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Disclaimer

We have solved the exercises as well as we could but there may be better solutions and we
may have made mistakes. We are grateful for any suggestions for improvement.

Please also check the errata at http://www.stata.com/bookstore/mlmus3.html for any
errors in the wording of the exercises themselves.
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10.3 Vaginal-bleeding data

1. Produce an identifier variable for women, and reshape the data to long form, stacking the
responses y1–y4 into one variable and creating a new variable, occasion, taking the values
1–4 for each woman.

. use amenorrhea, clear

. generate id = _n

. reshape long y, i(id) j(occasion)
(note: j = 1 2 3 4)

Data wide -> long

Number of obs. 57 -> 228
Number of variables 7 -> 5
j variable (4 values) -> occasion
xij variables:

y1 y2 ... y4 -> y

2. Fit the following model considered by Fitzmaurice, Laird, and Ware (2011):

logit{Pr(yij = 1|xj , tij , ζj)} = β1 + β2tij + β3t
2
ij + β4xjtij + β5xjt

2
ij + ζj

where tij = 1, 2, 3, 4 is the time interval and xj is dose. It is assumed that ζj ∼ N(0, ψ),
and that ζj is independent across women and independent of xj and tij . Use gllamm with the
weight(wt) option to specify that wt2 are level-2 weights.

. generate time = occasion

. generate dose_time = dose*time

. generate time2 = time^2

. generate dose_time2 = dose*time2

. gllamm y time time2 dose_time dose_time2, i(id) family(binomial) link(logit)
> weight(wt) adapt

number of level 1 units = 3616
number of level 2 units = 1151

Condition Number = 61.916104

gllamm model

log likelihood = -1934.6777

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

time 1.129487 .2681452 4.21 0.000 .603932 1.655042
time2 -.0414252 .0548016 -0.76 0.450 -.1488344 .065984

dose_time .5646349 .1925201 2.93 0.003 .1873024 .9419674
dose_time2 -.1096827 .0496279 -2.21 0.027 -.2069516 -.0124137

_cons -3.796641 .3041371 -12.48 0.000 -4.392739 -3.200544

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 5.0152062 (.57035023)
------------------------------------------------------------------------------
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3. Write down the above model, but with a random slope of tij and fit the model.

logit{Pr(yij = 1|xj , tij , ζj)} = β1 + β2tij + β3t
2
ij + β4xjtij + β5xjt

2
ij + ζ1j + ζ2jtij ,

where ζ1j and ζ2j are a random intercept and random slope of time, and are assumed to have
a bivariate normal distribution with zero means, variances ψ1 and ψ2 and correlation ρ.

. generate one = 1

. eq inter: one

. eq slope: time

. gllamm y time time2 dose_time dose_time2, i(id)
> nrf(2) eqs(inter slope) f(binom) l(logit) weight(wt) adapt

number of level 1 units = 3616
number of level 2 units = 1151

Condition Number = 77.302239

gllamm model

log likelihood = -1927.1165

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .8112482 .3460057 2.34 0.019 .1330896 1.489407
time2 .0184146 .0660331 0.28 0.780 -.1110078 .147837

dose_time .5473806 .1973645 2.77 0.006 .1605533 .9342078
dose_time2 -.0987989 .0534429 -1.85 0.065 -.2035451 .0059473

_cons -3.441387 .4534743 -7.59 0.000 -4.330181 -2.552594

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 4.6391244 (1.6963202)
cov(2,1): -.34099882 (.42322007) cor(2,1): -.22015592

var(2): .51714101 (.19987784)
------------------------------------------------------------------------------

4. Interpret the estimated coefficients.

The model assumes that there is no difference in the log-odds of amenorrhea between the
groups at time 0 (baseline). In the low-dose group, the log-odds increase approximately by
the same amount of 0.81 in each 3-month interval (since the estimated coefficient of time2
is small and nonsignificant), corresponding to an odds ratio of 2.3. The interaction between
dose and time2 is not quite significant, so we could assume a linear relationship for both group
by removing the terms dose time2 and time2. However, keeping the terms in, the high-dose
group initially has a larger slope than the low-dose group, and the slope decreases over time
because time-squared has a negative coefficient (.0184− .0988).
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5. Plot marginal predicted probabilities as a function of time, separately for women in the two
treatment groups.

. gllapred prob, mu marg
(mu will be stored in prob)

. sort dose id time

. twoway (line prob time if dose==0, sort) (line prob time if dose==1, sort),
> ytitle(Predicted marginal probability) xtitle(Time in 90 day intervals)
> legend(order(1 "Low dose" 2 "High dose"))

The graph is shown in figure 1.
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Figure 1: Predicted marginal probabilities over time by dose level
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10.8 PISA data

1. Fit a logistic regressionmodel with pass read as the response variable and the variables female
to both for above as covariates and with a random intercept for schools using gllamm. (Use
the default eight quadrature points.)

. use pisaUSA2000, clear

. gllamm pass_read female isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) adapt

number of level 1 units = 2069
number of level 2 units = 148

Condition Number = 335.04344

gllamm model

log likelihood = -1252.8108

pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .5422157 .1031921 5.25 0.000 .3399629 .7444685
isei .0206763 .003284 6.30 0.000 .0142397 .0271129

high_school .4447949 .2565116 1.73 0.083 -.0579587 .9475484
college .7968813 .2550522 3.12 0.002 .2969882 1.296774

test_lang .7825116 .2834802 2.76 0.006 .2269005 1.338123
one_for .0112568 .2244283 0.05 0.960 -.4286147 .4511283

both_for .1507844 .2376408 0.63 0.526 -.314983 .6165517
_cons -3.279322 .3811213 -8.60 0.000 -4.026306 -2.532339

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id_school)

var(1): .51343023 (.12840606)
------------------------------------------------------------------------------

2. Fit the model from step 1 with the school mean of isei as an additional covariate. (Use the
estimates from step 1 as starting values.)

. egen mn_isei = mean(isei), by(id_school)

. matrix a=e(b)

(Continued on next page)
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. gllamm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) from(a) adapt

number of level 1 units = 2069
number of level 2 units = 148

Condition Number = 595.81116

gllamm model

log likelihood = -1225.4697

pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .5552102 .102912 5.39 0.000 .3535063 .7569141
isei .0143423 .003335 4.30 0.000 .0078058 .0208787

mn_isei .0690721 .0092476 7.47 0.000 .0509472 .0871971
high_school .3999544 .2561423 1.56 0.118 -.1020752 .901984

college .720787 .254843 2.83 0.005 .2213039 1.22027
test_lang .6951882 .2849895 2.44 0.015 .1366191 1.253757

one_for -.0199179 .2239413 -0.09 0.929 -.4588347 .418999
both_for .0986698 .2359626 0.42 0.676 -.3638083 .561148

_cons -6.033619 .5387262 -11.20 0.000 -7.089502 -4.977735

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id_school)

var(1): .27143215 (.08570122)
------------------------------------------------------------------------------

3. Interpret the estimated coefficients of isei and school mean isei and comment on the change
in the other parameter estimates due to adding school mean isei.

Within a school, student’s ISEI score has an estimated effect of 0.014 on the log-odds scale
and between schools there is an additional effect of 0.069. Considering a 10-unit change in
ISEI, the corresponding odds ratios are 1.15 (= exp(0.14)) and 2.00 (= exp(0.69)). Comparing
two students from the same school, one of whom has ISEI 10 points higher than the other
(with all other covariates being the same), the higher ISEI student has a 15% greater odds
of passing the reading test. Comparing two students with the same ISEI score (and other
covariate values) from schools that differ in their mean ISEI score by 10 units (but have the
same random intercept), the student from the higher mean ISEI school has twice the odds of
passing the reading test as the other student.

The estimated random intercept variance has nearly halved due to adding school mean ISEI.
The estimates of the effects of parent’s education on test language spoken at home have
decreased a little.

4. From the estimates in step 2, obtain an estimate of the between-school effect of socioeconomic
status.

The total between-school effect on the log-odds scale is the sum of the coefficient of isei and
mn isei, giving 0.083 (= 0.014 + 0.069).
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5. Obtain robust standard errors using the command gllamm, robust, and compare them with
the model-based standard errors.

. gllamm, robust
Non-adaptive log-likelihood: -1225.4744
-1225.4697 -1225.4697
number of level 1 units = 2069
number of level 2 units = 148

Condition Number = 595.81116

gllamm model

log likelihood = -1225.4697

Robust standard errors

pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .5552102 .1024602 5.42 0.000 .3543919 .7560284
isei .0143423 .0029873 4.80 0.000 .0084873 .0201972

mn_isei .0690721 .0090417 7.64 0.000 .0513507 .0867935
high_school .3999544 .2619124 1.53 0.127 -.1133844 .9132932

college .720787 .2574594 2.80 0.005 .2161759 1.225398
test_lang .6951882 .269443 2.58 0.010 .1670896 1.223287

one_for -.0199179 .1998363 -0.10 0.921 -.4115898 .3717541
both_for .0986698 .2452364 0.40 0.687 -.3819847 .5793244

_cons -6.033619 .5471276 -11.03 0.000 -7.105969 -4.961268

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id_school)

var(1): .27143215 (.08152135)
------------------------------------------------------------------------------

The robust and model-based standard errors are quite similar in this case.

(Continued on next page)
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6. Add a random coefficient of isei, and compare the random-intercept and random-coefficient
models using a likelihood ratio test. Use the estimates from step 2 (or step 5) as starting
values, adding zeros for the two additional parameters as shown in section 11.7.2.

. estimates store ri

. generate one = 1

. eq inter: one

. eq slope: isei

. matrix a=e(b)

. matrix a = (a, 0, 0)

. gllamm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) adapt
> from(a) copy nrf(2) eqs(inter slope)

number of level 1 units = 2069
number of level 2 units = 148

Condition Number = 615.85825

gllamm model

log likelihood = -1225.1738

pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .553834 .1028715 5.38 0.000 .3522096 .7554583
isei .0147346 .0033942 4.34 0.000 .0080822 .021387

mn_isei .0685597 .0092542 7.41 0.000 .0504219 .0866976
high_school .4042809 .2573612 1.57 0.116 -.1001377 .9086994

college .7320911 .2565077 2.85 0.004 .2293452 1.234837
test_lang .69372 .2850084 2.43 0.015 .1351137 1.252326

one_for -.0198951 .2240206 -0.09 0.929 -.4589673 .4191771
both_for .0948089 .2357538 0.40 0.688 -.3672601 .5568779

_cons -6.040813 .5397841 -11.19 0.000 -7.09877 -4.982855

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id_school)

var(1): .45755695 (.29755562)
cov(2,1): -.00214805 (.00344746) cor(2,1): -1

var(2): .00001008 (.00002619)
------------------------------------------------------------------------------

We can already see that the random-slope variance estimate is close to zero and that the log
likelihood has not changed much. The likelihood ratio test confirms that there is no evidence
for a random slope:

. estimates store rc

. lrtest ri rc

Likelihood-ratio test LR chi2(2) = 0.59
(Assumption: ri nested in rc) Prob > chi2 = 0.7439
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7. � In this survey, schools were sampled with unequal probabilities, πj , and given that a
school was sampled, students were sampled from the school with unequal probabilities πi|j .
The reciprocals of these probabilities are given as school- and student-level survey weights,
wnrschbg (wj = 1/πj) and w fstuwt (wi|j = 1/πi|j), respectively. As discussed in Rabe-
Hesketh and Skrondal (2006), incorporating survey weights in multilevel models using a so-
called pseudolikelihood approach can lead to biased estimates, particularly if the level-1 weights
wi|j are very different from 1 and if the cluster sizes are small. Neither of these issues arise
here, so implement pseudo maximum likelihood estimation as follows:

a. Rescale the student-level weights by dividing them by their cluster means [this is scaling
method 2 in Rabe-Hesketh and Skrondal (2006)].

. egen mnw = mean(w_fstuwt), by(id_school)

. generate wt1 = w_fstuwt/mnw

b. Rename the level-2 weights and rescaled level-1 weights to wt2 and wt1, respectively.

. rename wnrschbw wt2

c. Run the gllamm command from step 2 above with the additional option pweight(wt)

(Only the stub of the weight variables is specified; gllamm will look for the level-1 weights
under wt1 and the level-2 weights under wt2.) Use the estimates from step 2 as starting
values.

. matrix a=e(b)

. gllamm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) from(a)
> pweight(wt) adapt

number of level 1 units = 2069
number of level 2 units = 148

Condition Number = 634.97035

gllamm model

log likelihood = -197964.36

Robust standard errors

pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .6218816 .1540693 4.04 0.000 .3199114 .9238518
isei .0182009 .0048055 3.79 0.000 .0087824 .0276194

mn_isei .0682412 .0164297 4.15 0.000 .0360395 .1004429
high_school .1019586 .4766681 0.21 0.831 -.8322938 1.036211

college .4528054 .5050717 0.90 0.370 -.537117 1.442728
test_lang .6245943 .3825914 1.63 0.103 -.125271 1.37446

one_for -.1086344 .2740453 -0.40 0.692 -.6457533 .4284845
both_for -.2811828 .3265269 -0.86 0.389 -.9211638 .3587982

_cons -5.875254 .95455 -6.15 0.000 -7.746138 -4.004371

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id_school)

var(1): .29620737 (.12431098)
------------------------------------------------------------------------------
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d. Compare the estimates with those from step 2. Robust standard errors are computed by
gllamm because model-based standard errors are not appropriate with survey weights.

Some of the estimates are quite different, especially the coefficients of high school and
college.
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11.7 Recovery after surgery data

1. Reshape the data to long form, stacking the recovery scores at the four occasions into a
single variable and generating an identifier, occ, for the four occasions. (You can specify
several variables in the i() option of the reshape command if one variable does not uniquely
identify the individuals.) Recode the recovery score to four categories (to simplify some of the
commands below), by merging {0,1}, {2,3}, and {4,5} and calling the new categories 1, 2, 3,
and 4.

. use recovery, clear

. reshape long score, i(id dosage) j(occ)
(note: j = 1 2 3 4)

Data wide -> long

Number of obs. 60 -> 240
Number of variables 8 -> 6
j variable (4 values) -> occ
xij variables:

score1 score2 ... score4 -> score

Before we forget, let us construct a unique person identifier

. egen id2 = group(id dosage)

Now recode the response variable:

. recode score 0/1=1 2/3=2 4/5=3 6=4
(score: 164 changes made)

2. Construct a variable, time, taking the values 0, 5, 15, and 30 at the four occasions. Fit a
random-intercept proportional odds model model with dummy variables for the dosage groups,
age, duration, and time as covariates. (Make sure there are 60 level-2 clusters.)

. recode occ 1=0 2=5 3=15 4=30, generate(time)
(240 differences between occ and time)

. tabulate dosage, generate(dose)

dosage Freq. Percent Cum.

15 60 25.00 25.00
20 60 25.00 50.00
25 60 25.00 75.00
30 60 25.00 100.00

Total 240 100.00

(Continued on next page)
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. gllamm score dose2 dose3 dose4 age duration time, i(id2)
> link(ologit) adapt

number of level 1 units = 240
number of level 2 units = 60

Condition Number = 722.4517

gllamm model

log likelihood = -221.61016

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

score
dose2 -.2008751 1.485427 -0.14 0.892 -3.112259 2.710509
dose3 -1.225982 1.430519 -0.86 0.391 -4.029748 1.577785
dose4 -1.801015 1.450042 -1.24 0.214 -4.643045 1.041015

age -.0518457 .0345485 -1.50 0.133 -.1195595 .0158681
duration -.022422 .0143755 -1.56 0.119 -.0505975 .0057536

time .2352171 .0267231 8.80 0.000 .1828408 .2875934

_cut11
_cons -4.030454 2.091063 -1.93 0.054 -8.128863 .0679542

_cut12
_cons -1.255637 2.062151 -0.61 0.543 -5.297379 2.786105

_cut13
_cons 1.449118 2.062102 0.70 0.482 -2.592527 5.490763

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id2)

var(1): 13.396126 (4.1176567)
------------------------------------------------------------------------------

3. Compare the model from step 2 with a model including dosage as a continuous covariate
instead of the dummy variables for dosage groups, using a likelihood ratio test at the 5%
significance level.

. estimates store model1
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. gllamm score dosage age duration time, i(id2) link(ologit) adapt

number of level 1 units = 240
number of level 2 units = 60

Condition Number = 932.73796

gllamm model

log likelihood = -221.66103

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

score
dosage -.1277787 .0920357 -1.39 0.165 -.3081654 .0526079

age -.0553655 .0326618 -1.70 0.090 -.1193814 .0086505
duration -.022134 .0142646 -1.55 0.121 -.050092 .0058241

time .2350984 .0267134 8.80 0.000 .182741 .2874558

_cut11
_cons -6.208584 2.80452 -2.21 0.027 -11.70534 -.711825

_cut12
_cons -3.434832 2.759577 -1.24 0.213 -8.843504 1.97384

_cut13
_cons -.7321253 2.734417 -0.27 0.789 -6.091483 4.627233

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id2)

var(1): 13.38398 (4.1172343)
------------------------------------------------------------------------------

. estimates store model2

. lrtest model1 .

Likelihood-ratio test LR chi2(2) = 0.10
(Assumption: model2 nested in model1) Prob > chi2 = 0.9504

Linearity of the log-odds for the covariate dosage is not rejected at the 5% level (L = 0.10, df
= 2, p = 0.95).

4. Extend the model chosen in step 3 to include an interaction between dosage and time. Test
the interaction using a Wald test at the 5% level of significance.

. matrix a=e(b)

. generate dosage_time = dosage*time
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. gllamm score dosage age duration time dosage_time, i(id2) link(ologit)
> adapt from(a)

number of level 1 units = 240
number of level 2 units = 60

Condition Number = 7708.0541

gllamm model

log likelihood = -221.48703

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

score
dosage -.1502809 .1007209 -1.49 0.136 -.3476902 .0471284

age -.0551556 .0329607 -1.67 0.094 -.1197574 .0094461
duration -.0223082 .0143929 -1.55 0.121 -.0505177 .0059014

time .1985694 .0669927 2.96 0.003 .067266 .3298727
dosage_time .0016908 .0028821 0.59 0.557 -.003958 .0073396

_cut11
_cons -6.698538 2.956525 -2.27 0.023 -12.49322 -.9038561

_cut12
_cons -3.919558 2.909429 -1.35 0.178 -9.621934 1.782817

_cut13
_cons -1.201271 2.876031 -0.42 0.676 -6.838188 4.435646

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id2)

var(1): 13.649205 (4.2281563)
------------------------------------------------------------------------------

The dosage by time interaction is not significant at the 5% level (z = 0.59, p = 0.56).

(Continued on next page)
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5. For the model selected in step 4, interpret the estimated odds ratios and random-intercept
variance.

. estimates restore model2

. gllamm, eform

number of level 1 units = 240
number of level 2 units = 60

Condition Number = 932.73796

gllamm model

log likelihood = -221.66103

score exp(b) Std. Err. z P>|z| [95% Conf. Interval]

score
dosage .8800481 .0809958 -1.39 0.165 .7347938 1.054016

age .9461393 .0309026 -1.70 0.090 .8874693 1.008688
duration .9781092 .0139523 -1.55 0.121 .9511419 1.005841

time 1.265033 .0337934 8.80 0.000 1.200503 1.333032

_cut11
_cons -6.208584 2.80452 -2.21 0.027 -11.70534 -.711825

_cut12
_cons -3.434832 2.759577 -1.24 0.213 -8.843504 1.97384

_cut13
_cons -.7321253 2.734417 -0.27 0.789 -6.091483 4.627233

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id2)

var(1): 13.38398 (4.1172343)
------------------------------------------------------------------------------

Each extra gram of anesthetic per kilogram of weight is associated with an estimated 12%
reduction in the odds of having a recovery score above a given cut-point, after controlling for
covariates. This translates to a 72% (−72 = 100(0.880048110 − 1)) reduction in the odds for
a 10grams/kilogram increase. Each extra month of age is associated with an estimated 5%
decrease in the odds of a high recovery score after controlling for the other covariates. For a one-
year increase in age, the odds are estimated to decrease by 49% (−49 = 100(0.946139312− 1)).
Each extra minute of surgery reduces the estimated odds of a high recovery score by 2%,
corresponding to a 35% decrease (−35 = 100(0.978109220 − 1)) every 20 minutes. Finally,
the estimated odds of a high recovery score increase over time after admission to the recovery
room, by 27% per minute, after controlling for the other covariates.

The estimated random-intercept variance is large, giving an estimated residual intraclass cor-
relation of the latent responses of 0.80 (= 13.38398/(13.38398+ π2/3)).
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6. � Extend the model selected in step 4 by relaxing the proportional odds assumption for
dosage (see section 11.2 on using the thresh() option in gllamm to relax proportional odds).
Test whether the odds are proportional using a likelihood ratio test.

. eq thr: dosage

. matrix a=e(b)

. gllamm score age duration time, i(id2)
> link(ologit) thresh(thr) from(a) skip adapt

number of level 1 units = 240
number of level 2 units = 60

Condition Number = 920.15769

gllamm model

log likelihood = -217.92407

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

score
age -.059168 .0332891 -1.78 0.076 -.1244134 .0060774

duration -.0221955 .0144873 -1.53 0.126 -.05059 .0061991
time .2428607 .028066 8.65 0.000 .1878523 .2978691

_cut11
dosage .1970775 .1005708 1.96 0.050 -.0000376 .3941926
_cons -7.890397 3.004708 -2.63 0.009 -13.77952 -2.001279

_cut12
dosage .0501135 .0972566 0.52 0.606 -.140506 .240733
_cons -1.731605 2.866093 -0.60 0.546 -7.349045 3.885835

_cut13
dosage .13174 .1013879 1.30 0.194 -.0669768 .3304567
_cons -.7971798 2.892524 -0.28 0.783 -6.466422 4.872063

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id2)

var(1): 13.833558 (4.3011138)
------------------------------------------------------------------------------

. estimates store model3

. lrtest model2 model3

Likelihood-ratio test LR chi2(2) = 7.47
(Assumption: model2 nested in model3) Prob > chi2 = 0.0238

We reject the proportional odds assumption for dosage group at the 5% level (L = 7.47, df
= 2, p = 0.02).
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7. For age equal to 37 months, duration equal to 80 minutes, and time in recovery room equal to
15 minutes, produce a graph of predicted marginal probabilities similar to figure 11.13 for the
model selected in step 6 or for the model selected in step 4. Also produce a stacked bar chart,
treating dosage group as categorical.

First we set the explanatory variables equal to the required values and restore the estimates
for model 2:

. replace age=37
(232 real changes made)

. replace duration=80
(240 real changes made)

. replace time=15
(180 real changes made)

. estimates restore model2

Now we can predict the marginal probabilities using gllamm

. gllapred pr1, marg mu above(1) fsample
(mu will be stored in pr1)

. gllapred pr2, marg mu above(2) fsample
(mu will be stored in pr2)

. gllapred pr3, marg mu above(3) fsample

For the figure resembling figure 11.12, we need the cumulative probabilities that y is anything
from 1 up to category s, for s = 1, 2, 3, 4

. generate pr12 = 1-pr2

. generate pr123 = 1-pr3

. generate pr1234 = 1

. twoway (area pr1 dosage, sort fintensity(inten10))
> (rarea pr12 pr1 dosage, sort fintensity(inten50))
> (rarea pr123 pr12 dosage, sort fintensity(inten70))
> (rarea pr1234 pr123 dosage, sort fintensity(inten90)),
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
> xtitle("dosage")

The graphs are given in figure 2 for models 2 and 3 (for model 3, run all the above commands
after restoring model 3).

Note that the boundaries on the graph are not exactly parallel when the proportional odds
assumption is made, but the logit transformation of the boundaries is.

For the bar chart, we need the probabilities that y equals each of the categories

. generate pr1is = 1-pr1

. generate pr2is = pr1 - pr2

. generate pr3is = pr2 - pr3

. generate pr4is = pr3

. graph bar (mean) pr1is pr2is pr3is pr4is, over(dosage) stack
> legend(order(1 "Pr(1)" 2 "Pr(1)" 3 "Pr(1)" 4 "Pr(1)"))

The graphs are given in figure 3 for models 2 and 3 (for model 3, run all the above commands
after restoring model 3).
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Figure 2: Area graphs of predicted marginal probabilities versus dosage groups, when age is 37
months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is proportional
odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)
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Figure 3: Stacked bar chart of predicted marginal probabilities for the dosage groups, when age
is 37 months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is
proportional odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)
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12.4 British election data

1. Create a variable, chosen, equal to 1 for the party voted for (rank equal to 1) and 0 for the
other parties.

. use elections, clear

. generate chosen = rank == 1

2. Standardize lrdist and inflation to have mean 0 and variance 1. Produce all the dummy
variables and interactions necessary to fit a conditional logistic regression model (using clogit)
for chosen, with the following covariates: the standardized versions of lrdist and inflation,
and the dummy varibles yr87, yr92, male, and manual. All variables except the standardized
version of lrdist should have party-specific coefficients.

. egen inflat = std(inflation)

. egen dist = std(rldist)

. tabulate party, generate(p)

party Freq. Percent Cum.

1 2,458 33.33 33.33
2 2,458 33.33 66.67
3 2,458 33.33 100.00

Total 7,374 100.00

. rename p1 cons

. rename p2 lab

. rename p3 lib

. foreach var of varlist male inflat manual yr87 yr92 {
2. generate lab_‘var’ = lab*‘var’
3. generate lib_‘var’ = lib*‘var’
4. }

3. Fit the model using clogit and gllamm, using Conservatives as the base outcome.

. clogit chosen dist lab_* lib_* , group(occ)

Conditional (fixed-effects) logistic regression Number of obs = 7374
LR chi2(11) = 1434.69
Prob > chi2 = 0.0000

Log likelihood = -1983.0429 Pseudo R2 = 0.2656

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -1.134582 .0463711 -24.47 0.000 -1.225468 -1.043696
lab_male -.7170468 .1247135 -5.75 0.000 -.9614808 -.4726129

lab_inflat .40281 .0665768 6.05 0.000 .2723219 .533298
lab_manual .5855308 .1298537 4.51 0.000 .3310223 .8400393
lab_yr87 -.9940042 .1434858 -6.93 0.000 -1.275231 -.7127771
lab_yr92 -.9786174 .1346003 -7.27 0.000 -1.242429 -.7148056
lib_male -.6562548 .1194879 -5.49 0.000 -.8904468 -.4220627

lib_inflat .3102374 .0623362 4.98 0.000 .1880607 .4324142
lib_manual -.1422657 .1191864 -1.19 0.233 -.3758667 .0913353
lib_yr87 -.785426 .1258898 -6.24 0.000 -1.032166 -.5386865
lib_yr92 -1.068714 .1228379 -8.70 0.000 -1.309472 -.8279564
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. gllamm party dist lab_* lib_*, nocons i(occ) link(mlogit)
> expanded(occ chosen o) init

number of level 1 units = 7374

Condition Number = 7.2688994

gllamm model

log likelihood = -1983.0429

party Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -1.134582 .0463711 -24.47 0.000 -1.225468 -1.043696
lab_male -.7170468 .1247135 -5.75 0.000 -.9614807 -.4726128

lab_inflat .40281 .0665768 6.05 0.000 .272322 .5332981
lab_manual .585531 .1298537 4.51 0.000 .3310225 .8400395
lab_yr87 -.9940045 .1434858 -6.93 0.000 -1.275232 -.7127774
lab_yr92 -.9786177 .1346003 -7.27 0.000 -1.24243 -.7148059
lib_male -.6562546 .1194879 -5.49 0.000 -.8904466 -.4220626

lib_inflat .3102375 .0623362 4.98 0.000 .1880608 .4324142
lib_manual -.1422654 .1191864 -1.19 0.233 -.3758663 .0913356
lib_yr87 -.7854264 .1258898 -6.24 0.000 -1.032166 -.5386869
lib_yr92 -1.068715 .1228379 -8.70 0.000 -1.309473 -.8279569

4. Extend the model to include a person-level random slope for lrdist, and fit the extended
model in gllamm.

. eq slope: dist

. gllamm party dist lab_* lib_*, nocons i(serialno) eqs(slope)
> link(mlogit) expanded(occ chosen o) adapt

number of level 1 units = 7374
number of level 2 units = 1344

Condition Number = 8.1833746

gllamm model

log likelihood = -1940.6814

party Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -1.668452 .0940924 -17.73 0.000 -1.85287 -1.484034
lab_male -.8026911 .1458909 -5.50 0.000 -1.088632 -.5167502

lab_inflat .4823476 .0791058 6.10 0.000 .3273031 .6373922
lab_manual .6978195 .1536384 4.54 0.000 .3966939 .9989452
lab_yr87 -1.088198 .1658249 -6.56 0.000 -1.413209 -.763187
lab_yr92 -1.11707 .1563765 -7.14 0.000 -1.423562 -.8105775
lib_male -.720465 .1354692 -5.32 0.000 -.9859797 -.4549503

lib_inflat .3920127 .0718925 5.45 0.000 .251106 .5329194
lib_manual -.0866056 .136415 -0.63 0.526 -.3539742 .180763
lib_yr87 -.8391223 .1426198 -5.88 0.000 -1.118652 -.5595927
lib_yr92 -1.177754 .1386755 -8.49 0.000 -1.449553 -.9059552

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (serialno)

var(1): 1.0384731 (.19574625)
------------------------------------------------------------------------------
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5. Write down the model and interpret the estimates.

The following model is specified for the conditional probability that party s is chosen by
respondent j at occasion i, given the covariates and the random coefficient ζ2j for lrdist:

Pr(yij=s|x[s]2ij ,xij , ζ2j)

=
exp

{
(β2+ζ2j)x

[s]
2ij + β

[s]
3 x3j + β

[s]
4 x4ij + β

[s]
5 x5j + β

[s]
6 x6i + β

[s]
7 x7i

}

∑3
c=1 exp

{
(β2+ζ2j)x

[c]
2ij + β

[c]
3 x3j + β

[c]
4 x4ij + β

[c]
5 x5j + β

[c]
6 x6i + β

[c]
7 x7i

}

Here x
[s]
2ij represents lrdist for party s, x3j represents male, x4ij represents inflation, x5j

represents manual, x6i represents yr87, and x7i represents yr92. It is assumed that the random
coefficient ζ2j has a normal distribution with zero mean and variance ψ, and that the covariates
are independent of the random coefficient.

We now turn to the interpretation of the estimates. Controlling for the other covariates,
the conditional or respondent-specific odds of choosing a party decreases by 81% (-81% =
100% × exp(−1.668452) − 1) as the distance between the party and the respondent on the
left-right political dimension increases by one unit. The variance of the respondent-specific
effects β2+ζ2j is estimated as 1.0384731 so a 95% range of the odds ratio is (exp(−1.668452−
1.96

√
1.0384731, exp(−1.668452− 1.96

√
1.0384731) = (0.03, 1.39).

The following interpretations are all in terms of conditional odds with Conservatives as base-
category and given the other covariates.

We first consider the odds of choosing Labour. The odds of choosing Labour in 1987 is
estimated as 0.34=exp(−1.088198) when all covariates are zero. The odds of choosing Labour
in 1992 is estimated as 0.33=exp(−1.11707) when all covariates are zero. The odds of choosing
Labour is estimated as 55% (-55% = 100% (exp(−0.8026911)− 1)) lower for males than for
females. The odds of choosing Labour is estimated as 62% (62% = 100% (exp(0.4823476)−1))
higher when the perceived inflation rating increases by one unit (which might be explained by
the fact that Conservatives were the incumbents). The odds of choosing Labour is estimated as
100% (100% = 100% (exp(0.6978195)− 1)) higher for respondents whose father was a manual
worker compared to the father not being a manual worker.

We then consider the odds of choosing Liberals. The odds of choosing Liberals in 1987 is
estimated as 0.43=exp(−0.8391223) when all covariates are zero. The odds of choosing Liberals
in 1992 is estimated as 0.31=exp(−1.177754) when all covariates are zero. The odds of choosing
Liberals is estimated as 51% (-51% = 100% (exp(−0.720465)− 1)) lower for males than for
females. The odds of choosing Liberals is estimated as 34% (34% = 100% (exp(0.2920127)−1))
higher when the perceived inflation rating increases by one unit (which might be explained by
the fact that Conservatives were the incumbents). The odds of choosing Liberals is estimated
as 8% (-8% = 100% (exp(−0.0866056)− 1)) lower for respondents whose father was a manual
worker compared to the father not being a manual worker.

(Continued on next page)
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6. Instead of including a random slope for lrdist, include correlated person-level random inter-
cepts for Labour and Liberal. Use the options ip(m) and nip(15) to use degree-15 spherical
quadrature. This problem will take quite a long time to run.

. gllamm party dist lab_* lib_*, nocons i(serialno) nrf(2) eqs(lab lib)
> link(mlogit) expanded(occ chosen o) ip(m) nip(15) trace adapt

number of level 1 units = 7374
number of level 2 units = 1344

Condition Number = 10.914979

gllamm model

log likelihood = -1789.9395

party Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -2.040746 .132729 -15.38 0.000 -2.30089 -1.780602
lab_male -1.223027 .3104283 -3.94 0.000 -1.831455 -.6145988

lab_inflat .7402028 .1378139 5.37 0.000 .4700924 1.010313
lab_manual 1.439134 .3339982 4.31 0.000 .7845092 2.093758
lab_yr87 -1.969602 .354374 -5.56 0.000 -2.664163 -1.275042
lab_yr92 -1.821407 .3324202 -5.48 0.000 -2.472938 -1.169875
lib_male -1.108516 .3069595 -3.61 0.000 -1.710146 -.5068865

lib_inflat .6237005 .13012 4.79 0.000 .36867 .8787311
lib_manual .0918619 .3194567 0.29 0.774 -.5342618 .7179856
lib_yr87 -1.58963 .3265276 -4.87 0.000 -2.229612 -.9496478
lib_yr92 -2.054298 .329796 -6.23 0.000 -2.700687 -1.40791

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (serialno)

var(1): 12.496053 (2.2906096)
cov(2,1): 9.8049199 (1.8391321) cor(2,1): .77256248

var(2): 12.889854 (1.9735669)
------------------------------------------------------------------------------
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13.1 Epileptic-fit data

1. Model II in Breslow and Clayton is a log-linear (Poisson regression) model with covariates lbas,
treat, lbas trt, lage, and v4, and a normally distributed random intercept for subjects. Fit
this model using gllamm.

. use epilep, clear

. gllamm y lbas treat lbas_trt lage v4, i(subj) link(log) family(poisson) adapt

number of level 1 units = 236
number of level 2 units = 59

Condition Number = 9.3178452

gllamm model

log likelihood = -665.29073

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .8844373 .1312305 6.74 0.000 .6272302 1.141644
treat -.933037 .4008289 -2.33 0.020 -1.718647 -.1474268

lbas_trt .3382596 .2033363 1.66 0.096 -.0602722 .7367914
lage .4842389 .3472751 1.39 0.163 -.1964078 1.164886

v4 -.1610871 .0545758 -2.95 0.003 -.2680537 -.0541206
_cons 2.114294 .2197154 9.62 0.000 1.68366 2.544929

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): .25282428 (.05894094)
------------------------------------------------------------------------------

(Continued on next page)



24 Exercise 13.1

2. Breslow and Clayton also considered a random-coefficient model (Model IV) using the variable
visit instead of v4. The effect of visit zij varies randomly between subjects. The model
can be written as

log(μij) = β1 + β2x2j + · · ·+ β5x5j + β6zij + ζ1j + ζ2jzij

where the subject-specific random intercept ζ1j and slope ζ2j have a bivariate normal distri-
bution, given the covariates. Fit this model using gllamm.

. eq int: cons

. eq slope: visit

. gllamm y lbas treat lbas_trt lage visit, i(subj) link(log) family(poisson)
> nrf(2) eqs(int slope) ip(m) nip(15) adapt

number of level 1 units = 236
number of level 2 units = 59

Condition Number = 9.3163303

gllamm model

log likelihood = -655.681

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .8849772 .1312511 6.74 0.000 .6277298 1.142225
treat -.9286564 .4021601 -2.31 0.021 -1.716876 -.1404371

lbas_trt .3379746 .2044432 1.65 0.098 -.0627267 .7386759
lage .4767191 .3536189 1.35 0.178 -.2163612 1.169799
visit -.2664097 .1647101 -1.62 0.106 -.5892357 .0564162
_cons 2.09955 .2203692 9.53 0.000 1.667635 2.531466

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): .25149333 (.05878604)
cov(2,1): .00287153 (.08870133) cor(2,1): .00785428

var(2): .53148135 (.2293816)
------------------------------------------------------------------------------

3. Plot the posterior mean counts versus time for twelve patients in each treatment group.

. gllapred pred, mu
(mu will be stored in pred)

. sort treat subj

. by treat subj: generate f=_n==1

. by treat: generate id=sum(f)

. twoway line pred visit if id<13 & treat==0, by(id)

. twoway line pred visit if id<13 & treat==1, by(id)

The graphs are shown in figures 4 and 5.
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Figure 4: Posterior mean number of epileptic fits versus time for placebo group
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Figure 5: Posterior mean number of epileptic fits versus time for treatment group
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14.7 Cigarette data

1. Expand the data to person–period data.

. use cigarette, clear

. generate id=_n

. expand time
(1670 observations created)

. by id, sort: gen t = _n

. generate y=0

. by id (t), sort: replace y = event if _n==_N
(634 real changes made)

2. Estimate the discrete-time model that assumes the continuous-time hazards to be proportional.
Include cc, tv, and their interaction as explanatory variables and specify a random intercept
for classes. Use dummy variables for periods.

. tabulate t, generate(occ)

t Freq. Percent Cum.

1 1,556 48.23 48.23
2 1,082 33.54 81.77
3 588 18.23 100.00

Total 3,226 100.00

. xtset class
panel variable: class (unbalanced)

. xtcloglog y male cc tv cc_tv occ2 occ3

Random-effects complementary log-log model Number of obs = 3226
Group variable: class Number of groups = 134

Random effects u_i ~ Gaussian Obs per group: min = 3
avg = 24.1
max = 54

Wald chi2(6) = 12.09
Log likelihood = -1592.3537 Prob > chi2 = 0.0599

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

male .0594819 .0804729 0.74 0.460 -.0982421 .2172059
cc .1293571 .1216005 1.06 0.287 -.1089755 .3676896
tv .0914655 .122232 0.75 0.454 -.1481048 .3310357

cc_tv -.1605053 .1747717 -0.92 0.358 -.5030516 .1820409
occ2 .0462722 .0918315 0.50 0.614 -.1337142 .2262586
occ3 .3248201 .1042103 3.12 0.002 .1205717 .5290685
_cons -1.707058 .1068043 -15.98 0.000 -1.91639 -1.497725

/lnsig2u -3.357634 .8635395 -5.05014 -1.665128

sigma_u .1865946 .0805659 .0800527 .4349328
rho .0207278 .0175283 .0038807 .1031386

Likelihood-ratio test of rho=0: chibar2(01) = 1.76 Prob >= chibar2 = 0.092

(Continued on next page)
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3. Interpret the exponentials of the estimated regression coefficients.

. xtcloglog, eform

Random-effects complementary log-log model Number of obs = 3226
Group variable: class Number of groups = 134

Random effects u_i ~ Gaussian Obs per group: min = 3
avg = 24.1
max = 54

Wald chi2(6) = 12.09
Log likelihood = -1592.3537 Prob > chi2 = 0.0599

y exp(b) Std. Err. z P>|z| [95% Conf. Interval]

male 1.061287 .0854048 0.74 0.460 .9064294 1.2426
cc 1.138096 .1383931 1.06 0.287 .8967524 1.444394
tv 1.095779 .1339392 0.75 0.454 .8623408 1.392409

cc_tv .8517133 .1488554 -0.92 0.358 .6046826 1.199663
occ2 1.047359 .0961806 0.50 0.614 .87484 1.2539
occ3 1.383782 .1442043 3.12 0.002 1.128142 1.697351

/lnsig2u -3.357634 .8635395 -5.05014 -1.665128

sigma_u .1865946 .0805659 .0800527 .4349328
rho .0207278 .0175283 .0038807 .1031386

Likelihood-ratio test of rho=0: chibar2(01) = 1.76 Prob >= chibar2 = 0.092

At the 5% level of significance there is not sufficient evidence to conclude that the interventions
had any effects.

Specifically, for each intervention on its own (when the other intervention is not used), the
hazard ratio does not differ significantly from 1. When combined with the other intervention,
the hazard ratio for each intervention decreases by an estimated 15% (since the hazard ratio
for the interaction is 0.85).

The hazards of smoking are estimated as 38% greater in 9th grade than in 7th grade after
controlling for the other variables.

4. Obtain the estimated residual intraclass correlation of the latent responses.

This is given in the output under rho as 0.02. If you used gllamm to estimate the model, you
can calculate the estimated intraclass correlation using

. display .1865946^2/(.1865946^2+_pi^2/6)

.02072779

This is a very small correlation, and we also see from the last line of the xtcloglog output
that we cannot reject the null hypothesis (at the 5% level) that the true intraclass correlation
is 0.



MLMUS3 (Vol. II) – Rabe-Hesketh and Skrondal 29

15.4 Bladder cancer data

1. Wei, Lin, and Weissfeld (1989) specify a marginal Cox regression model based on total time
and semi-restricted risk sets, where the risk set for a kth event includes risk intervals for all
previous events (< k). They specify event-specific baseline hazards and allow the effects of
treat, number, and size to differ between events. Fit this model.

. use bladder, clear

. egen obs = group(enum id)

. stset stop, failure(event=1) id(obs)

id: obs
failure event: event == 1

obs. time interval: (stop[_n-1], stop]
exit on or before: failure

340 total obs.
0 exclusions

340 obs. remaining, representing
340 subjects
112 failures in single failure-per-subject data
8522 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0
last observed exit t = 59

. sort id enum

. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)

id enum start stop event _t0 _t _d _st

25. 7 1 0 18 0 0 18 0 1
26. 7 2 18 18 0 0 18 0 1
27. 7 3 18 18 0 0 18 0 1
28. 7 4 18 18 0 0 18 0 1

29. 8 1 0 5 1 0 5 1 1
30. 8 2 5 18 0 0 18 0 1
31. 8 3 18 18 0 0 18 0 1
32. 8 4 18 18 0 0 18 0 1

33. 9 1 0 12 1 0 12 1 1
34. 9 2 12 16 1 0 16 1 1
35. 9 3 16 18 0 0 18 0 1
36. 9 4 18 18 0 0 18 0 1

The model could be parameterized by having a coefficient for treat, number, and size, as well
as coefficients for interactions of each of these variables with dummy variables for the second,
third and fourth events. Instead, we will include interactions between dummy variables for
each event, including the first, and treat, number, and size. We must then omit “main
effects” for treat, number, and size:

(Continued on next page)
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. stcox ibn.enum#(c.treat c.number c.size), strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 340 Number of obs = 340
No. of failures = 112
Time at risk = 8522

Wald chi2(12) = 34.32
Log pseudolikelihood = -423.73286 Prob > chi2 = 0.0006

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

enum#c.treat
1 .5909733 .1874038 -1.66 0.097 .3174264 1.100253
2 .5313625 .1968685 -1.71 0.088 .2570531 1.098396
3 .4973349 .2103116 -1.65 0.099 .2171177 1.139207
4 .5297029 .2649767 -1.27 0.204 .1987149 1.411999

enum#
c.number

1 1.268937 .0952058 3.17 0.002 1.095409 1.469955
2 1.146744 .1012115 1.55 0.121 .9645825 1.363306
3 1.18947 .1264058 1.63 0.103 .9658189 1.464911
4 1.394411 .1621041 2.86 0.004 1.11029 1.751238

enum#c.size
1 1.072094 .0955849 0.78 0.435 .900206 1.276802
2 .9251941 .1106043 -0.65 0.515 .7319378 1.169477
3 .8074792 .1409972 -1.22 0.221 .5734553 1.137007
4 .8134582 .1585875 -1.06 0.290 .5551233 1.192013

Stratified by enum

2. Use testparm to test whether the coefficients of treat differ significantly between events (at
the 5% level) and similarly for number and size.

In order to use testparm, it is better to use the more standard way of including interactions,
where the dummy variable for event 1 is excluded and treat, number, and size are included:

(Continued on next page)
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. stcox i.enum#(c.treat c.number c.size) c.treat c.number c.size,
> strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 340 Number of obs = 340
No. of failures = 112
Time at risk = 8522

Wald chi2(12) = 34.32
Log pseudolikelihood = -423.73286 Prob > chi2 = 0.0006

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

enum#c.treat
2 .899131 .3020539 -0.32 0.752 .4654473 1.736903
3 .8415522 .337499 -0.43 0.667 .3834531 1.846928
4 .8963229 .4565585 -0.21 0.830 .3302854 2.432426

enum#
c.number

2 .9037042 .1068984 -0.86 0.392 .7167016 1.1395
3 .9373751 .11348 -0.53 0.593 .7393767 1.188396
4 1.098881 .1323528 0.78 0.434 .8678191 1.391464

enum#c.size
2 .8629789 .0990377 -1.28 0.199 .6891505 1.080653
3 .7531798 .1153141 -1.85 0.064 .5579266 1.016764
4 .7587567 .1442884 -1.45 0.147 .5226783 1.101465

treat .5909733 .1874038 -1.66 0.097 .3174264 1.100253
number 1.268937 .0952058 3.17 0.002 1.095409 1.469955
size 1.072094 .0955849 0.78 0.435 .900206 1.276802

Stratified by enum

. testparm enum#c.treat

( 1) 2.enum#c.treat = 0
( 2) 3.enum#c.treat = 0
( 3) 4.enum#c.treat = 0

chi2( 3) = 0.24
Prob > chi2 = 0.9715

. testparm enum#c.number

( 1) 2.enum#c.number = 0
( 2) 3.enum#c.number = 0
( 3) 4.enum#c.number = 0

chi2( 3) = 5.86
Prob > chi2 = 0.1186

. testparm enum#c.size

( 1) 2.enum#c.size = 0
( 2) 3.enum#c.size = 0
( 3) 4.enum#c.size = 0

chi2( 3) = 3.61
Prob > chi2 = 0.3065

None of the interactions are significant at the 5% level
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3. Fit the model by Wei, Lin, and Weissfeld (1989) but constraining all coefficients to be the
same across events.

. stcox treat number size, strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 340 Number of obs = 340
No. of failures = 112
Time at risk = 8522

Wald chi2(3) = 15.35
Log pseudolikelihood = -426.14683 Prob > chi2 = 0.0015

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .5572209 .1726125 -1.89 0.059 .3036319 1.022604
number 1.23404 .0827266 3.14 0.002 1.0821 1.407316
size .9496925 .0903613 -0.54 0.587 .788121 1.144388

Stratified by enum

4. In their model (2), Prentice, Williams, and Peterson (1981) use counting process risk intervals
with restricted risk sets and event-specific baseline hazards. Fit this model, assuming that
treat, number, and size have the same coefficients across events.

. stset stop, enter(start) failure(event=1) id(obs)

id: obs
failure event: event == 1

obs. time interval: (stop[_n-1], stop]
enter on or after: time start
exit on or before: failure

340 total obs.
162 obs. end on or before enter()

178 obs. remaining, representing
178 subjects
112 failures in single failure-per-subject data
2480 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0
last observed exit t = 59

. sort id enum

. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)

id enum start stop event _t0 _t _d _st

25. 7 1 0 18 0 0 18 0 1

29. 8 1 0 5 1 0 5 1 1
30. 8 2 5 18 0 5 18 0 1

33. 9 1 0 12 1 0 12 1 1
34. 9 2 12 16 1 12 16 1 1
35. 9 3 16 18 0 16 18 0 1
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. stcox treat number size, strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop
enter on or after: time start

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 178 Number of obs = 178
No. of failures = 112
Time at risk = 2480

Wald chi2(3) = 7.17
Log pseudolikelihood = -315.99082 Prob > chi2 = 0.0665

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .71642 .147584 -1.62 0.105 .4784299 1.072796
number 1.127065 .0582599 2.31 0.021 1.018472 1.247238
size .9915413 .0614766 -0.14 0.891 .8780828 1.11966

Stratified by enum

5. Andersen and Gill (1982) also use counting process risk intervals, but they use unrestricted
risk sets and assume that all events have a common baseline hazard function. Fit this model,
again assuming that treat, number, and size have the same coefficients across events.

. stcox c.treat c.number c.size, vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop
enter on or after: time start

id: obs

Cox regression -- Efron method for ties

No. of subjects = 178 Number of obs = 178
No. of failures = 112
Time at risk = 2480

Wald chi2(3) = 11.41
Log pseudolikelihood = -449.98064 Prob > chi2 = 0.0097

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .6283318 .1678506 -1.74 0.082 .3722217 1.06066
number 1.191199 .0755395 2.76 0.006 1.051976 1.348848
size .9572791 .0747412 -0.56 0.576 .821447 1.115572

(Continued on next page)
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6. In their model (3), Prentice, Williams, and Peterson (1981) use gap time with restricted risk
sets and event-specific baseline hazards. Fit this model, assuming that treat, number, and
size have the same coefficients across events.

. stset stop, origin(start) failure(event=1) id(obs)

id: obs
failure event: event == 1

obs. time interval: (stop[_n-1], stop]
exit on or before: failure

t for analysis: (time-origin)
origin: time start

340 total obs.
162 obs. end on or before enter()

178 obs. remaining, representing
178 subjects
112 failures in single failure-per-subject data
2480 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0
last observed exit t = 59

. sort id enum

. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)

id enum start stop event _t0 _t _d _st

25. 7 1 0 18 0 0 18 0 1

29. 8 1 0 5 1 0 5 1 1
30. 8 2 5 18 0 0 13 0 1

33. 9 1 0 12 1 0 12 1 1
34. 9 2 12 16 1 0 4 1 1
35. 9 3 16 18 0 0 2 0 1

. stcox treat number size, strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: (stop-origin)

origin: time start
id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 178 Number of obs = 178
No. of failures = 112
Time at risk = 2480

Wald chi2(3) = 11.70
Log pseudolikelihood = -358.96849 Prob > chi2 = 0.0085

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .7565365 .1640954 -1.29 0.198 .4945398 1.157333
number 1.17122 .0600157 3.08 0.002 1.059305 1.294958
size 1.007443 .065196 0.11 0.909 .8874327 1.143682

Stratified by enum

7. Compare and interpret the treatment effect estimates from steps 3 to 6.

The estimated hazard ratios are 0.56 for total time semi-restricted, 0.72 for counting process,
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restricted, 0.63 for counting process unrestricted, and 0.76 for gap times, restricted. Only the
total time semi-restricted estimate is nearly significant at the 5% level. The estimates can
be interpreted as a 54% reduction in the hazard (largest effect size estimate) down to a 24%
reduction in the hazard (smallest effect size estimate), controlling for number and maximum
size of initial tumors.
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16.2 Tower-of-London data

1. Fit the two-level random-intercept model (random intercept for persons):

logit{Pr(yijk=1 | xijk, ζ
(2)
jk )} = β0 + β1xijk + β2g2ijk + β3g3ijk + ζ

(2)
jk

where g2ijk and g3ijk are dummy variables for groups 2 and 3, respectively, and ζ
(2)
jk ∼

N(0, ψ(2)) is independent of the covariates xijk. Here and throughout the exercise, level
is treated as continuous.

. use towerl, clear

. tabulate group, generate(g)

GROUP Freq. Percent Cum.

1 194 28.66 28.66
2 294 43.43 72.08
3 189 27.92 100.00

Total 677 100.00

. rename g2 relatives

. rename g3 schizo

. gllamm dtlm level relatives schizo, i(id) link(logit) family(binomial) adapt

number of level 1 units = 677
number of level 2 units = 226

Condition Number = 4.4746865

gllamm model

log likelihood = -305.95923

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

level -1.649218 .1934261 -8.53 0.000 -2.028326 -1.27011
relatives -.1691618 .3343253 -0.51 0.613 -.8244274 .4861037

schizo -1.023004 .393953 -2.60 0.009 -1.795137 -.2508701
_cons -1.48306 .2836532 -5.23 0.000 -2.03901 -.92711

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.6768915 (.66262435)
------------------------------------------------------------------------------

. estimates store mod0

The syntax for xtmelogit is

xtmelogit dtlm level relatives schizo || id:

The syntax for xtlogit is

xtset id
xtlogit dtlm level relatives schizo
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2. Fit the three-level random-intercept model (random intercepts for subjects and families):

logit{Pr(yijk=1 | xijk, ζ
(2)
jk , ζ

(3)
k )} = β0 + β1xijk + β2g2ijk + β3g3ijk + ζ

(2)
jk + ζ

(3)
k

where ζ
(2)
jk ∼ N(0, ψ(2)) is independent of ζ

(3)
k ∼ N(0, ψ(3)) and both random effects are

assumed independent of xijk.

. gllamm dtlm level relatives schizo, i(id famnum) link(logit) family(binomial) adapt

number of level 1 units = 677
number of level 2 units = 226
number of level 3 units = 118

Condition Number = 4.2143936

gllamm model

log likelihood = -305.12037

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

level -1.648477 .1932181 -8.53 0.000 -2.027177 -1.269776
relatives -.2487947 .3543655 -0.70 0.483 -.9433383 .4457489

schizo -1.052438 .3999452 -2.63 0.009 -1.836317 -.26856
_cons -1.48575 .2848124 -5.22 0.000 -2.043972 -.9275283

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.1370879 (.68588796)

***level 3 (famnum)

var(1): .5690352 (.52168443)
------------------------------------------------------------------------------

. estimates store mod1

Subjects with schizophrenia perform significantly worse than unrelated healthy control sub-
jects, whereas the healthy relatives of the subjects with schizophrenia do perform significantly
worse than unrelated healthy control subjects (at the 5% level). Performance declines as the
level of difficulty increases. There is more variability between subjects within families than
between families after controlling for covariates.

The syntax for xtmelogit is

xtmelogit dtlm level relatives schizo || famnum: || id:

3. Compare the models in steps 1 and 2 using a likelihood-ratio test, but retain the three-level
model even if the null hypothesis is not rejected at the 5% level.

. lrtest mod0 mod1

Likelihood-ratio test LR chi2(1) = 1.68
(Assumption: mod0 nested in mod1) Prob > chi2 = 0.1952

Since the random intercepts at the different levels are uncorrelated, we can divide the näıve
p-value by 2 (see display 8.1, page 397) to obtain the correct asymptotic p-value of 0.10.
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4. Include a group (controls, relatives, schizophrenics) by level of difficulty interaction in the
three-level model. Test the interaction using both a Wald test and a likelihood-ratio test.

. generate lev_rel = level*relatives

. generate lev_sch = level*schizo

. gllamm dtlm level relatives schizo lev_rel lev_sch,
> i(id famnum) link(logit) family(binomial) adapt
number of level 1 units = 677
number of level 2 units = 226
number of level 3 units = 118

Condition Number = 5.9640326

gllamm model

log likelihood = -301.8829

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

level -1.180727 .2643959 -4.47 0.000 -1.698933 -.6625202
relatives -.4365425 .3705992 -1.18 0.239 -1.162904 .2898186

schizo -1.611176 .5116238 -3.15 0.002 -2.61394 -.6084113
lev_rel -.6126168 .3528075 -1.74 0.082 -1.304107 .0788733
lev_sch -1.176511 .5209349 -2.26 0.024 -2.197525 -.1554972
_cons -1.356816 .2797885 -4.85 0.000 -1.905192 -.8084408

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.2092826 (.69676348)

***level 3 (famnum)

var(1): .53767723 (.48595677)
------------------------------------------------------------------------------

We obtain a Wald test by using testparm

. testparm lev_rel lev_sch

( 1) [dtlm]lev_rel = 0
( 2) [dtlm]lev_sch = 0

chi2( 2) = 6.08
Prob > chi2 = 0.0478

The interaction is significant at the 5% level according to the Wald test (w = 6.09, df = 2,
p = 0.048). The corresponding likelihood-ratio test can be obtained using lrtest

. lrtest mod1 .

Likelihood-ratio test LR chi2(2) = 6.47
(Assumption: mod1 nested in .) Prob > chi2 = 0.0393

The likelihood-ratio statistic is 6.47 with two degrees of freedom, giving a p-value of 0.04.

For schizophrenics, performance declines faster with increasing level of difficulty than for con-
trols (z = −2.26, p = 0.024).
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5. For the model in step 4, obtain predicted marginal or population-averaged probabilities using
gllapred. (This requires fitting the model in gllamm.) Plot the probabilities against the levels
of difficulty with different curves for the three groups.

. gllapred prob, mu marg
(mu will be stored in prob)

. twoway (line prob level if group==1, sort)
> (line prob level if group==2, sort lpatt(longdash))
> (line prob level if group==3, sort lpatt(shortdash)),
> xtitle(Level of difficulty) ytitle(Probability)
> legend(order(1 "Controls" 2 "Relatives" 3 "Schizophrenics") row(1))
> xlabel(-1 "Low" 0 "Medium" 1 "High")
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Figure 6: Predicted marginal probabilities as a function of level of difficulty for the three groups.


