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Disclaimer

We have solved the exercises as well as we could but there may be better solutions and we
may have made mistakes. We are grateful for any suggestions for improvement.

Please also check the errata at http://www.stata.com/bookstore/mlmus3.html for any
errors in the wording of the exercises themselves.
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1.1 High-school-and-beyond data

1. Keep only data on the five schools with the lowest values of schoolid (schoolid 1224, 1288,
1296, 1308, and 1317). Also drop the variables not listed above.

. use hsb, clear

. keep if schoolid <= 1317
(6997 observations deleted)

. keep schoolid mathach ses minority

2. Obtain the means and standard deviations for the continuous variables and frequency tables
for the categorical variables. Also obtain the mean and standard deviation of the continuous
variables for each of the five schools (using the table or tabstat command).

. summarize mathach ses

Variable Obs Mean Std. Dev. Min Max

mathach 188 11.26894 6.874985 -2.832 24.993
ses 188 -.0567234 .7167301 -1.658 1.512

. tabulate schoolid

schoolid Freq. Percent Cum.

1224 47 25.00 25.00
1288 25 13.30 38.30
1296 48 25.53 63.83
1308 20 10.64 74.47
1317 48 25.53 100.00

Total 188 100.00

. tabulate minority

minority Freq. Percent Cum.

0 91 48.40 48.40
1 97 51.60 100.00

Total 188 100.00

(Continued on next page)
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. tabstat mathach ses, by(schoolid) statistics(mean sd)

Summary statistics: mean, sd
by categories of: schoolid

schoolid mathach ses

1224 9.715447 -.434383
7.592785 .6272834

1288 13.5108 .1216
7.021843 .6692812

1296 7.635958 -.4255
5.35107 .6470276

1308 16.2555 .528
6.114241 .479807

1317 13.17769 .3453333
5.462586 .5561583

Total 11.26894 -.0567234
6.874985 .7167301

3. Produce a histogram and a box plot of mathach.

. histogram mathach, xtitle(Math achievement) fintensity(0)

The histogram is shown in figure 1.
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Figure 1: Histogram of math achievement
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. graph box mathach, ytitle(Math achievement) intensity(0)
> medline(lcolor(black) lwidth(medthick))

The boxplot is shown in figure 2.
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Figure 2: Boxplot of math achievement

4. Produce a scatterplot of mathach versus ses. Also produce a scatterplot for each school (using
the by() option).

. twoway scatter mathach ses, xtitle(SES) ytitle(Math achievement)

The scatterplot is shown in figure 3.

. twoway scatter mathach ses, by(schoolid, note(" ") compact)
> ytitle(Math achievement) xtitle(SES)

The scatterplots by school are shown in figure 4.

(Continued on next page)
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Figure 3: Scatterplot of math achievement versus SES

0
10

20
30

0
10

20
30

−2 −1 0 1 2 −2 −1 0 1 2

1224 1288 1296

1308 1317

M
at

h 
ac

hi
ev

em
en

t

SES
 

Figure 4: Scatterplot of math achievement versus SES by school
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5. Treating mathach as the response variable yi and ses as an explanatory variable xi, consider
the linear regression of yi on xi.

a. Fit the model.

. regress mathach ses

Source SS df MS Number of obs = 188
F( 1, 186) = 25.09

Model 1050.53774 1 1050.53774 Prob > F = 0.0000
Residual 7788.09508 186 41.8714789 R-squared = 0.1189

Adj R-squared = 0.1141
Total 8838.63282 187 47.2654161 Root MSE = 6.4708

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 3.306963 .6602109 5.01 0.000 2.004499 4.609427
_cons 11.45652 .4734164 24.20 0.000 10.52257 12.39048

b. Report and interpret the estimates of the three parameters of this model.

The intercept is estimated as β̂1 = 11.46, the slope of ses is estimated as β̂2 = 3.31, and
the residual standard deviation is estimated as σ̂ = 6.47. For children with ses equal to
zero, the mean math achievement is estimated as 11.46. When ses increases one unit,
the estimated mean math achievement increases by 3.31 points. The standard deviation
of math achievement, for a given value of ses, is estimated as 6.47.

c. Interpret the confidence interval and p-value associated with β2.

We are 95% confident that the true slope of ses lies in the range 2.00 to 4.61. (In repeated
samples, 95% of the 95% confidence intervals contain the truth.) The p-value is less than
0.001, so if the null hypothesis that β2 = 0 were true, the chances of getting an estimated
coefficient this far or further from zero (in either direction) are tiny. We therefore reject
the null hypothesis, say at the 5% or 1% level of significance.

6. Using the predict command, create a new variable yhat that is equal to the predicted values
ŷi of mathach.

. predict yhat, xb

7. Produce a scatterplot of mathach versus ses with the regression line (yhat versus ses) super-
imposed. Produce the same scatterplot by school. Does it appear as if schools differ in their
mean math achievement after controlling for ses?

. twoway (scatter mathach ses) (line yhat ses), xtitle(SES)
> ytitle(Math achievement) legend(order(1 "Observed" 2 "Fitted"))

The scatterplot with the fitted regression line is shown in figure 5.

. twoway (scatter mathach ses) (line yhat ses, sort)
> (lfit mathach ses, lpatt(solid)),
> by(school, compact note(" ")) xtitle(SES) ytitle(Math achievement)
> legend(order(1 "Observed" 2 "Fitted overall" 3 "Fitted separately"))

The scatterplots with the fitted regression lines for each school are shown in figure 6. Note
that lfit combined with by() fits a separate regression line for each group whereas yhat is
the fitted regression line for all schools combined from step 5. For schools 1296 and 1308,
the estimated mean math achievement at for instance ses=0 is greater and smaller than the
estimated mean across schools, respectively.
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Figure 5: Scatterplot with fitted regression line
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Figure 6: Scatterplots with fitted regression lines by school
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8. Extend the regression model from step 5 by including dummy variables for four of the five
schools.

a. Fit the model with and without factor variables.

Without factor variables:

. tabulate schoolid, generate(s)

schoolid Freq. Percent Cum.

1224 47 25.00 25.00
1288 25 13.30 38.30
1296 48 25.53 63.83
1308 20 10.64 74.47
1317 48 25.53 100.00

Total 188 100.00

. regress mathach ses s2 s3 s4 s5

Source SS df MS Number of obs = 188
F( 5, 182) = 9.05

Model 1760.63146 5 352.126292 Prob > F = 0.0000
Residual 7078.00136 182 38.8901173 R-squared = 0.1992

Adj R-squared = 0.1772
Total 8838.63282 187 47.2654161 Root MSE = 6.2362

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 1.788963 .7593896 2.36 0.020 .2906238 3.287303
s2 2.80072 1.60041 1.75 0.082 -.3570241 5.958464
s3 -2.09538 1.279729 -1.64 0.103 -4.620392 .4296325
s4 4.818385 1.818257 2.65 0.009 1.230811 8.405959
s5 2.067357 1.410054 1.47 0.144 -.7147984 4.849512

_cons 10.49254 .9676057 10.84 0.000 8.583375 12.40171

With factor variables:

. regress mathach ses i.schoolid

Source SS df MS Number of obs = 188
F( 5, 182) = 9.05

Model 1760.63146 5 352.126292 Prob > F = 0.0000
Residual 7078.00136 182 38.8901173 R-squared = 0.1992

Adj R-squared = 0.1772
Total 8838.63282 187 47.2654161 Root MSE = 6.2362

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 1.788963 .7593896 2.36 0.020 .2906238 3.287303

schoolid
1288 2.80072 1.60041 1.75 0.082 -.3570241 5.958464
1296 -2.09538 1.279729 -1.64 0.103 -4.620392 .4296325
1308 4.818385 1.818257 2.65 0.009 1.230811 8.405959
1317 2.067357 1.410054 1.47 0.144 -.7147984 4.849512

_cons 10.49254 .9676057 10.84 0.000 8.583375 12.40171

b. Describe what the coefficients of the school dummies represent.

Interpreting the output without factor variables, the coefficient of s2 is the estimated dif-
ference in mean math achievement between school 2 (number 1288) and school 1 (number
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1224), for a given value of SES. Similarly, the coefficient of s3 is the estimated difference
between school 3 and school 1, the coefficient of s4 is the estimated difference between
school 4 and school 1, and the coefficient of s5 is the estimated difference between school
5 and school 1.

c. Test the null hypothesis that the population coefficients of all four dummy variables are
zero (use testparm).

. testparm i.schoolid

( 1) 1288.schoolid = 0
( 2) 1296.schoolid = 0
( 3) 1308.schoolid = 0
( 4) 1317.schoolid = 0

F( 4, 182) = 4.56
Prob > F = 0.0015

After controlling for SES, there are significant differences in mean math achievement
between the schools (e.g., at the 5% level) with F (4, 182) = 4.56, p = 0.002. (If dummy
variables s2 to s5 have been used in the regress command instead of factor variables,
use testparm s2-s5.)

9. Add interactions between the school dummies and ses using factor variables, and interpret
the estimated coefficients.

. regress mathach c.ses##i.schoolid, nolstretch

Source SS df MS Number of obs = 188
F( 9, 178) = 5.13

Model 1819.07989 9 202.119987 Prob > F = 0.0000
Residual 7019.55293 178 39.4356906 R-squared = 0.2058

Adj R-squared = 0.1657
Total 8838.63282 187 47.2654161 Root MSE = 6.2798

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 2.508582 1.476053 1.70 0.091 -.4042335 5.421397

schoolid
1288 2.309805 1.697595 1.36 0.175 -1.040196 5.659806
1296 -2.711353 1.560321 -1.74 0.084 -5.790461 .3677543
1308 5.383827 2.394869 2.25 0.026 .6578391 10.10981
1317 1.932631 1.547654 1.25 0.213 -1.121481 4.986743

schoolid#
c.ses
1288 .746867 2.418057 0.31 0.758 -4.024881 5.518615
1296 -1.432623 2.045228 -0.70 0.485 -5.468636 2.60339
1308 -2.382557 3.345818 -0.71 0.477 -8.985132 4.220017
1317 -1.234669 2.211649 -0.56 0.577 -5.599094 3.129756

_cons 10.80513 1.118105 9.66 0.000 8.598685 13.01158

The coefficient of ses now represents the estimated slope of ses in the reference school (school
1224) and the coefficients of the school dummies represent the estimated differences in mean
achievement between each school and the reference school when ses takes the value 0. The
coefficients of the interactions between ses and the school dummies represent the estimated
differences between the slope of ses for each school and the slope of ses for the reference
school. These differences are not significant at the 5% level.
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2.7 Georgian-birthweight data

1. Fit a variance-components model to the birthweights by using xtmixed with the mle option,
treating children as level 1 and mothers as level 2.

. use birthwt, clear

. xtmixed birthwt || mother:, mle

Mixed-effects ML regression Number of obs = 4390
Group variable: mother Number of groups = 878

Obs per group: min = 5
avg = 5.0
max = 5

Wald chi2(0) = .
Log likelihood = -33572.321 Prob > chi2 = .

birthwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 3156.304 14.06306 224.44 0.000 3128.741 3183.867

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mother: Identity
sd(_cons) 368.4007 11.31476 346.8784 391.2582

sd(Residual) 435.4458 5.195674 425.3806 445.7492

LR test vs. linear regression: chibar2(01) = 1034.16 Prob >= chibar2 = 0.0000

2. At the 5% level, is there significant between-mother variability in birthweights? Fully report
the method and result of the test.

The null hypothesis that the between-mother variance is zero was tested using a likelihood ratio
test. The likelihood ratio statistic was 1034 and the p-value, based on the correct asymptotic
sampling distribution, is p < 0.0001, so we can reject the null hypothesis and conclude that
there is significant between-mother variability.

3. Obtain the estimated intraclass correlation and interpret it.

The estimated intraclass correlation is 368.40072/(368.40072 + 435.44582) = 0.42, meaning
that the correlation between sibling’s birthweights is 0.42 and that 42% of the variance in
birthweights is shared among siblings.

4. Obtain empirical Bayes predictions of the random intercept and plot a histogram of the em-
pirical Bayes predictions.

. predict eb, reffects

. egen pickone = tag(mother)

. histogram eb if pickone==1

The graph in figure 7 shows that the predictions are approximately normally distributed.
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Figure 7: Histogram of empirical Bayes predictions of random intercepts
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2.8 � Teacher expectancy meta-analysis data

1. Fit the model above by ML using the user-written command metaan (Kontopantelis and Reeves,
2010). The program can be installed (if your computer is connected to the Internet) using ssc

install metaan. The syntax is metaan est se, ml.

. use expectancy, clear

. metaan est se, ml

Maximum Likelihood method selected

Study Effect [95% Conf. Interval] % Weight

1 0.030 -0.215 0.275 8.00
2 0.120 -0.168 0.408 6.60
3 -0.140 -0.467 0.187 5.58
4 1.180 0.449 1.911 1.49
5 0.260 -0.463 0.983 1.52
6 -0.060 -0.262 0.142 9.74
7 -0.020 -0.222 0.182 9.74
8 -0.320 -0.751 0.111 3.70
9 0.270 -0.051 0.591 5.72
10 0.800 0.308 1.292 2.99
11 0.540 -0.052 1.132 2.17
12 0.180 -0.255 0.615 3.65
13 -0.020 -0.586 0.546 2.35
14 0.230 -0.338 0.798 2.33
15 -0.180 -0.492 0.132 5.96
16 -0.060 -0.387 0.267 5.58
17 0.300 0.028 0.572 7.08
18 0.070 -0.114 0.254 10.55
19 -0.070 -0.411 0.271 5.27

Overall effect (ml) 0.078 -0.015 0.171 100.00

ML method succesfully converged

Heterogeneity Measures

value df p-value

Cochrane Q 35.83 18 0.007
I^2 (%) 49.76
H^2 0.99
tau^2 est(ml) 0.013

2. Find the estimated model parameters in the output and interpret them.

The estimated model parameters are β̂ = 0.078 and τ̂2 = 0.013. Hence, the population mean
intervention effect is estimated as 0.078 and the between-study variance of the effect estimated
as 0.013.
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3. Fit a so-called fixed-effects meta-analysis that simply omits ζj from the model and assumes
that all true effect sizes are equal to β. This can be accomplished by replacing the ml option
with the fe option in the metaan command.

. metaan est se, fe

Fixed-effects method selected

Study Effect [95% Conf. Interval] % Weight

1 0.030 -0.215 0.275 8.52
2 0.120 -0.168 0.408 6.16
3 -0.140 -0.467 0.187 4.77
4 1.180 0.449 1.911 0.96
5 0.260 -0.463 0.983 0.98
6 -0.060 -0.262 0.142 12.54
7 -0.020 -0.222 0.182 12.54
8 -0.320 -0.751 0.111 2.75
9 0.270 -0.051 0.591 4.95
10 0.800 0.308 1.292 2.11
11 0.540 -0.052 1.132 1.46
12 0.180 -0.255 0.615 2.70
13 -0.020 -0.586 0.546 1.59
14 0.230 -0.338 0.798 1.58
15 -0.180 -0.492 0.132 5.26
16 -0.060 -0.387 0.267 4.77
17 0.300 0.028 0.572 6.89
18 0.070 -0.114 0.254 15.06
19 -0.070 -0.411 0.271 4.40

Overall effect (fe) 0.060 -0.011 0.132 100.00

Heterogeneity Measures

value df p-value

Cochrane Q 35.83 18 0.007
I^2 (%) 49.76
H^2 0.99
tau^2 est(dl) 0.026

4. Explain how the model differs from what we have referred to as fixed-effects models in this
chapter (apart from the fact that the data are in aggregated form and the level-1 variance is
assumed known).

The model does not contain fixed effects αj for studies but assumes that the studies have no
effects, corresponding to αj = 0.

5. Compare the width of the confidence intervals for β between the random- and fixed-effects
meta-analyses, and explain why they differ the way they do.

The estimated 95% confidence intervals are (−0.015 to 0.171) for the random-effects meta-
analysis and (−0.011 to 0.132) for the fixed-effects meta-analysis. The fixed-effects confidence
interval is narrower because the random effect is omitted, leading to a smaller standard error,
analogous to the OLS standard error discussed in section 2.10.3.
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3.7 High-school-and-beyond data

1. Use xtreg to fit a model for mathach with a fixed effect for SES and a random intercept for
school.

. use hsb, clear

. quietly xtset schoolid

. xtreg mathach ses, mle

Random-effects ML regression Number of obs = 7185
Group variable (i): schoolid Number of groups = 160

Random effects u_i ~ Gaussian Obs per group: min = 14
avg = 44.9
max = 67

LR chi2(1) = 474.81
Log likelihood = -23320.502 Prob > chi2 = 0.0000

mathach Coef. Std. Err. z P>|z| [95% Conf. Interval]

ses 2.3915 .1079665 22.15 0.000 2.179889 2.60311
_cons 12.65762 .1873366 67.57 0.000 12.29045 13.0248

/sigma_u 2.174513 .1491538 1.900976 2.487411
/sigma_e 6.085211 .0513769 5.985342 6.186745

rho .1132352 .0139341 .088226 .1429313

Likelihood-ratio test of sigma_u=0: chibar2(01)= 456.94 Prob>=chibar2 = 0.000

2. Use xtsum to explore the between-school and within-school variability of SES.

. quietly xtset schoolid

. xtsum ses

Variable Mean Std. Dev. Min Max Observations

ses overall .0001434 .7793552 -3.758 2.692 N = 7185
between .4139706 -1.193946 .8249825 n = 160
within .660588 -3.650597 2.856222 T-bar = 44.9063

3. Produce a variable, mn ses, equal to the schools’ mean SES and another variable, dev ses,
equal to the difference between the students’ SES and the mean SES for their school.

. egen mn_ses=mean(ses), by(schoolid)

. summarize mn_ses

Variable Obs Mean Std. Dev. Min Max

mn_ses 7185 .0001434 .4135432 -1.193946 .8249825

. generate dev_ses = ses - mn_ses
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4. The model in step 1 assumes that SES has the same effect within and between schools. Check
this by using the covariates mn ses and dev ses instead of ses and comparing the coefficients
using lincom.

. quietly xtset schoolid

. xtreg mathach dev_ses mn_ses, mle

Random-effects ML regression Number of obs = 7185
Group variable (i): schoolid Number of groups = 160

Random effects u_i ~ Gaussian Obs per group: min = 14
avg = 44.9
max = 67

LR chi2(2) = 552.00
Log likelihood = -23281.905 Prob > chi2 = 0.0000

mathach Coef. Std. Err. z P>|z| [95% Conf. Interval]

dev_ses 2.191172 .1086599 20.17 0.000 1.978202 2.404141
mn_ses 5.865599 .3594015 16.32 0.000 5.161185 6.570013
_cons 12.68359 .1484389 85.45 0.000 12.39266 12.97453

/sigma_u 1.626972 .1221224 1.404391 1.88483
/sigma_e 6.083915 .051336 5.984126 6.185369

rho .0667415 .0094508 .0501259 .0873301

Likelihood-ratio test of sigma_u=0: chibar2(01)= 262.40 Prob>=chibar2 = 0.000

. lincom mn_ses - dev_ses

( 1) - [mathach]dev_ses + [mathach]mn_ses = 0

mathach Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) 3.674427 .3754682 9.79 0.000 2.938523 4.410331

The estimated between-school effect of SES is considerably larger than the estimated within-
school effect. The difference is statistically significant at the 5% level (z = 9.79, p < 0.001).

5. Interpret the coefficients of mn ses and dev ses.

The coefficient of dev ses is the estimated within-school effect of SES. It represents the mean
difference in attainment between two students from the same school who differ in their SES

by one unit. The estimate could be influenced by omitted student-level characteristics (con-
founders) that correlate with SES and with attainment (such as being an English language
learner), but not by omitted school-level variables.

The coefficient of mn ses is the estimated between-school effect of SES, i.e., the mean increase
in school mean attainment per unit increase in school mean SES. This effect represents a com-
bination of student-level effects of SES on attainment (due to differences between schools in
student composition), peer effects, selection effects, and effects of omitted school-level vari-
ables (e.g., higher SES schools may have better buildings, better-qualified teachers, smaller
classrooms). The difference of 3.67, often described as an estimate of the contextual effect, is
a combination of all the effects described above, except the student-level effects.
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6. Returning to the model with ses as the only covariate, perform a Hausman specification test
and comment on the result.

. quietly xtset schoolid

. xtreg mathach ses, fe

Fixed-effects (within) regression Number of obs = 7185
Group variable (i): schoolid Number of groups = 160

R-sq: within = 0.0547 Obs per group: min = 14
between = 0.6157 avg = 44.9
overall = 0.1301 max = 67

F(1,7024) = 406.75
corr(u_i, Xb) = 0.3278 Prob > F = 0.0000

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 2.191172 .1086457 20.17 0.000 1.978194 2.40415
_cons 12.74754 .071765 177.63 0.000 12.60686 12.88822

sigma_u 2.4707498
sigma_e 6.0831188

rho .14160878 (fraction of variance due to u_i)

F test that all u_i=0: F(159, 7024) = 6.07 Prob > F = 0.0000

. estimates store fixed

. xtreg mathach ses, re

Random-effects GLS regression Number of obs = 7185
Group variable (i): schoolid Number of groups = 160

R-sq: within = 0.0547 Obs per group: min = 14
between = 0.6157 avg = 44.9
overall = 0.1301 max = 67

Random effects u_i ~ Gaussian

mathach Coef. Std. Err. z P>|z| [95% Conf. Interval]

ses 2.483019 .1048651 23.68 0.000 2.277487 2.68855
_cons 12.66751 .1537143 82.41 0.000 12.36623 12.96878

sigma_u 1.6905235
sigma_e 6.0831188

rho .07169372 (fraction of variance due to u_i)

. estimates store random

. hausman fixed random

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
fixed random Difference S.E.

ses 2.191172 2.483019 -.2918467 .0284111

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(1) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 105.52

Prob>chi2 = 0.0000

The Hausman specification test is highly significant, suggesting that the model is incorrectly
specified. This finding is not surprising since we have already seen that there is a large difference
between the within- and between-effect estimates—the problem of endogeneity.
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3.9 � Small-area estimation of crop areas

1. Fit the model above by ML.

. use cropareas, clear

. xtmixed cornhec cornpix soypix || county:, mle variance

Mixed-effects ML regression Number of obs = 36
Group variable: county Number of groups = 12

Obs per group: min = 1
avg = 3.0
max = 5

Wald chi2(2) = 164.54
Log likelihood = -147.01262 Prob > chi2 = 0.0000

cornhec Coef. Std. Err. z P>|z| [95% Conf. Interval]

cornpix .3285805 .047984 6.85 0.000 .2345335 .4226275
soypix -.1337097 .0530629 -2.52 0.012 -.237711 -.0297084
_cons 50.96753 23.47513 2.17 0.030 4.957123 96.97794

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

county: Identity
var(_cons) 121.0617 73.57339 36.78765 398.3928

var(Residual) 137.3141 39.46542 78.17565 241.1897

LR test vs. linear regression: chibar2(01) = 7.55 Prob >= chibar2 = 0.0030

2. Obtain predictions following the method of Battese, Harter, and Fuller (1988). (The prediction
for Cerro Gordo should be 122.28.)

. predict blup, reffects

. generate predicted = _b[_cons] + _b[cornpix]*mn_cornpix + _b[soypix]*mn_soypix
> + blup

3. Obtain the estimated comparative standard errors of ζ̃j .

. predict comp_se, rese

.

. egen pickone = tag(county)

. list name predicted comp_se if pickone==1, clean noobs

name predic~d comp_se
Cerro Gordo 122.2814 8.02112

Hamilton 126.1097 8.02112
Worth 107.1544 8.02112

Humboldt 108.7407 6.618977
Franklin 144.0211 5.763141

Pocahontas 111.9542 5.763141
Winnebago 113.0086 5.763141

Wright 122.0059 5.763141
Webster 115.1553 5.171531
Hancock 124.4417 4.731261
Kossuth 107.1187 4.731261
Hardin 142.8528 4.731261
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4. Are these standard errors appropriate for expressing the uncertainty in the small-area esti-
mates? Explain.

The standard errors ignore uncertainty in the parameter estimates β̂1, β̂2, β̂3, ψ̂, and θ̂, and
could severely understate the uncertainty in the small-area estimates.
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4.5 Well-being in the U.S. army data

1. Fit a random-intercept model for wbeing with fixed coefficients for hrs, cohes, and lead, and
a random intercept for grp. Use ML estimation.

. use army, clear

. xtmixed wbeing hrs cohes lead || grp:, mle

Mixed-effects ML regression Number of obs = 7382
Group variable: grp Number of groups = 99

Obs per group: min = 15
avg = 74.6
max = 226

Wald chi2(3) = 1723.28
Log likelihood = -8898.2812 Prob > chi2 = 0.0000

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0296428 .0043764 -6.77 0.000 -.0382204 -.0210651
cohes .0775074 .0120422 6.44 0.000 .053905 .1011097
lead .4646839 .0139601 33.29 0.000 .4373226 .4920453
_cons 1.530603 .071682 21.35 0.000 1.390108 1.671097

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Identity
sd(_cons) .1404465 .0145965 .1145635 .1721772

sd(Residual) .8016577 .0066386 .7887513 .8147753

LR test vs. linear regression: chibar2(01) = 118.36 Prob >= chibar2 = 0.0000

(Continued on next page)
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2. Form the cluster means of the three covariates from step 1, and add them as further covariates
to the random-intercept model. Which of the cluster means have coefficients that are significant
at the 5% level?

. egen mn_hrs = mean(hrs), by(grp)

. egen mn_cohes = mean(cohes), by(grp)

. egen mn_lead = mean(lead), by(grp)

. xtmixed wbeing hrs mn_hrs cohes mn_cohes lead mn_lead || grp:, mle

Mixed-effects ML regression Number of obs = 7382
Group variable: grp Number of groups = 99

Obs per group: min = 15
avg = 74.6
max = 226

Wald chi2(6) = 1805.17
Log likelihood = -8879.1148 Prob > chi2 = 0.0000

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.025597 .0044761 -5.72 0.000 -.03437 -.016824
mn_hrs -.1158662 .0184285 -6.29 0.000 -.1519854 -.0797469
cohes .0802213 .0121336 6.61 0.000 .0564399 .1040026

mn_cohes -.0374889 .0873861 -0.43 0.668 -.2087625 .1337847
lead .4709316 .0142751 32.99 0.000 .4429529 .4989103

mn_lead -.2243689 .067332 -3.33 0.001 -.3563372 -.0924006
_cons 3.5351 .2972955 11.89 0.000 2.952411 4.117788

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Identity
sd(_cons) .0967599 .0140707 .0727636 .1286696

sd(Residual) .8018691 .0066434 .7889535 .8149961

LR test vs. linear regression: chibar2(01) = 31.46 Prob >= chibar2 = 0.0000

The cluster means mn hrs and mn lead have coefficients that are significant at the 5% level.

(Continued on next page)
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3. Refit the model from step 2 after removing the cluster means that are not significant at the
5% level. Interpret the remaining coefficients and obtain the estimated intraclass correlation.

. xtmixed wbeing hrs mn_hrs cohes lead mn_lead || grp:, mle

Mixed-effects ML regression Number of obs = 7382
Group variable: grp Number of groups = 99

Obs per group: min = 15
avg = 74.6
max = 226

Wald chi2(5) = 1804.84
Log likelihood = -8879.2068 Prob > chi2 = 0.0000

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0256169 .0044759 -5.72 0.000 -.0343895 -.0168443
mn_hrs -.1175433 .0180124 -6.53 0.000 -.1528469 -.0822397
cohes .0794989 .0120162 6.62 0.000 .0559475 .1030502
lead .4712699 .0142534 33.06 0.000 .4433337 .499206

mn_lead -.2432672 .0509327 -4.78 0.000 -.3430934 -.143441
_cons 3.49534 .2826904 12.36 0.000 2.941277 4.049403

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Identity
sd(_cons) .0968394 .0140798 .0728271 .128769

sd(Residual) .8018748 .0066435 .788959 .815002

LR test vs. linear regression: chibar2(01) = 31.51 Prob >= chibar2 = 0.0000

Comparing soldiers within the same army company, each extra hour of work per day is asso-
ciated with an estimated mean decrease of .03 points in well-being, controlling for perceived
horizontal and vertical cohesion.

Comparing soldiers within the same army company, each unit increase in the horizontal cohe-
sion score is associated with an estimated mean increase of .08 points in well-being, controlling
for number of hours worked and perceived vertical cohesion.

Comparing soldiers within the same army company, each unit increase in the vertical cohesion
score is associated with an estimated mean increase of .47 points in well-being, controlling for
number of hours worked and perceived horizontal cohesion.

The contextual effects of hours worked is estimated as -0.12, meaning that, after controlling
for the soldier’s own number of hours worked per day (and the other covariates in the model),
each unit increase in the mean number of hours worked by soldiers in the company reduces
the soldier’s well-being by an estimated 0.12 points.

The contextual effect of vertical cohesion is estimated as -0.24. After controlling for a soldier’s
own perceived vertical cohesion (and the other covariates), each unit increase in average per-
ceived vertical cohesion in the soldier’s company is associated with an estimated 0.24 points
decrease in well-being.

The residual intraclass correlation is estimated as

. display .0968394^2/(.0968394^2+.8018748^2)

.01437483
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4. We have included soldier-specific covariates xij in addition to the cluster means x·j . The
coefficient of the cluster means represents the contextual effects (see section 3.7.5). Use lincom
to estimate the corresponding between effects.

. lincom hrs + mn_hrs

( 1) [wbeing]hrs + [wbeing]mn_hrs = 0

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -.1431602 .0174368 -8.21 0.000 -.1773357 -.1089846

. lincom lead + mn_lead

( 1) [wbeing]lead + [wbeing]mn_lead = 0

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .2280027 .0495909 4.60 0.000 .1308063 .3251991

For cohes, the between-effect is the same as the within-effect, i.e., 0.079.

(Continued on next page)
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5. Add a random slope for lead to the model in step 3, and compare this model with the model
from step 3 using a likelihood ratio test.

. estimates store ri

. xtmixed wbeing hrs mn_hrs cohes lead mn_lead || grp: lead,
> covariance(unstructured) mle

Mixed-effects ML regression Number of obs = 7382
Group variable: grp Number of groups = 99

Obs per group: min = 15
avg = 74.6
max = 226

Wald chi2(5) = 1114.50
Log likelihood = -8867.4172 Prob > chi2 = 0.0000

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0258024 .0044693 -5.77 0.000 -.034562 -.0170427
mn_hrs -.106432 .0172376 -6.17 0.000 -.1402172 -.0726469
cohes .0788795 .0120129 6.57 0.000 .0553346 .1024243
lead .4709406 .017842 26.40 0.000 .435971 .5059102

mn_lead -.2198068 .0495689 -4.43 0.000 -.31696 -.1226536
_cons 3.304784 .2722242 12.14 0.000 2.771235 3.838334

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Unstructured
sd(lead) .0987405 .0175989 .0696278 .1400257
sd(_cons) .3484683 .0529315 .2587425 .4693089

corr(lead,_cons) -.9746476 .0145037 -.9917858 -.9231316

sd(Residual) .7984983 .0066514 .7855677 .8116417

LR test vs. linear regression: chi2(3) = 55.09 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store rc

. lrtest ri rc

Likelihood-ratio test LR chi2(2) = 23.58
(Assumption: ri nested in rc) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Based on the tiny p-value from the conservative likelihood-ratio test given by lrtest, we
conclude that the random-coefficient model should be retained. The p-value based on the
correct asymptotic null distribution 0.5χ2(1) + 0.5χ2(2) is even smaller.

(Continued on next page)
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6. Add a random slope for cohes to the model chosen in step 5, and compare this model with
the model from step 3 using a likelihood ratio test. Retain the preferred model.

. xtmixed wbeing hrs mn_hrs cohes lead mn_lead || grp: lead cohes,
> covariance(unstructured) mle

Mixed-effects ML regression Number of obs = 7382
Group variable: grp Number of groups = 99

Obs per group: min = 15
avg = 74.6
max = 226

Wald chi2(5) = 1132.92
Log likelihood = -8866.5774 Prob > chi2 = 0.0000

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0258458 .0044696 -5.78 0.000 -.0346061 -.0170855
mn_hrs -.1053775 .0172788 -6.10 0.000 -.1392432 -.0715117
cohes .0789716 .0130154 6.07 0.000 .0534618 .1044814
lead .471036 .0181404 25.97 0.000 .4354814 .5065906

mn_lead -.2195694 .0495897 -4.43 0.000 -.3167635 -.1223753
_cons 3.291717 .2726651 12.07 0.000 2.757303 3.826131

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Unstructured
sd(lead) .1031605 .0195209 .0711938 .1494806
sd(cohes) .0447645 .0242284 .0154963 .1293121
sd(_cons) .3372506 .0612111 .2362977 .4813335

corr(lead,cohes) -.3654282 .38516 -.8495074 .4527129
corr(lead,_cons) -.9043491 .1108516 -.9907966 -.2939016

corr(cohes,_cons) -.0065123 .4646793 -.7246203 .7183759

sd(Residual) .7977671 .0066846 .7847726 .8109768

LR test vs. linear regression: chi2(6) = 56.77 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. lrtest rc .

Likelihood-ratio test LR chi2(3) = 1.68
(Assumption: rc nested in .) Prob > chi2 = 0.6415

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Based on the conservative likelihood-ratio test we retain the random-coefficient model without
a random slope for cohes. The conclusion remains the same when using the p-value from the
correct asymptotic null distribution 0.5χ2(2) + 0.5χ2(3) which is p = 0.54.

(Continued on next page)
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7. Perform residual diagnostics for the level-1 errors, random intercept, and random slope(s). Do
the model assumptions appear to be satisfied?

. estimates restore rc
(results rc are active now)

. predict slope inter, reffects

. egen pickone = tag(grp)

. histogram slope if pickone==1
(bin=9, start=-.13782126, width=.03554772)

. histogram inter if pickone==1
(bin=9, start=-.62071776, width=.13001956)

. predict resid, rstandard

. histogram resid
(bin=38, start=-3.8327911, width=.20335953)

The histograms are given in figures 8 to 10. They all look quite normal.
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Figure 8: Histogram of predicted slopes



26 Exercise 4.5

0
.5

1
1.

5
2

D
en

si
ty

−.6 −.4 −.2 0 .2 .4
BLUP r.e. for grp: _cons
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4.7 � Family birthweight data

1. Produce the required dummy variables Mi, Fi, and Ki.

. use family, clear

. tabulate member, generate(mem)

member Freq. Percent Cum.

1 1,000 33.33 33.33
2 1,000 33.33 66.67
3 1,000 33.33 100.00

Total 3,000 100.00

. rename mem1 mother

. rename mem2 father

. rename mem3 child

2. Generate variables equal to the terms in parentheses in (4.5).

. generate variable1 = mother + child/2

. generate variable2 = father + child/2

. generate variable3 = child/sqrt(2)

3. Which of the correlation structures available in xtmixed should be specified for the random
coefficients?

The identity structure.

4. Fit the model given in (4.5). Note that the model does not include a random intercept.

. xtmixed bwt || family: variable1 variable2 variable3,
> covariance(identity) noconstant

Mixed-effects REML regression Number of obs = 3000
Group variable: family Number of groups = 1000

Obs per group: min = 3
avg = 3.0
max = 3

Wald chi2(0) = .
Log restricted-likelihood = -22825.29 Prob > chi2 = .

bwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 3565.252 10.1994 349.56 0.000 3545.262 3585.243

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
sd(variab~1..variab~3)(1) 323.0093 16.87456 291.5726 357.8353

sd(Residual) 376.3245 12.93357 351.8101 402.5471

LR test vs. linear regression: chibar2(01) = 93.37 Prob >= chibar2 = 0.0000
(1) variable1 variable2 variable3



28 Exercise 4.7

5. Obtain the estimated proportion of the total variance that is attributable to additive genetic
effects.

. display 323.0093^2/(323.0093^2+376.3245^2)

.42420341

The estimated proportion of the total variance attributable to additive genetic effects is 0.42.

6. Now fit the model including all the covariates listed above and having the same random part
as the model in step 3.

. xtmixed bwt male first midage highage birthyr
> || family: variable1 variable2 variable3,
> covariance(identity) noconstant

Mixed-effects REML regression Number of obs = 3000
Group variable: family Number of groups = 1000

Obs per group: min = 3
avg = 3.0
max = 3

Wald chi2(5) = 168.87
Log restricted-likelihood = -22725.853 Prob > chi2 = 0.0000

bwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

male 158.4562 17.36595 9.12 0.000 124.4196 192.4929
first -139.3931 18.7608 -7.43 0.000 -176.1636 -102.6226
midage 57.08192 31.92841 1.79 0.074 -5.496617 119.6605
highage 118.9019 54.72801 2.17 0.030 11.63698 226.1668
birthyr 3.627756 .689013 5.27 0.000 2.277315 4.978197
_cons 3461.431 34.81511 99.42 0.000 3393.195 3529.668

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
sd(variab~1..variab~3)(1) 315.2176 16.15046 285.1008 348.5159

sd(Residual) 365.942 12.42799 342.3766 391.1294

LR test vs. linear regression: chibar2(01) = 97.52 Prob >= chibar2 = 0.0000
(1) variable1 variable2 variable3

7. Interpret the estimated coefficients from step 6.

On average, given the other covariates, it is estimated that males weigh 158 grams more at
birth than females, first-borns weigh 139 grams less at birth than children with older siblings,
children born to older mothers have greater birthweights than children born to younger mothers
(57 grams greater for 20–25-year-old mothers than mothers below 20 and 119 grams greater
for mothers above 35 than mothers below 20) and birthweights have been increasing by an
estimated 3.6 grams per year.

8. Conditional on the covariates, what proportion of the residual variance is estimated to be due
to additive genetic effects?

. display 315.2176^2/(315.2176^2+365.942^2)

.42594296

The estimated proportion of the residual variance due to additive genetic effects is 0.43 (about
the same as in the model without the covariates).
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5.3 Unemployment-claims data I

1. Use a “posttest-only design with nonequivalent groups”, which is based on comparing those
receiving the intervention with those not receiving the intervention at the second occasion only.

a. Use an appropriate t test to test the hypothesis of no intervention effect on the log-
transformed number of unemployment claims in 1984.

. use papke_did.dta, clear

. ttest luclms if year == 1984, by(ez)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 16 11.06366 .1565774 .6263095 10.72992 11.39739
1 6 11.14839 .2094637 .5130791 10.60995 11.68683

combined 22 11.08676 .1251106 .586821 10.82658 11.34695

diff -.0847349 .2872322 -.6838908 .514421

diff = mean(0) - mean(1) t = -0.2950
Ho: diff = 0 degrees of freedom = 20

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.3855 Pr(|T| > |t|) = 0.7710 Pr(T > t) = 0.6145

At the 5% level, there is no significant difference in the log number of unemployment
claims between treatment and control groups in 1984 (t = 0.30, d.f.=20, p = 0.77).

b. Consider the model
ln(y2j) = β1 + β2x2j + ε2j

where the usual assumptions are made. Estimate the intervention effect and test the null
hypothesis that there is no intervention effect.

. regress luclms ez if year == 1984

Source SS df MS Number of obs = 22
F( 1, 20) = 0.09

Model .031330892 1 .031330892 Prob > F = 0.7710
Residual 7.20020475 20 .360010237 R-squared = 0.0043

Adj R-squared = -0.0455
Total 7.23153564 21 .34435884 Root MSE = .60001

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

ez .0847349 .2872322 0.30 0.771 -.514421 .6838908
_cons 11.06366 .1500021 73.76 0.000 10.75076 11.37655

The estimate of the difference in means between treatment and control groups in 1984
and the t-statistic are identical to the results using an independent samples t test in step
1a.

2. Use a “one-group pretest–posttest design”, which is based on comparing the second occasion
(posttest) with the first occasion (pretest) for the intervention group only. To do this, first
construct a new variable for intervention group, taking the value 1 if an unemployment claims
office is ever in an enterprise zone and 0 for the control group (consider using egen).

. egen treatgr = max(ez), by(city)
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a. Use an appropriate t test to test the hypothesis of no intervention effect on the log-
transformed number of unemployment claims. (It may be useful to reshape the data to
wide form for the t test and then reshape them to long form again for the next questions.)

. reshape wide luclms ez, i(city) j(year)
(note: j = 1983 1984)

Data long -> wide

Number of obs. 44 -> 22
Number of variables 5 -> 6
j variable (2 values) year -> (dropped)
xij variables:

luclms -> luclms1983 luclms1984
ez -> ez1983 ez1984

. ttest luclms1984=luclms1983 if treatgr==1

Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

luc~1984 6 11.14839 .2094637 .5130791 10.60995 11.68683
luc~1983 6 11.63374 .2289698 .5608592 11.04515 12.22232

diff 6 -.485349 .0585786 .1434878 -.6359302 -.3347679

mean(diff) = mean(luclms1984 - luclms1983) t = -8.2854
Ho: mean(diff) = 0 degrees of freedom = 5

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0002 Pr(|T| > |t|) = 0.0004 Pr(T > t) = 0.9998

. reshape long luclms ez, i(city) j(year)
(note: j = 1983 1984)

Data wide -> long

Number of obs. 22 -> 44
Number of variables 6 -> 5
j variable (2 values) -> year
xij variables:

luclms1983 luclms1984 -> luclms
ez1983 ez1984 -> ez

Using a paired t test, we conclude that the log number of unemployment claims in the
intervention group decreased significantly from 1983 to 1984 (t = 8.29, d.f.=5, p < 0.001).

b. For the intervention group, consider the model

ln(yij) = β1 + αj + β2xij + εij

where αj is an office-specific parameter (fixed effect). Estimate the intervention effect
and test the null hypothesis that there is no intervention effect.

(Continued on next page)
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. quietly xtset city

. xtreg luclms ez if treatgr==1, fe

Fixed-effects (within) regression Number of obs = 12
Group variable: city Number of groups = 6

R-sq: within = 0.9321 Obs per group: min = 2
between = . avg = 2.0
overall = 0.1965 max = 2

F(1,5) = 68.65
corr(u_i, Xb) = 0.0000 Prob > F = 0.0004

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

ez -.485349 .0585786 -8.29 0.000 -.6359302 -.3347679
_cons 11.63374 .0414213 280.86 0.000 11.52726 11.74022

sigma_u .53269074
sigma_e .10146116

rho .96499155 (fraction of variance due to u_i)

F test that all u_i=0: F(5, 5) = 55.13 Prob > F = 0.0002

The results are identical to those from the paired t test.

3. Discuss the pros and cons of the “posttest-only design with non-equivalent groups” and the
“one-group pretest–posttest design”.

In the posttest-only design, we are not controlling for pre-existing differences between the
treatment groups, so the differences we find could be due to omitted time-invariant variables.
The advantage is that we do have a control group. In the one-group pretest-posttest design,
we do not have a control group, so we cannot be sure that the change did not occur everywhere
due to other reasons or ‘secular trends’. However, we do control for omitted time-invariant
variables.

4. Use an “untreated control group design with dependent pretest and posttest samples”, which
is based on data from both occasions and both intervention groups.

a. Find the difference between the following two differences:

i. the difference in the sample means of luclms for the intervention group between 1984
and 1983

ii. the difference in the sample means of luclms for the control group between 1984 and
1983

. table year treatgr, contents(mean luclm)

1980 to treatgr
1988 0 1

1983 11.41566 11.63374
1984 11.06366 11.14839

. display (11.14839-11.633739)-(11.063655-11.415663)
-.133341

The log number of unemployment claims decreased more in the treatment group than in
the control group.
The resulting estimator is called the difference-in-difference estimator and is commonly
used for the analysis of intervention effects in quasi-experiments and natural experiments.
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b. Consider the model
ln(yij) = β1 + αj + τzi + β2xij + εij

where αj is an office-specific parameter (fixed effect) and τ is the coefficient of a dummy
variable zi for 1984. Estimate the intervention effect and test the null hypothesis that
there is no intervention effect. Note that the estimate β̂2 is identical to the difference-in-
difference estimate. The advantage of using a model is that statistical inference regarding
the intervention effect is straightforward, as is extension to many occasions, several in-
tervention groups, and inclusion of extra covariates.

. quietly xtset city

. xtreg luclms i.year ez, fe

Fixed-effects (within) regression Number of obs = 44
Group variable: city Number of groups = 22

R-sq: within = 0.7297 Obs per group: min = 2
between = 0.0139 avg = 2.0
overall = 0.0892 max = 2

F(2,20) = 26.99
corr(u_i, Xb) = -0.0252 Prob > F = 0.0000

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

year
1984 -.3520072 .0627058 -5.61 0.000 -.4828092 -.2212051

ez -.1333419 .1200725 -1.11 0.280 -.3838088 .117125
_cons 11.47514 .037813 303.47 0.000 11.39626 11.55401

sigma_u .58978041
sigma_e .17735888

rho .9170672 (fraction of variance due to u_i)

F test that all u_i=0: F(21, 20) = 21.80 Prob > F = 0.0000

The estimate of the effect of treatment, controlling for time and office, is the same as the
difference in differences. We can now see that the effect is not significant at the 5% level
(t = −1.11, d.f.=20, p = 0.28).

5. What are the advantages of using the “untreated control group design with dependent pretest
and posttest samples” compared with the “posttest-only design with non-equivalent groups”
and the “one-group pretest–posttest design”?

The difference-in difference estimator controls for both time-invariant variables and secular
trends and therefore overcomes the disadvantages of the other two methods.
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5.4 Unemployment-claims data II

1. Use the xtset command to specify the variables representing the clusters and units for this
application. This enables you to use Stata’s time-series operators, which should be used within
the estimation commands in this exercise. Interpret the output.

. use ezunem, clear

. xtset city year
panel variable: city (strongly balanced)
time variable: year, 1980 to 1988

delta: 1 unit

We see that city is the cluster identifier, the data are strongly balanced (occasions occur at
the same time-points for all clusters and there are no missing data), the time variable is year
(from 1980 to 1988), and that the time between subsequent occasions (delta) is one year

2. Consider the fixed-intercept model

ln(yij) = τi + β2x2ij + αj + εij

where τi and αj are year-specific and office-specific parameters, respectively. (Use dummy
variables for years to include τi in the model.) This gives the difference-in-difference estimator
for more than two panel waves (see exercise 5.3).

a. Fit the model using xtreg with the fe option.

There are already dummy variables d81, d82, etc., for years in the data (you can also
create your own using the tabulate command or use factor variables, i.year). We can
fit the model using

. xtreg luclms d81-d88 ez, fe

Fixed-effects (within) regression Number of obs = 198
Group variable: city Number of groups = 22

R-sq: within = 0.8416 Obs per group: min = 9
between = 0.0002 avg = 9.0
overall = 0.3528 max = 9

F(9,167) = 98.59
corr(u_i, Xb) = -0.0039 Prob > F = 0.0000

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

d81 -.3216319 .0604573 -5.32 0.000 -.4409911 -.2022727
d82 .1354957 .0604573 2.24 0.026 .0161365 .2548549
d83 -.2192554 .0604573 -3.63 0.000 -.3386146 -.0998962
d84 -.5791517 .062318 -9.29 0.000 -.7021844 -.4561191
d85 -.5917868 .0654955 -9.04 0.000 -.7210926 -.4624811
d86 -.6212648 .0654955 -9.49 0.000 -.7505705 -.491959
d87 -.8889486 .0654955 -13.57 0.000 -1.018254 -.7596428
d88 -1.227633 .0654955 -18.74 0.000 -1.356939 -1.098327
ez -.1044148 .0554192 -1.88 0.061 -.2138274 .0049978

_cons 11.69439 .0427498 273.55 0.000 11.60999 11.77879

sigma_u .55551522
sigma_e .20051432

rho .88473156 (fraction of variance due to u_i)

F test that all u_i=0: F(21, 167) = 68.94 Prob > F = 0.0000
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b. Fit the first-difference version of the model using OLS.

. regress D.luclms D.(d81-d88) D.ez
note: _delete omitted because of collinearity

Source SS df MS Number of obs = 176
F( 8, 167) = 34.50

Model 12.8826331 8 1.61032914 Prob > F = 0.0000
Residual 7.79583815 167 .046681666 R-squared = 0.6230

Adj R-squared = 0.6049
Total 20.6784713 175 .118162693 Root MSE = .21606

D.luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

d81
D1. -.1725791 .0433173 -3.98 0.000 -.2580992 -.0870589

d82
D1. .4336014 .057112 7.59 0.000 .3208468 .5463559

d83
D1. .2279031 .0644683 3.54 0.001 .1006252 .3551811

d84
D1. .0381858 .0652412 0.59 0.559 -.0906181 .1669897

d85
D1. .1886877 .0644683 2.93 0.004 .0614098 .3159656

d86
D1. .3082626 .057112 5.40 0.000 .195508 .4210172

d87
D1. .1896316 .0433173 4.38 0.000 .1041115 .2751518

d88
D1. (omitted)

ez
D1. -.1818775 .0781862 -2.33 0.021 -.3362382 -.0275169

_cons -.1490528 .0168811 -8.83 0.000 -.1823807 -.115725

i. Do the estimates of the intervention effect differ much?

The estimated intervention effect is nearly twice as large and significant at the 5%
level using the first-difference estimator compared with the mean-centering estimator
in step 2a where the effect is not significant.

ii. Papke (1994) actually assumed a linear trend of year instead of year-specific inter-
cepts as specified above. Write down the first-difference version of Papke’s model.

The first-difference version can be written as

ln(yij)− ln(yi−1,j) = τ + β2(x2ij − x2i−1,j) + (εij − εi−1,j)

where τ is the regression coefficient of time.

iii. � A random walk is the special case of an AR(1) process where α = 1. Show that
the first-difference approach accommodates a random walk for the residuals εij .
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The AR(1) process is described on page 308. For a random walk, we set α = 1,

εij = 1εi−1,j + eij , Cov(εi−1,j, eij) = 0, E(eij) = 0, Var(eij) = σ2
e ,

where the disturbances eij are uncorrelated across occasions i and offices j.
Substituting this model for εij into the last term of the first-difference version of
Papke’s model gives

(εij − εi−1,j) = εi−1,j + eij − εi−1,j = eij

These errors eij are uncorrelated.

3. Fit the lagged-response model

ln(yij) = τi + β2x2ij + γ ln(yi−1,j) + εij

where γ is the regression coefficient for the lagged response ln(yi−1,j). Compare the estimated
intervention effect with that for the fixed-intercept model. Interpret β2 in the two models.

. regress luclms d81-d88 ez L.luclms
note: d88 omitted because of collinearity

Source SS df MS Number of obs = 176
F( 9, 166) = 189.55

Model 80.2242432 9 8.9138048 Prob > F = 0.0000
Residual 7.80621291 166 .047025379 R-squared = 0.9113

Adj R-squared = 0.9065
Total 88.0304561 175 .503031178 Root MSE = .21685

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

d81 .0390771 .0734077 0.53 0.595 -.1058559 .1840101
d82 .8012237 .0704945 11.37 0.000 .6620424 .940405
d83 .0129565 .0749448 0.17 0.863 -.1350114 .1609244
d84 -.0231834 .0690355 -0.34 0.737 -.1594841 .1131173
d85 .3240471 .0660666 4.90 0.000 .1936079 .4544862
d86 .3245555 .0659421 4.92 0.000 .1943622 .4547488
d87 .084827 .0658372 1.29 0.199 -.0451591 .2148132
d88 (omitted)
ez -.0579542 .0423846 -1.37 0.173 -.1416365 .025728

luclms
L1. .9483481 .0288165 32.91 0.000 .891454 1.005242

_cons .2433286 .313765 0.78 0.439 -.3761557 .8628129

The estimated intervention effect is smaller in the lagged-response model than in the fixed-
intercept model. In the fixed-intercept model, the parameter β2 can be interpreted as the
intervention effect when all time-constant covariates (observed or unobserved) are controlled
for. In the lagged-response model, β2 can be interpreted as the intervention effect when it is
controlled for the number of unemployment claims at the previous occasion.

(Continued on next page)
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4. Consider a lagged-response model with an office-specific intercept bj:

ln(yij) = τi + β2x2ij + γ ln(yi−1,j) + bj + εij

a. Treat bj as a random intercept and fit a random-intercept model by ML using xtmixed.
Are there any problems associated with this random-intercept model?

. xtmixed luclms d81-d88 ez L.luclms || city:, mle
note: d88 omitted because of collinearity

Mixed-effects ML regression Number of obs = 176
Group variable: city Number of groups = 22

Obs per group: min = 8
avg = 8.0
max = 8

Wald chi2(9) = 1003.24
Log likelihood = 21.890234 Prob > chi2 = 0.0000

luclms Coef. Std. Err. z P>|z| [95% Conf. Interval]

d81 .4191919 .082707 5.07 0.000 .2570893 .5812946
d82 1.042236 .0699273 14.90 0.000 .905181 1.179291
d83 .4516719 .0888939 5.08 0.000 .2774431 .6259006
d84 .2770295 .0703718 3.94 0.000 .1391033 .4149558
d85 .4662417 .0572483 8.14 0.000 .3540371 .5784464
d86 .453075 .0565748 8.01 0.000 .3421905 .5639595
d87 .2005976 .0560018 3.58 0.000 .0908361 .3103592
d88 (omitted)
ez -.1126751 .0507777 -2.22 0.026 -.2121977 -.0131526

luclms
L1. .515858 .0622388 8.29 0.000 .3938722 .6378439

_cons 4.920923 .6730721 7.31 0.000 3.601726 6.24012

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

city: Identity
sd(_cons) .2714653 .075208 .1577224 .4672349

sd(Residual) .1773275 .0114661 .1562201 .2012867

LR test vs. linear regression: chibar2(01) = 0.00 Prob >= chibar2 = 1.0000

It seems unreasonable to assume (as implicitly in the above model) that the random
intercept only affects the response in 1981-1988 but not the response at the first occasion
in 1980. If the random intercept also affects the response in 1980, the estimate of the
intervention effect given above will be inconsistent due to this initial-conditions problem.

(Continued on next page)
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b. Fit the model using the Anderson-Hsiao approach with the second lag of the response as
instrumental variable. Compare the estimated intervention effect with that from step 4a.

. ivregress 2sls D.luclms D.(ez d82-d87) (LD.luclms = L2.luclms)

Instrumental variables (2SLS) regression Number of obs = 154
Wald chi2(8) = 218.46
Prob > chi2 = 0.0000
R-squared = 0.5466
Root MSE = .23672

D.luclms Coef. Std. Err. z P>|z| [95% Conf. Interval]

luclms
LD. .3553236 .5815686 0.61 0.541 -.7845299 1.495177

ez
D1. -.2613231 .1557117 -1.68 0.093 -.5665124 .0438662

d82
D1. .6431183 .1112507 5.78 0.000 .425071 .8611655

d83
D1. .1976462 .2586616 0.76 0.445 -.3093212 .7046135

d84
D1. .0783017 .1165293 0.67 0.502 -.1500915 .3066949

d85
D1. .3039007 .0959342 3.17 0.002 .1158732 .4919282

d86
D1. .3573652 .0613401 5.83 0.000 .2371408 .4775896

d87
D1. .1718629 .0838772 2.05 0.040 .0074667 .3362591

_cons -.0717072 .088501 -0.81 0.418 -.2451661 .1017516

Instrumented: LD.luclms
Instruments: D.ez D.d82 D.d83

D.d84 D.d85 D.d86
D.d87 L2.luclms

The estimated intervention effect is much larger (in absolute value) using the Anderson-

Hsiao approach (β̂2 = −0.26) than using näıve ML estimation of the random-intercept

model (β̂2 = −0.11).

(Continued on next page)
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c. Papke (1994) used the Anderson-Hsiao approach with the second lag of the first-difference
of the response as instrumental variable. Does the choice of instruments matter in this
case?

. xtivreg luclms d82-d88 ez (L.luclms = L2.luclms), fd
note: d88 omitted because of collinearity

First-differenced IV regression
Group variable: city Number of obs = 132
Time variable: year Number of groups = 22

R-sq: within = 0.0009 Obs per group: min = 6
between = 0.9857 avg = 6.0
overall = 0.2045 max = 6

Wald chi2(7) = 59.01
corr(u_i, Xb) = 0.4310 Prob > chi2 = 0.0000

D.luclms Coef. Std. Err. z P>|z| [95% Conf. Interval]

luclms
LD. .1646991 .2884439 0.57 0.568 -.4006405 .7300387

d82
D1. (omitted)

d83
D1. -.2283852 .1724844 -1.32 0.185 -.5664483 .109678

d84
D1. -.2970306 .0996276 -2.98 0.003 -.4922971 -.1017642

d85
D1. -.0232671 .0643368 -0.36 0.718 -.149365 .1028308

d86
D1. .1541171 .0611188 2.52 0.012 .0343265 .2739078

d87
D1. .0929427 .0626561 1.48 0.138 -.0298609 .2157464

d88
D1. (omitted)

ez
D1. -.218702 .1061406 -2.06 0.039 -.4267338 -.0106702

_cons -.2016544 .040473 -4.98 0.000 -.2809801 -.1223288

sigma_u .49024673
sigma_e .23295608

rho .81579557 (fraction of variance due to u_i)

Instrumented: L.luclms
Instruments: d82 d83 d84 d85 d86 d87 ez L2.luclms

The choice of instruments matters somewhat in this case with estimates β̂2 = −0.26 in
step 4b and β̂2 = −0.22 in step 4c.
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6.2 Postnatal-depression data

1. Start by preparing the data for analysis.

a. Reshape the data to long form.

. use postnatal, clear

. reshape long dep, i(subj) j(month)
(note: j = 1 2 3 4 5 6)

Data wide -> long

Number of obs. 61 -> 366
Number of variables 9 -> 5
j variable (6 values) -> month
xij variables:

dep1 dep2 ... dep6 -> dep

b. Missing values for the depression scores are coded as −9 in the dataset. Recode these to
Stata’s missing-value code. (You may want to use the mvdecode command.)

. mvdecode dep pre, mv(-9)
dep: 71 missing values generated

c. Use the xtdescribe command to investigate missingness patterns. Is there any intermit-
tent missingness?

. xtset subj month
panel variable: subj (strongly balanced)
time variable: month, 1 to 6

delta: 1 unit

. xtdescribe if dep<.

subj: 1, 2, ..., 61 n = 61
month: 1, 2, ..., 6 T = 6

Delta(month) = 1 unit
Span(month) = 6 periods
(subj*month uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 1 3 6 6 6 6

Freq. Percent Cum. Pattern

45 73.77 73.77 111111
8 13.11 86.89 1.....
7 11.48 98.36 11....
1 1.64 100.00 111...

61 100.00 XXXXXX

The missingness patterns are monotone. There is only dropout and no intermittent
missing data.

(Continued on next page)
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2. Fit a model with an unstructured residual covariance matrix. Store the estimates (also store
estimates for each of the models below).

. generate time = month - 1

. xtmixed dep pre group time || subj:, noconstant residuals(unstructured, t(month))
> mle

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 88.84
Log likelihood = -782.69058 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .364077 .1292085 2.82 0.005 .110833 .6173209
group -4.120617 .9739702 -4.23 0.000 -6.029564 -2.211671
time -1.109057 .1426088 -7.78 0.000 -1.388565 -.8295483
_cons 9.254284 2.800598 3.30 0.001 3.765214 14.74335

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: (empty)

Residual: Unstructured
sd(e1) 5.222534 .4750711 4.369696 6.241822
sd(e2) 5.842693 .5710984 4.824049 7.076433
sd(e3) 4.974276 .5362913 4.026794 6.144696
sd(e4) 5.075864 .5392724 4.121698 6.250917
sd(e5) 5.080505 .5458162 4.115848 6.271254
sd(e6) 4.447325 .4795071 3.60017 5.493824

corr(e1,e2) .3934899 .1131534 .1523219 .5904318
corr(e1,e3) .3566393 .1204059 .1022897 .567218
corr(e1,e4) .2899307 .1291728 .0220782 .5189484
corr(e1,e5) .2188728 .13378 -.0528758 .4604396
corr(e1,e6) .1050079 .1396652 -.1697357 .3646055
corr(e2,e3) .8261353 .0469085 .7095459 .8986984
corr(e2,e4) .6820919 .079932 .4930252 .8096396
corr(e2,e5) .6890688 .0791 .5012564 .8148776
corr(e2,e6) .6059245 .0960699 .384156 .7615884
corr(e3,e4) .7310068 .0699298 .5625337 .8411931
corr(e3,e5) .8123314 .0515131 .6842147 .8918091
corr(e3,e6) .7182257 .0755132 .5358208 .8365794
corr(e4,e5) .8212047 .0488118 .6996945 .8965419
corr(e4,e6) .7553889 .0647875 .5977648 .8567815
corr(e5,e6) .8759585 .0356153 .784954 .9299622

LR test vs. linear regression: chi2(20) = 226.63 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. estimates store un

(Continued on next page)
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3. Fit a model with an exchangeable residual covariance matrix. Use a likelihood-ratio test to
compare this model with the unstructured model.

. xtmixed dep pre group time || subj:, noconstant residuals(exchangeable) mle

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 136.05
Log likelihood = -832.36607 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4597672 .1451945 3.17 0.002 .1751913 .7443431
group -4.021599 1.088742 -3.69 0.000 -6.155495 -1.887704
time -1.225857 .1166946 -10.50 0.000 -1.454574 -.9971399
_cons 7.208144 3.132268 2.30 0.021 1.069012 13.34728

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: (empty)

Residual: Exchangeable
sd(e) 5.068143 .3206934 4.477009 5.737329

corr(e) .5638883 .0600349 .4349557 .6701634

LR test vs. linear regression: chi2(1) = 127.28 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. estimates store exch

. lrtest exch un

Likelihood-ratio test LR chi2(19) = 99.35
(Assumption: exch nested in un) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The constraints that all variances are equal and all correlations are equal are rejected using a
likelihood ratio test (L = 99.35, df = 19, p < 0.0001).

(Continued on next page)
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4. Fit a random-intercept model and compare it with the model with an exchangeable covariance
matrix.

. xtmixed dep pre group time || subj:, mle variance

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 136.05
Log likelihood = -832.36607 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4597672 .1451945 3.17 0.002 .1751912 .7443431
group -4.021599 1.088742 -3.69 0.000 -6.155495 -1.887703
time -1.225857 .1166946 -10.50 0.000 -1.454574 -.9971399
_cons 7.208144 3.132269 2.30 0.021 1.06901 13.34728

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Identity
var(_cons) 14.48409 3.167154 9.435473 22.23405

var(Residual) 11.20199 1.033171 9.349497 13.42154

LR test vs. linear regression: chibar2(01) = 127.28 Prob >= chibar2 = 0.0000
. estimates store ri

The models are equivalent (since the covariance is estimated as positive in the model with an
exchangeable covariance matrix) and the log-likelihoods are therefore identical. The estimated
model-implied standard deviation and correlations of the total residuals are:

. display sqrt(14.48409 +11.20199)
5.0681436

. display 14.48409/(14.48409 +11.20199)

.56388869

As expected, these estimates are the same as for the model with an exchangeable structure.

(Continued on next page)



MLMUS3 (Vol. I) – Rabe-Hesketh and Skrondal 43

5. Fit a random-intercept model with AR(1) level-1 residuals. Compare this model with the
ordinary random-intercept model using a likelihood ratio test.

. xtmixed dep pre group time || subj:, residuals(ar 1, t(month)) mle

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 82.10
Log likelihood = -822.1805 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4392681 .1384597 3.17 0.002 .1678921 .7106441
group -4.020073 1.040008 -3.87 0.000 -6.058451 -1.981695
time -1.222442 .1644953 -7.43 0.000 -1.544847 -.9000371
_cons 7.680401 2.994547 2.56 0.010 1.811196 13.54961

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Identity
sd(_cons) 2.682982 .9731191 1.317912 5.461967

Residual: AR(1)
rho .5435037 .1385216 .2201329 .7592467

sd(e) 4.237522 .6026892 3.206626 5.59984

LR test vs. linear regression: chi2(2) = 147.65 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store ri_ar1

. lrtest ri_ar1 ri

Likelihood-ratio test LR chi2(1) = 20.37
(Assumption: ri nested in ri_ar1) Prob > chi2 = 0.0000

The hypothesis that an AR(1) process is not required for the level-1 residuals in the random-
intercept model is rejected using a likelihood ratio test (L = 20.37, df = 1, p < 0.0001).

(Continued on next page)
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6. Fit a model with a Toeplitz(5) covariance structure (without a random intercept). Use likeli-
hood ratio tests to compare this model with each of the models fit above that are either nested
within this model or in which this model is nested. (Stata may refuse to perform a test if
it thinks the models are not nested – if you are sure the models are nested, use the force

option.)

. xtmixed dep pre group time || subj:, noconstant

. > residuals(toeplitz 5, t(month)) mle

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 72.56
Log likelihood = -816.69365 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4237327 .1350386 3.14 0.002 .1590619 .6884036
group -3.929828 1.015461 -3.87 0.000 -5.920094 -1.939561
time -1.208944 .1784112 -6.78 0.000 -1.558624 -.859265
_cons 8.061919 2.924753 2.76 0.006 2.329509 13.79433

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: (empty)

Residual: Toeplitz(5)
rho1 .667223 .0473245 .5639046 .7499768
rho2 .5785609 .0577728 .4542883 .6807461
rho3 .4688658 .0784476 .301834 .6079701
rho4 .2958404 .1080509 .0727374 .4907468
rho5 .1356471 .1501327 -.1618465 .4105387
sd(e) 4.995393 .3022521 4.436768 5.624353

LR test vs. linear regression: chi2(5) = 158.63 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. estimates store toep

The random-intercept model sets all correlations equal and is hence nested in the Toeplitz. The
random-intercept model with AR(1) level-1 residuals imposes a structure on the correlations,
but also has equal correlations on each off-diagonal and is hence nested in the Toeplitz. For
balanced longitudinal data, all covariance structures, including the Toeplitz structure, are
nested in the unstructured covariance structure.

. estimates store toep

. lrtest toep ri_ar1, force

Likelihood-ratio test LR chi2(3) = 10.97
(Assumption: ri_ar1 nested in toep) Prob > chi2 = 0.0119

. lrtest toep ri, force /* or exchangeable */

Likelihood-ratio test LR chi2(4) = 31.34
(Assumption: ri nested in toep) Prob > chi2 = 0.0000
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. lrtest toep un

Likelihood-ratio test LR chi2(15) = 68.01
(Assumption: toep nested in un) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The two restricted models are rejected and the Toeplitz is rejected in favor of the unstructured
model.

7. Fit a random-coefficient model with a random slope of time. Use a likelihood-ratio test to
compare the random-intercept and random-coefficient models.

. xtmixed dep pre group time || subj: time, covariance(unstructured) mle

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 79.01
Log likelihood = -821.41091 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4682251 .1455653 3.22 0.001 .1829223 .7535279
group -4.039641 1.092187 -3.70 0.000 -6.180287 -1.898994
time -1.209707 .1651196 -7.33 0.000 -1.533336 -.886079
_cons 7.040006 3.144358 2.24 0.025 .8771775 13.20283

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Unstructured
sd(time) .9139199 .1547795 .6557684 1.273696
sd(_cons) 4.2606 .4922395 3.397261 5.343337

corr(time,_cons) -.427028 .1613791 -.6874447 -.0693066

sd(Residual) 2.89236 .1503267 2.612235 3.202525

LR test vs. linear regression: chi2(3) = 149.19 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store rc

. lrtest rc ri

Likelihood-ratio test LR chi2(2) = 21.91
(Assumption: ri nested in rc) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The random-intercept model is rejected in favor of the random-coefficient model.

(Continued on next page)
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8. Specify an AR(1) process for the level-1 residuals in the random-coefficientmodel. Use likelihood-
ratio tests to compare this model with the models you previously fit that are nested within
it.

. xtmixed dep pre group time || subj: time, covariance(unstructured)
> residuals(ar 1, t(time)) mle

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 77.84
Log likelihood = -820.67875 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4598446 .1435466 3.20 0.001 .1784985 .7411907
group -4.030029 1.077137 -3.74 0.000 -6.14118 -1.918879
time -1.21093 .1676028 -7.22 0.000 -1.539425 -.8824345
_cons 7.222646 3.101391 2.33 0.020 1.144032 13.30126

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Unstructured
sd(time) .8353954 .1998681 .5226878 1.335186
sd(_cons) 4.004369 .6025937 2.981549 5.378069

corr(time,_cons) -.4024283 .1943641 -.7069727 .028012

Residual: AR(1)
rho .1942238 .1767778 -.1619006 .505587

sd(e) 3.13792 .3416971 2.534849 3.884469

LR test vs. linear regression: chi2(4) = 150.66 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store rc_ar1

. lrtest rc_ar1 rc

Likelihood-ratio test LR chi2(1) = 1.46
(Assumption: rc nested in rc_ar1) Prob > chi2 = 0.2262

. lrtest rc_ar1 ri_ar1

Likelihood-ratio test LR chi2(2) = 3.00
(Assumption: ri_ar1 nested in rc_ar1) Prob > chi2 = 0.2227

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. lrtest rc_ar1 ri

Likelihood-ratio test LR chi2(3) = 23.37
(Assumption: ri nested in rc_ar1) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

It seems that the AR(1) process is not needed after a random coefficient has been introduced
and that the random coefficient is not needed after the AR(1) process has been introduced.
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9. Use the estimates stats command to obtain a table including the AIC and BIC for the fitted
models. Which models are best and second best according to the AIC and BIC?

. estimates stats un exch ri ri_ar1 toep rc rc_ar1

Model Obs ll(null) ll(model) df AIC BIC

un 295 . -782.6906 25 1615.381 1707.556
exch 295 . -832.3661 6 1676.732 1698.854

ri 295 . -832.3661 6 1676.732 1698.854
ri_ar1 295 . -822.1805 7 1658.361 1684.17
toep 295 . -816.6937 10 1653.387 1690.257

rc 295 . -821.4109 8 1658.822 1688.318
rc_ar1 295 . -820.6787 9 1659.357 1692.54

Note: N=Obs used in calculating BIC; see [R] BIC note

According to the AIC, the unstructured covariance matrix is best, followed by the Toeplitz. Ac-
cording to the BIC, the random-intercept model with the AR(1) process for the level-1 residuals
is best, followed by the random-coefficient model.

Below is a table summarizing the likelihood ratio tests - the arrows point from the model that is
rejected to the model it was compared with.

# param
Model ll(model) for cov AIC BIC

un -782.6906 21 1615.381 1707.556
exch -832.3661 2 1676.732 1698.854
ri -832.3661 2 1676.732 1698.854

ri ar1 -822.1805 3 1658.361 1684.17
toep -816.6937 6 1653.387 1690.257
rc -821.4109 4 1658.822 1688.318
rc ar1 -820.6787 5 1659.357 1692.54
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7.1 Growth-in-math-achievement data

1. Reshape the data to long form, and plot the mean math trajectory over time by minority
status.

use reading, clear

. reshape long read math age, i(id) j(grade)
(note: j = 0 1 2 3)

Data wide -> long

Number of obs. 1767 -> 7068
Number of variables 15 -> 7
j variable (4 values) -> grade
xij variables:

read0 read1 ... read3 -> read
math0 math1 ... math3 -> math

age0 age1 ... age3 -> age

. egen mn_math = mean(math), by(grade minority)

. twoway (connected mn_math grade if minority==1, sort lpatt(solid))
> (connected mn_math grade if minority==0, sort lpatt(dash)), xtitle(Grade)
> ytitle(Mean math score) legend(order(1 "Minority" 2 "Majority"))

See figure 11.
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Figure 11: Mean growth by minority status

(Continued on next page)
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2. Fit a linear growth curve model using xtmixed with a dummy variable for being a minority
as a covariate. The fixed part should include an intercept and a slope for grade, and the
random part should include random intercepts and random slopes of grade. Allow the residual
variances to differ between grades.

Fitting the model with ML, we obtain

. xtmixed math minority grade || id: grade, covariance(unstructured) mle
> variance residual(independent, by(grade))

Mixed-effects ML regression Number of obs = 2676
Group variable: id Number of groups = 1677

Obs per group: min = 1
avg = 1.6
max = 3

Wald chi2(2) = 5031.79
Log likelihood = -9398.376 Prob > chi2 = 0.0000

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

minority -3.900023 .3268482 -11.93 0.000 -4.540634 -3.259412
grade 9.456502 .1349087 70.10 0.000 9.192086 9.720918
_cons 19.21837 .237535 80.91 0.000 18.75281 19.68393

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(grade) 6.234872 1.878287 3.454608 11.25269
var(_cons) 9.594678 5.154575 3.347627 27.49943

cov(grade,_cons) 2.400401 2.492205 -2.48423 7.285033

Residual: Independent,
by grade

0: var(e) 25.56478 5.389161 16.9124 38.64371
1: var(e) 56.30598 4.115913 48.79019 64.97952
2: var(e) 65.79611 6.170977 54.74779 79.07404
3: var(e) 26.36992 10.4473 12.13047 57.32445

LR test vs. linear regression: chi2(6) = 388.33 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

(Continued on next page)
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3. By extending the model from step 2, test whether there is any evidence for a narrowing or
widening of the minority gap over time.

. xtmixed math i.minority##c.grade || id: grade , covariance(unstructured) mle
> variance residual(independent, by(grade))

Mixed-effects ML regression Number of obs = 2676
Group variable: id Number of groups = 1677

Obs per group: min = 1
avg = 1.6
max = 3

Wald chi2(3) = 5073.55
Log likelihood = -9392.0728 Prob > chi2 = 0.0000

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.minority -3.264255 .3707111 -8.81 0.000 -3.990836 -2.537675
grade 9.923562 .1865227 53.20 0.000 9.557984 10.28914

minority#
c.grade

1 -.9612373 .2694299 -3.57 0.000 -1.48931 -.4331644

_cons 18.91506 .2507759 75.43 0.000 18.42355 19.40658

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(grade) 6.385469 1.863911 3.603529 11.31508
var(_cons) 10.82071 5.14146 4.263905 27.46023

cov(grade,_cons) 1.94077 2.481751 -2.923372 6.804912

Residual: Independent,
by grade

0: var(e) 24.0748 5.351418 15.57238 37.21948
1: var(e) 55.91727 4.096925 48.43736 64.55226
2: var(e) 65.02596 6.125135 54.06393 78.21065
3: var(e) 26.52278 10.41612 12.28378 57.26719

LR test vs. linear regression: chi2(6) = 394.89 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

There is a significant interaction between grade and minority, suggesting a widening of the
achievement gap (0.96 units wider per year, z = 3.57, p < 0.001).

4. Plot the mean fitted trajectories for minority and non-minority students.

. predict fixed, xb

. twoway (connected fixed grade if minority==1, sort lpatt(solid))
> (connected fixed grade if minority==0, sort lpatt(dash)), xtitle(Grade)
> ytitle(Fitted mean math score) legend(order(1 "Minority" 2 "Majority"))

See figure 12.

(Continued on next page)
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Figure 12: Estimated model-implied mean math achievement versus grade by minority status
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5. Plot fitted and observed growth trajectories for the first 20 children (id less than 15900).

. predict traj, fitted
(4392 missing values generated)

. twoway (line traj grade, sort) (connected math grade, sort lpatt(dash))
> if id<15900, by(id, legend(off))

See figure 13.
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Figure 13: Observed data and predicted individual growth curves
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6. Fit the model from step 2, but without minority as covariate, using sem.

. use reading, clear

. sem (math0 <- L1@1 L2@0 _cons@0)
> (math1 <- L1@1 L2@1 _cons@0)
> (math2 <- L1@1 L2@2 _cons@0)
> (math3 <- L1@1 L2@3 _cons@0),
> means(L1 L2) method(mlmv)
(90 all-missing observations excluded)

Endogenous variables

Measurement: math0 math1 math2 math3

Exogenous variables

Latent: L1 L2

Structural equation model Number of obs = 1677
Estimation method = mlmv
Log likelihood = -9465.8763

( 1) [math0]L1 = 1
( 2) [math1]L1 = 1
( 3) [math1]L2 = 1
( 4) [math2]L1 = 1
( 5) [math2]L2 = 2
( 6) [math3]L1 = 1
( 7) [math3]L2 = 3
( 8) [math0]_cons = 0
( 9) [math1]_cons = 0
(10) [math2]_cons = 0
(11) [math3]_cons = 0

(Continued on next page)



MLMUS3 (Vol. I) – Rabe-Hesketh and Skrondal 55

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Measurement
math0 <-

L1 1 (constrained)
_cons 0 (constrained)

math1 <-
L1 1 (constrained)
L2 1 (constrained)

_cons 0 (constrained)

math2 <-
L1 1 (constrained)
L2 2 (constrained)

_cons 0 (constrained)

math3 <-
L1 1 (constrained)
L2 3 (constrained)

_cons 0 (constrained)

Mean
L1 17.39718 .1929472 90.17 0.000 17.01901 17.77535
L2 9.475525 .1404857 67.45 0.000 9.200178 9.750872

Variance
e.math0 20.85221 5.442675 12.50196 34.7797
e.math1 57.9486 4.31631 50.07732 67.05711
e.math2 64.88453 6.221564 53.7678 78.2997
e.math3 23.17358 10.33202 9.671236 55.52701

L1 16.1155 5.254947 8.505185 30.53542
L2 7.34103 1.879487 4.444554 12.12511

Covariance
L1

L2 1.416933 2.549956 0.56 0.578 -3.580889 6.414756

LR test of model vs. saturated: chi2(5) = 47.15, Prob > chi2 = 0.0000
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8.1 Math-achievement data

1. Substitute the level-3 models into the level-2 models and then the resulting level-2 models into
the level-1 model. Rewrite the final reduced-form model using the notation of this book.

πpjk = γp00 + γp01W1k + up0k
︸ ︷︷ ︸

βp0k

+βp1X1jk + βp2X2jk + rpjk

= γp00 + γp01W1k + up0k + βp1X1jk + βp2X2jk + rpjk, p = 0, 1

Yijk = γ000 + γ001W1k + u00k + β01X1jk + β02X2jk + r0jk
︸ ︷︷ ︸

π0jk

+ (γ100 + γ101W1k + u10k + β11X1jk + β12X2jk + r1jk)
︸ ︷︷ ︸

π1jk

a1ijk + eijk

= γ000 + γ001W1k + β01X1jk + β02X2jk

+ γ100a1ijk + γ101W1ka1ijk + β11X1jka1ijk + β12X2jka1ijk

+ r0jk + r1jka1ijk + u00k + u10ka1ijk + eijk

In the notation of this book:

Yijk = β1 + β2W1k + β3X1jk + β4X2jk

+ β5a1ijk + β6W1ka1ijk + β7X1jka1ijk + β8X2jka1ijk

+ ζ
(2)
1jk + ζ

(2)
2jka1ijk + ζ

(3)
1k + ζ

(3)
2k a1ijk + εijk

(Continued on next page)
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2. Fit the model using xtmixed and interpret the estimates.

. use achievement, clear

. generate low_y = lowinc*year

. generate black_y = black*year

. generate hisp_y = hispanic*year

Here we fit the model using ML and obtain

. xtmixed math lowinc black hispanic year low_y black_y hisp_y
> || school: year, covariance(unstructured)
> || child: year, covariance(unstructured) mle

Mixed-effects ML regression Number of obs = 7230

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

school 60 18 120.5 387
child 1721 2 4.2 6

Wald chi2(7) = 3324.79
Log likelihood = -8119.6035 Prob > chi2 = 0.0000

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

lowinc -.0075778 .0016908 -4.48 0.000 -.0108918 -.0042638
black -.5021083 .0778753 -6.45 0.000 -.6547411 -.3494755

hispanic -.3193816 .0860935 -3.71 0.000 -.4881217 -.1506414
year .8745122 .0391403 22.34 0.000 .7977987 .9512258
low_y -.0013689 .0005226 -2.62 0.009 -.0023933 -.0003446

black_y -.0309253 .0224586 -1.38 0.169 -.0749433 .0130926
hisp_y .0430865 .024659 1.75 0.081 -.0052442 .0914172
_cons .1406379 .1274906 1.10 0.270 -.1092391 .3905149

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Unstructured
sd(year) .0893313 .0115087 .0693972 .1149913
sd(_cons) .2794454 .0351444 .2183964 .3575595

corr(year,_cons) .0327362 .1782169 -.3067244 .3648084

child: Unstructured
sd(year) .1053271 .0092652 .088647 .1251459
sd(_cons) .7888289 .0155546 .758924 .8199121

corr(year,_cons) .5611807 .0680562 .4135202 .6800784

sd(Residual) .5491732 .0060468 .5374487 .5611535

LR test vs. linear regression: chi2(6) = 4797.28 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

For each percentage point increase in the proportion of low-income students per school, mean
achievement for white (strictly, not African American or Hispanic) students in the middle of
primary school is estimated to decrease by 0.0076 points. In the middle of primary school,
mean math scores are estimated to be 0.50 points lower for African American students and
0.32 points lower for Hispanic students than for white students.

Math scores increase on average by 0.87 units per year for white children from schools with
no low-income children. For each percentage point increase in the proportion of low-income
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children in the school, the mean increase in math scores per year goes down by −0.0014.
African American and Hispanic children do not differ significantly from other children in their
mean rate of growth.

The level of achievement in the middle of primary school varies between children within schools
and between schools, as does the rate of growth. The between-student variability in achieve-
ment, after controlling for covariates, increases over time (due to a positive estimated intercept–
slope correlation at level 2).

3. Include some of the other covariates in the model and interpret the estimates.

This step is up to you!
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9.5 Neighborhood-effects data

1. Fit a model for student educational attainment without covariates but with random intercepts
of neighborhood and school by ML.

. use neighborhood, clear

. egen pickn = tag(neighid)

. summarize pickn

Variable Obs Mean Std. Dev. Min Max

pickn 2310 .2268398 .4188788 0 1

. display r(sum)
524

. egen picks = tag(schid)

. summarize picks

Variable Obs Mean Std. Dev. Min Max

picks 2310 .0073593 .0854887 0 1

. display r(sum)
17

. xtmixed attain || _all: R.schid || neighid:, mle

Mixed-effects ML regression Number of obs = 2310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2310 2310.0 2310
neighid 524 1 4.4 16

Wald chi2(0) = .
Log likelihood = -3178.3557 Prob > chi2 = .

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .0753532 .0722216 1.04 0.297 -.0661987 .216905

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.schid) .2746726 .0576124 .1820859 .4143374

neighid: Identity
sd(_cons) .3757926 .0290919 .3228885 .4373649

sd(Residual) .8938782 .0147477 .8654356 .9232555

LR test vs. linear regression: chi2(2) = 207.44 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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2. Include a random interaction between neighborhood and school, and use a likelihood-ratio test
to decide whether the interaction should be retained (use a 5% level of significance).

. estimates store model1

. xtmixed attain || _all: R.schid || neighid: || schid:, mle
Mixed-effects ML regression Number of obs = 2310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2310 2310.0 2310
neighid 524 1 4.4 16

schid 784 1 2.9 14

Wald chi2(0) = .
Log likelihood = -3176.2863 Prob > chi2 = .

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .074952 .0723328 1.04 0.300 -.0668176 .2167216

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.schid) .2752373 .0581719 .1818881 .4164954

neighid: Identity
sd(_cons) .3012386 .0557522 .2095912 .4329603

schid: Identity
sd(_cons) .2615182 .0699151 .1548599 .4416365

sd(Residual) .8842607 .0153452 .8546904 .9148541

LR test vs. linear regression: chi2(3) = 211.57 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store model2

. lrtest model1 model2

Likelihood-ratio test LR chi2(1) = 4.14
(Assumption: model1 nested in model2) Prob > chi2 = 0.0419

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

There is evidence for an interaction between neighborhood and school at the 5% level of sig-
nificance since the conservative test gives a p-value smaller than 0.05. The correct asymptotic
null distribution for comparing a model with k uncorrelated random effects with a model with
k+1 uncorrelated random effects is given in display 8.1 as a 50:50 mixture of a spike at 0 and
a χ2(1), so we should divide the p-value above by 2, giving 0.021.

(Continued on next page)
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3. Include the neighborhood-level covariate deprive. Discuss both the estimated coefficient of
deprive and the changes in the estimated standard deviations of the random effects due to
including this covariate.

. xtmixed attain deprive || _all: R.schid || neighid: || schid:, mle

Mixed-effects ML regression Number of obs = 2310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2310 2310.0 2310
neighid 524 1 4.4 16

schid 784 1 2.9 14

Wald chi2(1) = 145.85
Log likelihood = -3116.0007 Prob > chi2 = 0.0000

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

deprive -.4631749 .0383523 -12.08 0.000 -.538344 -.3880058
_cons .0954041 .0538852 1.77 0.077 -.0102089 .2010171

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.schid) .198782 .0469359 .1251393 .3157625

neighid: Identity
sd(_cons) .1966706 .0669955 .1008739 .3834422

schid: Identity
sd(_cons) .178391 .0851637 .0699859 .4547111

sd(Residual) .8930925 .0154852 .863252 .9239644

LR test vs. linear regression: chi2(3) = 67.88 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

More deprived neighborhoods are associated with lower mean attainment. All residual stan-
dard deviations have gone down, except the level-1 standard deviation. In particular, the
neighborhood standard deviation has gone down because some of the between-neighborhood
variability has been explained by deprive. Since children from deprived neighborhoods will
often end up in schools that attract other children from deprived neighborhoods, it is not sur-
prising that controlling for deprive has also reduced the between-school standard deviation
and the standard deviation of the school by neighborhood interaction.

(Continued on next page)
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4. Remove the neighborhood-by-school random interaction (which is no longer significant at the
5% level) and include all student-level covariates. Interpret the estimated coefficients and the
change in the estimated standard deviations.

. xtmixed attain deprive p7vrq p7read dadocc dadunemp daded momed male || _all:
> R.schid || neighid:, mle

Mixed-effects ML regression Number of obs = 2310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2310 2310.0 2310
neighid 524 1 4.4 16

Wald chi2(8) = 2525.72
Log likelihood = -2384.6678 Prob > chi2 = 0.0000

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

deprive -.1561175 .0255825 -6.10 0.000 -.2062582 -.1059768
p7vrq .0275636 .002263 12.18 0.000 .0231282 .031999
p7read .0262471 .00175 15.00 0.000 .0228172 .029677
dadocc .0081125 .0013604 5.96 0.000 .0054462 .0107789

dadunemp -.1207028 .0467775 -2.58 0.010 -.212385 -.0290206
daded .143641 .0407871 3.52 0.000 .0636998 .2235821
momed .0594877 .0373803 1.59 0.112 -.0137763 .1327517
male -.0559606 .0283915 -1.97 0.049 -.1116069 -.0003142
_cons .0856904 .0276423 3.10 0.002 .0315125 .1398684

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.schid) .061662 .0209145 .0317182 .1198747

neighid: Identity
sd(_cons) .0593543 .0563427 .0092351 .3814733

sd(Residual) .6750052 .0109996 .6537871 .6969119

LR test vs. linear regression: chi2(2) = 6.57 Prob > chi2 = 0.0374

Note: LR test is conservative and provided only for reference.

Even after controlling for student-level variables, the level of deprivation of the neighborhood
still has a negative, but smaller, effect on attainment. Previous performance (p7vrq and
p7read) has a positive effect on attainment, as does father’s occupation status and father’s
education (after controlling for the other covariates). Having an unemployed father is associ-
ated with lower mean attainment, and males have lower mean attainment than females (after
controlling for the other covariates).

The estimated standard deviations of the random effects of neighborhood and school have both
decreased a lot compared to the model without covariates in step 1.
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5. For the final model, estimate residual intraclass correlations due to being in

a. the same neighborhood but not the same school

b. the same school but not the same neighborhood

c. both the same neighborhood and the same school

ρ̂(neighborhood) =
0.05934282

0.05934282 + 0.06166142 + 0.67500622
= 0.008

ρ̂(school) =
0.06166142

0.05934282 + 0.06166142 + 0.67500622
= 0.008

ρ̂(school,neighborhood) =
0.05934282 + 0.06166142

0.05934282 + 0.06166142 + 0.67500622
= 0.016

6. � Use the supclust command to see if estimation can be simplified by defining a virtual
level-3 identifier.

. supclust neighid schid, gen(region)
2 clusters in 2310 observarions

. sort region schid

. tabulate schid if region==1

schid Freq. Percent Cum.

0 146 6.58 6.58
1 22 0.99 7.57
2 146 6.58 14.16
3 159 7.17 21.33
5 155 6.99 28.31
6 101 4.55 32.87
7 286 12.89 45.76
8 112 5.05 50.81
9 136 6.13 56.94
10 133 6.00 62.94
15 190 8.57 71.51
16 111 5.00 76.51
17 154 6.94 83.45
18 91 4.10 87.56
19 102 4.60 92.16
20 174 7.84 100.00

Total 2,218 100.00

. tabulate schid if region==2

schid Freq. Percent Cum.

13 92 100.00 100.00

Total 92 100.00

There are two regions, but one only contains a single high school so the number of random
effects for high schools can be reduced from 17 to 16. Not a large saving in this case.


