Solutions to selected exercises

Rabe-Hesketh, S. and Skrondal, A. (2012). Multilevel and Longitudinal Modeling Using Stata (3rd Edition). College Station, TX: Stata Press.

Volume II: Categorical Responses, Counts, and Survival

Contents

10.3	Vaginal-bleeding data	. 1
10.8	PISA data	. 5
11.7	Recovery after surgery data	11
12.4	British election data	19
13.1	Epileptic-fit data	23
14.7	Cigarette data	27
15.4	Bladder cancer data	29
16.2	Tower-of-London data	37

Disclaimer

We have solved the exercises as well as we could but there may be better solutions and we may have made mistakes. We are grateful for any suggestions for improvement.

Please also check the errata at http://www.stata.com/bookstore/mlmus3.html for any errors in the wording of the exercises themselves.

10.3 Vaginal-bleeding data

1. Produce an identifier variable for women, and reshape the data to long form, stacking the responses y1-y4 into one variable and creating a new variable, occasion, taking the values 1-4 for each woman.

```
. use amenorrhea, clear
. generate id = _n
. reshape long y, i(id) j(occasion)
(note: j = 1 2 3 4)
Data
                                    wide
                                           ->
                                                long
Number of obs.
                                           ->
                                                  228
                                      57
Number of variables
                                      7
                                           ->
                                                    5
j variable (4 values)
                                           ->
                                                occasion
xij variables:
                           y1 y2 ... y4 ->
                                                у
```

2. Fit the following model considered by Fitzmaurice, Laird, and Ware (2011):

$$logit\{Pr(y_{ij} = 1 | x_j, t_{ij}, \zeta_j)\} = \beta_1 + \beta_2 t_{ij} + \beta_3 t_{ij}^2 + \beta_4 x_j t_{ij} + \beta_5 x_j t_{ij}^2 + \zeta_j$$

where $t_{ij} = 1, 2, 3, 4$ is the time interval and x_j is dose. It is assumed that $\zeta_j \sim N(0, \psi)$, and that ζ_j is independent across women and independent of x_j and t_{ij} . Use gllamm with the weight(wt) option to specify that wt2 are level-2 weights.

```
. generate time = occasion
. generate dose_time = dose*time
. generate time2 = time<sup>2</sup>
. generate dose_time2 = dose*time2
. gllamm y time time2 dose_time dose_time2, i(id) family(binomial) link(logit)
> weight(wt) adapt
number of level 1 units = 3616
number of level 2 units = 1151
Condition Number = 61.916104
gllamm model
log likelihood = -1934.6777
```

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
time	1.129487	.2681452	4.21	0.000	.603932	1.655042
time2	0414252	.0548016	-0.76	0.450	1488344	.065984
dose_time	.5646349	.1925201	2.93	0.003	.1873024	.9419674
dose_time2	1096827	.0496279	-2.21	0.027	2069516	0124137
cons	-3.796641	.3041371	-12.48	0.000	-4.392739	-3.200544

Variances and covariances of random effects

***level 2 (id)

var(1): 5.0152062 (.57035023)

3. Write down the above model, but with a random slope of t_{ij} and fit the model.

$$logit\{Pr(y_{ij} = 1 | x_j, t_{ij}, \zeta_j)\} = \beta_1 + \beta_2 t_{ij} + \beta_3 t_{ij}^2 + \beta_4 x_j t_{ij} + \beta_5 x_j t_{ij}^2 + \zeta_{1j} + \zeta_{2j} t_{ij},$$

where ζ_{1j} and ζ_{2j} are a random intercept and random slope of time, and are assumed to have a bivariate normal distribution with zero means, variances ψ_1 and ψ_2 and correlation ρ .

```
. generate one = 1
. eq inter: one
. eq slope: time
. gllamm y time time2 dose_time dose_time2, i(id)
> nrf(2) eqs(inter slope) f(binom) l(logit) weight(wt) adapt
number of level 1 units = 3616
number of level 2 units = 1151
```

Condition Number = 77.302239

gllamm model

log likelihood = -1927.1165

у	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
time	.8112482	.3460057	2.34	0.019	.1330896	1.489407
time2	.0184146	.0660331	0.28	0.780	1110078	.147837
dose_time	.5473806	.1973645	2.77	0.006	.1605533	.9342078
dose_time2	0987989	.0534429	-1.85	0.065	2035451	.0059473
_cons	-3.441387	.4534743	-7.59	0.000	-4.330181	-2.552594

```
Variances and covariances of random effects
```

```
***level 2 (id)
var(1): 4.6391244 (1.6963202)
cov(2,1): -.34099882 (.42322007) cor(2,1): -.22015592
var(2): .51714101 (.19987784)
```

4. Interpret the estimated coefficients.

The model assumes that there is no difference in the log-odds of amenorrhea between the groups at time 0 (baseline). In the low-dose group, the log-odds increase approximately by the same amount of 0.81 in each 3-month interval (since the estimated coefficient of time2 is small and nonsignificant), corresponding to an odds ratio of 2.3. The interaction between dose and time2 is not quite significant, so we could assume a linear relationship for both group by removing the terms dose_time2 and time2. However, keeping the terms in, the high-dose group initially has a larger slope than the low-dose group, and the slope decreases over time because time-squared has a negative coefficient (.0184 - .0988).

 $\mathbf{2}$

5. Plot marginal predicted probabilities as a function of time, separately for women in the two treatment groups.

```
. gllapred prob, mu marg
(mu will be stored in prob)
. sort dose id time
. twoway (line prob time if dose==0, sort) (line prob time if dose==1, sort),
> ytitle(Predicted marginal probability) xtitle(Time in 90 day intervals)
> legend(order(1 "Low dose" 2 "High dose"))
```

The graph is shown in figure 1.

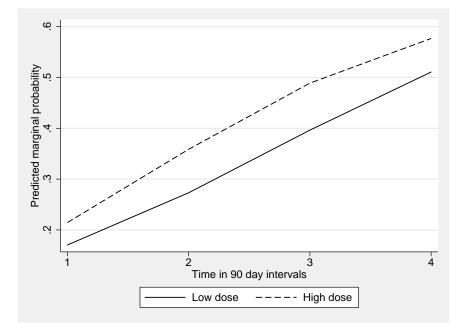


Figure 1: Predicted marginal probabilities over time by dose level

Exercise 10.3

10.8 PISA data

1. Fit a logistic regression model with pass_read as the response variable and the variables female to both_for above as covariates and with a random intercept for schools using gllamm. (Use the default eight quadrature points.)

```
. use pisaUSA2000, clear
. gllamm pass_read female isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) adapt
number of level 1 units = 2069
number of level 2 units = 148
Condition Number = 335.04344
gllamm model
log likelihood = -1252.8108
```

pass_read	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
female isei high_school college test_lang one_for both_for	.5422157 .0206763 .4447949 .7968813 .7825116 .0112568 .1507844	.1031921 .003284 .2565116 .2550522 .2834802 .2244283 .2376408	5.25 6.30 1.73 3.12 2.76 0.05 0.63	0.000 0.000 0.083 0.002 0.006 0.960 0.526	.3399629 .0142397 0579587 .2969882 .2269005 4286147 314983	.7444685 .0271129 .9475484 1.296774 1.338123 .4511283 .6165517
_cons	-3.279322	.3811213	-8.60	0.000	-4.026306	-2.532339

```
Variances and covariances of random effects
```

```
***level 2 (id_school)
```

```
var(1): .51343023 (.12840606)
```

2. Fit the model from step 1 with the school mean of isei as an additional covariate. (Use the estimates from step 1 as starting values.)

```
. egen mn_isei = mean(isei), by(id_school)
. matrix a=e(b)
```

```
. gllamm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) from(a) adapt
number of level 1 units = 2069
number of level 2 units = 148
Condition Number = 595.81116
gllamm model
log likelihood = -1225.4697
```

pass_read	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
female isei mn_isei	.5552102 .0143423 .0690721	.102912 .003335 .0092476	5.39 4.30 7.47	0.000 0.000 0.000	.3535063 .0078058 .0509472	.7569141 .0208787 .0871971
high_school	.3999544	.2561423	1.56	0.118	1020752	.901984
college	.720787	.254843	2.83	0.005	.2213039	1.22027
test_lang	.6951882	.2849895	2.44	0.015	.1366191	1.253757
one_for	0199179	.2239413	-0.09	0.929	4588347	.418999
both_for	.0986698	.2359626	0.42	0.676	3638083	.561148
_cons	-6.033619	.5387262	-11.20	0.000	-7.089502	-4.977735

Variances and covariances of random effects

***level 2 (id_school)

var(1): .27143215 (.08570122)

3. Interpret the estimated coefficients of isei and school mean isei and comment on the change in the other parameter estimates due to adding school mean isei.

Within a school, student's ISEI score has an estimated effect of 0.014 on the log-odds scale and between schools there is an additional effect of 0.069. Considering a 10-unit change in ISEI, the corresponding odds ratios are $1.15 (= \exp(0.14))$ and $2.00 (= \exp(0.69))$. Comparing two students from the same school, one of whom has ISEI 10 points higher than the other (with all other covariates being the same), the higher ISEI student has a 15% greater odds of passing the reading test. Comparing two students with the same ISEI score (and other covariate values) from schools that differ in their mean ISEI score by 10 units (but have the same random intercept), the student from the higher mean ISEI school has twice the odds of passing the reading test as the other student.

The estimated random intercept variance has nearly halved due to adding school mean ISEI. The estimates of the effects of parent's education on test language spoken at home have decreased a little.

4. From the estimates in step 2, obtain an estimate of the between-school effect of socioeconomic status.

The total between-school effect on the log-odds scale is the sum of the coefficient of isei and mn_isei, giving 0.083 (= 0.014 + 0.069).

 $\mathbf{6}$

5. Obtain robust standard errors using the command gllamm, robust, and compare them with the model-based standard errors.

```
. gllamm, robust
Non-adaptive log-likelihood: -1225.4744
-1225.4697 -1225.4697
number of level 1 units = 2069
number of level 2 units = 148
Condition Number = 595.81116
gllamm model
```

log likelihood = -1225.4697

Robust standard errors

pass_read	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
female	.5552102	.1024602	5.42	0.000	.3543919	.7560284
isei	.0143423	.0029873	4.80	0.000	.0084873	.0201972
mn_isei	.0690721	.0090417	7.64	0.000	.0513507	.0867935
high_school	.3999544	.2619124	1.53	0.127	1133844	.9132932
college	.720787	.2574594	2.80	0.005	.2161759	1.225398
test_lang	.6951882	.269443	2.58	0.010	.1670896	1.223287
one_for	0199179	.1998363	-0.10	0.921	4115898	.3717541
both_for	.0986698	.2452364	0.40	0.687	3819847	.5793244
_cons	-6.033619	.5471276	-11.03	0.000	-7.105969	-4.961268

Variances and covariances of random effects

```
***level 2 (id_school)
```

```
var(1): .27143215 (.08152135)
```

The robust and model-based standard errors are quite similar in this case.

(Continued on next page)

6. Add a random coefficient of isei, and compare the random-intercept and random-coefficient models using a likelihood ratio test. Use the estimates from step 2 (or step 5) as starting values, adding zeros for the two additional parameters as shown in section 11.7.2.

```
. estimates store ri
. generate one = 1
. eq inter: one
. eq slope: isei
. matrix a=e(b)
. matrix a = (a, 0, 0)
. gllamm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) adapt
> from(a) copy nrf(2) eqs(inter slope)
number of level 1 units = 2069
number of level 2 units = 148
Condition Number = 615.85825
```

gllamm model

log likelihood = -1225.1738

pass_read	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
female	.553834	.1028715	5.38	0.000	.3522096	.7554583
isei	.0147346	.0033942	4.34	0.000	.0080822	.021387
mn_isei	.0685597	.0092542	7.41	0.000	.0504219	.0866976
high_school	.4042809	.2573612	1.57	0.116	1001377	.9086994
college	.7320911	.2565077	2.85	0.004	.2293452	1.234837
test_lang	.69372	.2850084	2.43	0.015	.1351137	1.252326
one_for	0198951	.2240206	-0.09	0.929	4589673	.4191771
both_for	.0948089	.2357538	0.40	0.688	3672601	.5568779
_cons	-6.040813	.5397841	-11.19	0.000	-7.09877	-4.982855

```
Variances and covariances of random effects
```

```
***level 2 (id_school)
var(1): .45755695 (.29755562)
cov(2,1): -.00214805 (.00344746) cor(2,1): -1
var(2): .00001008 (.00002619)
```

We can already see that the random-slope variance estimate is close to zero and that the log likelihood has not changed much. The likelihood ratio test confirms that there is no evidence for a random slope:

(Assumption: ri nested in rc)	Prob > chi2 =	
Likelihood-ratio test	LR $chi2(2) =$	0.59
. lrtest ri rc		
. estimates store rc		

MLMUS3 (Vol. II) – Rabe-Hesketh and Skrondal

- 7. In this survey, schools were sampled with unequal probabilities $\pi_{i|j}$. and given that a school was sampled, students were sampled from the school with unequal probabilities $\pi_{i|j}$. The reciprocals of these probabilities are given as school- and student-level survey weights, wnrschbg $(w_j = 1/\pi_j)$ and w_fstuwt $(w_{i|j} = 1/\pi_{i|j})$, respectively. As discussed in Rabe-Hesketh and Skrondal (2006), incorporating survey weights in multilevel models using a so-called pseudolikelihood approach can lead to biased estimates, particularly if the level-1 weights $w_{i|j}$ are very different from 1 and if the cluster sizes are small. Neither of these issues arise here, so implement pseudo maximum likelihood estimation as follows:
 - a. Rescale the student-level weights by dividing them by their cluster means [this is scaling method 2 in Rabe-Hesketh and Skrondal (2006)].
 - . egen mnw = mean(w_fstuwt), by(id_school)
 - . generate wt1 = w_fstuwt/mnw
 - b. Rename the level-2 weights and rescaled level-1 weights to wt2 and wt1, respectively.
 - . rename wnrschbw wt2
 - c. Run the gllamm command from step 2 above with the additional option pweight(wt) (Only the stub of the weight variables is specified; gllamm will look for the level-1 weights under wt1 and the level-2 weights under wt2.) Use the estimates from step 2 as starting values.

```
. matrix a=e(b)
. gllamm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, i(id_school) link(logit) family(binomial) from(a)
> pweight(wt) adapt
number of level 1 units = 2069
number of level 2 units = 148
Condition Number = 634.97035
gllamm model
log likelihood = -197964.36
Robust standard errors
pass read Coef. Std. Err. z P>|z| [95% Conf. Int
```

pass_read	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
female isei mn_isei high_school college test_lang one_for both_for	.6218816 .0182009 .0682412 .1019586 .4528054 .6245943 1086344 2811828	.1540693 .0048055 .0164297 .4766681 .5050717 .3825914 .2740453 .3265269	4.04 3.79 4.15 0.21 0.90 1.63 -0.40 -0.86	0.000 0.000 0.831 0.370 0.103 0.692 0.389	.3199114 .0087824 .0360395 8322938 537117 125271 6457533 9211638	.9238518 .0276194 .1004429 1.036211 1.442728 1.37446 .4284845 .3587982
_cons	-5.875254	.95455	-6.15	0.000	-7.746138	-4.004371

Variances and covariances of random effects

***level 2 (id_school)

var(1): .29620737 (.12431098)

d. Compare the estimates with those from step 2. Robust standard errors are computed by gllamm because model-based standard errors are not appropriate with survey weights.

Some of the estimates are quite different, especially the coefficients of high_school and college.

11.7 Recovery after surgery data

1. Reshape the data to long form, stacking the recovery scores at the four occasions into a single variable and generating an identifier, occ, for the four occasions. (You can specify several variables in the i() option of the reshape command if one variable does not uniquely identify the individuals.) Recode the recovery score to four categories (to simplify some of the commands below), by merging {0,1}, {2,3}, and {4,5} and calling the new categories 1, 2, 3, and 4.

. use recovery, clear				
. reshape long score, (note: j = 1 2 3 4)	i(id dosage	e) j(occ)		
Data		wide	->	long
Number of obs.		60	->	240
Number of variables		8	->	6
j variable (4 values) xij variables:			->	occ
score1	score2	score4	->	score

Before we forget, let us construct a unique person identifier

. egen id2 = group(id dosage)

Now recode the response variable:

. recode score 0/1=1 2/3=2 4/5=3 6=4 (score: 164 changes made)

2. Construct a variable, time, taking the values 0, 5, 15, and 30 at the four occasions. Fit a random-intercept proportional odds model model with dummy variables for the dosage groups, age, duration, and time as covariates. (Make sure there are 60 level-2 clusters.)

(240 differences between occ and time)										
. tabulate do	. tabulate dosage, generate(dose)									
dosage	Freq.	Percent	Cum.							
15	60	25.00	25.00							
20	60	25.00	50.00							
25	60	25.00	75.00							
30	60	25.00	100.00							
Total	240	100.00								

recode occ 1=0 2=5 3=15 4=30, generate(time)

```
. gllamm score dose2 dose3 dose4 age duration time, i(id2)
> link(ologit) adapt
number of level 1 units = 240
number of level 2 units = 60
Condition Number = 722.4517
gllamm model
```

 \log likelihood = -221.61016

score	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
score						
dose2	2008751	1.485427	-0.14	0.892	-3.112259	2.710509
dose3	-1.225982	1.430519	-0.86	0.391	-4.029748	1.577785
dose4	-1.801015	1.450042	-1.24	0.214	-4.643045	1.041015
age	0518457	.0345485	-1.50	0.133	1195595	.0158681
duration	022422	.0143755	-1.56	0.119	0505975	.0057536
time	.2352171	.0267231	8.80	0.000	.1828408	.2875934
_cut11 _cons	-4.030454	2.091063	-1.93	0.054	-8.128863	.0679542
cut12						
_cons	-1.255637	2.062151	-0.61	0.543	-5.297379	2.786105
_cut13 _cons	1.449118	2.062102	0.70	0.482	-2.592527	5.490763

Variances and covariances of random effects

***level 2 (id2)

var(1): 13.396126 (4.1176567)

3. Compare the model from step 2 with a model including dosage as a continuous covariate instead of the dummy variables for dosage groups, using a likelihood ratio test at the 5% significance level.

. estimates store model1

. gllamm score dosage age duration time, i(id2) link(ologit) adapt

number of level 1 units = 240 number of level 2 units = 60

Condition Number = 932.73796

gllamm model

log likelihood = -221.66103

score	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
score						
dosage	1277787	.0920357	-1.39	0.165	3081654	.0526079
age	0553655	.0326618	-1.70	0.090	1193814	.0086505
duration	022134	.0142646	-1.55	0.121	050092	.0058241
time	.2350984	.0267134	8.80	0.000	.182741	.2874558
_cut11						
_cons	-6.208584	2.80452	-2.21	0.027	-11.70534	711825
_cut12						
_cons	-3.434832	2.759577	-1.24	0.213	-8.843504	1.97384
_cut13						
_cons	7321253	2.734417	-0.27	0.789	-6.091483	4.627233

Variances and covariances of random effects

```
***level 2 (id2)
```

var(1): 13.38398 (4.1172343) _____

. estimates store model2		
. lrtest model1 .		
Likelihood-ratio test	LR chi2(2) =	0.10
(Assumption: model2 nested in model1)	Prob > chi2 =	0.9504

Linearity of the log-odds for the covariate dosage is not rejected at the 5% level (L = 0.10, df = 2, p = 0.95).

4. Extend the model chosen in step 3 to include an interaction between dosage and time. Test the interaction using a Wald test at the 5% level of significance.

. matrix a=e(b) . generate dosage_time = dosage*time

```
. gllamm score dosage age duration time dosage_time, i(id2) link(ologit)
> adapt from(a)
number of level 1 units = 240
number of level 2 units = 60
Condition Number = 7708.0541
gllamm model
```

log likelihood = -221.48703

score	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
score						
dosage	1502809	.1007209	-1.49	0.136	3476902	.0471284
age	0551556	.0329607	-1.67	0.094	1197574	.0094461
duration	0223082	.0143929	-1.55	0.121	0505177	.0059014
time	.1985694	.0669927	2.96	0.003	.067266	.3298727
dosage_time	.0016908	.0028821	0.59	0.557	003958	.0073396
_cut11 _cons	-6.698538	2.956525	-2.27	0.023	-12.49322	9038561
_cut12						
_cons	-3.919558	2.909429	-1.35	0.178	-9.621934	1.782817
_cut13						
_cons	-1.201271	2.876031	-0.42	0.676	-6.838188	4.435646

Variances and covariances of random effects

***level 2 (id2)

var(1): 13.649205 (4.2281563)

The dosage by time interaction is not significant at the 5% level (z = 0.59, p = 0.56).

(Continued on next page)

5. For the model selected in step 4, interpret the estimated odds ratios and random-intercept variance.

```
. estimates restore model2
. gllamm, eform
number of level 1 units = 240
number of level 2 units = 60
Condition Number = 932.73796
```

gllamm model

log likelihood = -221.66103

score	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
score						
dosage	.8800481	.0809958	-1.39	0.165	.7347938	1.054016
age	.9461393	.0309026	-1.70	0.090	.8874693	1.008688
duration	.9781092	.0139523	-1.55	0.121	.9511419	1.005841
time	1.265033	.0337934	8.80	0.000	1.200503	1.333032
_cut11						
_cons	-6.208584	2.80452	-2.21	0.027	-11.70534	711825
_cut12						
_cons	-3.434832	2.759577	-1.24	0.213	-8.843504	1.97384
_cut13						
_cons	7321253	2.734417	-0.27	0.789	-6.091483	4.627233

Variances and covariances of random effects

***level 2 (id2)

var(1): 13.38398 (4.1172343)

Each extra gram of anesthetic per kilogram of weight is associated with an estimated 12% reduction in the odds of having a recovery score above a given cut-point, after controlling for covariates. This translates to a 72% ($-72 = 100(0.8800481^{10} - 1)$) reduction in the odds for a 10grams/kilogram increase. Each extra month of age is associated with an estimated 5% decrease in the odds of a high recovery score after controlling for the other covariates. For a one-year increase in age, the odds are estimated to decrease by 49% ($-49 = 100(0.9461393^{12} - 1)$). Each extra minute of surgery reduces the estimated odds of a high recovery score by 2%, corresponding to a 35% decrease ($-35 = 100(0.9781092^{20} - 1)$) every 20 minutes. Finally, the estimated odds of a high recovery score increase over time after admission to the recovery room, by 27% per minute, after controlling for the other covariates.

The estimated random-intercept variance is large, giving an estimated residual intraclass correlation of the latent responses of 0.80 (= $13.38398/(13.38398 + \pi^2/3)$).

```
. eq thr: dosage
. matrix a=e(b)
. gllamm score age duration time, i(id2)
> link(ologit) thresh(thr) from(a) skip adapt
number of level 1 units = 240
number of level 2 units = 60
```

Condition Number = 920.15769

gllamm model

 \log likelihood = -217.92407

score	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
score						
age	059168	.0332891	-1.78	0.076	1244134	.0060774
duration	0221955	.0144873	-1.53	0.126	05059	.0061991
time	.2428607	.028066	8.65	0.000	.1878523	.2978691
_cut11						
dosage	.1970775	.1005708	1.96	0.050	0000376	.3941926
_cons	-7.890397	3.004708	-2.63	0.009	-13.77952	-2.001279
_cut12						
dosage	.0501135	.0972566	0.52	0.606	140506	.240733
_cons	-1.731605	2.866093	-0.60	0.546	-7.349045	3.885835
_cut13						
dosage	.13174	.1013879	1.30	0.194	0669768	.3304567
_cons	7971798	2.892524	-0.28	0.783	-6.466422	4.872063

Variances and covariances of random effects

***level 2 (id2)

var(1): 13.833558 (4.3011138)

. estimates store model3		
. lrtest model2 model3		
Likelihood-ratio test	LR $chi2(2) =$	7.47
(Assumption: model2 nested in model3)	Prob > chi2 =	0.0238

We reject the proportional odds assumption for dosage group at the 5% level (L = 7.47, df = 2, p = 0.02).

MLMUS3 (Vol. II) – Rabe-Hesketh and Skrondal

7. For age equal to 37 months, duration equal to 80 minutes, and time in recovery room equal to 15 minutes, produce a graph of predicted marginal probabilities similar to figure 11.13 for the model selected in step 6 or for the model selected in step 4. Also produce a stacked bar chart, treating dosage group as categorical.

First we set the explanatory variables equal to the required values and restore the estimates for model 2:

```
. replace age=37
(232 real changes made)
. replace duration=80
(240 real changes made)
. replace time=15
(180 real changes made)
. estimates restore model2
```

Now we can predict the marginal probabilities using gllamm

```
. gllapred pr1, marg mu above(1) fsample
(mu will be stored in pr1)
. gllapred pr2, marg mu above(2) fsample
(mu will be stored in pr2)
. gllapred pr3, marg mu above(3) fsample
```

For the figure resembling figure 11.12, we need the cumulative probabilities that y is anything from 1 up to category s, for s = 1, 2, 3, 4

```
. generate pr12 = 1-pr2
. generate pr123 = 1-pr3
. generate pr1234 = 1
. twoway (area pr1 dosage, sort fintensity(inten10))
> (rarea pr12 pr1 dosage, sort fintensity(inten50))
> (rarea pr123 pr12 dosage, sort fintensity(inten70))
> (rarea pr1234 pr123 dosage, sort fintensity(inten90)),
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
> xtitle("dosage")
```

The graphs are given in figure 2 for models 2 and 3 (for model 3, run all the above commands after restoring model 3).

Note that the boundaries on the graph are not exactly parallel when the proportional odds assumption is made, but the logit transformation of the boundaries is.

For the bar chart, we need the probabilities that y equals each of the categories

```
. generate pr1is = 1-pr1
. generate pr2is = pr1 - pr2
. generate pr3is = pr2 - pr3
. generate pr4is = pr3
. graph bar (mean) pr1is pr2is pr3is pr4is, over(dosage) stack
> legend(order(1 "Pr(1)" 2 "Pr(1)" 3 "Pr(1)" 4 "Pr(1)"))
```

The graphs are given in figure 3 for models 2 and 3 (for model 3, run all the above commands after restoring model 3).

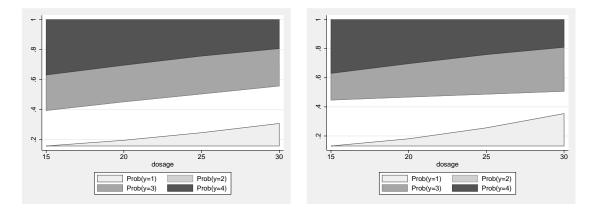


Figure 2: Area graphs of predicted marginal probabilities versus dosage groups, when age is 37 months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is proportional odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)

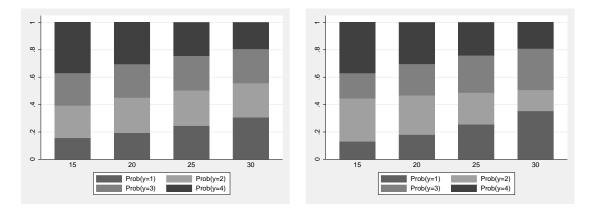


Figure 3: Stacked bar chart of predicted marginal probabilities for the dosage groups, when age is 37 months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is proportional odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)

12.4 British election data

1. Create a variable, chosen, equal to 1 for the party voted for (rank equal to 1) and 0 for the other parties.

```
. use elections, clear
```

- . generate chosen = rank == 1
- 2. Standardize lrdist and inflation to have mean 0 and variance 1. Produce all the dummy variables and interactions necessary to fit a conditional logistic regression model (using clogit) for chosen, with the following covariates: the standardized versions of lrdist and inflation, and the dummy variables yr87, yr92, male, and manual. All variables except the standardized version of lrdist should have party-specific coefficients.

```
. egen inflat = std(inflation)
. egen dist = std(rldist)
. tabulate party, generate(p)
     party
                   Freq.
                              Percent
                                              Cum.
          1
                   2,458
                                33.33
                                             33.33
                                33.33
                                             66.67
          2
                   2.458
          3
                   2,458
                                33.33
                                            100.00
                   7,374
                               100.00
     Total
. rename p1 cons
. rename p2 lab
. rename p3 lib
. for
each var of varlist male inflat manual yr
87 yr
92 {
 2.
             generate lab_'var' = lab*'var'
 З.
             generate lib_'var' = lib*'var'
 4. }
```

3. Fit the model using clogit and gllamm, using Conservatives as the base outcome.

. clogit chose	en dist lab_*	lib_* , gr	coup(occ)				
Conditional (f	fixed-effects)	logistic r	regression	Number	of obs	s =	7374
		-	-	LR chi	2(11)	=	1434.69
				Prob >	chi2	=	0.0000
Log likelihood	1 = -1983.0429			Pseudo	R2	=	0.2656
chosen	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
dist	-1.134582	.0463711	-24.47	0.000	-1.225	5468	-1.043696
lab_male	7170468	.1247135	-5.75	0.000	9614	1808	4726129
lab_inflat	.40281	.0665768	6.05	0.000	.2723	3219	.533298
lab_manual	.5855308	.1298537	4.51	0.000	.3310)223	.8400393
lab_yr87	9940042	.1434858	-6.93	0.000	-1.275	5231	7127771
lab_yr92	9786174	.1346003	-7.27	0.000	-1.242	2429	7148056
lib_male	6562548	.1194879	-5.49	0.000	8904	1468	4220627
lib_inflat	.3102374	.0623362	4.98	0.000	.1880	0607	.4324142
lib_manual	1422657	.1191864	-1.19	0.233	3758	3667	.0913353
lib_yr87	785426	.1258898	-6.24	0.000	-1.032	2166	5386865
lib_yr92	-1.068714	.1228379	-8.70	0.000	-1.309	9472	8279564

. gllamm party dist lab_* lib_*, nocons i(occ) link(mlogit)
> expanded(occ chosen o) init
number of level 1 units = 7374
Condition Number = 7.2688994
gllamm model

log likelihood = -1983.0429

party	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
dist	-1.134582	.0463711	-24.47	0.000	-1.225468	-1.043696
lab_male	7170468	.1247135	-5.75	0.000	9614807	4726128
lab_inflat	.40281	.0665768	6.05	0.000	.272322	.5332981
lab_manual	.585531	.1298537	4.51	0.000	.3310225	.8400395
lab_yr87	9940045	.1434858	-6.93	0.000	-1.275232	7127774
lab_yr92	9786177	.1346003	-7.27	0.000	-1.24243	7148059
lib_male	6562546	.1194879	-5.49	0.000	8904466	4220626
lib_inflat	.3102375	.0623362	4.98	0.000	.1880608	.4324142
lib_manual	1422654	.1191864	-1.19	0.233	3758663	.0913356
lib_yr87	7854264	.1258898	-6.24	0.000	-1.032166	5386869
lib_yr92	-1.068715	.1228379	-8.70	0.000	-1.309473	8279569

4. Extend the model to include a person-level random slope for lrdist, and fit the extended model in gllamm.

. eq slope: dist

. gllamm party dist lab_* lib_*, nocons i(serialno) eqs(slope)
> link(mlogit) expanded(occ chosen o) adapt
number of level 1 units = 7374

```
number of level 2 units = 1344
Condition Number = 8.1833746
```

gllamm model

log likelihood = -1940.6814

party	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
dist	-1.668452	.0940924	-17.73	0.000	-1.85287	-1.484034
lab_male	8026911	.1458909	-5.50	0.000	-1.088632	5167502
lab_inflat	.4823476	.0791058	6.10	0.000	.3273031	.6373922
lab_manual	.6978195	.1536384	4.54	0.000	.3966939	.9989452
lab_yr87	-1.088198	.1658249	-6.56	0.000	-1.413209	763187
lab_yr92	-1.11707	.1563765	-7.14	0.000	-1.423562	8105775
lib_male	720465	.1354692	-5.32	0.000	9859797	4549503
lib_inflat	.3920127	.0718925	5.45	0.000	.251106	.5329194
lib_manual	0866056	.136415	-0.63	0.526	3539742	.180763
lib_yr87	8391223	.1426198	-5.88	0.000	-1.118652	5595927
lib_yr92	-1.177754	.1386755	-8.49	0.000	-1.449553	9059552

Variances and covariances of random effects

***level 2 (serialno)

var(1): 1.0384731 (.19574625)

MLMUS3 (Vol. II) – Rabe-Hesketh and Skrondal

5. Write down the model and interpret the estimates.

The following model is specified for the conditional probability that party s is chosen by respondent j at occasion i, given the covariates and the random coefficient ζ_{2j} for lrdist:

$$\Pr(y_{ij} = s | x_{2ij}^{[s]}, \mathbf{x}_{ij}, \zeta_{2j})$$

$$= \frac{\exp\left\{ (\beta_2 + \zeta_{2j}) x_{2ij}^{[s]} + \beta_3^{[s]} x_{3j} + \beta_4^{[s]} x_{4ij} + \beta_5^{[s]} x_{5j} + \beta_6^{[s]} x_{6i} + \beta_7^{[s]} x_{7i} \right\}}{\sum_{c=1}^3 \exp\left\{ (\beta_2 + \zeta_{2j}) x_{2ij}^{[c]} + \beta_3^{[c]} x_{3j} + \beta_4^{[c]} x_{4ij} + \beta_5^{[c]} x_{5j} + \beta_6^{[c]} x_{6i} + \beta_7^{[c]} x_{7i} \right\}}$$

Here $x_{2ij}^{[s]}$ represents lrdist for party s, x_{3j} represents male, x_{4ij} represents inflation, x_{5j} represents manual, x_{6i} represents yr87, and x_{7i} represents yr92. It is assumed that the random coefficient ζ_{2j} has a normal distribution with zero mean and variance ψ , and that the covariates are independent of the random coefficient.

We now turn to the interpretation of the estimates. Controlling for the other covariates, the conditional or respondent-specific odds of choosing a party decreases by 81% (- $81\% = 100\% \times \exp(-1.668452) - 1$) as the distance between the party and the respondent on the left-right political dimension increases by one unit. The variance of the respondent-specific effects $\beta_2 + \zeta_{2j}$ is estimated as 1.0384731 so a 95% range of the odds ratio is $(\exp(-1.668452) - 1.96\sqrt{1.0384731}, \exp(-1.668452 - 1.96\sqrt{1.0384731}) = (0.03, 1.39).$

The following interpretations are all in terms of conditional odds with Conservatives as basecategory and given the other covariates.

We first consider the odds of choosing Labour. The odds of choosing Labour in 1987 is estimated as $0.34=\exp(-1.088198)$ when all covariates are zero. The odds of choosing Labour in 1992 is estimated as $0.33=\exp(-1.11707)$ when all covariates are zero. The odds of choosing Labour is estimated as 55% (-55% = 100% ($\exp(-0.8026911) - 1$)) lower for males than for females. The odds of choosing Labour is estimated as 62% (62% = 100% ($\exp(0.4823476) - 1$)) higher when the perceived inflation rating increases by one unit (which might be explained by the fact that Conservatives were the incumbents). The odds of choosing Labour is estimated as 100% (100% = 100% ($\exp(0.6978195) - 1$)) higher for respondents whose father was a manual worker compared to the father not being a manual worker.

We then consider the odds of choosing Liberals. The odds of choosing Liberals in 1987 is estimated as $0.43 = \exp(-0.8391223)$ when all covariates are zero. The odds of choosing Liberals in 1992 is estimated as $0.31 = \exp(-1.177754)$ when all covariates are zero. The odds of choosing Liberals is estimated as 51% (-51% = 100% ($\exp(-0.720465) - 1$)) lower for males than for females. The odds of choosing Liberals is estimated as 34% (34% = 100% ($\exp(0.2920127) - 1$)) higher when the perceived inflation rating increases by one unit (which might be explained by the fact that Conservatives were the incumbents). The odds of choosing Liberals is estimated as 8% (-8% = 100% ($\exp(-0.0866056) - 1$)) lower for respondents whose father was a manual worker compared to the father not being a manual worker.

6. Instead of including a random slope for lrdist, include correlated person-level random intercepts for Labour and Liberal. Use the options ip(m) and nip(15) to use degree-15 spherical quadrature. This problem will take quite a long time to run.

. gllamm party dist lab_* lib_*, nocons i(serialno) nrf(2) eqs(lab lib)
> link(mlogit) expanded(occ chosen o) ip(m) nip(15) trace adapt

number of level 1 units = 7374 number of level 2 units = 1344

Condition Number = 10.914979

gllamm model

log likelihood = -1789.9395

party	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
dist	-2.040746	.132729	-15.38	0.000	-2.30089	-1.780602
lab_male	-1.223027	.3104283	-3.94	0.000	-1.831455	6145988
lab_inflat	.7402028	.1378139	5.37	0.000	.4700924	1.010313
lab_manual	1.439134	.3339982	4.31	0.000	.7845092	2.093758
lab_yr87	-1.969602	.354374	-5.56	0.000	-2.664163	-1.275042
lab_yr92	-1.821407	.3324202	-5.48	0.000	-2.472938	-1.169875
lib_male	-1.108516	.3069595	-3.61	0.000	-1.710146	5068865
lib_inflat	.6237005	.13012	4.79	0.000	.36867	.8787311
lib_manual	.0918619	.3194567	0.29	0.774	5342618	.7179856
lib_yr87	-1.58963	.3265276	-4.87	0.000	-2.229612	9496478
lib_yr92	-2.054298	.329796	-6.23	0.000	-2.700687	-1.40791

Variances and covariances of random effects

***level 2 (serialno)

var(1): 12.496053 (2.2906096)
cov(2,1): 9.8049199 (1.8391321) cor(2,1): .77256248

var(2): 12.889854 (1.9735669)

13.1 Epileptic-fit data

1. Model II in Breslow and Clayton is a log-linear (Poisson regression) model with covariates lbas, treat, lbas_trt, lage, and v4, and a normally distributed random intercept for subjects. Fit this model using gllamm.

```
. use epilep, clear
. gllamm y lbas treat lbas_trt lage v4, i(subj) link(log) family(poisson) adapt
number of level 1 units = 236
number of level 2 units = 59
```

```
Condition Number = 9.3178452
```

gllamm model

log likelihood = -665.29073

У	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lbas	.8844373	.1312305	6.74	0.000	.6272302	1.141644
treat	933037	.4008289	-2.33	0.020	-1.718647	1474268
lbas_trt	.3382596	.2033363	1.66	0.096	0602722	.7367914
lage	.4842389	.3472751	1.39	0.163	1964078	1.164886
v4	1610871	.0545758	-2.95	0.003	2680537	0541206
_cons	2.114294	.2197154	9.62	0.000	1.68366	2.544929

Variances and covariances of random effects

***level 2 (subj)

var(1): .25282428 (.05894094)

2. Breslow and Clayton also considered a random-coefficient model (Model IV) using the variable visit instead of v4. The effect of visit z_{ij} varies randomly between subjects. The model can be written as

$$\log(\mu_{ij}) = \beta_1 + \beta_2 x_{2j} + \dots + \beta_5 x_{5j} + \beta_6 z_{ij} + \zeta_{1j} + \zeta_{2j} z_{ij}$$

where the subject-specific random intercept ζ_{1j} and slope ζ_{2j} have a bivariate normal distribution, given the covariates. Fit this model using gllamm.

```
. eq int: cons
. eq slope: visit
. gllamm y lbas treat lbas_trt lage visit, i(subj) link(log) family(poisson)
> nrf(2) eqs(int slope) ip(m) nip(15) adapt
number of level 1 units = 236
number of level 2 units = 59
Condition Number = 9.3163303
gllamm model
```

log likelihood = -655.681

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lbas	.8849772	.1312511	6.74	0.000	.6277298	1.142225
treat	9286564	.4021601	-2.31	0.021	-1.716876	1404371
lbas_trt	.3379746	.2044432	1.65	0.098	0627267	.7386759
lage	.4767191	.3536189	1.35	0.178	2163612	1.169799
visit	2664097	.1647101	-1.62	0.106	5892357	.0564162
_cons	2.09955	.2203692	9.53	0.000	1.667635	2.531466

```
Variances and covariances of random effects
****level 2 (subj)
var(1): .25149333 (.05878604)
cov(2,1): .00287153 (.08870133) cor(2,1): .00785428
var(2): .53148135 (.2293816)
```

3. Plot the posterior mean counts versus time for twelve patients in each treatment group.

```
. gllapred pred, mu
(mu will be stored in pred)
. sort treat subj
. by treat subj: generate f=_n==1
. by treat: generate id=sum(f)
. twoway line pred visit if id<13 & treat==0, by(id)
. twoway line pred visit if id<13 & treat==1, by(id)</pre>
```

The graphs are shown in figures 4 and 5.

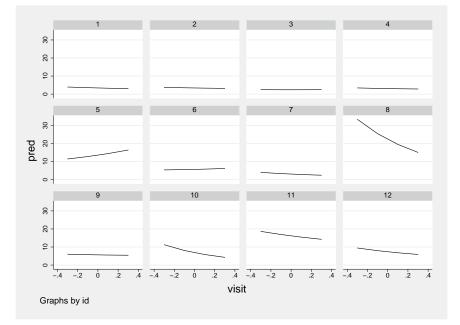


Figure 4: Posterior mean number of epileptic fits versus time for placebo group

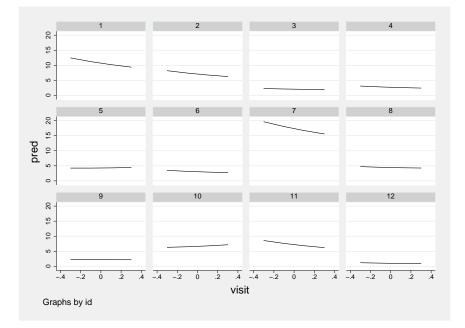


Figure 5: Posterior mean number of epileptic fits versus time for treatment group

Exercise 13.1

14.7 Cigarette data

1. Expand the data to person-period data.

```
. use cigarette, clear
. generate id=_n
. expand time
(1670 observations created)
. by id, sort: gen t = _n
. generate y=0
. by id (t), sort: replace y = event if _n==_N
(634 real changes made)
```

2. Estimate the discrete-time model that assumes the continuous-time hazards to be proportional. Include cc, tv, and their interaction as explanatory variables and specify a random intercept for classes. Use dummy variables for periods.

. tabulate t,	generate(occ))					
t	Freq.	Percent	Cum				
1 2 3	1,556 1,082 588	48.23 33.54 18.23	48.23 81.77 100.00	7			
Total	3,226	100.00		-			
. xtset class panel	variable: cla	ass (unbalan	iced)				
. xtcloglog y	male cc tv c	c_tv occ2 oc	:c3				
Random-effect Group variabl	s complementa e: class	ry log-log m	odel	Number Number	of obs = of groups =	3226 134	
Random effects u_i ~ Gaussian Obs per group: min = avg = max =							
Log likelihoo	d = -1592.353	37		Wald ch Prob >		12.09 0.0599	
У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
male	.0594819	.0804729	0.74	0.460	0982421	.2172059	
сс	.1293571	.1216005	1.06	0.287	1089755	.3676896	
tv	.0914655	.122232	0.75	0.454	1481048	.3310357	
cc_tv	1605053	.1747717	-0.92	0.358	5030516	.1820409	
occ2	.0462722	.0918315	0.50	0.614	1337142	.2262586	
occ3	.3248201	.1042103	3.12	0.002	.1205717	.5290685	
_cons	-1.707058	.1068043	-15.98	0.000	-1.91639	-1.497725	
/lnsig2u	-3.357634	.8635395			-5.05014	-1.665128	
sigma_u rho	.1865946 .0207278	.0805659 .0175283			.0800527 .0038807	.4349328 .1031386	
		· · · ·		. = .	.	· · · · · ·	

Likelihood-ratio test of rho=0: chibar2(01) = 1.76 Prob >= chibar2 = 0.092

3. Interpret the exponentials of the estimated regression coefficients.

. xtcloglog, eform								
Random-effects	-	ry log-log me	odel	Number o		3226		
Group variable	e: class			Number o	of groups =	134		
Random effects	s u_i ~ Gauss:	ian		Obs per	<pre>group: min =</pre>	3		
					avg =	24.1		
					max =	54		
				Wald chi	2(6) =	12.09		
Log likelihood	i = −1592.353	37		Prob > c	chi2 =	0.0599		
У	exp(b)	Std. Err.	Z	P> z	[95% Conf.	Interval]		
male	1.061287	.0854048	0.74	0.460	.9064294	1.2426		
сс	1.138096	.1383931	1.06	0.287	.8967524	1.444394		
tv	1.095779	.1339392	0.75	0.454	.8623408	1.392409		
cc_tv	.8517133	.1488554	-0.92	0.358	.6046826	1.199663		
occ2	1.047359	.0961806	0.50	0.614	.87484	1.2539		
occ3	1.383782	.1442043	3.12	0.002	1.128142	1.697351		
/lnsig2u	-3.357634	.8635395			-5.05014	-1.665128		
sigma_u	.1865946	.0805659			.0800527	.4349328		
rho	.0207278	.0175283			.0038807	.1031386		

Likelihood-ratio test of rho=0: chibar2(01) = 1.76 Prob >= chibar2 = 0.092

At the 5% level of significance there is not sufficient evidence to conclude that the interventions had any effects.

Specifically, for each intervention on its own (when the other intervention is not used), the hazard ratio does not differ significantly from 1. When combined with the other intervention, the hazard ratio for each intervention decreases by an estimated 15% (since the hazard ratio for the interaction is 0.85).

The hazards of smoking are estimated as 38% greater in 9th grade than in 7th grade after controlling for the other variables.

4. Obtain the estimated residual intraclass correlation of the latent responses.

This is given in the output under **rho** as 0.02. If you used **gllamm** to estimate the model, you can calculate the estimated intraclass correlation using

. display .1865946^2/(.1865946^2+_pi^2/6) .02072779

This is a very small correlation, and we also see from the last line of the **xtcloglog** output that we cannot reject the null hypothesis (at the 5% level) that the true intraclass correlation is 0.

15.4 Bladder cancer data

1. Wei, Lin, and Weissfeld (1989) specify a marginal Cox regression model based on total time and semi-restricted risk sets, where the risk set for a kth event includes risk intervals for all previous events (< k). They specify event-specific baseline hazards and allow the effects of treat, number, and size to differ between events. Fit this model.

```
. use bladder, clear
. egen obs = group(enum id)
 stset stop, failure(event=1) id(obs)
                 id: obs
                      event == 1
     failure event:
obs. time interval:
                      (stop[_n-1], stop]
exit on or before: failure
      340 total obs.
        0
           exclusions
      340 obs. remaining, representing
      340
           subjects
      112
           failures in single failure-per-subject data
     8522 total analysis time at risk, at risk from t =
                                                                      0
                               earliest observed entry t =
                                                                      0
                                    last observed exit t =
                                                                     59
. sort id enum
. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)
       id
             enum
                    start
                             stop
                                     event
                                             _t0
                                                    _t
                                                         _d
                                                               _st
25.
        7
                1
                        0
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
26.
        7
                2
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
27.
        7
                3
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
28.
        7
                4
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
29.
        8
                        0
                                5
                1
                                         1
                                               0
                                                     5
                                                          1
                                                                 1
30.
        8
                2
                        5
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
31.
        8
                3
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
                                                    18
32.
        8
                4
                       18
                               18
                                         0
                                               0
                                                          0
                                                                 1
33.
        9
                        0
                               12
                                               0
                                                    12
                1
                                         1
                                                          1
                                                                 1
34.
        9
                2
                       12
                               16
                                         1
                                               0
                                                    16
                                                          1
                                                                 1
35.
        9
                3
                       16
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
36.
        9
                4
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
```

The model could be parameterized by having a coefficient for treat, number, and size, as well as coefficients for interactions of each of these variables with dummy variables for the second, third and fourth events. Instead, we will include interactions between dummy variables for *each event*, including the first, and treat, number, and size. We must then omit "main effects" for treat, number, and size:

```
. stcox ibn.enum#(c.treat c.number c.size), strata(enum) vce(cluster id) efron
         failure _d: event == 1
   analysis time _t: stop
                 id: obs
Stratified Cox regr. -- Efron method for ties
No. of subjects
                      =
                                 340
                                                                               340
                                                     Number of obs
                                                                      =
No. of failures
                     =
                                 112
Time at risk
                      =
                                8522
                                                     Wald chi2(12)
                                                                             34.32
                                                                      =
Log pseudolikelihood =
                          -423.73286
                                                     Prob > chi2
                                                                      =
                                                                           0.0006
                                      (Std. Err. adjusted for 85 clusters in id)
                              Robust
          _t
               Haz. Ratio
                             Std. Err.
                                             z
                                                  P>|z|
                                                             [95% Conf. Interval]
enum#c.treat
                  .5909733
                             .1874038
                                          -1.66
                                                  0.097
                                                             .3174264
                                                                         1.100253
          1
                                                  0.088
                                                                         1.098396
          2
                  .5313625
                             .1968685
                                          -1.71
                                                             .2570531
          3
                  .4973349
                             .2103116
                                          -1.65
                                                  0.099
                                                             .2171177
                                                                         1.139207
          4
                  .5297029
                             .2649767
                                          -1.27
                                                  0.204
                                                             .1987149
                                                                         1.411999
        enum#
   c.number
                 1.268937
                             .0952058
                                           3.17
                                                  0.002
                                                             1.095409
                                                                         1.469955
          1
          2
                 1.146744
                             .1012115
                                           1.55
                                                  0.121
                                                             .9645825
                                                                         1.363306
          3
                  1.18947
                             .1264058
                                           1.63
                                                  0.103
                                                             .9658189
                                                                         1.464911
          4
                 1.394411
                             .1621041
                                           2.86
                                                  0.004
                                                              1.11029
                                                                         1.751238
enum#c.size
                 1.072094
                             .0955849
                                          0.78
                                                                         1.276802
                                                  0.435
                                                              .900206
          1
                                                                         1.169477
          2
                  .9251941
                             .1106043
                                          -0.65
                                                  0.515
                                                             .7319378
          3
                  .8074792
                             .1409972
                                          -1.22
                                                  0.221
                                                             .5734553
                                                                          1.137007
          4
                  .8134582
                             .1585875
                                          -1.06
                                                  0.290
                                                             .5551233
                                                                         1.192013
```

Stratified by enum

2. Use testparm to test whether the coefficients of treat differ significantly between events (at the 5% level) and similarly for number and size.

In order to use testparm, it is better to use the more standard way of including interactions, where the dummy variable for event 1 is excluded and treat, number, and size are included:

```
. stcox i.enum#(c.treat c.number c.size) c.treat c.number c.size,
     strata(enum) vce(cluster id) efron
>
         failure _d: event == 1
   analysis time _t: stop
                 id: obs
Stratified Cox regr. -- Efron method for ties
No. of subjects
                      =
                                 340
                                                      Number of obs
                                                                      =
                                                                               340
No. of failures
                                 112
Time at risk
                      =
                                8522
                                                      Wald chi2(12)
                                                                       =
                                                                             34.32
Log pseudolikelihood =
                          -423.73286
                                                      Prob > chi2
                                                                       =
                                                                            0.0006
                                      (Std. Err. adjusted for 85 clusters in id)
                              Robust
                                                             [95% Conf. Interval]
               Haz. Ratio
                             Std. Err.
                                                  P>|z|
          _t
                                             z
enum#c.treat
                              .3020539
                                          -0.32
                                                  0.752
                                                                          1.736903
          2
                   .899131
                                                             .4654473
          3
                  .8415522
                              .337499
                                          -0.43
                                                  0.667
                                                             .3834531
                                                                          1.846928
                  .8963229
                                                             .3302854
                                                                          2.432426
          4
                              .4565585
                                          -0.21
                                                  0.830
        enum#
    c.number
                  .9037042
                              .1068984
                                          -0.86
                                                  0.392
                                                             .7167016
                                                                            1.1395
          2
          3
                  .9373751
                               .11348
                                          -0.53
                                                   0.593
                                                             .7393767
                                                                          1.188396
          4
                  1.098881
                              .1323528
                                           0.78
                                                  0.434
                                                             .8678191
                                                                          1.391464
 enum#c.size
                  .8629789
                                          -1.28
                                                  0.199
                                                             .6891505
                                                                          1.080653
          2
                              .0990377
          3
                  .7531798
                             .1153141
                                          -1.85
                                                  0.064
                                                             .5579266
                                                                          1.016764
                                                                          1.101465
          4
                  .7587567
                             .1442884
                                          -1.45
                                                  0.147
                                                             .5226783
                                                             .3174264
                                                                          1.100253
                  .5909733
                             .1874038
                                          -1.66
                                                  0.097
       treat
                  1.268937
                             .0952058
                                                  0.002
                                                             1.095409
                                                                          1.469955
      number
                                           3.17
        size
                  1.072094
                             .0955849
                                           0.78
                                                  0.435
                                                              .900206
                                                                          1.276802
```

```
Stratified by enum
```

```
. testparm enum#c.treat
```

```
(1) 2.enum#c.treat = 0
(2)
      3.enum#c.treat = 0
(3)
      4.enum#c.treat = 0
          chi2(3) =
                         0.24
        Prob > chi2 =
                         0.9715
. testparm enum#c.number
(1) 2.enum#c.number = 0
(2) 3.enum#c.number = 0
(3) 4.enum#c.number = 0
          chi2( 3) =
                         5.86
        Prob > chi2 =
                         0.1186
. testparm enum#c.size
( 1) 2.enum#c.size = 0
( 2) 3.enum#c.size = 0
(3)
      4.enum#c.size = 0
          chi2( 3) =
                         3.61
        Prob > chi2 =
                        0.3065
```

None of the interactions are significant at the 5% level

3. Fit the model by Wei, Lin, and Weissfeld (1989) but constraining all coefficients to be the same across events.

. stcox treat number size, strata(enum) vce(cluster id) efron							
<pre>failure _d: event == 1 analysis time _t: stop</pre>							
Stratified Cox r	regr Efr	on method fo	or ties				
No. of subjects	=	340		Numbe	er of obs	= 340	
No. of failures	=	112					
Time at risk	=	8522		Wald	chi2(3)	= 15.35	
Log pseudolikeli	hood = -4	26.14683			> chi2		
			td. Err.	adjusted	for 85 clu	sters in id)	
		Robust					
_t H	Haz. Ratio	Std. Err.	z	P> z	[95% Con	f. Interval]	
treat	.5572209	.1726125	-1.89	0.059	.3036319	1.022604	
number	1.23404	.0827266	3.14	0.002	1.0821	1.407316	
size	.9496925	.0903613	-0.54	0.587	.788121	1.144388	

Stratified by enum

4. In their model (2), Prentice, Williams, and Peterson (1981) use counting process risk intervals with restricted risk sets and event-specific baseline hazards. Fit this model, assuming that treat, number, and size have the same coefficients across events.

failure event:	event == 1
obs. time interval:	(stop[_n-1], stop]
enter on or after:	time start
exit on or before:	failure

340 total obs. 162 obs. end on or before enter()

178	obs. remaining, representing	
178	subjects	
112	failures in single failure-per-subject data	
2480	total analysis time at risk, at risk from t =	0
	earliest observed entry $t =$	0
	last observed exit $t =$	59

. sort id enum

```
. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)
```

	id	enum	start	stop	event	_t0	_t	_d	_st
25.	7	1	0	18	0	0	18	0	1
29.	8	1	0	5	1	0	5	1	1
30.	8	2	5	18	0	5	18	0	1
33.	9	1	0	12	1	0	12	1	1
34.	9	2	12	16	1	12	16	1	1
35.	9	3	16	18	0	16	18	0	1

```
. stcox treat number size, strata(enum) vce(cluster id) efron
         failure _d: event == 1
  analysis time _t:
                      stop
 enter on or after:
                      time start
                 id:
                      obs
Stratified Cox regr. -- Efron method for ties
                     =
No. of subjects
                                 178
                                                     Number of obs
                                                                      =
                                                                               178
No. of failures
                      =
                                 112
                      =
Time at risk
                                2480
                                                     Wald chi2(3)
                                                                      =
                                                                              7.17
Log pseudolikelihood =
                          -315.99082
                                                     Prob > chi2
                                                                      =
                                                                           0.0665
                                      (Std. Err. adjusted for 85 clusters in id)
                              Robust
                                                             [95% Conf. Interval]
               Haz. Ratio
                             Std. Err.
                                                  P>|z|
          _t
                                             z
                    .71642
                              .147584
                                          -1.62
                                                  0.105
                                                             .4784299
                                                                         1.072796
       treat
      number
                 1.127065
                             .0582599
                                           2.31
                                                  0.021
                                                             1.018472
                                                                         1.247238
        size
                  .9915413
                             .0614766
                                          -0.14
                                                  0.891
                                                             .8780828
                                                                          1.11966
                                                               Stratified by enum
```

5. Andersen and Gill (1982) also use counting process risk intervals, but they use unrestricted risk sets and assume that all events have a common baseline hazard function. Fit this model, again assuming that treat, number, and size have the same coefficients across events.

```
. stcox c.treat c.number c.size, vce(cluster id) efron
         failure _d: event == 1
  analysis time _t:
                      stop
 enter on or after:
                      time start
                 id:
                      obs
Cox regression -- Efron method for ties
No. of subjects
                      =
                                 178
                                                     Number of obs
                                                                      =
                                                                               178
No. of failures
                      _
                                 112
                      =
Time at risk
                                2480
                                                     Wald chi2(3)
                                                                      =
                                                                             11.41
Log pseudolikelihood =
                          -449.98064
                                                     Prob > chi2
                                                                      =
                                                                           0.0097
                                     (Std. Err. adjusted for 85 clusters in id)
                              Robust
               Haz. Ratio
                             Std. Err.
                                                  P>|z|
                                                             [95% Conf. Interval]
          _t
                                             z
       treat
                  .6283318
                             .1678506
                                          -1.74
                                                  0.082
                                                             .3722217
                                                                          1.06066
                             .0755395
                                                                         1.348848
      number
                 1.191199
                                           2.76
                                                  0.006
                                                             1.051976
        size
                  .9572791
                             .0747412
                                          -0.56
                                                  0.576
                                                              .821447
                                                                         1.115572
```

6. In their model (3), Prentice, Williams, and Peterson (1981) use gap time with restricted risk sets and event-specific baseline hazards. Fit this model, assuming that treat, number, and size have the same coefficients across events.

. stset stop, origin(start) failure(event=1) id(obs) id: obs event == 1 failure event: (stop[_n-1], stop] obs. time interval: exit on or before: failure t for analysis: (time-origin) origin: time start total obs. 340 obs. end on or before enter() 162 178 obs. remaining, representing 178 subjects failures in single failure-per-subject data 112 0 2480 total analysis time at risk, at risk from t = earliest observed entry t = 0 last observed exit t = 59 . sort id enum . list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id) _t0 id stop enum start event _t _d $_{st}$ 25. 7 0 0 0 1 0 18 18 1 29. 8 1 0 5 1 0 5 1 1 2 0 30. 8 5 18 0 13 0 1 33. 0 9 1 12 1 0 12 1 1 2 34. 12 9 16 1 0 4 1 1 35. 9 3 16 18 0 0 2 0 1 . stcox treat number size, strata(enum) vce(cluster id) efron failure _d: event == 1 analysis time _t: (stop-origin) origin: time start id: obs Stratified Cox regr. -- Efron method for ties No. of subjects 178 Number of obs 178 = = No. of failures = 112 Time at risk 2480 = Wald chi2(3) = 11.70 Log pseudolikelihood = -358.96849 Prob > chi2 0.0085 (Std. Err. adjusted for 85 clusters in id) Robust Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] _t z .7565365 .1640954 -1.29 0.198 4945398 1.157333 treat number 1.17122 .0600157 3.08 0.002 1.059305 1.294958 1.007443 .065196 0.11 0.909 .8874327 1.143682 size Stratified by enum

7. Compare and interpret the treatment effect estimates from steps 3 to 6.

The estimated hazard ratios are 0.56 for total time semi-restricted, 0.72 for counting process,

MLMUS3 (Vol. II) - Rabe-Hesketh and Skrondal

restricted, 0.63 for counting process unrestricted, and 0.76 for gap times, restricted. Only the total time semi-restricted estimate is nearly significant at the 5% level. The estimates can be interpreted as a 54% reduction in the hazard (largest effect size estimate) down to a 24% reduction in the hazard (smallest effect size estimate), controlling for number and maximum size of initial tumors.

Exercise 15.4

16.2 Tower-of-London data

1. Fit the two-level random-intercept model (random intercept for persons):

$$logit\{Pr(y_{ijk} = 1 | \mathbf{x}_{ijk}, \zeta_{jk}^{(2)})\} = \beta_0 + \beta_1 x_{ijk} + \beta_2 g_{2ijk} + \beta_3 g_{3ijk} + \zeta_{jk}^{(2)}$$

where g_{2ijk} and g_{3ijk} are dummy variables for groups 2 and 3, respectively, and $\zeta_{jk}^{(2)} \sim N(0, \psi^{(2)})$ is independent of the covariates \mathbf{x}_{ijk} . Here and throughout the exercise, level is treated as continuous.

. use towerl, clear								
. tabulate g	roup, generate(g)						
GROUP	Freq.	Percent	Cum.					
1	194	28.66	28.66					
2	294	43.43	72.08					
3	189	27.92	100.00					
Total . rename g2 :		100.00						
. rename g3 :	schizo							
. gllamm dtlr	n level relativ	es schizo,	i(id) link(logit) family(binomial)	adapt			
number of level 1 units = 677 number of level 2 units = 226								
Condition Number = 4.4746865								

gllamm model

log likelihood = -305.95923

dtlm	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
level	-1.649218	.1934261	-8.53	0.000	-2.028326	-1.27011
relatives	1691618	.3343253	-0.51	0.613	8244274	.4861037
schizo	-1.023004	.393953	-2.60	0.009	-1.795137	2508701
_cons	-1.48306	.2836532	-5.23	0.000	-2.03901	92711

Variances and covariances of random effects

***level 2 (id)

var(1): 1.6768915 (.66262435)

. estimates store mod0

The syntax for xtmelogit is

xtmelogit dtlm level relatives schizo || id:

The syntax for xtlogit is

xtset id xtlogit dtlm level relatives schizo 2. Fit the three-level random-intercept model (random intercepts for subjects and families):

$$\operatorname{logit}\{\Pr(y_{ijk} = 1 \mid \mathbf{x}_{ijk}, \zeta_{jk}^{(2)}, \zeta_{k}^{(3)})\} = \beta_0 + \beta_1 x_{ijk} + \beta_2 g_{2ijk} + \beta_3 g_{3ijk} + \zeta_{jk}^{(2)} + \zeta_{k}^{(3)}$$

where $\zeta_{jk}^{(2)} \sim N(0, \psi^{(2)})$ is independent of $\zeta_k^{(3)} \sim N(0, \psi^{(3)})$ and both random effects are assumed independent of \mathbf{x}_{ijk} .

. gllamm dtlm level relatives schizo, i(id famnum) link(logit) family(binomial) adapt number of level 1 units = 677 number of level 2 units = 226 number of level 3 units = 118

Condition Number = 4.2143936

gllamm model

log likelihood = -305.12037

dtlm	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
level	-1.648477	.1932181	-8.53	0.000	-2.027177	-1.269776
relatives	2487947	.3543655	-0.70	0.483	9433383	.4457489
schizo	-1.052438	.3999452	-2.63	0.009	-1.836317	26856
_cons	-1.48575	.2848124	-5.22	0.000	-2.043972	9275283

Variances and covariances of random effects

```
***level 2 (id)
```

var(1): 1.1370879 (.68588796)

***level 3 (famnum)

var(1): .5690352 (.52168443)

. estimates store mod1

Subjects with schizophrenia perform significantly worse than unrelated healthy control subjects, whereas the healthy relatives of the subjects with schizophrenia do perform significantly worse than unrelated healthy control subjects (at the 5% level). Performance declines as the level of difficulty increases. There is more variability between subjects within families than between families after controlling for covariates.

The syntax for xtmelogit is

xtmelogit dtlm level relatives schizo || famnum: || id:

3. Compare the models in steps 1 and 2 using a likelihood-ratio test, but retain the three-level model even if the null hypothesis is not rejected at the 5% level.

. lrtest mod0 mod1		
Likelihood-ratio test	LR chi2(1) =	1.68
(Assumption: mod0 nested in mod1)	Prob > chi2 =	0.1952

Since the random intercepts at the different levels are uncorrelated, we can divide the naïve p-value by 2 (see display 8.1, page 397) to obtain the correct asymptotic p-value of 0.10.

4. Include a group (controls, relatives, schizophrenics) by level of difficulty interaction in the three-level model. Test the interaction using both a Wald test and a likelihood-ratio test.

```
. generate lev_rel = level*relatives
. generate lev_sch = level*schizo
. gllamm dtlm level relatives schizo lev_rel lev_sch,
> i(id famnum) link(logit) family(binomial) adapt
number of level 1 units = 677
number of level 2 units = 226
number of level 3 units = 118
Condition Number = 5.9640326
```

gllamm model

log likelihood = -301.8829

dtlm	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
level	-1.180727	.2643959	-4.47	0.000	-1.698933	6625202
relatives	4365425	.3705992	-1.18	0.239	-1.162904	.2898186
schizo	-1.611176	.5116238	-3.15	0.002	-2.61394	6084113
lev_rel	6126168	.3528075	-1.74	0.082	-1.304107	.0788733
lev_sch	-1.176511	.5209349	-2.26	0.024	-2.197525	1554972
_cons	-1.356816	.2797885	-4.85	0.020	-1.905192	8084408

Variances and covariances of random effects

```
***level 2 (id)
var(1): 1.2092826 (.69676348)
***level 3 (famnum)
```

var(1): .53767723 (.48595677)

We obtain a Wald test by using testparm

. testparm lev_rel lev_sch
(1) [dtlm]lev_rel = 0
(2) [dtlm]lev_sch = 0
chi2(2) = 6.08
Prob > chi2 = 0.0478

The interaction is significant at the 5% level according to the Wald test (w = 6.09, df = 2, p = 0.048). The corresponding likelihood-ratio test can be obtained using lrtest

. lrtest mod1 . Likelihood-ratio test LR chi2(2) = 6.47 (Assumption: mod1 nested in .) Prob > chi2 = 0.0393

The likelihood-ratio statistic is 6.47 with two degrees of freedom, giving a *p*-value of 0.04.

For schizophrenics, performance declines faster with increasing level of difficulty than for controls (z = -2.26, p = 0.024).

High

----- Schizophrenics

5. For the model in step 4, obtain predicted marginal or population-averaged probabilities using gllapred. (This requires fitting the model in gllamm.) Plot the probabilities against the levels of difficulty with different curves for the three groups.

```
gllapred prob, mu marg
(mu will be stored in prob)
  twoway (line prob level if group==1, sort)
.
     (line prob level if group==2, sort lpatt(longdash))
>
    (line prob level if group==3, sort lpatt(shortdash)),
>
    xtitle(Level of difficulty) ytitle(Probability)
legend(order(1 "Controls" 2 "Relatives" 3 "Schizophrenics") row(1))
>
>
>
    xlabel(-1 "Low" 0 "Medium" 1 "High")
       ŝ
       4
    Probability
.2 .3
       ς.
```

Figure 6: Predicted marginal probabilities as a function of level of difficulty for the three groups.

Medium

Level of difficulty

Relatives

0

Low

Controls