
Data Management Using Stata:

A Practical Handbook

MICHAEL N. MITCHELL

A Stata Press Publication
StataCorp LP
College Station, Texas

Copyright c© 2010 by StataCorp LP

All rights reserved. First edition 2010

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845

Typeset in LATEX2ε

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-59718-076-9

ISBN-13: 978-1-59718-076-4

Library of Congress Control Number: 2010926561

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any

form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without

the prior written permission of StataCorp LP.

Stata is a registered trademark of StataCorp LP. LATEX2ε is a trademark of the American

Mathematical Society.

Contents

Acknowledgements v

List of tables xiii

List of figures xv

Preface xvii

1 Introduction 1

1.1 Using this book . 2

1.2 Overview of this book . 3

1.3 Listing observations in this book . 4

2 Reading and writing datasets 9

2.1 Introduction . 10

2.2 Reading Stata datasets . 14

2.3 Saving Stata datasets . 16

2.4 Reading comma-separated and tab-separated files 18

2.5 Reading space-separated files . 20

2.6 Reading fixed-column files . 22

2.7 Reading fixed-column files with multiple lines of raw data per ob-
servation . 26

2.8 Reading SAS XPORT files . 29

2.9 Common errors reading files . 30

2.10 Entering data directly into the Stata Data Editor 33

2.11 Saving comma-separated and tab-separated files 40

2.12 Saving space-separated files . 41

2.13 Saving SAS XPORT files . 43

3 Data cleaning 45

3.1 Introduction . 46

viii Contents

3.2 Double data entry . 47

3.3 Checking individual variables . 50

3.4 Checking categorical by categorical variables 54

3.5 Checking categorical by continuous variables 56

3.6 Checking continuous by continuous variables 60

3.7 Correcting errors in data . 63

3.8 Identifying duplicates . 67

3.9 Final thoughts on data cleaning . 75

4 Labeling datasets 77

4.1 Introduction . 78

4.2 Describing datasets . 78

4.3 Labeling variables . 84

4.4 Labeling values . 86

4.5 Labeling utilities . 92

4.6 Labeling variables and values in different languages 97

4.7 Adding comments to your dataset using notes 102

4.8 Formatting the display of variables 106

4.9 Changing the order of variables in a dataset 110

5 Creating variables 115

5.1 Introduction . 116

5.2 Creating and changing variables . 116

5.3 Numeric expressions and functions 120

5.4 String expressions and functions . 121

5.5 Recoding . 125

5.6 Coding missing values . 130

5.7 Dummy variables . 133

5.8 Date variables . 137

5.9 Date-and-time variables . 144

5.10 Computations across variables . 150

5.11 Computations across observations . 152

Contents ix

5.12 More examples using the egen command 155

5.13 Converting string variables to numeric variables 157

5.14 Converting numeric variables to string variables 163

5.15 Renaming and ordering variables . 166

6 Combining datasets 173

6.1 Introduction . 174

6.2 Appending: Appending datasets . 174

6.3 Appending: Problems . 178

6.4 Merging: One-to-one match-merging 189

6.5 Merging: One-to-many match-merging 195

6.6 Merging: Merging multiple datasets 199

6.7 Merging: Update merges . 203

6.8 Merging: Additional options when merging datasets 206

6.9 Merging: Problems merging datasets 211

6.10 Joining datasets . 216

6.11 Crossing datasets . 218

7 Processing observations across subgroups 221

7.1 Introduction . 222

7.2 Obtaining separate results for subgroups 222

7.3 Computing values separately by subgroups 224

7.4 Computing values within subgroups: Subscripting observations . . . 228

7.5 Computing values within subgroups: Computations across obser-
vations . 234

7.6 Computing values within subgroups: Running sums 236

7.7 Computing values within subgroups: More examples 238

7.8 Comparing the by and tsset commands 244

8 Changing the shape of your data 247

8.1 Introduction . 248

8.2 Wide and long datasets . 248

8.3 Introduction to reshaping long to wide 258

x Contents

8.4 Reshaping long to wide: Problems 261

8.5 Introduction to reshaping wide to long 262

8.6 Reshaping wide to long: Problems 266

8.7 Multilevel datasets . 271

8.8 Collapsing datasets . 274

9 Programming for data management 277

9.1 Introduction . 278

9.2 Tips on long-term goals in data management 279

9.3 Executing do-files and making log files 282

9.4 Automating data checking . 289

9.5 Combining do-files . 292

9.6 Introducing Stata macros . 296

9.7 Manipulating Stata macros . 300

9.8 Repeating commands by looping over variables 303

9.9 Repeating commands by looping over numbers 310

9.10 Repeating commands by looping over anything 312

9.11 Accessing results saved from Stata commands 314

9.12 Saving results of estimation commands as data 318

9.13 Writing Stata programs . 323

10 Additional resources 329

10.1 Online resources for this book . 330

10.2 Finding and installing additional programs 330

10.3 More online resources . 339

A Common elements 341

A.1 Introduction . 342

A.2 Overview of Stata syntax . 342

A.3 Working across groups of observations with by 344

A.4 Comments . 346

A.5 Data types . 347

A.6 Logical expressions . 357

Contents xi

A.7 Functions . 361

A.8 Subsetting observations with if and in 364

A.9 Subsetting observations and variables with keep and drop 367

A.10 Missing values . 370

A.11 Referring to variable lists . 374

Subject index 379

Preface

There is a gap between raw data and statistical analysis. That gap, called data man-
agement, is often filled with a mix of pesky and strenuous tasks that stand between you
and your data analysis. I find that data management usually involves some of the most
challenging aspects of a data analysis project. I wanted to write a book showing how
to use Stata to tackle these pesky and challenging data-management tasks.

One of the reasons I wanted to write such a book was to be able to show how useful
Stata is for data management. Sometimes people think that Stata’s strengths lie solely
in its statistical capabilities. I have been using Stata and teaching it to others for over
10 years, and I continue to be impressed with the way that it combines power with
ease of use for data management. For example, take the reshape command. This
simple command makes it a snap to convert a wide file to a long file and vice versa (for
examples, see section 8.3). Furthermore, reshape is partly based on the work of a Stata
user, illustrating that Stata’s power for data management is augmented by user-written
programs that you can easily download (as illustrated in section 10.2).

Each section of this book generally stands on its own, showing you how you can do a
particular data-management task in Stata. Take, for example, section 2.4, which shows
how you can read a comma-delimited file into Stata. This is not a book you need to
read cover to cover, and I would encourage you to jump around to the topics that are
most relevant for you.

Data management is a big (and sometimes daunting) task. I have written this book
in an informal fashion, like we were sitting down together at the computer and I was
showing you some tips about data management. My aim with this book is to help you
easily and quickly learn what you need to know to skillfully use Stata for your data-
management tasks. But if you need further assistance solving a problem, section 10.3
describes the rich array of online Stata resources available to you. I would especially
recommend the Statalist listserver, which allows you to tap into the knowledge of Stata
users around the world.

If you would like to contact me with comments or suggestions, I would love to hear
from you. You can write me at MichaelNormanMitchell@gmail.com, or visit me on the
web at http://www.MichaelNormanMitchell.com. Writing this book has been both a
challenge and a pleasure. I hope that you like it!

Simi Valley, CA Michael N. Mitchell
April 2010

174 Chapter 6 Combining datasets

6.1 Introduction

This chapter describes how to combine datasets using Stata. It also covers problems that
can arise when combining datasets, how you can detect them, and how to resolve them.
This chapter covers four general methods of combining datasets: appending, merging,
joining, and crossing. Section 6.2 covers the basics of how to append datasets, and
section 6.3 illustrates problems that can arise when appending datasets. The next four
sections cover four different kinds of merging—one-to-one match-merging (section 6.4),
one-to-many match-merging (section 6.5), merging multiple datasets (section 6.6), and
update merges (see section 6.7). Then section 6.8 discusses options that are common
to each of these merging situations, and section 6.9 illustrates problems that can arise
when merging datasets. The concluding sections cover joining datasets (section 6.10)
and crossing datasets (section 6.11).

I should note that a new syntax was introduced in Stata 11 for the merge command.
This new syntax introduces several new safeguards and features. This chapter exclu-
sively illustrates this new syntax for the merge command, and thus these examples will
not work in versions of Stata prior to version 11. Although not presented here, the
syntax for the merge command from earlier versions of Stata continues to work using
Stata 11.

6.2 Appending: Appending datasets

Consider moms.dta and dad.dta, presented below. Each dataset has four observations,
the first about four moms and the second about four dads. Each dataset contains a
family ID, the age of the person, his or her race, and whether he or she is a high school
graduate.

. use moms

. list

famid age race hs

1. 3 24 2 1
2. 2 28 1 1
3. 4 21 1 0
4. 1 33 2 1

. use dads

. list

famid age race hs

1. 1 21 1 0
2. 4 25 2 1
3. 2 25 1 1
4. 3 31 2 1

6.2 Appending: Appending datasets 175

Suppose that we wanted to stack these datasets on top of each other so that we would
have a total of eight observations in the combined dataset. The append command is
used for combining datasets like this, as illustrated below. First, we clear any data from
memory. Then, after the append command, we list all the datasets we want to append
together. Although we specified only two datasets, we could have specified more than
two datasets on the append command.

. clear

. append using moms dads

The list command below shows us that these two files were appended successfully.

. list

famid age race hs

1. 3 24 2 1
2. 2 28 1 1
3. 4 21 1 0
4. 1 33 2 1
5. 1 21 1 0

6. 4 25 2 1
7. 2 25 1 1
8. 3 31 2 1

Suppose that you already had moms.dta loaded in memory, as shown below.

. use moms

At this point, you can append dads.dta like this:

. append using dads

. list

famid age race hs

1. 3 24 2 1
2. 2 28 1 1
3. 4 21 1 0
4. 1 33 2 1
5. 1 21 1 0

6. 4 25 2 1
7. 2 25 1 1
8. 3 31 2 1

(Continued on next page)

176 Chapter 6 Combining datasets

Tip! Appending jargon

In the last example, we call moms.dta the master dataset because it is the dataset
in memory when the append is initiated. dads.dta is called the using dataset
because it is specified after the using keyword.

However we append these datasets, the combined file does not identify the source
of the data. We cannot tell whether an observation originated from moms.dta or from
dads.dta. To solve this, we can add the generate() option, which will create a new
variable that tells us from which dataset each observation came. You can name this
variable anything you like; I called it datasrc.

. clear

. append using moms dads, generate(datasrc)

. list, sepby(datasrc)

datasrc famid age race hs

1. 1 3 24 2 1
2. 1 2 28 1 1
3. 1 4 21 1 0
4. 1 1 33 2 1

5. 2 1 21 1 0
6. 2 4 25 2 1
7. 2 2 25 1 1
8. 2 3 31 2 1

Looking back at the original data, we can see that when datasrc is 1, the data
originate from moms.dta. When datasrc is 2, the data originate from dads.dta. If
we had a third dataset on the append command, datasrc would have been 3 for the
observations from that dataset.

Contrast this with the strategy where we first use the moms.dta dataset and then
append the dataset dads.dta, as shown below.

6.2 Appending: Appending datasets 177

. use moms

. append using dads, generate(datasrc)

. list, sepby(datasrc)

famid age race hs datasrc

1. 3 24 2 1 0
2. 2 28 1 1 0
3. 4 21 1 0 0
4. 1 33 2 1 0

5. 1 21 1 0 1
6. 4 25 2 1 1
7. 2 25 1 1 1
8. 3 31 2 1 1

Here a 0 means that the data came from the master dataset (i.e., moms.dta), and
having a 1 means that the data came from the first using dataset (i.e., dads.dta). Had
a second dataset been added after dads on the append command, the value for datasrc
for those observations would have been 2.

The label define and label values commands below are used to label the values
of datasrc (as described in section 4.4). Although I think labeling values is useful, it
is optional.

. label define source 0 "From moms.dta" 1 "From dads.dta"

. label values datasrc source

. list, sepby(datasrc)

famid age race hs datasrc

1. 3 24 2 1 From moms.dta
2. 2 28 1 1 From moms.dta
3. 4 21 1 0 From moms.dta
4. 1 33 2 1 From moms.dta

5. 1 21 1 0 From dads.dta
6. 4 25 2 1 From dads.dta
7. 2 25 1 1 From dads.dta
8. 3 31 2 1 From dads.dta

As mentioned earlier, you can append multiple datasets at one time. For example, we
have three datasets that contain book review information from three different reviewers:
Clarence, Isaac, and Sally. The datasets are listed below using the dir command.

. dir br*.dta

0.8k 2/02/10 18:48 br_clarence.dta
0.8k 2/02/10 18:48 br_isaac.dta
0.8k 2/02/10 18:48 br_sally.dta

178 Chapter 6 Combining datasets

The datasets all have the same variables in them. Below we can see the dataset
containing the reviews from Clarence. This includes a variable identifying the book
number (booknum), the name of the book (book), and the rating of the book (rating).

. use br_clarence

. list

booknum book rating

1. 1 A Fistful of Significance 5
2. 2 For Whom the Null Hypothesis is Rejected 10
3. 3 Journey to the Center of the Normal Curve 6

Let’s use the append command to combine all three datasets together. In doing so,
we will use the generate() option to create a variable named rev that indicates the
source of the data (i.e., the reviewer).

. clear

. append using br_clarence br_isaac br_sally, generate(rev)

. list, sepby(rev)

rev booknum book rating

1. 1 1 A Fistful of Significance 5
2. 1 2 For Whom the Null Hypothesis is Rejected 10
3. 1 3 Journey to the Center of the Normal Curve 6

4. 2 1 The Dreaded Type I Error 6
5. 2 2 How to Find Power 9
6. 2 3 The Outliers 8

7. 3 1 Random Effects for Fun and Profit 6
8. 3 2 A Tale of t-tests 9
9. 3 3 Days of Correlation and Regression 8

The value of rev is 1, 2, or 3 for the observations that came from br clarence, br isaac,
or br sally, respectively.

This covers the basics of using the append command. The next section covers some
of the problems that can arise when appending datasets.

6.3 Appending: Problems

The last section showed how easy it is to append datasets, but it ignored some of the
problems that can arise when appending datasets. This section describes five problems
that can arise when appending datasets: differing variable names across datasets, con-
flicting variable labels, conflicting value labels, inconsistent variable coding, and mixing
variable types across datasets. These are discussed one at a time below.

6.4 Merging: One-to-one match-merging 189

6.4 Merging: One-to-one match-merging

A match-merge combines two datasets using one (or more) key variables to link obser-
vations between the two datasets. In a one-to-one match-merge, the key variable(s)
uniquely identifies each observation in each dataset. Consider the moms1.dta and
dads1.dta datasets, below. The key variable, famid, uniquely identifies each obser-
vation in each dataset and can be used to link the observations from moms.dta with
the observations from dads.dta. Because these datasets are so small, you can see that
each observation from moms.dta has a match in dads.dta based on famid.

. use moms1

. list

famid mage mrace mhs

1. 1 33 2 1
2. 2 28 1 1
3. 3 24 2 1
4. 4 21 1 0

. use dads1

. list

famid dage drace dhs

1. 1 21 1 0
2. 2 25 1 1
3. 3 31 2 1
4. 4 25 2 1

We perform a 1:1 merge between moms1.dta and dads1.dta, linking them based
on famid.

. use moms1

. merge 1:1 famid using dads1

Result # of obs.

not matched 0
matched 4 (_merge==3)

The output from the merge command confirms our expectations that each observa-
tion from moms.dta has a matched observation in dads.dta (and vice versa). We can
see this for ourselves by listing the merged dataset.

(Continued on next page)

190 Chapter 6 Combining datasets

. list

famid mage mrace mhs dage drace dhs _merge

1. 1 33 2 1 21 1 0 matched (3)
2. 2 28 1 1 25 1 1 matched (3)
3. 3 24 2 1 31 2 1 matched (3)
4. 4 21 1 0 25 2 1 matched (3)

The listing shows the famid variable followed by the variables from moms.dta and
then the variables from dads.dta. The last variable, merge, was created by the merge

command to show the matching status for each observation. In this example, every
observation shows matched (3), indicating that a match was found between the master
and using dataset for every observation.

Tip! Merging jargon

In this example, moms1.dta is the master dataset because it is the dataset in
memory when the merge command is issued. dads1.dta is called the using dataset
because it is specified after the using keyword. The variable famid is called the
key variable because it holds the key to linking the master and using files.

Let’s consider a second example that involves some observations that do not match.
Let’s merge and inspect the datasets moms2.dta and dads2.dta.

. use moms2

. list

famid mage mrace mhs fr_moms2

1. 1 33 2 1 1
2. 3 24 2 1 1
3. 4 21 1 0 1
4. 5 39 2 0 1

. use dads2

. list

famid dage drace dhs fr_dads2

1. 1 21 1 0 1
2. 2 25 1 1 1
3. 4 25 2 1 1

Note how moms2.dta has an observation for family 3 and an observation for family 5
with no corresponding observations in dads2.dta. Likewise, dads2.dta has an obser-
vation for family 2, but there is no corresponding observation in moms2.dta. These

6.4 Merging: One-to-one match-merging 191

observations will not be matched. When we merge these files, Stata will tell us about
these nonmatched observations and help us track them, as we can see below.

. use moms2

. merge 1:1 famid using dads2

Result # of obs.

not matched 3
from master 2 (_merge==1)
from using 1 (_merge==2)

matched 2 (_merge==3)

The merge command summarizes how the matching went. Two observations were
matched and three observations were not matched. Among the nonmatched obser-
vations, two observations originated from the master (moms2.dta) dataset, and one
nonmatched observation originated from the using (dads2.dta) dataset. Let’s now list
the resulting merged dataset. (I first sorted the dataset on famid to make the listing
easier to follow.)

. sort famid

. list famid mage mrace dage drace _merge

famid mage mrace dage drace _merge

1. 1 33 2 21 1 matched (3)
2. 2 . . 25 1 using only (2)
3. 3 24 2 . . master only (1)
4. 4 21 1 25 2 matched (3)
5. 5 39 2 . . master only (1)

Families 3 and 5 have data from moms2.dta (master) but not dads2.dta (using).
The merge variable confirms this by displaying master only (1). Family 2 has data
from dads2.dta (using) but not moms2.dta (master). The merge variable informs us of
this by displaying using only (2) for this observation. Families 1 and 4 had matched
observations between the master and using datasets, and this is also indicated in the
merge variable, which shows matched (3).

Let’s look more closely at the merge variable. This variable, which tells us about
the matching status for each observation, might appear to be a string variable, but it
is a numeric variable. We can see this using the codebook command.

(Continued on next page)

192 Chapter 6 Combining datasets

. codebook _merge

_merge (unlabeled)

type: numeric (byte)
label: _merge

range: [1,3] units: 1
unique values: 3 missing .: 0/5

tabulation: Freq. Numeric Label
2 1 master only (1)
1 2 using only (2)
2 3 matched (3)

The value for the merge variable is just the number 1, 2, or 3 with a value label
providing a more descriptive label. If we want to list just the matched observations, we
can specify if merge == 3 with the list command, as shown below.

. list famid mage mrace dage drace _merge if _merge == 3

famid mage mrace dage drace _merge

1. 1 33 2 21 1 matched (3)
4. 4 21 1 25 2 matched (3)

Or we could list the observations that only originated from the master dataset
(moms2.dta) like this:

. list famid mage mrace dage drace _merge if _merge == 1

famid mage mrace dage drace _merge

3. 3 24 2 . . master only (1)
5. 5 39 2 . . master only (1)

We could keep just the matched observations by using the keep command, as shown
below.2

. keep if _merge == 3
(3 observations deleted)

. list famid mage mrace dage drace _merge

famid mage mrace dage drace _merge

1. 1 33 2 21 1 matched (3)
2. 4 21 1 25 2 matched (3)

When merging moms2.dta and dads2.dta, we called this a one-to-one merge be-
cause we assumed that moms2.dta contained one observation per famid and, likewise,
dads2.dta contained one observation per famid. Suppose that one of the datasets

2. This could also be done using the keep() option, as illustrated in section 6.8.

6.4 Merging: One-to-one match-merging 193

had more than one observation per famid. momsdup.dta is such a dataset. This value
of famid is accidentally repeated for the last observation (it shows as 4 for the last
observation but should be 5).

. use momsdup

. list

famid mage mrace mhs fr_moms2

1. 1 33 2 1 1
2. 3 24 2 1 1
3. 4 21 1 0 1
4. 4 39 2 0 1

This mistake should have been caught as a part of checking for duplicates (as de-
scribed in section 3.8) on the famid variable, but suppose that we did not notice
this. Fortunately, Stata catches this when we perform a one-to-one merge between
momsdup.dta and dads2.dta, as shown below.

. use momsdup

. merge 1:1 famid using dads2
variable famid does not uniquely identify observations in the master data
r(459);

The error message is alerting us that famid does not uniquely identify observations
in the master dataset (momsdup.dta). For a one-to-one merge, Stata checks both the
master and the using datasets to make sure that the key variable(s) uniquely identifies
the observations in each dataset. If not, an error message like the one above is displayed.

So far, all the examples have used one key variable for linking the master and using
datasets, but it is possible to have two or more key variables that are used to link the
master and using datasets. For example, consider kids1.dta, below.

. use kids1

. sort famid kidid

. list

famid kidid kage kfem

1. 1 1 3 1
2. 2 1 8 0
3. 2 2 3 1
4. 3 1 4 1
5. 3 2 7 0

6. 4 1 1 0
7. 4 2 3 0
8. 4 3 7 0

It takes two variables to identify each kid: famid and kidid. Let’s merge this dataset
with another dataset named kidname.dta (shown below).

194 Chapter 6 Combining datasets

. use kidname

. sort famid kidid

. list

famid kidid kname

1. 1 1 Sue
2. 2 1 Vic
3. 2 2 Flo
4. 3 1 Ivy
5. 3 2 Abe

6. 4 1 Tom
7. 4 2 Bob
8. 4 3 Cam

The kids in these two files can be uniquely identified and linked based on the combi-
nation of famid and kidid. We can use these two variables together as the key variables
for merging these two files, as shown below.

. use kids1

. merge 1:1 famid kidid using kidname

Result # of obs.

not matched 0
matched 8 (_merge==3)

The output from the merge command shows that all the observations in the merged
file were matched. Below we can see the merged dataset.

. list

famid kidid kage kfem kname _merge

1. 1 1 3 1 Sue matched (3)
2. 2 1 8 0 Vic matched (3)
3. 2 2 3 1 Flo matched (3)
4. 3 1 4 1 Ivy matched (3)
5. 3 2 7 0 Abe matched (3)

6. 4 1 1 0 Tom matched (3)
7. 4 2 3 0 Bob matched (3)
8. 4 3 7 0 Cam matched (3)

This concludes this section on one-to-one merging. This section did not address any
of the problems that can arise in such merges. Section 6.9 discusses problems that can
arise when merging datasets, how to discover them, and how to deal with them.

6.5 Merging: One-to-many match-merging 195

6.5 Merging: One-to-many match-merging

Section 6.4 showed a 1:1 merge that merged moms with dads. This was called a
1:1 merge because the key variable(s) uniquely identified each observation within each
dataset. By contrast, when matching moms to kids, a mom could match with more
than one kid (a one-to-many merge). The moms dataset is the 1 dataset and the kids
dataset is the m dataset. Despite this difference, the process of performing a 1:m merge
is virtually identical to the process of performing a 1:1 merge. This is illustrated by
merging moms1.dta with kids1.dta. These two datasets are shown below.

. use moms1

. list

famid mage mrace mhs

1. 1 33 2 1
2. 2 28 1 1
3. 3 24 2 1
4. 4 21 1 0

. use kids1

. list

famid kidid kage kfem

1. 3 1 4 1
2. 3 2 7 0
3. 2 1 8 0
4. 2 2 3 1
5. 4 1 1 0

6. 4 2 3 0
7. 4 3 7 0
8. 1 1 3 1

The variable famid links the moms with the kids. You can see that the mom in
family 1 will match to one child, but the mom in family 4 will match to three children.
You can also see that for every mom, there is at least one matched child, and every
child has a matching mom. We merge these two datasets below.

. use moms1

. merge 1:m famid using kids1

Result # of obs.

not matched 0
matched 8 (_merge==3)

The report shows that all observations were matched.

We can see the resulting merged dataset below. The dataset is sorted on famid and
kidid to make the listing easier to follow.

