulative distribution function, the probability that
a standard normally distributed random variable (here ǫi) is less than the argument.
For example, when β1 + β2xi equals 1.96, Φ(β1 + β2xi) equals 0.975. Φ(·) is the inverse
link function h(·), whereas the link function g(·) is Φ−1(·), the inverse standard normal
cumulative distribution function, called the probit link function [the Stata function for
Φ−1(·) is invnormal()].

To understand why a standard normal distribution is specified for ǫi, with the vari-
ance θ fixed at 1, consider the graph in figure 10.4. On the left, the standard deviation
is 1, whereas the standard deviation on the right is 2. However, by doubling the slope
of the regression line for y∗i on the right (without changing the point where it intersects
the threshold 0), we obtain the same curve for the probability that yi =1. Because we
can obtain equivalent models by increasing both the standard deviation and the slope
by the same multiplicative factor, the model with a freely estimated standard deviation
is not identified.

This lack of identification is also evident from inspecting the expression for the
probability if the variance θ were not fixed at 1 [from (10.4)],

Pr(yi =1|xi) = Pr(ǫi ≤ β1 + β2xi) = Pr

(
ǫi√
θ
≤ β1 + β2xi√

θ

)
= Φ

(
β1√
θ

+
β2√
θ
xi

)

where we see that multiplication of the regression coefficients by a constant can be
counteracted by multiplying

√
θ by the same constant. This is the reason for fixing the

standard deviation in probit models to 1 (see also exercise 10.10). The variance of ǫi in
logistic regression is also fixed but to a larger value, π2/3.
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Figure 10.4: Illustration of equivalence between probit models with change in residual
standard deviation counteracted by change in slope

A probit model can be fit to the women’s employment data in Stata by using the
probit command:

. probit workstat husbinc chilpres

Probit regression Number of obs = 263
LR chi2(2) = 36.19
Prob > chi2 = 0.0000

Log likelihood = -159.97986 Pseudo R2 = 0.1016

workstat Coef. Std. Err. z P>|z| [95% Conf. Interval]

husbinc -.0242081 .0114252 -2.12 0.034 -.0466011 -.001815
chilpres -.9706164 .1769051 -5.49 0.000 -1.317344 -.6238887

_cons .7981507 .2240082 3.56 0.000 .3591028 1.237199

These estimates are closer to zero than those reported for the logit model in table 10.1
because the standard deviation of ǫi is 1 for the probit model and π/

√
3 ≈ 1.81 for the

logit model. Therefore, as we have already seen in figure 10.4, the regression coefficients
in logit models must be larger in absolute value to produce nearly the same curve for
the conditional probability that yi = 1. Here we say “nearly the same” because the
shapes of the probit and logit curves are similar yet not identical. To visualize the
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subtle difference in shape, we can plot the predicted probabilities for women without
children at home from both the logit and probit models:

. twoway (function y=invlogit(1.3358-0.0423*x), range(-100 100))
> (function y=normal(0.7982-0.0242*x), range(-100 100) lpatt(dash)),
> xtitle("Husband’s income/$1000") ytitle("Probability that wife works")
> legend(order(1 "Logit link" 2 "Probit link")) xline(1) xline(45)
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Figure 10.5: Predicted probabilities of working from logistic and probit regression mod-
els for women without children at home

Here the predictions from the models coincide nearly perfectly in the region where most
of the data are concentrated and are very similar elsewhere. It is thus futile to attempt
to empirically distinguish between the logit and probit links unless one has a huge
sample.

Regression coefficients in probit models cannot be interpreted in terms of odds ratios
as in logistic regression models. Instead, the coefficients can be interpreted as differences
in the population means of the latent response y∗i , controlling or adjusting for other
covariates (the same kind of interpretation can also be made in logistic regression). Many
people find interpretation based on latent responses less appealing than interpretation
using odds ratios, because the latter refer to observed responses yi. Alternatively, the
coefficients can be interpreted in terms of average partial effects or partial effects at the
average as shown for logit models2 in display 10.1.

2. For probit models with continuous x2i and binary x3i, ∆(x2i|x3i) = β2 φ(β1 + β2x2i + β3x3i),
where φ(·) is the density function of the standard normal distribution, and ∆(x3i|x2i) = Φ(β1 +
β2x2i + β3) − Φ(β1 + β2x2i).



10.4 Longitudinal data structure 515

10.3 Which treatment is best for toenail infection?

Lesaffre and Spiessens (2001) analyzed data provided by De Backer et al. (1998) from
a randomized, double-blind trial of treatments for toenail infection (dermatophyte ony-
chomycosis). Toenail infection is common, with a prevalence of about 2% to 3% in
the United States and a much higher prevalence among diabetics and the elderly. The
infection is caused by a fungus, and not only disfigures the nails but also can cause
physical pain and impair the ability to work.

In this clinical trial, 378 patients were randomly allocated into two oral antifungal
treatments (250 mg/day terbinafine and 200 mg/day itraconazole) and evaluated at
seven visits, at weeks 0, 4, 8, 12, 24, 36, and 48. One outcome is onycholysis, the degree
of separation of the nail plate from the nail bed, which was dichotomized (“moderate
or severe” versus “none or mild”) and is available for 294 patients.

The dataset toenail.dta contains the following variables:

• patient: patient identifier

• outcome: onycholysis (separation of nail plate from nail bed)
(0: none or mild; 1: moderate or severe)

• treatment: treatment group (0: itraconazole; 1: terbinafine)

• visit: visit number (1, 2, . . . , 7)

• month: exact timing of visit in months

We read in the toenail data by typing

. use http://www.stata-press.com/data/mlmus3/toenail, clear

The main research question is whether the treatments differ in their efficacy. In
other words, do patients receiving one treatment experience a greater decrease in their
probability of having onycholysis than those receiving the other treatment?

10.4 Longitudinal data structure

Before investigating the research question, we should look at the longitudinal structure
of the toenail data using, for instance, the xtdescribe, xtsum, and xttab commands,
discussed in Introduction to models for longitudinal and panel data (part III).

Here we illustrate the use of the xtdescribe command, which can be used for these
data because the data were intended to be balanced with seven visits planned for the
same set of weeks for each patient (although the exact timing of the visits varied between
patients).
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Before using xtdescribe, we xtset the data with patient as the cluster identifier
and visit as the time variable:

. xtset patient visit
panel variable: patient (unbalanced)
time variable: visit, 1 to 7, but with gaps

delta: 1 unit

The output states that the data are unbalanced and that there are gaps. [We would
describe the time variable visit as balanced because the values are identical across
patients apart from the gaps caused by missing data; see the introduction to models for
longitudinal and panel data (part III in volume I).]

To explore the missing-data patterns, we use

. xtdescribe if outcome < .

patient: 1, 2, ..., 383 n = 294
visit: 1, 2, ..., 7 T = 7

Delta(visit) = 1 unit
Span(visit) = 7 periods
(patient*visit uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 3 7 7 7 7 7

Freq. Percent Cum. Pattern

224 76.19 76.19 1111111
21 7.14 83.33 11111.1
10 3.40 86.73 1111.11
6 2.04 88.78 111....
5 1.70 90.48 1......
5 1.70 92.18 11111..
4 1.36 93.54 1111...
3 1.02 94.56 11.....
3 1.02 95.58 111.111
13 4.42 100.00 (other patterns)

294 100.00 XXXXXXX

We see that 224 patients have complete data (the pattern “1111111”), 21 patients
missed the sixth visit (“11111.1”), 10 patients missed the fifth visit (“1111.11”), and
most other patients dropped out at some point, never returning after missing a visit.
The latter pattern is sometimes referred to as monotone missingness, in contrast with
intermittent missingness, which follows no particular pattern.

As discussed in section 5.8, a nice feature of maximum likelihood estimation for
incomplete data such as these is that all information is used. Thus not only patients
who attended all visits but also patients with missing visits contribute information. If
the model is correctly specified, maximum likelihood estimates are consistent when the
responses are missing at random (MAR).
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10.5 Proportions and fitted population-averaged or

marginal probabilities

A useful graphical display of the data is a bar plot showing the proportion of patients
with onycholysis at each visit by treatment group. The following Stata commands can
be used to produce the graph shown in figure 10.6:

. label define tr 0 "Itraconazole" 1 "Terbinafine"

. label values treatment tr

. graph bar (mean) proportion = outcome, over(visit) by(treatment)
> ytitle(Proportion with onycholysis)

Here we defined value labels for treatment to make them appear on the graph.
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Figure 10.6: Bar plot of proportion of patients with toenail infection by visit and treat-
ment group

We used the visit number visit to define the bars instead of the exact timing of the
visit month because there would generally not be enough patients with the same timing
to estimate the proportions reliably. An alternative display is a line graph, plotting the
observed proportions at each visit against time. For this graph, it is better to use the
average time associated with each visit for the x axis than to use visit number, because
the visits were not equally spaced. Both the proportions and the average times for each
visit in each treatment group can be obtained using the egen command with the mean()
function:
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. egen prop = mean(outcome), by(treatment visit)

. egen mn_month = mean(month), by(treatment visit)

. twoway line prop mn_month, by(treatment) sort
> xtitle(Time in months) ytitle(Proportion with onycholysis)

The resulting graph is shown in figure 10.7.
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Figure 10.7: Line plot of proportion of patients with toenail infection by average time
at visit and treatment group

The proportions shown in figure 10.7 represent the estimated average (or marginal)
probabilities of onycholysis given the two covariates, time since randomization and treat-
ment group. We are not attempting to estimate individual patients’ personal probabil-
ities, which may vary substantially, but are considering the population averages given
the covariates.

Instead of estimating the probabilities for each combination of visit and treatment,
we can attempt to obtain smooth curves of the estimated probability as a function of
time. We then no longer have to group observations for the same visit number together—
we can use the exact timing of the visits directly. One way to accomplish this is by using
a logistic regression model with month, treatment, and their interaction as covariates.
This model for the dichotomous outcome yij at visit i for patient j can be written as

logit{Pr(yij =1|xij)} = β1 + β2x2j + β3x3ij + β4x2jx3ij (10.5)

where x2j represents treatment, x3ij represents month, and xij = (x2j , x3ij)
′ is a vec-

tor containing both covariates. This model allows for a difference between groups at
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baseline β2, and linear changes in the log odds of onycholysis over time with slope β3

in the itraconazole group and slope β3 + β4 in the terbinafine group. Therefore, β4, the
difference in the rate of improvement (on the log odds scale) between treatment groups,
can be viewed as the treatment effect (terbinafine versus itraconazole).

This model makes the unrealistic assumption that the responses for a given patient
are conditionally independent after controlling for the included covariates. We will relax
this assumption in the next section. Here we can get satisfactory inferences for marginal
effects by using robust standard errors for clustered data instead of using model-based
standard errors. This approach is analogous to pooled OLS in linear models and corre-
sponds to the generalized estimating equations approach discussed in section 6.6 with an
independence working correlation structure (see 10.14.2 for an example with a different
working correlation matrix).

We start by constructing an interaction term, trt month, for treatment and month,

. generate trt_month = treatment*month

before fitting the model by maximum likelihood with robust standard errors:

. logit outcome treatment month trt_month, or vce(cluster patient)

Logistic regression Number of obs = 1908
Wald chi2(3) = 64.30
Prob > chi2 = 0.0000

Log pseudolikelihood = -908.00747 Pseudo R2 = 0.0830

Robust
outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment .9994184 .2511294 -0.00 0.998 .6107468 1.635436
month .8434052 .0246377 -5.83 0.000 .7964725 .8931034

trt_month .934988 .0488105 -1.29 0.198 .8440528 1.03572
_cons .5731389 .0982719 -3.25 0.001 .4095534 .8020642

Instead of creating a new variable for the interaction, we could have used factor-variables
syntax as follows:

logit outcome i.treatment##c.month, or vce(cluster patient)

We will leave interpretation of estimates for later and first check how well predicted
probabilities from the logistic regression model correspond to the observed proportions
in figure 10.7. The predicted probabilities are obtained and plotted together with the
observed proportions by using the following commands, which result in figure 10.8.

. predict prob, pr

. twoway (line prop mn_month, sort) (line prob month, sort lpatt(dash)),
> by(treatment) legend(order(1 "Observed proportions" 2 "Fitted probabilities"))
> xtitle(Time in months) ytitle(Probability of onycholysis)



520 Chapter 10 Dichotomous or binary responses

0
.2

.4

0 5 10 15 20 0 5 10 15 20

Itraconazole Terbinafine

Observed proportions Fitted probabilities

P
ro

b
a
b
ili

ty
 o

f 
o
n
y
c
h
o
ly

s
is

Time in months

Graphs by treatment

Figure 10.8: Proportions and fitted probabilities using ordinary logistic regression

The marginal probabilities predicted by the model fit the observed proportions reason-
ably well. However, we have treated the dependence among responses for the same
patient as a nuisance by fitting an ordinary logistic regression model with robust stan-
dard errors for clustered data. We now add random effects to model the dependence
and estimate the degree of dependence instead of treating it as a nuisance.

10.6 Random-intercept logistic regression

10.6.1 Model specification

Reduced-form specification

To relax the assumption of conditional independence among the responses for the same
patient given the covariates, we can include a patient-specific random intercept ζj in
the linear predictor to obtain a random-intercept logistic regression model

logit{Pr(yij =1|xij , ζj)} = β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj (10.6)

The random intercepts ζj ∼ N(0, ψ) are assumed to be independent and identically
distributed across patients j and independent of the covariates xij . Given ζj and xij ,
the responses yij for patient j at different occasions i are independently Bernoulli dis-
tributed. To write this down more formally, it is useful to define πij ≡ Pr(yij |xij , ζj),
giving
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logit(πij) = β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj

yij |πij ∼ Binomial(1, πij)

This is a simple example of a generalized linear mixed model (GLMM) because it is
a generalized linear model with both fixed effects β1 to β4 and a random effect ζj . The
model is also sometimes referred to as a hierarchical generalized linear model (HGLM)
in contrast to a hierarchical linear model (HLM). The random intercept can be thought
of as the combined effect of omitted patient-specific (time-constant) covariates that
cause some patients to be more prone to onycholysis than others (more precisely, the
component of this combined effect that is independent of the covariates in the model—
not an issue if the covariates are exogenous). It is appealing to model this unobserved
heterogeneity in the same way as observed heterogeneity by simply adding the random
intercept to the linear predictor. As we will explain later, be aware that odds ratios
obtained by exponentiating regression coefficients in this model must be interpreted
conditionally on the random intercept and are therefore often referred to as conditional
or subject-specific odds ratios.

Using the latent-response formulation, the model can equivalently be written as

y∗ij = β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj + ǫij (10.7)

where ζj ∼ N(0, ψ) and the ǫij have standard logistic distributions. The binary re-
sponses yij are determined by the latent continuous responses via the threshold model

yij =

{
1 if y∗ij > 0

0 otherwise

Confusingly, logistic random-effects models are sometimes written as yij = πij + eij ,
where eij is a normally distributed level-1 residual with variance πij(1 − πij). This
formulation is clearly incorrect because such a model does not produce binary responses
(see Skrondal and Rabe-Hesketh [2007]).

In both formulations of the model (via a logit link or in terms of a latent response), it
is assumed that the ζj are independent across patients and independent of the covariates
xij at occasion i. It is also assumed that the covariates at other occasions do not
affect the response probabilities given the random intercept (called strict exogeneity
conditional on the random intercept). For the latent response formulation, the ǫij are
assumed to be independent across both occasions and patients, and independent of both
ζj and xij . In the generalized linear model formulation, the analogous assumptions are
implicit in assuming that the responses are independently Bernoulli distributed (with
probabilities determined by ζj and xij).

In contrast to linear random effects models, consistent estimation in random-effects
logistic regression requires that the random part of the model is correctly specified in
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addition to the fixed part. Specifically, consistency formally requires (1) a correct linear
predictor (such as including relevant interactions), (2) a correct link function, (3) cor-
rect specification of covariates having random coefficients, (4) conditional independence
of responses given the random effects and covariates, (5) independence of the random
effects and covariates (for causal inference), and (6) normally distributed random ef-
fects. Hence, the assumptions are stronger than those discussed for linear models in
section 3.3.2. However, the normality assumption for the random intercepts seems to
be rather innocuous in contrast to the assumption of independence between the ran-
dom intercepts and covariates (Heagerty and Kurland 2001). As in standard logistic
regression, the ML estimator is not necessarily unbiased in finite samples even if all the
assumptions are true.

Two-stage formulation

Raudenbush and Bryk (2002) and others write two-level models in terms of a level-1
model and one or more level-2 models (see section 4.9). In generalized linear mixed
models, the need to specify a link function and distribution leads to two further stages
of model specification.

Using the notation and terminology of Raudenbush and Bryk (2002), the level-1
sampling model, link function, and structural model are written as

yij ∼ Bernoulli(ϕij)

logit(ϕij) = ηij

ηij = β0j + β1jx2j + β2jx3ij + β3jx2jx3ij

respectively.

The level-2 model for the intercept β0j is written as

β0j = γ00 + u0j

where γ00 is a fixed intercept and u0j is a residual or random intercept. The level-2
models for the coefficients β1j , β2j , and β3j have no residuals for a random-intercept
model,

βpj = γp0, p = 1, 2, 3

Plugging the level-2 models into the level-1 structural model, we obtain

ηij = γ00 + u0j + γ01x2j + γ02x3ij + γ03x2jx3ij

≡ β1 + ζ0j + β2x2j + β3x3ij + β4x2jx3ij

Equivalent models can be specified using either the reduced-form formulation (used
for instance by Stata) or the two-stage formulation (used in the HLM software of
Raudenbush et al. 2004). However, in practice, model specification is to some extent
influenced by the approach adopted as discussed in section 4.9.
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10.7 Estimation of random-intercept logistic models

As of Stata 10, there are three commands for fitting random-intercept logistic models in
Stata: xtlogit, xtmelogit, and gllamm. All three commands provide maximum likeli-
hood estimation and use adaptive quadrature to approximate the integrals involved (see
section 10.11.1 for more information). The commands have essentially the same syn-
tax as their counterparts for linear models discussed in volume I. Specifically, xtlogit
corresponds to xtreg, xtmelogit corresponds to xtmixed, and gllamm uses essentially
the same syntax for linear, logistic, and other types of models.

All three commands are relatively slow because they use numerical integration, but
for random-intercept models, xtlogit is much faster than xtmelogit, which is usu-
ally faster than gllamm. However, the rank ordering is reversed when it comes to the
usefulness of the commands for predicting random effects and various types of proba-
bilities as we will see in sections 10.12 and 10.13. Each command uses a default for
the number of terms (called “integration points”) used to approximate the integral, and
there is no guarantee that a sufficient number of terms has been used to achieve reliable
estimates. It is therefore the user’s responsibility to make sure that the approximation
is adequate by increasing the number of integration points until the results stabilize.
The more terms are used, the more accurate the approximation at the cost of increased
computation time.

We do not discuss random-coefficient logistic regression in this chapter, but such
models can be fit with xtmelogit and gllamm (but not using xtlogit), using essen-
tially the same syntax as for linear random-coefficient models discussed in section 4.5.
Random-coefficient logistic regression using gllamm is demonstrated in chapters 11 (for
ordinal responses) and 16 (for models with nested and crossed random effects) and using
xtmelogit in chapter 16. The probit version of the random-intercept model is avail-
able in gllamm (see sections 11.10 through 11.12) and xtprobit, but random-coefficient
probit models are available in gllamm only.

10.7.1 Using xtlogit

The xtlogit command for fitting the random-intercept model is analogous to the xtreg
command for fitting the corresponding linear model. We first use the xtset command
to specify the clustering variable. In the xtlogit command, we use the intpoints(30)
option (intpoints() stands for “integration points”) to ensure accurate estimates (see
section 10.11.1):
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. quietly xtset patient

. xtlogit outcome treatment month trt_month, intpoints(30)

Random-effects logistic regression Number of obs = 1908
Group variable: patient Number of groups = 294

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 6.5
max = 7

Wald chi2(3) = 150.65
Log likelihood = -625.38558 Prob > chi2 = 0.0000

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

treatment -.160608 .5796716 -0.28 0.782 -1.296744 .9755275
month -.390956 .0443707 -8.81 0.000 -.4779209 -.3039911

trt_month -.1367758 .0679947 -2.01 0.044 -.270043 -.0035085
_cons -1.618795 .4303891 -3.76 0.000 -2.462342 -.7752477

/lnsig2u 2.775749 .1890237 2.405269 3.146228

sigma_u 4.006325 .3786451 3.328876 4.821641
rho .8298976 .026684 .7710804 .8760322

Likelihood-ratio test of rho=0: chibar2(01) = 565.24 Prob >= chibar2 = 0.000

The estimated regression coefficients are given in the usual format. The value next to

sigma u represents the estimated residual standard deviation

√
ψ̂ of the random inter-

cept and the value next to rho represents the estimated residual intraclass correlation
of the latent responses (see section 10.9.1).

We can use the or option to obtain exponentiated regression coefficients, which are
interpreted as conditional odds ratios here. Instead of refitting the model, we can simply
change the way the results are displayed using the following short xtlogit command
(known as “replaying the estimation results” in Stata parlance):
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. xtlogit, or

Random-effects logistic regression Number of obs = 1908
Group variable: patient Number of groups = 294

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 6.5
max = 7

Wald chi2(3) = 150.65
Log likelihood = -625.38558 Prob > chi2 = 0.0000

outcome OR Std. Err. z P>|z| [95% Conf. Interval]

treatment .8516258 .4936633 -0.28 0.782 .2734207 2.652566
month .6764099 .0300128 -8.81 0.000 .6200712 .7378675

trt_month .8721658 .0593027 -2.01 0.044 .7633467 .9964976
_cons .1981373 .0852762 -3.76 0.000 .0852351 .4605897

/lnsig2u 2.775749 .1890237 2.405269 3.146228

sigma_u 4.006325 .3786451 3.328876 4.821641
rho .8298976 .026684 .7710804 .8760322

Likelihood-ratio test of rho=0: chibar2(01) = 565.24 Prob >= chibar2 = 0.000

The estimated odds ratios and their 95% confidence intervals are also given in ta-
ble 10.2. We see that the estimated conditional odds (given ζj) for a subject in the
itraconazole group are multiplied by 0.68 every month and the conditional odds for a
subject in the terbinafine group are multiplied by 0.59 (= 0.6764099× 0.8721658) every
month. In terms of percentage change in estimated odds, 100%(ÔR − 1), the condi-
tional odds decrease 32% [−32% = 100%(0.6764099− 1)] per month in the itraconazole
group and 41% [−41% = 100%(0.6764099×0.8721658−1)] per month in the terbinafine
group. (the difference between the kind of effects estimated in random-intercept logistic
regression and ordinary logistic regression is discussed in section 10.8).
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10.7.2 Using xtmelogit

The syntax for xtmelogit is analogous to that for xtmixed except that we also specify
the number of quadrature points, or integration points, using the intpoints() option

. xtmelogit outcome treatment month trt_month || patient:, intpoints(30)

Mixed-effects logistic regression Number of obs = 1908
Group variable: patient Number of groups = 294

Obs per group: min = 1
avg = 6.5
max = 7

Integration points = 30 Wald chi2(3) = 150.52
Log likelihood = -625.39709 Prob > chi2 = 0.0000

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

treatment -.1609377 .584208 -0.28 0.783 -1.305964 .984089
month -.3910603 .0443957 -8.81 0.000 -.4780744 -.3040463

trt_month -.1368073 .0680236 -2.01 0.044 -.270131 -.0034836
_cons -1.618961 .4347772 -3.72 0.000 -2.471108 -.7668132

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

patient: Identity
sd(_cons) 4.008164 .3813917 3.326216 4.829926

LR test vs. logistic regression: chibar2(01) = 565.22 Prob>=chibar2 = 0.0000

The results are similar but not identical to those from xtlogit because the commands
use slightly different versions of adaptive quadrature (see section 10.11.1). Because the
estimates took some time to obtain, we store them for later use within the same Stata
session:

. estimates store xtmelogit

(The command estimates save can be used to save the estimates in a file for use in a
future Stata session.)

Estimated odds ratios can be obtained using the or option. xtmelogit can also be
used with one integration point, which is equivalent to using the Laplace approximation.
See section 10.11.2 for the results obtained by using this less accurate but faster method
for the toenail data.

10.7.3 Using gllamm

We now introduce the user-contributed command for multilevel and latent variable
modeling, called gllamm (stands for generalized linear latent and mixed models) by
Rabe-Hesketh, Skrondal, and Pickles (2002, 2005). See also http://www.gllamm.org
where you can download the gllamm manual, the gllamm companion for this book, and
find many other resources.
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To check whether gllamm is installed on your computer, use the command

. which gllamm

If the message

command gllamm not found as either built-in or ado-file

appears, install gllamm (assuming that you have a net-aware Stata) by using the ssc

command:

. ssc install gllamm

Occasionally, you should update gllamm by using ssc with the replace option:

. ssc install gllamm, replace

Using gllamm for the random-intercept logistic regression model requires that we
specify a logit link and binomial distribution with the link() and family() options
(exactly as for the glm command). We also use the nip() option (for the number of
integration points) to request that 30 integration points be used. The cluster identifier
is specified in the i() option:

. gllamm outcome treatment month trt_month, i(patient) link(logit) family(binomial)
> nip(30) adapt

number of level 1 units = 1908
number of level 2 units = 294

Condition Number = 23.0763

gllamm model

log likelihood = -625.38558

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

treatment -.1608751 .5802054 -0.28 0.782 -1.298057 .9763066
month -.3911055 .0443906 -8.81 0.000 -.4781096 -.3041015

trt_month -.136829 .0680213 -2.01 0.044 -.2701484 -.0035097
_cons -1.620364 .4322409 -3.75 0.000 -2.46754 -.7731873

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (patient)

var(1): 16.084107 (3.0626224)
------------------------------------------------------------------------------

The estimates are again similar to those from xtlogit and xtmelogit. The es-
timated random-intercept variance is given next to var(1) instead of the random-
intercept standard deviation reported by xtlogit and xtmelogit, unless the variance
option is used for the latter. We store the gllamm estimates for later use:
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. estimates store gllamm

We can use the eform option to obtain estimated odds ratios, or we can alternatively
use the command

gllamm, eform

to replay the estimation results after having already fit the model. We can also use the
robust option to obtain robust standard errors based on the sandwich estimator. At
the time of writing this book, gllamm does not accept factor variables (i., c., and #)
but does accept i. if the gllamm command is preceded by the prefix command xi:.

10.8 Subject-specific or conditional vs.

population-averaged or marginal relationships

The estimated regression coefficients for the random-intercept logistic regression model
are more extreme (more different from 0) than those for the ordinary logistic regression
model (see table 10.2). Correspondingly, the estimated odds ratios are more extreme
(more different from 1) than those for the ordinary logistic regression model. The reason
for this discrepancy is that ordinary logistic regression fits overall population-averaged
or marginal probabilities, whereas random-effects logistic regression fits subject-specific
or conditional probabilities for the individual patients.

This important distinction can be seen in the way the two models are written
in (10.5) and (10.6). Whereas the former is for the overall or population-averaged prob-
ability, conditioning only on covariates, the latter is for the subject-specific probability,
given the subject-specific random intercept ζj and the covariates. Odds ratios derived
from these models can be referred to as population-averaged (although the averaging is
applied to the probabilities) or subject-specific odds ratios, respectively.

For instance, in the random-intercept logistic regression model, we can interpret the
estimated subject-specific or conditional odds ratio of 0.68 for month (a covariate varying
within patient) as the odds ratio for each patient in the itraconazole group: the odds for a
given patient hence decreases by 32% per month. In contrast, the estimated population-
averaged odds ratio of 0.84 for month means that the odds of having onycholysis among
the patients in the itraconazole group decreases by 16% per month.

Considering instead the odds for treatment (a covariate only varying between pa-
tients) when month equals 1, the estimated subject-specific or conditional odds ratio
is estimated as 0.74 (=0.85×0.87) and the odds are hence 26% lower for terbinafine
than for itraconazole for each subject. However, because no patients are given both
terbinafine and itraconazole, it might be best to interpret the odds ratio in terms of a
comparison between two patients j and j′ with the same value of the random intercept
ζj = ζj′ , one of whom is given terbinafine and the other itraconazole. The estimated
population-averaged or marginal odds ratio of about 0.93 (=1.00×0.93) means that the
odds are 7% lower for the group of patients given terbinafine compared with the group
of patients given itraconazole.
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When interpreting subject-specific or conditional odds ratios, keep in mind that
these are not purely based on within-subject information and are hence not free from
subject-level confounding. In fact, for between-subject covariates like treatment group
above, there is no within-subject information in the data. Although the odds ratios are
interpreted as effects keeping the subject-specific random intercepts ζj constant, these
random intercepts are assumed to be independent of the covariates included in the model
and hence do not represent effects of unobserved confounders, which are by definition
correlated with the covariates. Unlike fixed-effects approaches, we are therefore not
controlling for unobserved confounders. Both conditional and marginal effect estimates
suffer from omitted-variable bias if subject-level or other confounders are not included
in the model. See section 3.7.4 for a discussion of this issue in linear random-intercept
models. Section 10.14.1 is on conditional logistic regression, the fixed-effects approach
in logistic regression that controls for subject-level confounders.

The population-averaged probabilities implied by the random-intercept model can
be obtained by averaging the subject-specific probabilities over the random-intercept
distribution. Because the random intercepts are continuous, this averaging is accom-
plished by integration

Pr(yij = 1|x2j , x3ij)

=

∫
Pr(yij = 1|x2j , x3ij , ζj)φ(ζj ; 0, ψ) dζj

=

∫
exp(β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj)

1 + exp(β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj)
φ(ζj ; 0, ψ) dζj

6= exp(β1 + β2x2j + β3x3ij + β4x2jx3ij)

1 + exp(β1 + β2x2j + β3x3ij + β4x2jx3ij)
(10.8)

where φ(ζj ; 0, ψ) is the normal density function with mean zero and variance ψ.

The difference between population-averaged and subject-specific effects is due to
the average of a nonlinear function not being the same as the nonlinear function of the
average. In the present context, the average of the inverse logit of the linear predictor,
β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj , is not the same as the inverse logit of the average
of the linear predictor, which is β1 + β2x2j + β3x3ij + β4x2jx3ij . We can see this by
comparing the simple average of the logits of 1 and 2 with the logit of the average of 1
and 2:

. display (invlogit(1) + invlogit(2))/2

.80592783

. display invlogit((1+2)/1)

.95257413

We can also see this in figure 10.9. Here the individual, thin, dashed curves represent
subject-specific logistic curves, each with a subject-specific (randomly drawn) intercept.
These are inverse logit functions of the subject-specific linear predictors (here the linear
predictors are simply β1 + β2xij + ζj). The thick, dashed curve is the inverse logit
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function of the average of the linear predictor (with ζj = 0) and this is not the same as
the average of the logistic functions shown as a thick, solid curve.
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Figure 10.9: Subject-specific probabilities (thin, dashed curves), population-averaged
probabilities (thick, solid curve), and population median probabilities (thick, dashed
curve) for random-intercept logistic regression

The average curve has a different shape than the subject-specific curves. Specifically,
the effect of xij on the average curve is smaller than the effect of xij on the subject-
specific curves. However, the population median probability is the same as the subject-
specific probability evaluated at the median of ζj (ζj = 0), shown as the thick, dashed
curve, because the inverse logit function is a strictly increasing function.

Another way of understanding why the subject-specific effects are more extreme than
the population-averaged effects is by writing the random-intercept logistic regression
model as a latent-response model:

y∗ij = β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj + ǫij︸ ︷︷ ︸
ξij

The total residual variance is

Var(ξij) = ψ + π2/3

estimated as ψ̂ + π2/3 = 16.08 + 3.29 = 19.37, which is much greater than the residual
variance of about 3.29 for an ordinary logistic regression model. As we have already seen
in figure 10.4 for probit models, the slope in the model for y∗i has to increase when the
residual standard deviation increases to produce an equivalent curve for the marginal
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probability that the observed response is 1. Therefore, the regression coefficients of the
random-intercept model (representing subject-specific effects) must be larger in absolute
value than those of the ordinary logistic regression model (representing population-
averaged effects) to obtain a good fit of the model-implied marginal probabilities to the
corresponding sample proportions (see exercise 10.10). In section 10.13, we will obtain
predicted subject-specific and population-averaged probabilities for the toenail data.

Having described subject-specific and population-averaged probabilities or expecta-
tions of yij , for given covariate values, we now consider the corresponding variances.
The subject-specific or conditional variance is

Var(yij |xij , ζj) = Pr(yij = 1|xij , ζj){1 − Pr(yij = 1|xij , ζj)}

and the population-averaged or marginal variance (obtained by integrating over ζj) is

Var(yij |xij) = Pr(yij = 1|xij){1 − Pr(yij = 1|xij)}

We see that the random-intercept variance ψ does not affect the relationship between
the marginal variance and the marginal mean. This is in contrast to models for counts
described in chapter 13, where a random intercept (with ψ > 0) produces so-called
overdispersion, with a larger marginal variance for a given marginal mean than the model
without a random intercept (ψ = 0). Contrary to widespread belief, overdispersion is
impossible for dichotomous responses (Skrondal and Rabe-Hesketh 2007).

10.9 Measures of dependence and heterogeneity

10.9.1 Conditional or residual intraclass correlation of the latent
responses

Returning to the latent-response formulation, the dependence among the dichotomous
responses for the same subject (or the between-subject heterogeneity) can be quantified
by the conditional intraclass correlation or residual intraclass correlation ρ of the latent
responses y∗ij given the covariates:

ρ ≡ Cor(y∗ij , y
∗
i′j |xij ,xi′j) = Cor(ξij , ξi′j) =

ψ

ψ + π2/3

Substituting the estimated variance ψ̂ = 16.08, we obtain an estimated conditional
intraclass correlation of 0.83, which is large even for longitudinal data. The estimated
intraclass correlation is also reported next to rho by xtlogit.

For probit models, the expression for the residual intraclass correlation of the latent
responses is as above with π2/3 replaced by 1.
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10.9.2 Median odds ratio

Larsen et al. (2000) and Larsen and Merlo (2005) suggest a measure of heterogeneity for
random-intercept models with normally distributed random intercepts. They consider
repeatedly sampling two subjects with the same covariate values and forming the odds
ratio comparing the subject who has the larger random intercept with the other subject.
For a given pair of subjects j and j′, this odds ratio is given by exp(|ζj − ζj′ |) and
heterogeneity is expressed as the median of these odds ratios across repeated samples.

The median and other percentiles a > 1 can be obtained from the cumulative dis-
tribution function

Pr{exp(|ζj − ζj′ |) ≤ a} = Pr

{ |ζj − ζj′ |√
2ψ

≤ ln(a)√
2ψ

}
= 2Φ

{
ln(a)√

2ψ

}
− 1

If the cumulative probability is set to 1/2, a is the median odds ratio, ORmedian:

2Φ

{
ln(ORmedian)√

2ψ

}
− 1 = 1/2

Solving this equation gives

ORmedian = exp{
√

2ψΦ−1(3/4)}

Plugging in the parameter estimates, we obtain ÔRmedian:

. display exp(sqrt(2*16.084107)*invnormal(3/4))
45.855974

When two subjects are chosen at random at a given time point from the same treatment
group, the odds ratio comparing the subject who has the larger odds with the subject
who has the smaller odds will exceed 45.83 half the time, which is a very large odds
ratio. For comparison, the estimated odds ratio comparing two subjects at 20 months
who had the same value of the random intercept, but one of whom received itraconazole
(treatment=0) and the other of whom received terbinafine (treatment=1), is about
18 {= 1/ exp(−0.1608751 + 20 ×−0.136829)}.

10.9.3 qMeasures of association for observed responses at median fixed
part of the model

The reason why the degree of dependence is often expressed in terms of the residual
intraclass correlation for the latent responses y∗ij is that the intraclass correlation for
the observed responses yij varies according to the values of the covariates.

One may nevertheless proceed by obtaining measures of association for specific val-
ues of the covariates. In particular, Rodŕıguez and Elo (2003) suggest obtaining the
marginal association between the binary observed responses at the sample median value
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of the estimated fixed part of the model, β̂1 + β̂2x2j + β̂3x3ij + β̂4x2jx3ij . Marginal asso-
ciation here refers to the fact that the associations are based on marginal probabilities
(averaged over the random-intercept distribution with the maximum likelihood estimate

ψ̂ plugged in).

Rodŕıguez and Elo (2003) have written a program called xtrho that can be used
after xtlogit, xtprobit, and xtclog to produce such marginal association measures
and their confidence intervals. The program can be downloaded by issuing the command

. findit xtrho

clicking on st0031, and then clicking on click here to install. Having downloaded
xtrho, we run it after refitting the random-intercept logistic model with xtlogit:

. quietly xtset patient

. quietly xtlogit outcome treatment month trt_month, re intpoints(30)

. xtrho

Measures of intra-class manifest association in random-effects logit
Evaluated at median linear predictor

Measure Estimate [95% Conf.Interval]

Marginal prob. .250812 .217334 .283389
Joint prob. .178265 .139538 .217568
Odds ratio 22.9189 16.2512 32.6823
Pearson’s r .61392 .542645 .675887
Yule’s Q .916384 .884066 .940622

We see that for a patient whose fixed part of the linear predictor is equal to the
sample median, the marginal probability of having onycholysis (a measure of toenail
infection) at an occasion is estimated as 0.25 and the joint probability of having ony-
cholysis at two occasions is estimated as 0.18. From the estimated joint probabilities
for the responses 00, 10, 01, and 11 in the 2×2 table for two occasions (with linear
predictor equal to the sample median), xtrho estimates various measures of association
for onycholysis for two occasions, given that the fixed part of the linear predictor equals
the sample median.

The estimated odds ratio of 22.92 means that the odds of onycholysis at one of the
two occasions is almost 23 times as high for a patient who had onycholysis at the other
occasion as for a patient with the same characteristics who did not have onycholysis at
the other occasion. The estimated Pearson correlation of 0.61 for the observed responses
is lower than the estimated residual correlation for the latent responses of 0.83, as
would be expected from statistical theory. Squaring the Pearson correlation, we see
that onycholysis at one occasion explains about 36% of the variation in onycholysis at
the other occasion.

We can use the detail option to obtain the above measures of associations evaluated
at sample percentiles other than the median. We can also use Rodŕıguez and Elo’s
(2003) xtrhoi command to obtain measures of associations for other values of the fixed
part of the linear predictor and/or other values of the variance of the random-intercept
distribution.



10.10.1 Tests and confidence intervals for odds ratios 535

Note that xtrho and xtrhoi assume that the fixed part of the linear predictor is the
same across occasions. However, in the toenail example, month must change between
any two occasions within a patient, and the linear predictor is a function of month.
Considering two occasions with month equal to 3 and 6, the odds ratio is estimated as
25.6 for patients in the control group and 29.4 for patients in the treatment group. A
do-file that produces the 2×2 tables by using gllamm and gllapred with the ll option
can be copied into the working directory with the command

copy http://www.stata-press.com/data/mlmus3/ch10table.do ch10table.do

10.10 Inference for random-intercept logistic models

10.10.1 Tests and confidence intervals for odds ratios

As discussed earlier, we can interpret the regression coefficient β as the difference in log
odds associated with a unit change in the corresponding covariate, and we can interpret
the exponentiated regression coefficient as an odds ratio, OR = exp(β). The relevant
null hypothesis for odds ratios usually is H0: OR = 1, and this corresponds directly to
the null hypothesis that the corresponding regression coefficient is zero, H0: β = 0.

Wald tests and z tests can be used for regression coefficients just as described in sec-
tion 3.6.1 for linear models. Ninety-five percent Wald confidence intervals for individual
regression coefficients are obtained using

β̂ ± z0.975 ŜE(β̂)

where z0.975 = 1.96 is the 97.5th percentile of the standard normal distribution. The
corresponding confidence interval for the odds ratio is obtained by exponentiating both
limits of the confidence interval:

exp{β̂ − z0.975 ŜE(β̂)} to exp{β̂ + z0.975 ŜE(β̂)}

Wald tests for linear combinations of regression coefficients can be used to test the
corresponding multiplicative relationships among odds for different covariate values.
For instance, for the toenail data, we may want to obtain the odds ratio comparing
the treatment groups after 20 months. The corresponding difference in log odds after
20 months is a linear combination of regression coefficients, namely, β2 + β4 × 20 (see
section 1.8 if this is not clear). We can test the null hypothesis that the difference in
log odds is 0 and hence that the odds ratio is 1 by using the lincom command:

. lincom treatment + trt_month*20

( 1) [outcome]treatment + 20*[outcome]trt_month = 0

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -2.896123 1.309682 -2.21 0.027 -5.463053 -.3291935
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If we require the corresponding odds ratio with a 95% confidence interval, we can use
the lincom command with the or option:

. lincom treatment + trt_month*20, or

( 1) [outcome]treatment + 20*[outcome]trt_month = 0

outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

(1) .0552369 .0723428 -2.21 0.027 .0042406 .7195038

After 20 months of treatment, the odds ratio comparing terbinafine (treatment=1) with
itraconazole is estimated as 0.055. Such small numbers are difficult to interpret, so we
can switch the groups around by taking the reciprocal of the odds ratio, 18 (= 1/0.055),
which represents the odds ratio comparing itraconazole with terbinafine. Alternatively,
we can always switch the comparison around by simply changing the sign of the corre-
sponding difference in log odds in the lincom command:

lincom -(treatment + trt_month*20), or

If we had used factor-variable notation in the estimation command, using the syntax
i.treatment##c.month, then the lincom command above would have to be replaced
with

lincom -(1.treatment + 1.treatment#c.month*20), or

Multivariate Wald tests can be performed by using testparm. Wald tests and con-
fidence intervals can be based on robust standard errors from the sandwich estimator.
At the time of printing, robust standard errors can only be obtained using gllamm with
the robust option.

Null hypotheses about individual regression coefficients or several regression coeffi-
cients can also be tested using likelihood-ratio tests. Although likelihood-ratio and Wald
tests are asymptotically equivalent, the test statistics are not identical in finite samples.
(See display 2.1 for the relationships between likelihood-ratio, Wald, and score tests.)
If the statistics are very different, there may be a sparseness problem, for instance with
mostly “1” responses or mostly “0” responses in one of the groups.

10.10.2 Tests of variance components

Both xtlogit and xtmelogit provide likelihood-ratio tests for the null hypothesis that
the residual between-cluster variance ψ is zero in the last line of the output. The p-
values are based on the correct asymptotic sampling distribution (not the näıve χ2

1), as
described for linear models in section 2.6.2. For the toenail data, the likelihood-ratio
statistic is 565.2 giving p < 0.001, which suggests that a multilevel model is required.
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10.11 Maximum likelihood estimation

10.11.1 q Adaptive quadrature

The marginal likelihood is the joint probability of all observed responses given the
observed covariates. For linear mixed models, this marginal likelihood can be evaluated
and maximized relatively easily (see section 2.10). However, in generalized linear mixed
models, the marginal likelihood does not have a closed form and must be evaluated by
approximate methods.

To see this, we will now construct this marginal likelihood step by step for a random-
intercept logistic regression model with one covariate xj . The responses are conditionally
independent given the random intercept ζj and the covariate xj . Therefore, the joint
probability of all the responses yij (i = 1, . . . , nj) for cluster j given the random intercept
and covariate is simply the product of the conditional probabilities of the individual
responses:

Pr(y1j , . . . , ynjj |xj , ζj) =

nj∏

i=1

Pr(yij |xj , ζj) =

nj∏

i=1

exp(β1 + β2xj + ζj)
yij

1 + exp(β1 + β2xj + ζj)

In the last term

exp(β1 + β2xj + ζj)
yij

1 + exp(β1 + β2xj + ζj)
=





exp(β1+β2xj+ζj)
1+exp(β1+β2xj+ζj)

if yij = 1

1
1+exp(β1+β2xj+ζj)

if yij = 0

as specified by the logistic regression model.

To obtain the marginal joint probability of the responses, not conditioning on the
random intercept ζj (but still on the covariate xj), we integrate out the random intercept

Pr(y1j , . . . , ynjj |xj) =

∫
Pr(y1j , . . . , ynjj |xj , ζj)φ(ζj ; 0, ψ) dζj (10.9)

where φ(ζj , 0, ψ) is the normal density of ζj with mean 0 and variance ψ. Unfortunately,
this integral does not have a closed-form expression.

The marginal likelihood is just the joint probability of all responses for all clusters.
Because the clusters are mutually independent, this is given by the product of the
marginal joint probabilities of the responses for the individual clusters

L(β1, β2, ψ) =

N∏

j=1

Pr(y1j , . . . , ynjj |xj)

This marginal likelihood is viewed as a function of the parameters β1, β2, and ψ (with
the observed responses treated as given). The parameters are estimated by finding the
values of β1, β2, and ψ that yield the largest likelihood. The search for the maximum is
iterative, beginning with some initial guesses or starting values for the parameters and
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updating these step by step until the maximum is reached, typically using a Newton–
Raphson or expectation-maximization (EM) algorithm.

The integral over ζj in (10.9) can be approximated by a sum of R terms with er

substituted for ζj and the normal density replaced by a weight wr for the rth term,
r = 1, . . . , R,

Pr(y1j , . . . , ynjj |xj) ≈
R∑

r=1

Pr(y1j , . . . , ynjj |xj , ζj =er)wr

where er and wr are called Gauss–Hermite quadrature locations and weights, respec-
tively. This approximation can be viewed as replacing the continuous density of ζj with
a discrete distribution with R possible values of ζj having probabilities Pr(ζj =er). The
Gauss–Hermite approximation is illustrated for R= 5 in figure 10.10. Obviously, the
approximation improves when the number of points R increases.
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Figure 10.10: Gauss–Hermite quadrature: Approximating continuous density (dashed
curve) by discrete distribution (bars)

The ordinary quadrature approximation described above can perform poorly if the
function being integrated, called the integrand, has a sharp peak, as discussed in
Rabe-Hesketh, Skrondal, and Pickles (2002, 2005). Sharp peaks can occur when the
clusters are very large so that many functions (the individual response probabilities as
functions of ζj) are multiplied to yield Pr(y1j , . . . , ynjj |xj , ζj). Similarly, if the responses
are counts or continuous responses, even a few terms can result in a highly peaked func-
tion. Another potential problem is a high intraclass correlation. Here the functions
being multiplied coincide with each other more closely because of the greater similar-
ity of responses within clusters, yielding a sharper peak. In fact, the toenail data we
have been analyzing, which has an estimated conditional intraclass correlation for the
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latent responses of 0.83, poses real problems for estimation using ordinary quadrature,
as pointed out by Lesaffre and Spiessens (2001).

The top panel in figure 10.11 shows the same five-point quadrature approximation
and density of ζj as in figure 10.10. The solid curve is proportional to the integrand for
a hypothetical cluster. Here the quadrature approximation works poorly because the
peak falls between adjacent quadrature points.
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Figure 10.11: Density of ζj (dashed curve), normalized integrand (solid curve), and
quadrature weights (bars) for ordinary quadrature and adaptive quadrature (Source:
Rabe-Hesketh, Skrondal, and Pickles 2002)
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The bottom panel of figure 10.11 shows an improved approximation, known as adaptive
quadrature, where the locations are rescaled and translated,

erj = aj + bjer (10.10)

to fall under the peak of the integrand, where aj and bj are cluster-specific constants.
This transformation of the locations is accompanied by a transformation of the weights
wr that also depends on aj and bj . The method is called adaptive because the quadra-
ture locations and weights are adapted to the data for the individual clusters.

To maximize the likelihood, we start with a set of initial or starting values of the
parameters and then keep updating the parameters until the likelihood is maximized.
The quantities aj and bj needed to evaluate the likelihood are functions of the param-
eters (as well as the data) and must therefore be updated or “readapted” when the
parameters are updated.

There are two different implementations of adaptive quadrature in Stata that differ
in the values used for aj and bj in (10.10). The method implemented in gllamm, which
is the default method in xtlogit (as of Stata 10), uses the posterior mean of ζj for aj

and the posterior standard deviation for bj . However, obtaining the posterior mean and
standard deviation requires numerical integration so adaptive quadrature sometimes
does not work when there are too few quadrature points (for example, fewer than five).
Details of the algorithm are given in Rabe-Hesketh, Skrondal, and Pickles (2002, 2005)
and Skrondal and Rabe-Hesketh (2004).

The method implemented in xtmelogit, and available in xtlogit with the option
intmethod(aghermite), uses the posterior mode of ζj for aj and for bj uses the standard
deviation of the normal density that approximates the log posterior of ζj at the mode.
An advantage of this approach is that it does not rely on numerical integration and can
therefore be implemented even with one quadrature point. With one quadrature point,
this version of adaptive quadrature becomes a Laplace approximation.

10.11.2 Some speed and accuracy considerations

As discussed in section 10.11.1, the likelihood involves integrals that are evaluated by nu-
merical integration. The likelihood itself, as well as the maximum likelihood estimates,
are therefore only approximate. The accuracy increases as the number of quadrature
points increases, at the cost of increased computation time. We can assess whether
the approximation is adequate in a given situation by repeating the analysis with a
larger number of quadrature points. If we get essentially the same result, the lower
number of quadrature points is likely to be adequate. Such checking should always be
done before estimates are taken at face value. See section 16.4.1 for an example in
gllamm and section 16.4.2 for an example in xtmelogit. For a given number of quadra-
ture points, adaptive quadrature is more accurate than ordinary quadrature. Stata’s
commands therefore use adaptive quadrature by default, and we recommend using the
adapt option in gllamm.
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Because of numerical integration, estimation can be slow, especially if there are many
random effects. The time it takes to fit a model is approximately proportional to the
product of the number of quadrature points for all random effects (although this seems
to be more true for gllamm than for xtmelogit). For example, if there are two random
effects at level 2 (a random intercept and slope) and eight quadrature points are used for
each random effect, the time will be approximately proportional to 64. Therefore, using
four quadrature points for each random effect will take only about one-fourth (16/64)
as long as using eight. The time is also approximately proportional to the number of
observations and, for programs using numerical differentiation (gllamm and xtmelogit),
to the square of the number of parameters. (For xtlogit, computation time increases
less dramatically when the number of parameters increases because it uses analytical
derivatives.)

For large problems, it may be advisable to estimate how long estimation will take
before starting work on a project. In this case, we recommend fitting a similar model
with fewer random effects, fewer parameters (for example, fewer covariates), or fewer
observations, and then using the above approximate proportionality factors to estimate
the time that will be required for the larger problem.

For random-intercept models, by far the fastest command is xtlogit (because it
uses analytical derivatives). However, xtlogit cannot fit random-coefficient models or
higher-level models introduced in chapter 16. For such models, xtmelogit or gllamm

must be used. The quickest way of obtaining results here is using xtmelogit with one
integration point, corresponding to the Laplace approximation. Although this method
sometimes works well, it can produce severely biased estimates, especially if the clusters
are small and the (true) random-intercept variance is large, as for the toenail data. For
these data, we obtain the following:
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. xtmelogit outcome treatment month trt_month || patient:, intpoints(1)

Mixed-effects logistic regression Number of obs = 1908
Group variable: patient Number of groups = 294

Obs per group: min = 1
avg = 6.5
max = 7

Integration points = 1 Wald chi2(3) = 131.96
Log likelihood = -627.80894 Prob > chi2 = 0.0000

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

treatment -.3070156 .6899551 -0.44 0.656 -1.659303 1.045272
month -.4000908 .0470586 -8.50 0.000 -.492324 -.3078576

trt_month -.1372594 .0695863 -1.97 0.049 -.2736459 -.0008728
_cons -2.5233 .7882542 -3.20 0.001 -4.06825 -.9783501

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

patient: Identity
sd(_cons) 4.570866 .7198949 3.356892 6.223858

LR test vs. logistic regression: chibar2(01) = 560.40 Prob>=chibar2 = 0.0000

Note: log-likelihood calculations are based on the Laplacian approximation.

We see that the estimated intercept and coefficient of treatment are very different
from the estimates in section 10.7.1 using adaptive quadrature with 30 quadrature
points. As mentioned in the previous section, gllamm cannot be used with only one
quadrature point, and adaptive quadrature in gllamm typically requires at least five
quadrature points.

Advice for speeding up estimation in gllamm

To speed up estimation in gllamm, we recommend using good starting values whenever
they are available. For instance, when increasing the number of quadrature points or
adding or dropping covariates, use the previous estimates as starting values. This can
be done by using the from() option to specify a row matrix of starting values. This
option should be combined with skip if the new model contains fewer parameters than
supplied. You can also use the copy option if your parameters are supplied in the correct
order yet are not necessarily labeled correctly. Use of these options is demonstrated in
sections 11.7.2 and 16.4.1 and throughout this volume (see subject index).

The from() option can also be used with the xtmelogit command, together with the
refineopts(iterate(0)) option, to prevent xtmelogit from finding its own starting
values (see section 16.4.2). However, the time saving is not as pronounced as in gllamm.

In gllamm, there are two other methods for speeding up estimation: collapsing the
data and using spherical quadrature. These methods, which cannot be used for xtlogit
or xtmelogit, are described in the following two paragraphs.
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For some datasets and models, you can represent the data using fewer rows than
there are observations, thus speeding up estimation. For example, if the response is
dichotomous and we are using one dichotomous covariate in a two-level dataset, we
can use one row of data for each combination of covariate and response (00, 01, 10,
11) for each cluster, leading to at most four rows per cluster. We can then specify a
variable containing level-1 frequency weights equal to the number of observations, or
level-1 units, in each cluster having each combination of the covariate and response
values. Level-2 weights can be used if several clusters have the same level-2 covariates
and the same number of level-1 units with the same response and level-1 covariate
pattern. The weight() option in gllamm is designed for specifying frequency weights
at the different levels. See exercise 10.7 for an example with level-1 weights, and see
exercises 10.3 and 2.3 for examples with level-2 weights. In exercise 16.11, collapsing
the data reduces computation time by about 99%. If the dataset is large, starting values
could be obtained by fitting the model to a random sample of the data.

For models involving several random effects at the same level, such as two-level
random-coefficient models with a random intercept and slope, the multivariate inte-
gral can be evaluated more efficiently using spherical quadrature instead of the default
Cartesian-product quadrature. For the random intercept and slope example, Cartesian-
product quadrature consists of evaluating the function being integrated on the rectan-
gular grid of quadrature points consisting of all combinations of ζ1j = e1, . . . , eR and
ζ2j = e1, . . . , eR, giving R2 terms. In contrast, spherical quadrature consists of evalu-
ating ζ1j and ζ2j at values falling on concentric circles (spheres in more dimensions).
The important point is that the same accuracy can now be achieved with fewer than
R2 points. For example, when R = 8, Cartesian-product quadrature requires 64 evalu-
ations, while spherical quadrature requires only 44 evaluations, taking nearly 30% less
time to achieve the same accuracy. Here accuracy is expressed in terms of the degree of
the approximation given by d = 2R−1. For R = 8, d = 15. To use spherical quadrature,
specify the ip(m) option in gllamm and give the degree d of the approximation by using
the nip(#) option. Unfortunately, spherical integration is available only for certain
combinations of numbers of dimensions (or numbers of random effects) and degrees of
accuracy, d: For two dimensions, d can be 5, 7, 9, 11, or 15, and for more than two
dimensions, d can be 5 or 7. See Rabe-Hesketh, Skrondal, and Pickles (2005) for more
information.

10.12 Assigning values to random effects

Having estimated the model parameters (the β’s and ψ), we may want to assign values
to the random intercepts ζj for individual clusters j. The ζj are not model parameters,
but as for linear models, we can treat the estimated parameters as known and then
either estimate or predict ζj .

Such predictions are useful for making inferences for the clusters in the data, im-
portant examples being assessment of institutional performance (see section 4.8.5) or of
abilities in item response theory (see exercise 10.4). The estimated or predicted values
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of ζj should generally not be used for model diagnostics in random-intercept logistic
regression because their distribution if the model is true is not known. In general,
the values should also not be used to obtain cluster-specific predicted probabilities (see
section 10.13.2).

10.12.1 Maximum “likelihood” estimation

As discussed for linear models in section 2.11.1, we can estimate the intercepts ζj by
treating them as the only unknown parameters, after estimates have been plugged in
for the model parameters:

logit{Pr(yij = 1|xij , ζj)} = offsetij︸ ︷︷ ︸
bβ1+bβ2x2ij+···

+ ζj

This is a logistic regression model for cluster j with offset (a term with regression
coefficient set to 1) given by the estimated fixed part of the linear predictor and with a
cluster-specific intercept ζj .

We then maximize the corresponding likelihood for cluster j

Likelihood(y1j , y2j , . . . , ynj ,j |Xj , ζj)

with respect to ζj , where Xj is a matrix containing all covariates for cluster j. As
explained in section 2.11.1, we put “likelihood” in quotes in the section heading because
it differs from the marginal likelihood that is used to estimate the model parameters.
Maximization can be accomplished by fitting logistic regression models to the individual
clusters. First, obtain the offset from the xtmelogit estimates:

. estimates restore xtmelogit
(results xtmelogit are active now)

. predict offset, xb

Then use the statsby command to fit individual logistic regression models for each
patient, specifying an offset:

. statsby mlest=_b[_cons], by(patient) saving(ml, replace): logit outcome,
> offset(offset)
(running logit on estimation sample)

command: logit outcome, offset(offset)
mlest: _b[_cons]

by: patient

Statsby groups
1 2 3 4 5

......xx.......xx..xxx...x.x...xxxxx.xx...xxx.xxxx 50
xx.xxxxxxxxx.xxxx..xxxxxxxxx.x..xx..x.xxx.xxx.x... 100
xx.xxxxxxxxxxx.xxx.x.x...x.xx.xxxxx.xx....xxx.x.xx 150
.x..x.xxxx..xxxxx.xx..xxxx..xxx.x.xxxxx.x.x.xxx... 200
.xxxxx.xx.xx..x.xxx...xx.x..xxxxx.x..x.x..x..xxxxx 250
x.xx.x..xxxxxx..x..x..xxx.x..xxxxxxxx.x.x...
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Here we have saved the estimates under the variable name mlest in a file called ml.dta

in the local directory. The x’s in the output indicate that the logit command did
not converge for many clusters. For these clusters, the variable mlest is missing. This
happens for clusters where all responses are 0 or all responses are 1 because the maximum
likelihood estimate then is −∞ and +∞, respectively.

We now merge the estimates with the data for later use:

. sort patient

. merge m:1 patient using ml

. drop _merge

10.12.2 Empirical Bayes prediction

The ideas behind empirical Bayes prediction discussed in section 2.11.2 for linear
variance-components models also apply to other generalized linear mixed models. In-
stead of basing inference completely on the likelihood of the responses for a cluster
given the random intercept, we combine this information with the prior of the random
intercept, which is just the density of the random intercept (a normal density with mean

0 and estimated variance ψ̂), to obtain the posterior density:

Posterior(ζj |y1j , . . . , ynjj ,Xj) ∝ Prior(ζj) × Likelihood(y1j , . . . , ynjj |Xj , ζj)

The product on the right is proportional to, but not equal to, the posterior density.
Obtaining the posterior density requires dividing this product by a normalizing constant
that can only be obtained by numerical integration. Note that the model parameters
are treated as known, and estimates are plugged into the expression for the posterior,
giving what is sometimes called an estimated posterior distribution.

The estimated posterior density is no longer normal as for linear models, and hence
its mode does not equal its mean. There are therefore two different types of predictions
we could consider: the mean of the posterior and its mode. The first is undoubtedly
the most common and is referred to as empirical Bayes prediction [sometimes called
expected a posterior (EAP) prediction], whereas the second is referred to as empirical
Bayes modal prediction [sometimes called modal a posterior (MAP) prediction].
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The empirical Bayes prediction of the random intercept for a cluster j is the mean
of the estimated posterior distribution of the random intercept. This can be obtained
as

ζ̃j =

∫
ζj Posterior(ζj |y1j , . . . , ynjj ,Xj) dζj

using numerical integration.

At the time of writing this book, the only Stata command that provides empirical
Bayes predictions for generalized linear mixed models is the postestimation command
gllapred for gllamm with the u option:

. estimates restore gllamm

. gllapred eb, u

The variable ebm1 contains the empirical Bayes predictions. In the next section, we will
produce a graph of these predictions, together with maximum likelihood estimates and
empirical Bayes modal predictions.

The posterior standard deviations produced by gllapred in the variable ebs1 rep-
resent the conditional standard deviations of the prediction errors, given the observed
responses and treating the parameter estimates as known. The square of ebs1 is also the
conditional mean squared error of the prediction, conditional on the observed responses.
As in section 2.11.3, we refer to this standard error as the comparative standard error
because it can be used to make inferences regarding the random effects of individual
clusters and to compare clusters.

We mentioned in section 2.11.3 that, for linear models, the posterior variance was
the same as the unconditional mean squared error of prediction (MSEP). However, this
is not true for generalized linear mixed models not having an identity link, such as the
random-intercept logistic model discussed here.

There is also no longer an easy way to obtain the sampling standard deviation
of the empirical Bayes predictions or diagnostic standard error (see section 2.11.3).
The ustd option for standardized level-2 residuals therefore divides the empirical Bayes

predictions by an approximation for this standard deviation,

√
ψ̂ − ebs12 (see Skrondal

and Rabe-Hesketh [2004, 231–232] or Skrondal and Rabe-Hesketh [2009] for details).

10.12.3 Empirical Bayes modal prediction

Instead of basing prediction of random effects on the mean of the posterior distribution,
we can use the mode. Such empirical Bayes modal predictions are easy to obtain using
the predict command with the reffects option after estimation using xtmelogit:

. estimates restore xtmelogit

. predict ebmodal, reffects

To see how the various methods compare, we now produce a graph of the empirical
Bayes modal predictions (circles) and maximum likelihood estimates (triangles) ver-
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sus the empirical Bayes predictions, connecting empirical Bayes modal predictions and
maximum likelihood estimates with vertical lines.

. twoway (rspike mlest ebmodal ebm1 if visit==1)
> (scatter mlest ebm1 if visit==1, msize(small) msym(th) mcol(black))
> (scatter ebmodal ebm1 if visit==1, msize(small) msym(oh) mcol(black))
> (function y=x, range(ebm1) lpatt(solid)),
> xtitle(Empirical Bayes prediction)
> legend(order(2 "Maximum likelihood" 3 "Empirical Bayes modal"))

The graph is given in figure 10.12.

−
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0
5
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0

−5 0 5 10
Empirical Bayes prediction

Maximum likelihood Empirical Bayes modal

Figure 10.12: Empirical Bayes modal predictions (circles) and maximum likelihood
estimates (triangles) versus empirical Bayes predictions

We see that the maximum likelihood predictions are missing when the empirical
Bayes predictions are extreme (where the responses are all 0 or all 1) and that the em-
pirical Bayes modal predictions tend to be quite close to the empirical Bayes predictions
(close to the line).

We can also obtain standard errors for the random-effect predictions after estimation
with xtmelogit by using the predict command with the reses (for “random-effects
standard errors”) option.
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. predict se2, reses

These standard errors are the standard deviations of normal densities that approximate
the posterior at the mode. They can be viewed as approximations of the posterior
standard deviations provided by gllapred. Below we list the predictions and standard
errors produced by gllapred (ebm1 and ebs1) with those produced by predict after
estimation with xtmelogit (ebmodal and se2), together with the number of 0 responses,
num0, and the number of 1 responses, num1, for the first 16 patients:

. egen num0 = total(outcome==0), by(patient)

. egen num1 = total(outcome==1), by(patient)

. list patient num0 num1 ebm1 ebmodal ebs1 se2 if visit==1&patient<=12, noobs

patient num0 num1 ebm1 ebmodal ebs1 se2

1 4 3 3.7419957 3.736461 1.0534592 1.025574
2 4 2 1.8344596 1.934467 1.0192062 .9423445
3 6 1 .58899428 .9477552 1.3098199 1.131451
4 6 1 .60171957 .9552238 1.3148935 1.136338
6 4 3 3.2835777 3.253659 1.0118905 .9709948

7 4 3 3.4032244 3.367345 1.0307951 .9956154
9 7 0 -2.6807107 -1.399524 2.7073681 2.608825
10 7 0 -2.888319 -1.604741 2.6450981 2.503938
11 3 4 4.4649443 4.361801 1.0885138 1.072554
12 4 3 2.7279723 2.728881 .94173461 .8989795

We see that the predictions and standard errors agree reasonably well (except the ex-
treme negative predictions). The standard errors are large when all responses are 0.

10.13 Different kinds of predicted probabilities

10.13.1 Predicted population-averaged or marginal probabilities

At the time of writing this book, population-averaged or marginal probabilities π(xij)
can be predicted for random-intercept logistic regression models only by using gllapred

after estimation using gllamm. This is done by evaluating the integral in (10.8) nu-
merically for the estimated parameters and values of covariates in the data, that is,
evaluating

π(xij) ≡
∫

P̂r(yij = 1|x2j , x3ij , ζj)φ(ζj ; 0, ψ̂) dζj

To obtain these predicted marginal probabilities using gllapred, specify the options
mu (for the mean response, here a probability) and marginal (for integrating over the
random-intercept distribution):

. estimates restore gllamm

. gllapred margprob, mu marginal
(mu will be stored in margprob)
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We now compare predictions of population-averaged or marginal probabilities from
the ordinary logit model (previously obtained under the variable name prob) and the
random-intercept logit model, giving figure 10.13.

. twoway (line prob month, sort) (line margprob month, sort lpatt(dash)),
> by(treatment) legend(order(1 "Ordinary logit" 2 "Random-intercept logit"))
> xtitle(Time in months) ytitle(Fitted marginal probabilities of onycholysis)

The predictions are nearly identical. This is not surprising because marginal effects
derived from generalized linear mixed models are close to true marginal effects even if
the random-intercept distribution is misspecified (Heagerty and Kurland 2001).
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Figure 10.13: Fitted marginal probabilities using ordinary and random-intercept logistic
regression

10.13.2 Predicted subject-specific probabilities

Predictions for hypothetical subjects: Conditional probabilities

Subject-specific or conditional predictions of P̂r(yij = 1|x2j , x3ij , ζj) for different values
of ζj can be produced using gllapred with the mu and us(varname) options, where
varname1 is the name of the variable containing the value of the first (here the only)
random effect. We now produce predicted probabilities for ζj equal to 0, −4, 4, −2,
and 2:
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. generate zeta1 = 0

. gllapred condprob0, mu us(zeta)
(mu will be stored in condprob0)

. generate lower1 = -4

. gllapred condprobm4, mu us(lower)
(mu will be stored in condprobm4)

. generate upper1 = 4

. gllapred condprob4, mu us(upper)
(mu will be stored in condprob4)

. replace lower1 = -2
(1908 real changes made)

. gllapred condprobm2, mu us(lower)
(mu will be stored in condprobm2)

. replace upper1 = 2
(1908 real changes made)

. gllapred condprob2, mu us(upper)
(mu will be stored in condprob2)

Plotting all of these conditional probabilities together with the observed proportions
and marginal probabilities produces figure 10.14.

. twoway (line prop mn_month, sort)
> (line margprob month, sort lpatt(dash))
> (line condprob0 month, sort lpatt(shortdash_dot))
> (line condprob4 month, sort lpatt(shortdash))
> (line condprobm4 month, sort lpatt(shortdash))
> (line condprob2 month, sort lpatt(shortdash))
> (line condprobm2 month, sort lpatt(shortdash)),
> by(treatment)
> legend(order(1 "Observed proportion" 2 "Marginal probability"
> 3 "Median probability" 4 "Conditional probabilities"))
> xtitle(Time in months) ytitle(Probabilities of onycholysis)
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Figure 10.14: Conditional and marginal predicted probabilities for random-intercept
logistic regression model

Clearly, the conditional curves have steeper downward slopes than does the marginal
curve. The conditional curve represented by a dash-dot line is for ζj = 0 and hence
represents the population median curve.

Predictions for the subjects in the sample: Posterior mean probabilities

We may also want to predict the probability that yij = 1 for a given subject j. The
predicted conditional probability, given the unknown random intercept ζj , is

P̂r(yij = 1|xij , ζj) =
exp(β̂1 + β̂2x2j + β̂3x3ij + β̂4x2jx3ij + ζj)

1 + exp(β̂1 + β̂2x2j + β̂3x3ij + β̂4x2jx3ij + ζj)

Because our knowledge about ζj for subject j is represented by the posterior dis-
tribution, a good prediction π̃j(xij) of the unconditional probability is obtained by
integrating over the posterior distribution:

π̃j(xij) ≡
∫

P̂r(yij = 1|xij , ζj) × Posterior(ζj |y1j , . . . , ynjj ,Xj) dζj (10.11)

6= P̂r(yij = 1|xij , ζ̃j)

This minimizes the mean squared error of prediction for known parameters. We cannot
simply plug in the posterior mean of the random intercept ζ̃j for ζj in generalized linear
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mixed models. The reason is that the mean of a given nonlinear function of ζj does not
in general equal the same function evaluated at the mean of ζj .

The posterior means of the predicted probabilities as defined in (10.12) can be ob-
tained using gllapred with the mu option (and not the marginal option) after estima-
tion using gllamm:

. gllapred cmu, mu
(mu will be stored in cmu)
Non-adaptive log-likelihood: -625.52573
-625.3853 -625.3856 -625.3856

log-likelihood:-625.38558

As of September 2008, gllapred can produce predicted posterior mean probabilities
also for occasions where the response variable is missing. This is useful for making
forecasts for a patient or for making predictions for visits where the patient did not
attend the assessment. As we saw in section 10.4, such missing data occur frequently
in the toenail data.

Listing patient and visit for patients 2 and 15,

. sort patient visit

. list patient visit if patient==2|patient==15, sepby(patient) noobs

patient visit

2 1
2 2
2 3
2 4
2 5
2 6

15 1
15 2
15 3
15 4
15 5
15 7

we see that these patients each have one missing visit: visit 7 is missing for patient
2 and visit 6 is missing for patient 15. To make predictions for these visits, we must
first create rows of data (or records) for these visits. A very convenient command to
accomplish this is fillin:
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. fillin patient visit

. list patient visit _fillin if patient==2|patient==15, sepby(patient) noobs

patient visit _fillin

2 1 0
2 2 0
2 3 0
2 4 0
2 5 0
2 6 0
2 7 1

15 1 0
15 2 0
15 3 0
15 4 0
15 5 0
15 6 1
15 7 0

fillin finds all values of patient that occur in the data and all values of visit and fills
in all combinations of these values that do not already occur in the data, for example,
patient 2 and visit 7. The command creates a new variable, fillin, taking the value
1 for filled-in records and 0 for records that existed before. All variables have missing
values for these new records except patient, visit, and fillin.

Before we can make predictions, we must fill in values for the covariates: treatment,
month, and the interaction trt month. Note that, by filling in values for covariates, we
are not imputing missing data but just specifying for which covariate values we would
like to make predictions.

We start by filling in the appropriate values for treatment, taking into account that
treatment is a time-constant variable.

. egen trt = mean(treatment), by(patient)

. replace treatment = trt if _fillin==1

We proceed by filling in the average time (month) associated with the visit number for
the time-varying variable month by using

. drop mn_month

. egen mn_month = mean(month), by(treatment visit)

. replace month = mn_month if _fillin==1

Finally, we obtain the filled-in version of the interaction variable, trt month, by multi-
plying the variables treatment and month that we have constructed:

. replace trt_month = treatment*month
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It is important that the response variable, outcome, remains missing; the posterior
distribution should only be based on the responses that were observed. We also cannot
change the covariate values corresponding to these responses because that would change
the posterior distribution.

We can now make predictions for the entire dataset by repeating the gllapred

command (after deleting cmu) with the fsample (for “full sample”) option:

. drop cmu

. gllapred cmu, mu fsample
(mu will be stored in cmu)
Non-adaptive log-likelihood: -625.52573
-625.3853 -625.3856 -625.3856

log-likelihood:-625.38558

. list patient visit _fillin cmu if patient==2|patient==15, sepby(patient) noobs

patient visit _fillin cmu

2 1 0 .54654227
2 2 0 .46888925
2 3 0 .3867953
2 4 0 .30986966
2 5 0 .12102271
2 6 0 .05282663
2 7 1 .01463992

15 1 0 .59144346
15 2 0 .47716226
15 3 0 .39755635
15 4 0 .30542907
15 5 0 .08992082
15 6 1 .01855957
15 7 0 .00015355

The predicted forecast probability for visit 7 for patient 2 hence is 0.015.

To look at some patient-specific posterior mean probability curves, we will produce
trellis graphs of 16 randomly chosen patients from each treatment group. We will first
randomly assign consecutive integer identifiers (1, 2, 3, etc.) to the patients in each
group, in a new variable, randomid. We will then plot the data for patients with
randomid 1 through 16 in each group.

To create the random identifier, we first generate a random number from the uniform
distribution whenever visit is 1 (which happens once for each patient):

. set seed 1234421

. sort patient

. generate rand = runiform() if visit==1
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Here use of the set seed and sort commands ensures that you get the same values of
randomid as we do, because the same “seed” is used for the random-number genera-
tor. We now define a variable, randid, that represents the rank order of rand within
treatment groups and is missing when rand is missing:

. by treatment (rand), sort: generate randid = _n if rand<.

randid is the required random identifier, but it is only available when visit is 1 and
missing otherwise. We can fill in the missing values using

. egen randomid = mean(randid), by(patient)

We are now ready to produce the trellis graphs:

. twoway (line cmu month, sort) (scatter cmu month if _fillin==1, mcol(black))
> if randomid<=16&treatment==0, by(patient, compact legend(off)
> l1title("Posterior mean probabilities"))

and

. twoway (line cmu month, sort) (scatter cmu month if _fillin==1, mcol(black))
> if randomid<=16&treatment==1, by(patient, compact legend(off)
> l1title("Posterior mean probabilities"))

The graphs are shown in figure 10.15. We see that there is considerable variability in
the probability trajectories of different patients within the same treatment group.
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Figure 10.15: Posterior mean probabilities against time for 16 patients in the control
group (a) and treatment group (b) with predictions for missing responses shown as
diamonds
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After estimation with xtmelogit, the predict command with the mu option gives

the posterior mode of the predicted conditional probability P̂r(yij |xij , ζj) instead of
the posterior mean. This is achieved by substituting the posterior mode of ζj into the
expression for the conditional probability. [The mode of a strictly increasing function
of ζj (here an inverse logit), is the same function evaluated at the mode of ζj .]

10.14 Other approaches to clustered dichotomous data

10.14.1 Conditional logistic regression

Instead of using random intercepts for clusters (patients in the toenail application),
it would be tempting to use fixed intercepts by including a dummy variable for each
patient (and omitting the overall intercept). This would be analogous to the fixed-
effects estimator of within-patient effects discussed for linear models in section 3.7.2.
However, in logistic regression, this approach would lead to inconsistent estimates of the
within-patient effects unless n is large, due to what is known as the incidental parameter
problem. Roughly speaking, this problem occurs because the number of cluster-specific
intercepts (the incidental parameters) increases in tandem with the sample size (number
of clusters), so that the usual asymptotic, or large-sample results, break down. Obvi-
ously, we also cannot eliminate the random intercepts in nonlinear models by simply
cluster-mean-centering the responses and covariates, as in (3.12).

Instead, we can eliminate the patient-specific intercepts by constructing a likelihood
that is conditional on the number of responses that take the value 1 (a sufficient statistic
for the patient-specific intercept). This approach is demonstrated in display 12.2 in
the chapter on nominal responses. In the linear case, assuming normality, ordinary
least-squares estimation of the cluster-mean-centered model is equivalent to conditional
maximum likelihood estimation. In logistic regression, conditional maximum likelihood
estimation is more involved and is known as conditional logistic regression. Importantly,
this method estimates conditional or subject-specific effects. When using conditional
logistic regression, we can only estimate the effects of within-patient or time-varying
covariates. Patient-specific covariates, such as treatment, cannot be included. However,
interactions between patient-specific and time-varying variables, such as treatment by
month, can be estimated.

Conditional logistic regression can be performed using Stata’s xtlogit command
with the fe option or using the clogit command (with the or option to obtain odds
ratios):
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. clogit outcome month trt_month, group(patient) or

note: multiple positive outcomes within groups encountered.
note: 179 groups (1141 obs) dropped because of all positive or

all negative outcomes.

Conditional (fixed-effects) logistic regression Number of obs = 767
LR chi2(2) = 290.97
Prob > chi2 = 0.0000

Log likelihood = -188.94377 Pseudo R2 = 0.4350

outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

month .6827717 .0321547 -8.10 0.000 .6225707 .748794
trt_month .9065404 .0667426 -1.33 0.183 .7847274 1.047262

The subject-specific or conditional odds ratio for the treatment effect (treatment by
time interaction) is now estimated as 0.91 and is no longer significant at the 5% level.
However, both this estimate and the estimate for month, also given in the last column
of table 10.2 on page 526, are quite similar to the estimates for the random-intercept
model.

The subject-specific or conditional odds ratios from conditional logistic regression
represent within-effects, where patients serve as their own controls. As discussed in
chapter 5, within-patient estimates cannot be confounded with omitted between-patient
covariates and are hence less sensitive to model misspecification than estimates based
on the random-intercept model (which makes the strong assumption that the patient-
specific intercepts are independent of the covariates). A further advantage of conditional
maximum likelihood estimation is that it does not make any assumptions regarding the
distribution of the patient-specific effect. Therefore, it is reassuring that the conditional
maximum likelihood estimates are fairly similar to the maximum likelihood estimates
for the random-intercept model.

If the random-intercept model is correct, the latter estimator is more efficient and
tends to yield smaller standard errors leading to smaller p-values, as we can see for
the treatment by time interaction. Here the conditional logistic regression method is
inefficient because, as noted in the output, 179 subjects whose responses were all 0 or
all 1 cannot contribute to the analysis. This is because the conditional probabilities of
these response patterns, conditioning on the total response across time, are 1 regardless
of the covariates (for example, if the total is zero, all responses must be zero) and the
conditional probabilities therefore do not provide any information on covariate effects.

The above model is sometimes referred to as the Chamberlain fixed-effects logit
model in econometrics and is used for matched case–control studies in epidemiology.
The same trick of conditioning is also used for the Rasch model in psychometrics and the
conditional logit model for discrete choice and nominal responses (see section 12.2.2).
Unfortunately, there is no counterpart to conditional logistic regression for probit mod-
els.

Note that dynamic models with subject-specific effects cannot be estimated con-
sistently by simply including lagged responses in conditional logistic regression. Also,
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subject-specific predictions are not possible in conditional logistic regression because no
inferences are made regarding the subject-specific intercepts.

10.14.2 Generalized estimating equations (GEE)

Generalized estimating equations (GEE), first introduced in section 6.6, can be used to
estimate marginal or population-averaged effects. Dependence among the responses of
units in a given cluster is taken into account but treated as a nuisance, whereas this
dependence is of central interest in multilevel modeling.

The basic idea of GEE is that an algorithm, known as reweighted iterated least
squares, for maximum likelihood estimation of single-level generalized linear models
requires only the mean structure (expectation of the response variable as a function of
the covariates) and the variance function. The algorithm iterates between linearizing
the model given current parameter estimates and then updating the parameters using
weighted least squares, with weights determined by the variance function. In GEE, this
iterative algorithm is extended to two-level data by assuming a within-cluster correlation
structure, in addition to the mean structure and variance function, so that the weighted
least-squares step becomes a generalized least-squares step (see section 3.10.1), and
another step is required for updating the correlation matrix. GEE can be viewed as
a special case of generalized methods of moments (GMM) estimation (implemented in
Stata’s gmm command).

In addition to specifying a model for the marginal relationship between the response
variable and covariates, it is necessary to choose a structure for the correlations among
the observed responses (conditional on covariates). The variance function follows from
the Bernoulli distribution. The most common correlation structures are (see section 6.6
for some other correlation structures):

• Independence:
Same as ordinary logistic regression

• Exchangeable:
Same correlation for all pairs of units

• Autoregressive lag-1 [AR(1)]:
Correlation declines exponentially with the time lag—only makes sense for longi-
tudinal data and assumes constant time intervals between occasions (but allows
gaps due to missing data).

• Unstructured:
A different correlation for each pair of responses—only makes sense if units are not
exchangeable within clusters, in the sense that the labels i attached to the units
mean the same thing across clusters. For instance, it is meaningful in longitudinal
data where units are occasions and the first occasion means the same thing across
individuals, but not in data on students nested in schools where the numbering
of students is arbitrary. In addition, each pair of unit labels i and i′ must occur
sufficiently often across clusters to estimate the pairwise correlations. Finally, the



560 Chapter 10 Dichotomous or binary responses

number of unique unit labels, say, m, should not be too large because the number
of parameters is m(m−1)/2.

The reason for specifying a correlation structure is that more efficient estimates
(with smaller standard errors) are obtained if the specified correlation structure resem-
bles the true dependence structure. Using ordinary logistic regression is equivalent to
assuming an independence structure. GEE is therefore generally more efficient than
ordinary logistic regression although the gain in precision can be meagre for balanced
data (Lipsitz and Fitzmaurice 2009).

An important feature of GEE (and ordinary logistic regression) is that marginal
effects can be consistently estimated, even if the dependence among units in clusters is
not properly modeled. For this reason, correct specification of the correlation structure
is downplayed by using the term “working correlations”.

In GEE, the standard errors for the marginal effects are usually based on the robust
sandwich estimator, which takes the dependence into account. Use of the sandwich
estimator implicitly relies on there being many replications of the responses associated
with each distinct combination of covariate values. Otherwise, the estimated stan-
dard errors can be biased downward. Furthermore, estimated standard errors based
on the sandwich estimator can be very unreliable unless the number of clusters is
large, so in this case model-based (nonrobust) standard errors may be preferable. See
Lipsitz and Fitzmaurice (2009) for further discussion.

We now use GEE to estimate marginal odds ratios for the toenail data. We request
an exchangeable correlation structure (the default) and robust standard errors by using
xtgee with the vce(robust) and eform options:

. quietly xtset patient

. xtgee outcome treatment month trt_month, link(logit)
> family(binomial) corr(exchangeable) vce(robust) eform

GEE population-averaged model Number of obs = 1908
Group variable: patient Number of groups = 294
Link: logit Obs per group: min = 1
Family: binomial avg = 6.5
Correlation: exchangeable max = 7

Wald chi2(3) = 63.44
Scale parameter: 1 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on patient)

Robust
outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.007207 .2618022 0.03 0.978 .6051549 1.676373
month .8425856 .0253208 -5.70 0.000 .7943911 .893704

trt_month .9252113 .0501514 -1.43 0.152 .8319576 1.028918
_cons .5588229 .0963122 -3.38 0.001 .3986309 .7833889



10.14.2 Generalized estimating equations (GEE) 561

These estimates are given under “GEE” in table 10.2 and can alternatively be obtained
using xtlogit with the pa option.

We can display the fitted working correlation matrix by using estat wcorrelation:

. estat wcorrelation, format(%4.3f)

Estimated within-patient correlation matrix R:

c1 c2 c3 c4 c5 c6 c7

r1 1.000
r2 0.422 1.000
r3 0.422 0.422 1.000
r4 0.422 0.422 0.422 1.000
r5 0.422 0.422 0.422 0.422 1.000
r6 0.422 0.422 0.422 0.422 0.422 1.000
r7 0.422 0.422 0.422 0.422 0.422 0.422 1.000

A problem with the exchangeable correlation structure is that the true marginal
(over the random effects) correlation of the responses is in general not constant but
varies according to values of the observed covariates. Using Pearson correlations for
dichotomous responses is also somewhat peculiar because the odds ratio is the measure
of association in logistic regression.

GEE is an estimation method that does not require the specification of a full statis-
tical model. While the mean structure, variance function, and correlation structure are
specified, it may not be possible to find a statistical model with such a structure. As
we already pointed out, it may not be possible to specify a model for binary responses
where the residual Pearson correlation matrix is exchangeable. For this reason, the
approach is called an estimating equation approach rather than a modeling approach.
This is in stark contrast to multilevel modeling, where statistical models are explicitly
specified.

The fact that no full statistical model is specified has three important implications.
First, there is no likelihood and therefore likelihood-ratio tests cannot be used. Instead,
comparison of nested models typically proceeds by using Wald-tests. Unless the sample
size is large, this approach may be problematic because it is known that these tests do
not work as well as likelihood-ratio tests in ordinary logistic regression. Second, it is not
possible to simulate or predict individual responses based on the estimates from GEE

(see section 10.13.2 for prediction and forecasting based on multilevel models). Third,
GEE does not share the useful property of ML that estimators are consistent when data
are missing at random (MAR). Although GEE produces consistent estimates of marginal
effects if the probability of responses being missing is covariate dependent [and for the
special case of responses missing completely at random (MCAR)], it produces inconsistent
estimates if the probability of a response being missing for a unit depends on observed
responses for other units in the same cluster. Such missingness is likely to occur in
longitudinal data where dropout could depend on a subjects’ previous responses (see
sections 5.8.1 and 13.12).
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10.15 Summary and further reading

We have described various approaches to modeling clustered dichotomous data, focusing
on random-intercept models for longitudinal data. Alternatives to multilevel modeling,
such as conditional maximum likelihood estimation and generalized estimating equa-
tions, have also been briefly discussed. The important distinction between conditional
or subject-specific effects and marginal or population-averaged effects has been empha-
sized.

We have described adaptive quadrature for maximum likelihood estimation and
pointed out that you need to make sure that a sufficient number of quadrature points
have been used for a given model and application. We have demonstrated the use of a
variety of predictions, either cluster-specific predictions, based on empirical Bayes, or
population-averaged predictions. Keep in mind that consistent estimation in logistic
regression models with random effects in principle requires a completely correct model
specification. Diagnostics for generalized linear mixed models are still being developed.

We did not cover random-coefficient models for binary responses in this chapter
but have included two exercises (10.3 and 10.8), with solutions provided, involving
these models. The issues discussed in chapter 4 regarding linear models with random
coefficients are also relevant for other generalized linear mixed models. The syntax
for random-coefficient logistic models is analogous to the syntax for linear random-
coefficient models except that xtmixed is replaced with xtmelogit and gllamm is
used with a different link function and distribution (the syntax for linear random-
coefficient models in gllamm can be found in the gllamm companion). Three-level
random-coefficient logistic models for binary responses are discussed in chapter 16. In
chapter 11, gllamm will be used to fit random-coefficient ordinal logistic regression mod-
els; see section 11.7.2.

Dynamic or lagged-response models for binary responses have not been discussed.
The reason is that such models, sometimes called transition models in this context, can
suffer from similar kinds of endogeneity problems as those discussed for dynamic models
with random intercepts in chapter 5 of volume I. However, these problems are not as
straightforward to address for binary responses (but see Wooldridge [2005]).

We have discussed the most common link functions for dichotomous responses,
namely, logit and probit links. A third link that is sometimes used is the comple-
mentary log-log link, which is introduced in section 14.6. Dichotomous responses are
sometimes aggregated into counts, giving the number of successes yi in ni trials for unit
i. In this situation, it is usually assumed that yi has a binomial(ni,πi) distribution.
xtmelogit can then be used as for dichotomous responses but with the binomial()

option to specify the variable containing the values ni. Similarly, gllamm can be used
with the binomial distribution and any of the link functions together with the denom()

option to specify the variable containing ni.
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Good introductions to single-level logistic regression include Collett (2003a), Long
(1997), and Hosmer and Lemeshow (2000). Logistic and other types of regression using
Stata are discussed by Long and Freese (2006), primarily with examples from social
science, and by Vittinghoff et al. (2005), with examples from medicine.

Generalized linear mixed models are described in the books by McCulloch, Searle,
and Neuhaus (2008), Skrondal and Rabe-Hesketh (2004), Molenberghs and Verbeke
(2005), and Hedeker and Gibbons (2006). See also Goldstein (2011), Raudenbush and
Bryk (2002), and volume 3 of the anthology by Skrondal and Rabe-Hesketh (2010). Sev-
eral examples with dichotomous responses are discussed in Skrondal and Rabe-Hesketh
(2004, chap. 9). Guo and Zhao (2000) is a good introductory paper on multilevel mod-
eling of binary data with applications in social science. We also recommend the book
chapter by Rabe-Hesketh and Skrondal (2009), the article by Agresti et al. (2000), and
the encyclopedia entry by Hedeker (2005) for overviews of generalized linear mixed mod-
els. Detailed accounts of generalized estimating equations are given in Hardin and Hilbe
(2003), Diggle et al. (2002), and Lipsitz and Fitzmaurice (2009).

Exercises 10.1, 10.2, 10.3, and 10.6 are on longitudinal or panel data. There are also
exercises on cross-sectional datasets on students nested in schools (10.7 and 10.8), cows
nested in herds (10.5), questions nested in respondents (10.4) and wine bottles nested
in judges (10.9). Exercise 10.2 involves GEE, whereas exercises 10.4 and 10.6 involve
conditional logistic regression. The latter exercise also asks you to perform a Hausman
test. Exercises 10.3 and 10.8 consider random-coefficient models for dichotomous re-
sponses (solutions are provided for both exercises). Exercise 10.4 introduces the idea of
item-response theory, and exercise 10.8 shows how gllamm can be used to fit multilevel
models with survey weights.

10.16 Exercises

10.1 Toenail data

1. Fit the probit version of the random-intercept model in (10.6) with gllamm.
How many quadrature points appear to be needed using adaptive quadrature?

2. Estimate the residual intraclass correlation for the latent responses.

3. Obtain empirical Bayes predictions using both the random-intercept logit
and probit models and estimate the approximate constant of proportionality
between these.

4. q By considering the residual standard deviations of the latent response
for the logit and probit models, work out what you think the constant of
proportionality should be for the logit- and probit-based empirical Bayes
predictions. How does this compare with the constant estimated in step 3?
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10.2 Ohio wheeze data

In this exercise, we use data from the Six Cities Study (Ware et al. 1984), previ-
ously analyzed by Fitzmaurice (1998), among others. The dataset includes 537
children from Steubenville, Ohio, who were examined annually four times from age
7 to age 10 to ascertain their wheezing status. The smoking status of the mother
was also determined at the beginning of the study to investigate whether maternal
smoking increases the risk of wheezing in children. The mother’s smoking status
is treated as time constant, although it may have changed for some mothers over
time.

The dataset wheeze.dta has the following variables:

• id: child identifier (j)

• age: number of years since ninth birthday (x2ij)

• smoking: mother smokes regularly (1: yes; 0: no) (x3j)

• y: wheeze status (1: yes; 0: no) (yij)

1. Fit the following transition model considered by Fitzmaurice (1998):

logit{Pr(yij =1|xij , yi−1,j)} = β1 + β2x2ij + β3x3j + γyi−1,j , i = 2, 3, 4

where x2ij is age and x3j is smoking. (The lagged responses can be obtained
using by id (age), sort: generate lag = y[ n-1]. Alternatively, use
the time-series operator L.; see table 5.3 on page 275.)

2. Fit the following random-intercept model considered by Fitzmaurice (1998):

logit{Pr(yij =1|xij , ζj)} = β1 + β2x2ij + β3x3j + ζj , i = 1, 2, 3, 4

It is assumed that ζj ∼ N(0, ψ), and that ζj is independent across children
and independent of xij .

3. Use GEE to fit the marginal model

logit{Pr(yij =1|xij)} = β1 + β2x2ij + β3x3j , i = 1, 2, 3, 4

specifying an unstructured correlation matrix (xtset the data using xtset

id age). Try some other correlation structures and compare the fit (using
estat wcorrelation) to the unstructured version.

4. Interpret the estimated effects of mother’s smoking status for the models in
steps 1, 2, and 3.

10.3 Vaginal-bleeding data
Solutions

Fitzmaurice, Laird, and Ware (2011) analyzed data from a trial reported by
Machin et al. (1988). Women were randomized to receive an injection of either
100 mg or 150 mg of the long-lasting injectable contraception depot medroxypro-
gesterone acetate (DMPA) at the start of the trial and at three successive 90-day
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intervals. In addition, the women were followed up 90 days after the final injection.
Throughout the study, each woman completed a menstrual diary that recorded
any vaginal bleeding pattern disturbances. The diary data were used to determine
whether a woman experienced amenorrhea, defined as the absence of menstrual
bleeding for at least 80 consecutive days.

The response variable for each of the four 90-day intervals is whether the woman
experienced amenorrhea during the interval. Data are available on 1,151 women
for the first interval, but there was considerable dropout after that.

The dataset amenorrhea.dta has the following variables:

• dose: high dose (1: yes; 0: no)

• y1–y4: responses for time intervals 1–4 (1: amenorrhea; 0: no amenorrhea)

• wt2: number of women with the same dose level and response pattern

1. Produce an identifier variable for women, and reshape the data to long form,
stacking the responses y1–y4 into one variable and creating a new variable,
occasion, taking the values 1–4 for each woman.

2. Fit the following model considered by Fitzmaurice, Laird, and Ware (2011):

logit{Pr(yij = 1|xj , tij , ζj)} = β1 + β2tij + β3t
2
ij + β4xjtij + β5xjt

2
ij + ζj

where tij = 1, 2, 3, 4 is the time interval and xj is dose. It is assumed that
ζj ∼ N(0, ψ), and that ζj is independent across women and independent of
xj and tij . Use gllamm with the weight(wt) option to specify that wt2 are
level-2 weights.

3. Write down the above model but with a random slope of tij , and fit the
model. (See section 11.7.2 for an example of a random-coefficient model fit
in gllamm.)

4. Interpret the estimated coefficients.

5. Plot marginal predicted probabilities as a function of time, separately for
women in the two treatment groups.

10.4 Verbal-aggression data

De Boeck and Wilson (2004) discuss a dataset from Vansteelandt (2000) where
316 participants were asked to imagine the following four frustrating situations
where either another or oneself is to blame:

1. Bus: A bus fails to stop for me (another to blame)

2. Train: I miss a train because a clerk gave me faulty information (another to
blame)

3. Store: The grocery store closes just as I am about to enter (self to blame)

4. Operator: The operator disconnects me when I have used up my last 10 cents
for a call (self to blame)
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For each situation, the participant was asked if it was true (yes, perhaps, or no)
that

1. I would (want to) curse

2. I would (want to) scold

3. I would (want to) shout

For each of the three behaviors above, the words “want to” were both included
and omitted, yielding six statements with a 3 × 2 factorial design (3 behaviors in
2 modes) combined with the four situations. Thus there were 24 items in total.

The dataset aggression.dta contains the following variables:

• person: subject identifier

• item: item (or question) identifier

• description: item description
(situation: bus/train/store/operator; behavior: curse/scold/shout; mode:
do/want)

• i1–i24: dummy variables for the items, for example, i5 equals 1 when item

equals 5 and 0 otherwise

• y: ordinal response (0: no; 1: perhaps; 2: yes)

• Person characteristics:

– anger: trait anger score (STAXI, Spielberger [1988]) (w1j)
– gender: dummy variable for being male (1: male; 0: female) (w2j)

• Item characteristics:

– do want: dummy variable for mode being “do” (that is, omitting words
“want to”) versus “want” (x2ij)

– other self: dummy variable for others to blame versus self to blame
(x3ij)

– blame: variable equal to 0.5 for blaming behaviors curse and scold and
−1 for shout (x4ij)

– express: variable equal to 0.5 for expressive behaviors curse and shout
and −1 for scold (x5ij)

1. Recode the ordinal response variable y so that either a “2” or a “1” for the
original variable becomes a “1” for the recoded variable.

2. De Boeck and Wilson (2004, sec. 2.5) consider the following “explanatory
item-response model” for the dichotomous response

logit{Pr(yij =1|xij , ζj)} = β1 + β2x2ij + β3x3ij + β4x4ij + β5x5ij + ζj

where ζj ∼ N(0, ψ) can be interpreted as the latent trait “verbal aggressive-
ness”. Fit this model using xtlogit, and interpret the estimated coefficients.
In De Boeck and Wilson (2004), the first five terms have minus signs, so their
estimated coefficients have the opposite sign.
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3. De Boeck and Wilson (2004, sec. 2.6) extend the above model by including
a latent regression, allowing verbal aggressiveness (now denoted ηj instead
of ζj) to depend on the person characteristics w1j and w2j :

logit{Pr(yij =1|xij , ηj)} = β1 + β2x2ij + β3x3ij + β4x4ij + β5x5ij + ηj

ηj = γ1w1j + γ2w2j + ζj

Substitute the level-2 model for ηj into the level-1 model for the item re-
sponses, and fit the model using xtlogit.

4. Use xtlogit to fit the “descriptive item-response model”, usually called a
one-parameter logistic item response (IRT) model or Rasch model, considered
by De Boeck and Wilson (2004, sec. 2.3):

logit{Pr(yij =1|d1i, . . . , d24,i, ζj)} =
24∑

m=1

βmdmi + ζj

where dmi is a dummy variable for item i, with dmi = 1 if m = i and 0
otherwise. In De Boeck and Wilson (2004), the first term has a minus sign,
so their βm coefficients have the opposite sign; see also their page 53.

5. The model above is known as a one-parameter item-response model because
there is one parameter βm for each item. The negative of these item-specific
parameters −βm can be interpreted as “difficulties”; the larger −βm, the
larger the latent trait (here verbal aggressiveness, but often ability) has to
be to yield a given probability (for example, 0.5) of a 1 response.

Sort the items in increasing order of the estimated difficulties. For the least
and most difficult items, look up the variable description, and discuss
whether it makes sense that these items are particularly easy and hard to
endorse (requiring little and a lot of verbal aggressiveness), respectively.

6. Replace the random intercepts ζj with fixed parameters αj . Set the difficulty
of the first item to zero for identification and fit the model by conditional
maximum likelihood. Verify that differences between estimated difficulties
for the items are similar as in step 4.

7. q Fit the model in step 4 using gllamm or xtmelogit (this will take longer
than xtlogit) and obtain empirical Bayes (also called EAP) or empirical
Bayes modal (also called MAP) predictions (depending on whether you fit
the model in gllamm or xtmelogit, respectively) and ML estimates of the la-
tent trait. Also obtain standard errors (for ML, this means saving se[ cons]

in addition to b[ cons] by adding mlse = se[ cons] in the statsby com-
mand). Does there appear to be much shrinkage? Calculate the total score
(sum of item responses) for each person and plot curves of the different kinds
of standard errors with total score on the x axis. Comment on what you find.

See also exercise 11.2 for further analyses of these data.
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10.5 Dairy-cow data

Dohoo et al. (2001) and Dohoo, Martin, and Stryhn (2010) analyzed data on dairy
cows from Reunion Island. One outcome considered was the “risk” of conception
at the first insemination attempt (first service) since the previous calving. This
outcome was available for several lactations (calvings) per cow.

The variables in the dataset dairy.dta used here are

• cow: cow identifier

• herd: herd identifier

• region: geographic region

• fscr: first service conception risk (dummy variable for cow becoming preg-
nant)

• lncfs: log of time interval (in log days) between calving and first service
(insemination attempt)

• ai: dummy variable for artificial insemination being used (versus natural) at
first service

• heifer: dummy variable for being a young cow that has calved only once

1. Fit a two-level random-intercept logistic regression model for the response
variable fscr, an indicator for conception at the first insemination attempt
(first service). Include a random intercept for cow and the covariates lncfs,
ai, and heifer. (Use either xtlogit, xtmelogit, or gllamm.)

2. Obtain estimated odds ratios with 95% confidence intervals for the covariates
and interpret them.

3. Obtain the estimated residual intraclass correlation between the latent re-
sponses for two observations on the same cow. Is there much variability in
the cows’ fertility?

4. Obtain the estimated median odds ratio for two randomly chosen cows with
the same covariates, comparing the cow that has the larger random intercept
with the cow that has the smaller random intercept.

See also exercises 8.8 and 16.1.

10.6 Union membership data

Vella and Verbeek (1998) analyzed panel data on 545 young males taken from the
U.S. National Longitudinal Survey (Youth Sample) for the period 1980–1987. In
this exercise, we will focus on modeling whether the men were members of unions
or not.

The dataset wagepan.dta was provided by Wooldridge (2010) and was previously
used in exercise 3.6 and Introduction to models for longitudinal and panel data
(part III). The subset of variables considered here is
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• nr: person identifier (j)

• year: 1980–1987 (i)

• union: dummy variable for being a member of a union (that is, wage being
set in collective bargaining agreement) (yij)

• educ: years of schooling (x2j)

• black: dummy variable for being black (x3j)

• hisp: dummy variable for being Hispanic (x4j)

• exper: labor market experience, defined as age−6−educ (x5ij)

• married: dummy variable for being married (x6ij)

• rur: dummy variable for living in a rural area (x7ij)

• nrtheast: dummy variable for living in Northeast (x8ij)

• nrthcen: dummy variable for living in Northern Central (x9ij)

• south: dummy variable for living in South (x10,ij)

You can use the describe command to get a description of the other variables in
the file.

1. Use maximum likelihood to fit the random-intercept logistic regression model

logit{Pr(yij = 1|xij , ζj)} = β1 + β2x2j + · · · + β11x10,ij + ζj

where ζj ∼ N(0, ψ), and ζj is assumed to be independent across persons and
independent of xij . Use xtlogit because it is considerably faster than the
other commands here.

2. Interpret the estimated effects of the covariates from step 1 in terms of odds
ratios, and report the estimated residual intraclass correlation of the latent
responses.

3. Fit the marginal model

logit{Pr(yij = 1|xij)} = β1 + β2x2j + · · · + β11x10,ij

using GEE with an exchangeable working correlation structure.

4. Interpret the estimated effects of the covariates from step 3 in terms of odds
ratios, and compare these estimates with those from step 1. Why are the
estimates different?

5. Explore the within and between variability of the response variable and co-
variates listed above. For which of the covariates is it impossible to estimate
an effect using a fixed-effects approach? Are there any covariates whose ef-
fects you would expect to be imprecisely estimated when using a fixed-effects
approach?

6. Use conditional maximum likelihood to fit the fixed-intercept logistic regres-
sion model
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logit{Pr(yij = 1|xij)} = β1 + β2x2j + · · · + β11x10,ij + αj

where the αj are unknown person-specific parameters.

7. Interpret the estimated effects of the covariates from step 6 in terms of odds
ratios, and compare these estimates with those from step 1. Why are the
estimates different?

8. Perform a Hausman test to assess the validity of the random-intercept model.
What do you conclude?

9. Fit the probit versions of the random-intercept model from step 1 using
xtprobit. Which type of model do you find easiest to interpret?

10.7 School retention in Thailand data

A national survey of primary education was conducted in Thailand in 1988. The
data were previously analyzed by Raudenbush and Bhumirat (1992) and are dis-
tributed with the HLM software (Raudenbush et al. 2004). Here we will model
the probability that a child repeats a grade any time during primary school.

The dataset thailand.dta has the following variables:

• rep: dummy variable for child having repeated a grade during primary school
(yij)

• schoolid: school identifier (j)

• pped: dummy variable for child having preprimary experience (x2ij)

• male: dummy variable for child being male (x3ij)

• mses: school mean socioeconomic status (SES) (x4j)

• wt1: number of children in the school having a given set of values of rep,
pped, and male (level-1 frequency weights)

1. Fit the model

logit{Pr(yij = 1|xij , ζj)} = β1 + β2x2ij + β3x3ij + β4x4j + ζj

where ζj ∼ N(0, ψ), and ζj is independent across schools and independent of
the covariates xij . Use gllamm with the weight(wt) option to specify that
each row in the data represents wt1 children (level-1 units).

2. Obtain and interpret the estimated odds ratios and the estimated residual
intraschool correlation of the latent responses.

3. Use gllapred to obtain empirical Bayes predictions of the probability of
repeating a grade. These probabilities will be specific to the schools, as well
as dependent on the student-level predictors.

a. List the values of male, pped, rep, wt1, and the predicted probabilities
for the school with schoolid equal to 10104. Explain why the predicted
probabilities are greater than 0 although none of the children in the
sample from that school have been retained. For comparison, list the
same variables for the school with schoolid equal to 10105.
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b. Produce box plots of the predicted probabilities for each school by male

and pped (for instance, using by(male) and over(pped)). To ensure that
each school contributes no more than four probabilities to the graph (one
for each combination of the student-level covariates), use only responses
where rep is 0 (that is, if rep==0). Do the schools appear to be variable
in their retention probabilities?

10.8 PISA data
Solutions

Here we consider data from the 2000 Program for International Student Assess-
ment (PISA) conducted by the Organization for Economic Cooperation and De-
velopment (OECD 2000) that are made available with permission from Mariann
Lemke. The survey assessed educational attainment of 15-year-olds in 43 coun-
tries in various areas, with an emphasis on reading. Following Rabe-Hesketh
and Skrondal (2006), we will analyze reading proficiency, treated as dichotomous
(1: proficient; 0: not proficient), for the U.S. sample.

The variables in the dataset pisaUSA2000.dta are

• id school: school identifier

• pass read: dummy variable for being proficient in reading

• female: dummy variable for student being female

• isei: international socioeconomic index

• high school: dummy variable for highest education level by either parent
being high school

• college: dummy variable for highest education level by either parent being
college

• test lang: dummy variable for test language (English) being spoken at home

• one for: dummy variable for one parent being foreign born

• both for: dummy variable for both parents being foreign born

• w fstuwt: student-level or level-1 survey weights

• wnrschbq: school-level or level-2 survey weights

1. Fit a logistic regression model with pass read as the response variable and
the variables female to both for above as covariates and with a random
intercept for schools using gllamm. (Use the default eight quadrature points.)

2. Fit the model from step 1 with the school mean of isei as an additional
covariate. (Use the estimates from step 1 as starting values.)

3. Interpret the estimated coefficients of isei and school mean isei and com-
ment on the change in the other parameter estimates due to adding school
mean isei.

4. From the estimates in step 2, obtain an estimate of the between-school effect
of socioeconomic status.

5. Obtain robust standard errors using the command gllamm, robust, and
compare them with the model-based standard errors.
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6. Add a random coefficient of isei, and compare the random-intercept and
random-coefficient models using a likelihood-ratio test. Use the estimates
from step 2 (or step 5) as starting values, adding zeros for the two additional
parameters as shown in section 11.7.2.

7. q In this survey, schools were sampled with unequal probabilities, πj , and
given that a school was sampled, students were sampled from the school
with unequal probabilities πi|j . The reciprocals of these probabilities are
given as school- and student-level survey weights, wnrschbg (wj = 1/πj) and
w fstuwt (wi|j = 1/πi|j), respectively. As discussed in Rabe-Hesketh and
Skrondal (2006), incorporating survey weights in multilevel models using a
so-called pseudolikelihood approach can lead to biased estimates, particularly
if the level-1 weights wi|j are different from 1 and if the cluster sizes are small.
Neither of these issues arises here, so implement pseudomaximum likelihood
estimation as follows:

a. Rescale the student-level weights by dividing them by their cluster means
[this is scaling method 2 in Rabe-Hesketh and Skrondal (2006)].

b. Rename the level-2 weights and rescaled level-1 weights to wt2 and wt1,
respectively.

c. Run the gllamm command from step 2 above with the additional option
pweight(wt). (Only the stub of the weight variables is specified; gllamm
will look for the level-1 weights under wt1 and the level-2 weights under
wt2.) Use the estimates from step 2 as starting values.

d. Compare the estimates with those from step 2. Robust standard errors
are computed by gllamm because model-based standard errors are not
appropriate with survey weights.

10.9 Wine-tasting data

Tutz and Hennevogl (1996) and Fahrmeir and Tutz (2001) analyzed data on the
bitterness of white wines from Randall (1989).

The dataset wine.dta has the following variables:

• bitter: dummy variable for bottle being classified as bitter (yij)

• judge: judge identifier (j)

• temp: temperature (low=1; high=0) x2ij

• contact: skin contact when pressing the grapes (yes=1; no=0) x3ij

• repl: replication

Interest concerns whether conditions that can be controlled while pressing the
grapes, such as temperature and skin contact, influence the bitterness. For each
combination of temperature and skin contact, two bottles of white wine were
randomly chosen. The bitterness of each bottle was rated by the same nine judges,
who were selected and trained for the ability to detect bitterness. Here we consider
the binary response “bitter” or “nonbitter”.
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To allow the judgment of bitterness to vary between judges, a random-intercept
logistic model is specified

ln

{
Pr(yij =1|x2ij , x3ij , ζj)

Pr(yij =0|x2ij , x3ij , ζj)

}
= β1 + β2x2ij + β3x3ij + ζj

where ζj ∼ N(0, ψ). The random intercepts are assumed to be independent across
judges and independent of the covariates x2ij and x3ij . Maximum likelihood
estimates and estimated standard errors for the model are given in table 10.3
below.

Table 10.3: Maximum likelihood estimates for bitterness model

Est (SE)
Fixed part
β1 −1.50 (0.90)
β2 4.26 (1.30)
β3 2.63 (1.00)

Random part
ψ 2.80

Log likelihood −25.86

1. Interpret the estimated effects of the covariates as odds ratios.

2. State the expression for the residual intraclass correlation of the latent re-
sponses for the above model and estimate this intraclass correlation.

3. Consider two bottles characterized by the same covariates and judged by
two randomly chosen judges. Estimate the median odds ratio comparing
the judge who has the larger random intercept with the judge who has the
smaller random intercept.

4. q Based on the estimates given in table 10.3, provide an approximate esti-
mate of ψ if a probit model is used instead of a logit model. Assume that the
estimated residual intraclass correlation of the latent responses is the same
as for the logit model.

5. q Based on the estimates given in the table, provide approximate estimates
for the marginal effects of x2ij and x3ij in an ordinary logistic regression
model (without any random effects).

See also exercise 11.8 for further analysis of these data.

10.10 q Random-intercept probit model

In a hypothetical study, an ordinary probit model was fit for students clustered in
schools. The response was whether students gave the right answer to a question,
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and the single covariate was socioeconomic status (SES). The intercept and regres-

sion coefficient of SES were estimated as β̂1 = 0.2 and β̂2 = 1.6, respectively. The
analysis was then repeated, this time including a normally distributed random
intercept for school with variance estimated as ψ̂ = 0.15.

1. Using a latent-response formulation for the random-intercept probit model,
derive the marginal probability that yij = 1 given SES. See page 512 and
remember to replace ǫij with ζj + ǫij .

2. Obtain the values of the estimated school-specific regression coefficients for
the random-intercept probit model.

3. Obtain the estimated residual intraclass correlation for the latent responses.




