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Preface

In this book, we illustrate how to use Stata to perform intermediate and advanced
analyses in financial econometrics. The book is mainly for graduate students and prac-
titioners who have an average econometric background. We provide a comprehensive
overview of ARMA modeling, as well as univariate and multivariate GARCH models. Our
approach consists of presenting a brief but rigorous summary of the theoretical frame-
work, which we then implement using many examples. In particular, we report several
empirical applications using real financial markets data to illustrate how to model con-
ditional mean and conditional variance of typical financial time series. Users can easily
replicate all the applications, executed using Stata 14, with the datasets and do-files we
provide to get familiar with the techniques and Stata commands.

Throughout the book, we use acronyms extensively. For your convenience, we have
included a glossary of acronyms at the end of the book.

The book is organized as follows. Chapter 1 provides an introduction to the fol-
lowing: the main features of financial time series, commands for obtaining descrip-
tive statistics, analyzing normality, conducting stationarity tests, autocorrelation, het-
eroskedasticity, and model selection criteria. Chapter 2 provides a detailed description
of the univariate ARMA framework to model the conditional mean of financial time
series, with a specific focus on the S&P 500 returns time series.

Chapter 3 introduces the notion of conditional volatility and the popular family
of GARCH models, specifically designed to capture the autoregressive nature of the
volatility of asset returns. Brief descriptions of GARCH-M, asymmetric GARCH (SAARCH,
TGARCH, GJR, APARCH) models, and nonlinear GARCH (PARCH, NGARCH, NGARCHK)
models are followed by empirical implementations considering the S&P 500. Chapter 4
extends the univariate GARCH models to the multivariate framework, to account for
not only volatility but also correlations between assets. Seminal multivariate GARCH

models, such as vech and BEKK models, are described mainly to highlight the curse
of dimensional issues; the chapter largely focuses on the CCC and DCC models widely
used in the profession. Extensive empirical applications are conducted using four stock
indices to stress the empirical validity of the MGARCH framework.

The last two chapters focus on risk management and contagion analyses, two leading
research themes among academics and practitioners in the field of financial econometrics.
In particular, chapter 5 introduces the concept of risk, risk measures, and their proper-
ties, concluding with an overview on some unilevel VaR and multilevel VaR backtesting
procedures proposed in the literature. The empirical applications reported illustrate
the methods and the way to implement them. Chapter 6 focuses on contagion analysis,
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where alternative methodologies are presented to evaluate the presence of a contagion.
The techniques are illustrated by empirical applications examining the presence of a
contagion among the United States, the United Kingdom, Germany, and Japan.

We acknowledge several people to whom we are in debt. First, we are grateful
to David Drukker for having sponsored and encouraged us to pursue this project. His
support was vital throughout the long gestation of the book, and he read and commented
on several drafts of it. Second, we thank Elisabetta Pellini, who carefully read the
complete version of the book and provided detailed and constructive feedback at various
stages of the project on both the completion of the final document and the empirical
applications. Third, we thank Jan Novotny for providing us with useful comments to
a preliminary version of the book. Finally, we thank Lisa Gilmore and Deirdre Skaggs
for production, LATEX, and editorial assistance. Any mistakes within the book are ours.



 

 

 

 

 

 

 



14 Chapter 1 Introduction to financial time series

The Shapiro–Francia test is implemented by the sfrancia command:

. sfrancia return

Shapiro-Francia W´ test for normal data

Variable Obs W´ V´ z Prob>z

return 16,102 0.89665 902.543 18.495 0.00001

Note: The normal approximation to the sampling distribution of W´
is valid for 10<=n<=5000 under the log transformation.

The Shapiro–Francia test also rejects the hypothesis of Gaussian distribution for the
returns. Similarly to the Shapiro–Wilk test, we are provided with a synthetic index for
the degree of departure from normality, V’, whose 95% confidence interval for accepting
the null hypothesis of normality is [2.0, 2.8]. In our case, V’ equals 902.54, clearly lying
outside the confidence bounds.

Note that the Shapiro–Wilk test is accurate only when the number of observations
lies between 4 and 2,000; Shapiro–Francia is accurate for 5 to 10,000 observations.

To summarize, in this section, we have presented several alternatives to test for
normality. Each of the alternatives supplied evidence of departure from normality when
applied to the S&P 500 returns series.

1.4 Stationarity

Financial econometricians generally work with returns rather than prices. In general,
returns are characterized by time-invariant distribution, meaning that returns follow a
stationary process.

Definition 1.4. A time series {r}t is strictly stationary if the joint distribution of
(rt1 , . . . , rtk) is identical to that of (rt1+τ , . . . , rtk+τ ) for all positive integers τ .

Strict stationarity requires that the joint distribution of the subsequence (rt1 , . . . , rtk)
does not change when it is shifted by an arbitrary amount τ . If we consider that sta-
tionarity requires that all moments of the joint distribution are invariant to time shifts,
we can easily understand that the distributions that generate most financial time series
are not strictly stationary.

Thus, we use a weaker definition of stationarity.

Definition 1.5. A time series {r}t is said to be weakly or covariance stationary if the
following conditions hold true:

1. E(rt) = µ: the mean of the process is constant through time and equal to a
constant µ;

2. Var(rt) = γ0: the variance of the process is time invariant and equal to a finite
constant γ0 <∞;



1.4 Stationarity 15

3. Cov(rt, rt+l) = γl, |γl| < ∞: the covariance of the process should not be time
dependent, but it can be affected just by the distance between the two time ticks
considered, equal to l.

Therefore, the weak stationarity imposes constraints on just the first two moments of
the distribution, while the strict stationarity checks that the entire distribution is time
invariant. Thus, weak stationarity does not imply strict stationarity, because the weak
stationarity does not impose conditions on moments higher than the second. Nor does
strict stationarity imply weak stationarity, because the definition of strict stationarity
does not require the variance to be finite. However, under the Gaussian assumption,
weak stationarity always implies strict stationarity, because the Gaussian distribution
is entirely characterized by its first two moments.

A well-known stationary process is the white-noise process.

Definition 1.6. A return time series {r}t is said to follow an independent white-noise
process if it satisfies the following conditions:

1. E(rt) = 0

2. E(r2t ) = σ2 <∞
3. E(rt, rt−j) = 0 ∀j 6= 0

A white-noise process has finite mean and variance, and it does not show any time
pattern, meaning that the current realizations of a process cannot help in predicting its
future realizations. Therefore, because independence implies absence of autocorrelation,
a white-noise process is characterized by almost flat autocorrelation function (ACF) and
partial autocorrelation function (PACF), with no correlation statistically different from 0.
Returns can usually be ascribed to the class of white-noise process, coherently with the
assumption of efficient market hypothesis.

We now simulate a Gaussian white-noise process. Note that normality is not a
general requirement for this process. We start by setting the length of our simulation
period equal to 1,000 by using the set obs command, and we generate a time index
(index) of the same length. In addition, we set the seed (the starting point for any
random sequence) to ensure we get the same sequence of random numbers every time
the simulation is run—which is important when we are ready to replicate the simulation.
Finally, we extract simulated numbers from a standard normal distribution by using the
rnormal() function, taking as an argument the mean and the standard deviation that,
in our case, we respectively set equal to 0 and to 1.

. clear

. set obs 1000
number of observations (_N) was 0, now 1,000

. generate index = _n

. * fix seed

. set seed 1
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. generate wn1 = rnormal(0,1)

. generate wn2 = rnormal(0,1)

. generate wn3 = rnormal(0,1)

. tsset index
time variable: index, 1 to 1000

delta: 1 unit

We then use the tsline command to graph the results; see figure 1.8.

. tsline wn1 wn2 wn3

−
4

−
2

0
2

4

0 200 400 600 800 1000
index

wn1 wn2

wn3

Figure 1.8. Simulated white-noise processes

Although the three processes are almost not distinguishable, they all move around
the zero line, suggesting that they are stationary.

A common nonstationary process is the random walk.

Definition 1.7. A time series {pt} is a random walk if it satisfies

pt = pt−1 + εt (1.1)

where εt is a white-noise process.

A random walk is the typical process that is able to describe the behavior of stock
prices.

A generalization of (1.1) is the random walk with drift:

pt = µ+ pt−1 + εt

where µ, commonly called drift, represents the time trend of the log price.
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We can obtain a random-walk process (see figure 1.9) as the cumulative sum of the
white-noise processes just simulated above.

. generate rw1 = sum(wn1)

. generate rw2 = sum(wn2)

. generate rw3 = sum(wn3)

. tsline rw1 rw2 rw3
−

4
0

−
2
0

0
2
0

0 200 400 600 800 1000
index

rw1 rw2

rw3

Figure 1.9. Simulated random-walk processes

All three simulated processes show a trend suggesting that they are not stationary.

1.4.1 Stationarity tests

With the purpose of establishing whether a time series is stationary or nonstationary,
we can use the unit-root test. A process with a unit root has time-dependent variance,
thus violating the condition of weak stationarity, Var(rt) = γ0.

Stata can test for the presence of a unit root by using two main testing procedures:
the augmented Dickey–Fuller (ADF, 1979) test and the Phillips and Perron (PP, 1988)
test.

Given a time series {yt}, the ADF test is based on the regression

∆yt = α+ βt+ θyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + εt (1.2)

where α is a constant, t is the time trend, and p is the order of the autoregressive
process.

The null hypothesis under which the ADF test is distributed is that the time series
is not stationary, corresponding to θ = 0, against the alternative that it is stationary,
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Figure 2.11. ACF and PACF for EUR–USD daily returns

Neither the ACF nor the PACF show any evidence of a time dependence structure
in the data, with almost no peak being statistically significantly different from 0. This
result is because of the high liquidity of the foreign market, making it extremely efficient.

2.4.1 Model estimation

We can use the arima command to fit ARMA models.

When checking the estimates, remember that Stata reports the intercept as the
unconditional mean. For instance, given an ARMA(p, q) model,

rt = δ + φ1rt−1 + · · ·+ φprt−p + θ1εt−1 + · · ·+ θqεt−q + εt

the intercept shown in the output is actually δ/1− φ1 − · · · − φp.

Before starting a full empirical implementation of an ARMA model, we briefly de-
scribe the estimation technique implemented in Stata. arima implements the conditional
and the unconditional ML estimators. The conditional ML estimator drops the observa-
tions lost to lagged values of the dependent variable or lagged errors. The unconditional
ML estimator uses the structure of the model to identify values to fill in for these missing
values. The unconditional estimator can be more efficient and is frequently preferred.
All the details can be found in [TS] arima.

As decided when we checked the ACF and the PACF, we now fit an ARMA(2,1) model
on the S&P 500 daily returns:

. use http://www.stata-press.com/data/feus/spdaily, clear

. tsset newdate
time variable: newdate, 03jan1950 to 31dec2013

delta: 1 day
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. arima return, ar(1/2) ma(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 51721.001
Iteration 1: log likelihood = 51721.421
Iteration 2: log likelihood = 51721.438
Iteration 3: log likelihood = 51721.448
Iteration 4: log likelihood = 51721.453
(switching optimization to BFGS)
Iteration 5: log likelihood = 51721.457
Iteration 6: log likelihood = 51721.465
Iteration 7: log likelihood = 51721.467
Iteration 8: log likelihood = 51721.469
Iteration 9: log likelihood = 51721.469
Iteration 10: log likelihood = 51721.469
Iteration 11: log likelihood = 51721.469

ARIMA regression

Sample: 04jan1950 - 31dec2013 Number of obs = 16102
Wald chi2(3) = 277.12

Log likelihood = 51721.47 Prob > chi2 = 0.0000

OPG
return Coef. Std. Err. z P>|z| [95% Conf. Interval]

return
_cons .0002924 .0000799 3.66 0.000 .0001358 .0004491

ARMA
ar
L1. -.068257 .0899525 -0.76 0.448 -.2445607 .1080466
L2. -.0400998 .0041099 -9.76 0.000 -.0481552 -.0320445

ma
L1. .0981323 .0898873 1.09 0.275 -.0780435 .2743081

/sigma .0097445 .0000152 640.54 0.000 .0097147 .0097743

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. estimates store ARMA21

We have fit a model with two lags for the AR part, ar(2), and one lag for the MA

part, ma(1). Alternatively, we could have typed arima returns, arima(2,0,1); here
the first number indicates that we want to add two lags for the AR part, the second
number indicates that we want to add the order of integration (here equal to 0), and
the third number indicates that we want to add one lag to the MA part.

In the first part of the output, we find some information about the optimization
procedure, with the iterations of the algorithm aimed at maximizing the log-likelihood
function. The convergence is achieved in 11 steps, and it stops at the log-likelihood
value of 51,721.47. We find this value just above the table. In addition, we are informed
that the estimation sample consists of 16,102 observations and that the model is overall
statistically significant, as suggested by the Wald test. The table provides parameters
and standard errors, the t test for the statistical significance of parameters z and P>|z|,
and the 95% confidence interval. OPG Std. Err. reminds us that Stata is using the
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An interesting relationship exists between the resampling frequency and the β pa-
rameter accounting for persistence in the GARCH model. To illustrate this point, we
now fit a GARCH(1,1) model on monthly returns using a resampled time series of our
daily S&P 500 returns, under the Gaussianity assumption and with no mean equation.

. use http://www.stata-press.com/data/feus/spmonthly, clear

. arch return, arch(1) garch(1) nolog

ARCH family regression

Sample: 2 - 769 Number of obs = 768
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = 1372.229 Prob > chi2 = .

OPG
return Coef. Std. Err. z P>|z| [95% Conf. Interval]

return
_cons .0065792 .001475 4.46 0.000 .0036883 .0094702

ARCH
arch
L1. .1130881 .0245265 4.61 0.000 .0650171 .1611591

garch
L1. .8405205 .0279828 30.04 0.000 .7856753 .8953657

_cons .000092 .0000315 2.92 0.004 .0000303 .0001538

The β parameter is equal to 0.84, while it equaled 0.91 when we fit the model on daily
data. Therefore, as expected, we confirm that the variance process is more persistent
when measured on higher frequency data.

A peculiar case of GARCH models is the integrated GARCH (IGARCH) model, which
is characterized by the presence of a unit root in the autoregressive dynamic of squared
residuals, corresponding to setting α+β = 1 in (3.9). The IGARCH(1,1) model takes the
following form:

ht = ω + αε2t−1 + (1− α)ht−1

Given that the IGARCH model is nonstationary, this process is useful when the condi-
tional variance is highly serially correlated (long-memory process), for instance, when
working with intraday data.

An example of the IGARCH model is the risk metrics model. In this case, the values
of the ARCH and GARCH parameters are fixed: α = (1− λ) and β = λ.

ht = (1− λ)ε2t−1 + λht−1

where ω = 0, λ = 0.94 for daily data, and λ = 0.97 for weekly data.
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3.4.2 GARCH in mean

The conditional variance can even enter the equation for the conditional mean. In that
case, we have a GARCH-in-mean (GARCH-M) model. The GARCH-M model was proposed
to allow us to account for the widely studied relationship between risk and return: as
the volatility of an asset raises, so does the expected risk premium. We can represent
the GARCH-M as follows:

rt = ω + βxt + θht + εt (3.10)

where ht follows a GARCH process, θ is the risk aversion parameter, and xt is the vector
of exogenous variables at time t.

Instead of the linear form in (3.10), we can insert the conditional variance ht in the
equation for the conditional mean by adopting a nonlinear function g(·):

rt = ω + βxt + θ0g (ht) + θ1g (ht−1) + θ2g (ht−2) + · · ·+ εt

We can fit an ARCH-in-mean (ARCH-M) model by specifying the archm option in the
usual arch command. Then, the archmlags(numlist) option specifies the number of
lags for the conditional variance that we want to add in the conditional mean equation.
For instance, by specifying archmlags(0), we add just the contemporaneous conditional
variance ht; by specifying archmlags(1), we are adding the once-lagged variance ht−1.
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. use http://www.stata-press.com/data/feus/spdaily

. tsset newdate
time variable: newdate, 03jan1950 to 31dec2013

delta: 1 day

. arch return, arch(1) garch(1) archm archmlags(1) nolog

ARCH family regression

Sample: 04jan1950 - 31dec2013 Number of obs = 16,102
Distribution: Gaussian Wald chi2(2) = 11.95
Log likelihood = 54792.1 Prob > chi2 = 0.0025

OPG
return Coef. Std. Err. z P>|z| [95% Conf. Interval]

return
_cons .0003063 .0000786 3.90 0.000 .0001522 .0004605

ARCHM
sigma2

--. 17.18942 6.664707 2.58 0.010 4.126831 30.252
L1. -13.97885 6.509351 -2.15 0.032 -26.73695 -1.220761

ARCH
arch
L1. .081337 .0016464 49.40 0.000 .07811 .0845639

garch
L1. .9122545 .0022107 412.65 0.000 .9079216 .9165874

_cons 8.03e-07 6.76e-08 11.89 0.000 6.71e-07 9.35e-07

In the output reported above, we can see the two extra parameters for the ARCH-M

part as well as the archmlags(1) option. These two parameters correspond to co-
efficients in (3.10), loading ht and ht−1, respectively, and they are both statistically
significant.

3.4.3 Forecasting

On the basis of a GARCH(1,1), we can obtain a volatility forecast at time t+ 1 as

E (ht+1|It) = E
(
ω̂ + α̂ε2t + β̂ht|It

)

E (ht+1|It) = ω̂ + α̂ε2t + β̂ht

where we are exploiting the fact that at time t, given the information set It, we know
both quantities εt and ht. When moving to forecasts at the next time t+ k with k ≥ 2,
it is necessary to distinguish between dynamic and static forecasts.

In the case of dynamic forecast, the informative set remains the same through time,
and equal to It, which is where the time series stops. For instance, at time t + 2, the
dynamic forecast for the conditional volatility is




