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Preface

Bayesian analysis has become increasingly popular in recent years and proved useful
in many areas, including economics, medicine, science, and the social sciences. Much
of this growth has been fueled not by philosophical concerns about the nature of sta-
tistical analysis or by a genuine desire to use prior information but by very practical
considerations; the fact is that many complex models are much easier to handle within
a Bayesian framework.

The chief limiting factor in adopting Bayesian methods is the availability of soft-
ware. Thanks to programs such as Stata, most frequentist statistical methods are easy
to implement, but Bayesian analyses require their own specialist software. Following
theoretical developments in the 1980s, a major step forward in Bayesian computing
came about with the creation of the BUGS project, which provided flexible, free soft-
ware for fitting Bayesian models. The original BUGS program was eventually replaced
by WinBUGS, which in turn has given way to an open-source version called Open-
BUGS. Unfortunately, while these programs will fit a model, they are not particularly
user friendly, and they do not offer the many facilities for data handling, exploratory
statistics, and graphics that Stata users take for granted. Consequently, even investi-
gators familiar with WinBUGS tend to do most of their work in traditional statistics
packages and only switch to WinBUGS to fit the model.

Thompson, Palmer, and Moreno (2006) describe a suite of Stata ado-files, all begin-
ning with the prefix wb, that help Stata users integrate WinBUGS into their analyses.
The idea is that users should be able to store their data in Stata and analyze them
in the usual way. Then when they want to fit a Bayesian model, they should be able
to prepare it, send it to WinBUGS, and read back the results without ever leaving
Stata. The results provided by WinBUGS or OpenBUGS consist of a very large file
of simulations, so other programs are provided to help the user read those results into
Stata, check the analysis, and summarize the findings. The commands that operate
on the results of the WinBUGS run work equally well with Markov chain Monte Carlo
(MCMC) simulations produced by any other software, so they are not restricted to use
with output from WinBUGS.

Since 2006, OpenBUGS has become available, the original wb ado-files have been ex-
tended by adding extra options, and further programs have been added to the collection.
New and old versions of the commands can be distinguished between those required to
run WinBUGS or OpenBUGS and those used to investigate the resulting MCMC simu-
lations; the former have been collected together as the new commands beginning with
the letters wbs, and the latter now form the new commands beginning with the letters
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mcmc. Thus the updated version of wbrun that runs WinBUGS from within Stata is
called wbsrun, and the updated version of wbtrace, the program for drawing a trace or
history plot, is called mcmctrace.

In this book, I describe the updated commands and introduce other programs for
running Bayesian analyses that do not need WinBUGS or OpenBUGS. Chapter 3
presents a set of new programs collected under the names beginning with the letters mhs
for running Metropolis–Hastings samplers, and chapter 4 introduces programs begin-
ning with the letters gbs for running Gibbs samplers. These programs can create MCMC

simulations and fit Bayesian models without using WinBUGS. For multiparameter mod-
els, it is convenient to have a housekeeping program that cycles through the parameters
and stores the MCMC updates. This job is performed by the program mcmcrun, which
oversees the fitting process by calling any user-specified combination of the mhs and gbs

samplers or even the user’s own samplers.

Creating MCMC simulations independently of WinBUGS serves two purposes: first,
it can be used as a teaching aid to demonstrate what happens when a Bayesian model
is fit; second, it offers an alternative practical method by which users can tackle real
problems. The only limitation of using Stata on its own is the time taken by simulation-
based Bayesian model-fitting algorithms. While the samplers with command names
beginning mhs and gbs work well on small- or moderately sized problems, efficient
programming is essential when there are more than about 10 parameters in the model or
when the dataset is very large. This means either using Stata’s matrix language, Mata,
or exporting the problem to WinBUGS; these two approaches are broadly equivalent in
terms of speed and are introduced in chapters 7 and 8. Users who are only interested
in using WinBUGS or OpenBUGS can skip chapters 2, 3, 4, 7, and 12, though in doing
so, they will miss out on the explanation of how MCMC samplers work.

The author’s blog can be found at http://staffblogs.le.ac.uk/bayeswithstata/. It is
dedicated to the discussion of the use of Stata for Bayesian analysis and to describing
future developments of the ado-files introduced in this book.

Downloading the user-written commands

The user-written commands discussed in this book can be downloaded from within Stata
using the following commands:

. net from http://www.stata-press.com/data/bas/

. net install bas

To download the do-file to install the user-written Mata code, type

. net get bas

and then run the mcmclibrarymata.do file.



 

 

 

 

 

 

 



1 The problem of priors

1.1 Case study 1: An early phase vaccine trial

A researcher tests a new vaccine in an early phase clinical trial by giving it to 10 healthy
volunteers, 4 women and 6 men. The researcher is interested in the safety of the vaccine
rather than its efficacy, so amongst the many recorded measurements is whether the site
of the vaccination becomes tender. In the trial, five of the volunteers report tenderness,
one woman and four men. Using these data, the researcher wishes to estimate how many
people would experience tenderness if the vaccine were to go forward into an efficacy
trial involving 3,000 subjects.

Even this simple problem has more than one plausible solution. If the researcher
believes that men and women react differently to the vaccine, then the researcher might
argue that if he or she were to recruit 1,500 men and 1,500 women, then 1,500× 4/6 +
1,500× 1/4 = 1,375 people who would be expected to experience tenderness. However,
if men and women react in the same way, 3,000 × 5/10 = 1,500 people who would be
expected to report tenderness.

To decide which estimate to use, the researcher might discuss the problem with ex-
perts who have wide experience in vaccine trials or might look back over the records of
previous trials of similar vaccines to discover whether men and women reacted differ-
ently. Suppose that an expert tells the researcher that there is no biological reason why
men and women should react differently and that in the expert’s experience of similar
vaccines, about 40% of both men and women report tenderness. This seems to tip the
balance in favor of the estimate of 1,500, but it also suggests a third estimate based on
the expert’s judgment: 40% of 3,000 is 1,200. If the researcher is willing to accept the
expert’s opinion on the difference between men and women, why not also make use of
the estimate of the proportion experiencing tenderness? Perhaps the researcher could
use the estimate in combination with the data from the early phase trial.

In practice, most statisticians would accept the advice of the expert on whether men
and women react differently, but fewer would be willing to use the expert’s opinion on
the proportion who would report tenderness, even though both types of information
affect the final answer. Those statisticians willing to use numerical information that
does not come from the study being analyzed are referred to as Bayesians; this book
considers the methods of statistical analysis that flow from that willingness and, in
particular, how those methods might be implemented in Stata. However, before we get
into those technicalities, it is helpful to consider why some people are uneasy about
using external numerical information.

1



2 Chapter 1 The problem of priors

The most common objection to the use of an expert’s numerical estimate regards
subjectivity. The expert’s opinion is specific to that individual; had we asked a different
expert, we might well have had a different response. When a problem can have different
answers depending on which expert we consult, can any answer be relied on? Some
would argue that the statistician’s job is to summarize the evidence from the current
study as objectively as possible. Unfortunately, this argument is undermined by the
fact that no analysis is truly objective: subjective judgments are made throughout the
planning, conduct, and analysis of any study, and those judgments have an influence
on the final answer. For instance, our researcher had to decide whether to adjust for
gender and even whether it is sensible to extrapolate from healthy volunteers to the
people recruited into an efficacy trial.

Other statisticians argue that although the use of subjective estimates is acceptable
in principle, it is impossibly hard to do in practice. To use the expert’s opinion, we
must decide how much weight to give it relative to the weight that we give to the actual
data. In the case of the vaccine trial, this weight will depend on how certain the expert
is that 40% of future subjects will experience tenderness. Although 40% is the best
guess based on past experience, does the expert think that the percentage for the new
vaccine will be something between 35% and 45% or perhaps something between 20%
and 60%? Such certainty is difficult to quantify, yet it changes the relative weight given
to the expert’s opinion compared with the actual data and can greatly influence the final
answer. This difficulty is magnified in complex problems in which many factors have
to be taken into account because the expert will need to give his or her opinion—with
uncertainty—on all of those potentially interrelated factors.

The distinction between Bayesian and non-Bayesian statisticians used to be clear,
but in recent years, the barriers between the two traditions have largely disappeared
with most statisticians adopting a much more open approach. Experience shows that
Bayesian analyses are good for some problems and not so good for others, and unless
the expert’s opinion is held with great certainty, the actual data will carry more weight
in the analysis, and the Bayesian and non-Bayesian answers will be similar.

1.2 Bayesian calculations

Before we consider the benefits of the Bayesian approach, it is helpful to set out a typical
statistical analysis in more general terms. To analyze a set of data, y, we must first
select a model that describes the trend and natural variation in the data. This model is
usually specified in terms of a set of parameters, θ, that allow the model to be tuned to
fit the observations. So the model describing the probability of observing a particular
set of data can be written as p(y|θ). Once the general form of the model has been
selected, we need a method for using the data to guide us in selecting sensible values
for the parameters.



1.2 Bayesian calculations 3

In the case of the vaccine trial, 5 out of 10 subjects reported tenderness, so y = 5,
and a possible model for the data is the binomial, which depends on a single parameter,
θ, representing the probability that an individual reports tenderness. Under this model,

p(y|θ) =
(

10
y

)
θy(1− θ)10−y

In the Bayesian approach, the expert’s beliefs about all possible values of the parameter
must be specified as a prior distribution, p(θ); in this way, we capture both what we
expect to find and our uncertainty. In specifying this prior, we must not be influenced
in any way by the data that we are about to analyze, so it is best to specify the prior
before seeing the data. The prior could take any form, but for illustration, suppose that
the expert believes that the true value of θ could be anything between 0.3 and 0.5 and
that within those limits, any value is just as likely as any other. This prior would be
represented by a uniform distribution

p(θ) =

{
5 0.3 < θ < 0.5

0 otherwise

Combining the data and the prior opinion is now a noncontroversial exercise in
probability and relies on Bayes’ theorem,

p(θ|y) = p(y|θ)p(θ)
p(y)

Here p(θ|y) is referred to as the posterior distribution of θ because it describes what
we believe about θ after combining our prior opinion with the data. p(y|θ) is the same
likelihood that forms the basis of many traditional analyses, and the denominator,
p(y), is the probability of the data averaged over all possible values of θ, so p(y) =∫
p(y|θ)p(θ)dθ.
Figure 1.1 shows our prior and posterior beliefs about θ for the vaccination data.

Notice how the observation of 5 out of 10 has shifted our beliefs toward θ = 0.5 and away
from θ = 0.3 and also how values totally excluded by the prior will have no posterior
support whatever the data might suggest. This plot was created in Stata, but because
our interest here is in the principles of Bayesian analysis, the description of the code
that was used is postponed until the start of chapter 2.



4 Chapter 1 The problem of priors

0
2

4
6

 

0 .1 .2 .3 .4 .5 .6
theta

Prior

0
2

4
6

 
0 .1 .2 .3 .4 .5 .6

theta

Posterior

Figure 1.1. Prior and posterior distributions of beliefs about θ

Often the results of an analysis will be used to make predictions about data that
will be seen in the future; here we will denote such future data by y∗ and its predictive
distribution by p(y∗) and denote predictions informed by past data, y, by p(y∗|y).
Once again the formula for calculating the predictive distribution follows from standard
probability theory; it is either

p(y∗) =

∫
p(y∗|θ)p(θ)dθ

or, if we have past data available to refine our estimates of the parameters,

p(y∗|y) =
∫

p(y∗|θ)p(θ|y)dθ

That is, the predictive distribution based on previous data is derived by averaging the
data-generating model over our posterior beliefs about the parameters.

1.3 Benefits of a Bayesian analysis

Once we have calculated the posterior distribution, p(θ|y), we can make probability
statements about θ, for instance, by finding the probability that θ lies within some
specified range. Such probabilities have to be interpreted in a similar way to the prior
(that is, as subjective expressions of our posterior beliefs about θ), but at least they
refer to the actual problem before us. This is in marked contrast to more traditional
measures, such as the 95% confidence interval, that rely on repeated sampling for their
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meaning. Non-Bayesians have to imagine repeated samples of data drawn under the
same model so that they can say 95% of such samples would produce confidence intervals
that include the true value of θ. Of course, that statement tells us nothing about the
properties of our particular confidence interval. The Bayesian analysis is more directly
relevant to our study but at the expense of making our statements conditional on both
the model and the prior.

Modern simulation methods for calculating posterior distributions have proved so
powerful that they have completely turned the tables on more traditional approaches to
statistics. Previously, Bayesian statisticians could tackle only relatively simple problems
in which the mathematics was tractable or the integrals could be evaluated numerically,
while non-Bayesians could tackle many more problems before encountering this type
of constraint. With simulation methods, Bayesians can now fit almost any model that
they choose, while non-Bayesians still run into computational problems when models
contain large numbers of random effects or awkward hierarchical structures. This new
freedom has made Bayesian analysis much more attractive and is probably the driving
force behind the wider acceptance of the approach.

Now that Bayesian statisticians can choose more or less any model that they think
describes the data, the quality of the analyses that they produce ought to have improved.
Unfortunately, this new freedom has sometimes led to the creation of needlessly com-
plex models that are almost impossible to verify and that have so many potentially
interacting key assumptions that a thorough sensitivity analysis is ruled out. Simplicity
is still a virtue, even in Bayesian analysis.

1.4 Selecting a good prior

Even experienced researchers analyzing simple problems find it difficult to specify their
prior distribution. Experts unfamiliar with Bayesian analysis find it particularly diffi-
cult, and considerable effort has gone into devising methods of eliciting good prior infor-
mation from individuals and groups. Such methods will always have their limitations, so
just as statisticians are used to thinking of their models as being useful approximations
rather than as true data-generating mechanisms, researchers should also think of their
priors as acceptable approximations.

When the results of an analysis are intended for use by a small number of individuals,
then those people can agree among themselves about the form of the prior distribution
and so obtain an acceptable Bayesian analysis. However, when research is intended
for general consumption, as in the case of a scientific study reported in an academic
journal, then the grounds for choosing an appropriate prior are no longer clear. If the
authors of the article are allowed to use their own priors, then the possibility exists that
some unscrupulous authors will select the priors to skew the results and influence the
conclusions. To avoid this, either the authors would have to exert a great deal of effort
to explain whether the result is sensitive to the choice of a prior or the authors would
have to use some standard or reference prior.
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The use of a prior that is not chosen to reflect the views of a particular person or
group of people is sometimes referred to as objective Bayesian analysis, although this
name is not really appropriate. Usually the standard prior is chosen to have a small
influence on the results so that the data dominate. So far the search for a general
definition of a minimally informative prior has not been successful; it is common to
choose vague priors that are relatively flat over a wide range of values in the hope that
they will be noninformative in the sense of having little impact on the final answer.

Early Bayesian analyses were dominated by completely flat priors that extended
over the full range of the parameters. When the parameter has an infinite range, a flat
prior will not integrate to one and is described as improper. An improper distribution
cannot really be said to represent probabilities and at best is an approximation to a
uniform distribution over a very large but finite range. Even though improper priors do
sometimes lead to proper posterior distributions, their use has fallen out of favor, and
they are generally avoided in modern Bayesian analyses.

Before simulation methods were available for calculations in a Bayesian analysis, it
was common to choose priors that simplified the mathematics and made the integrals
tractable. It became popular to seek out priors that lead to posteriors from the same
family. Thus, if we are using a binomial model with parameter θ and choose a beta
distribution for the prior, say, beta(a,b), then the posterior distribution of θ will also
be a beta distribution but with parameters beta(a+ y,b+ n− y). Such priors are said
to be conjugate. Unfortunately, conjugate priors only exist for a few simple problems,
and it is questionable whether the form of the prior should be dictated by mathematical
convenience, even if we accept the idea that the prior is only an approximation to our
beliefs.

The search for proper noninformative priors is made more complex by the fact that
the properties of a prior distribution may be altered by a change of scale. For example,
take the problem of setting a prior for a standard deviation. One vague distribution that
might be used is a uniform between two limits, say, uniform(0,10). Under this prior, all
standard deviations between 0 and 10 are thought equally likely, so the prior probability
that the standard deviation is over 6 is 0.4. Now suppose instead that we had decided
to work in terms of the variance. We might have opted for a flat distribution over an
equivalent range, uniform(0,100); in this case, the probability that the variance is over
36 (standard deviation over 6) is 0.64. A flat distribution for the standard deviation
does not give the same results as a flat distribution for the variance.

Even more disturbing than the problem of changing scale is the sensitivity that
results can have seemingly small changes in the prior. Once again, take the problem of
the prior for a variance. For mathematical convenience, it is common for Bayesians to
work on the scale of the precision, which is equal to one over the variance. Because the
precision must be positive, a popular vague prior is a gamma distribution with mean
one and a large variance. Such a distribution will be relatively flat over a large range
of positive values. Unfortunately, as Gelman (2006) has demonstrated, the posterior
estimate of the precision can be sensitive to the arbitrary choice of the variance of the
gamma prior; thus the gamma prior with large variance has declined in popularity.
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When researchers select priors intended to be noninformative, it is tempting to play
it safe and extend them over huge ranges, well beyond any value that might realistically
occur. However, such impossibly wide priors can create problems when simulation
methods are used to investigate the posterior distribution. Very wide priors might
cause the simulation to investigate extreme parameter combinations, which could slow
down the algorithm or even cause numeric overflow when the posterior is evaluated.
Realistically vague priors are generally preferable to impossibly wide priors and have
the advantage of making researchers think about their models. Seeking realistic priors
will avoid the situation in which, for example, a normal prior with mean 0 and variance
10,000 is routinely used for all parameters that represent means, including perhaps one
that represents the average human femur length measured in millimeters.

Three general statements can be made about the selection of noninformative priors:
first, automatic choices are potentially dangerous, so it is much better to put some
thought into the actual range of plausible values of the parameter; second, vague priors
that completely exclude theoretically possible parameter values should be used only
after careful thought; and third, whatever choice is made needs to be assessed in a
sensitivity analysis to see whether small changes to the prior have a noticeable effect on
the results.

1.5 Starting points

Much of the early literature criticizing Bayesian statistics has become outdated because
of the enormous progress that has been made in the subject over the last decade or so,
and a starting point is the recent article by Gelman (2008). Although the author accepts
the Bayesian approach himself, he still manages to convey many of the objections that
people have to the use of Bayesian methods, including doubts about subjectivity and
the excessive complexity of some Bayesian analyses. The article is followed by a series
of equally informative discussions and a rejoinder.

The distinction between objective and subjective Bayesian analysis is well sum-
marized by Berger (2006), who puts the case for objective methods, and Goldstein
(2006), who puts the case for subjective methods. These articles are also accompa-
nied by discussion articles and rejoinders. An interview with Jose Bernardo conducted
by Irony and Singpurwalla (1997) provides an interesting overview of many different
types of priors seen from a subjective standpoint. Natarajan and McCulloch (1998)
and Gelman (2006) consider practical problems that can arise when supposedly nonin-
formative priors are used.

Eliciting subjective priors from an expert is a complex problem with its own extensive
literature. Good starting places for reading on this topic are the Elicitation of Experts’
Probabilities website, http://www.shef.ac.uk/chebs/research/themes/elicitation/, and
a systematic review by Johnson et al. (2010).
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1.6 Exercises

1. An expert tells you that the prior probability of an event occurring should be
described as uniform between 0.3 and 0.4. You conduct an experiment and find
that the event occurs only once in 20 occasions.

a. Sketch the shapes of the prior and posterior distributions.

b. In light of the data, was the prior reasonable?

c. Would you be willing to use predictions based on this posterior?

d. Would it be reasonable to ask the expert to reassess his or her prior?

2. A model is devised for predicting movements in the exchange rate between the
euro and the dollar. The intention is to fit the model to data from the last 12
months and then use the model to make predictions.

a. Is it possible for an expert to give informative priors for the parameters in
the model that are not already influenced by the data you hope to analyze?

b. How might you obtain priors for this problem?

3. An expert gives his or her prior distribution for the average daily sulfur dioxide
level at a particular point in the center of town. You measure the sulfur dioxide
level daily for a week and use a Bayesian analysis to obtain the posterior distribu-
tion. When you show the data and the posterior distribution to the expert, he or
she refuses to accept your analysis and draws a completely different distribution,
saying that this is what he or she now believes after seeing the data.

a. Why might your calculation and the expert’s sketch disagree?

b. Which distribution better describes the expert’s updated beliefs, your poste-
rior or his sketch?

c. If you reject the posterior, can you ever again be sure that a posterior distri-
bution describes an updated opinion?

d. If you reject the sketch, what confidence can you have in the prior that the
expert drew?

4. A researcher wishes to estimate the proportions of different types of terrain using
aerial photographs of sample areas. He or she agrees to classify the terrain as
forest, grassland, or other and, for a particular region, gives prior estimates of the
percentages as 60%, 30%, and 10%. When you ask about his or her uncertainty,
the researcher says that all prior estimates are accurate to within ±10%; that
is, the researcher believes the percentages to lie within the ranges (50%,70%),
(20%,40%), and (0%,20%). Further, he or she believes that within those ranges,
all percentages are equally likely.

a. Why do these figures not describe a prior distribution?

b. How would you get a nonstatistician to describe his or her prior for this
problem?




