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Preface

We have added several new models to the discussion of extended generalized linear
models (GLM)s. Included are new software, discussion of Poisson inverse Gaussian and
zero-inflated Poisson, an enhanced generalized Poisson command, a new zero-inflated
generalized Poisson command, an “econometric” or traditional censored Poisson com-
mand, and a generalized negative binomial (NB-P). The NB-P command is a three-
parameter negative binomial where the exponent term of the NB-1 and NB-2 models
is itself parameterized. We have also provided more information on the AIC and BIC

statistics, including a command that provides the foremost postestimation fit statistics
for nonnested models. We include many examples using synthetically created models to
illustrate estimation results, and we also show readers how to construct synthetic Monte
Carlo models for binomial and major count models. The codes for creating synthetic
Poisson, negative binomial, zero-inflated, hurdle, and finite mixture models are provided
and explained. We have also added a discussion of marginal effects and discrete change
for GLMs.

This third edition of Generalized Linear Models and Extensions is written for the
active researcher as well as for the theoretical statistician. Our goal has been to clarify
the nature and scope of GLMs and to demonstrate how all the families, links, and
variations of GLMs fit together in an understandable whole.

In a step-by-step manner, we detail the foundations and provide working algorithms
that readers can use to construct and better understand models that they wish to
develop. In a sense, we offer readers a workbook or handbook of how to deal with data
using GLM and GLM extensions.

This text is intended as a textbook on GLMs and as a handbook of advice for re-
searchers. We continue to use this book as the required text for a web-based short
course through Statistics.com (also known as the Institute for Statistical Education);
see http://www.statistics.com. The students of this six-week course include university
professors and active researchers from hospitals, government agencies, research insti-
tutes, educational concerns, and other institutions across the world. This latest edition
reflects the experiences we have had in communicating to our readers and students the
relevant materials over the past decade.

Many people have contributed to the ideas presented in the new edition of this
book. John Nelder has been the foremost influence. Other important and influential
people include Peter Bruce, David Collett, David Hosmer, Stanley Lemeshow, James
Lindsey, J. Scott Long, Roger Newson, Scott Zeger, Kung-Yee Liang, Raymond J. Car-
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roll, H. Joseph Newton, Henrik Schmiediche, Norman Breslow, Berwin Turlach, Gordon
Johnston, Thomas Lumley, Bill Sribney, Vince Wiggins, Mario Cleves, Roberto Gutier-
rez, William Greene, Andrew Robinson, Heather Presnal, and many others. We also
thank William Gould, president of StataCorp, for his encouragement in this project.
His statistical computing expertise and his contributions to statistical modeling have
had a deep impact on this book.

We also thank StataCorp’s editorial staff for their equanimity in reading and edit-
ing our manuscript, especially Wes Eddings, Patricia Branton, and Lisa Gilmore for
their insightful and patient contributions in this area. Finally, we thank Kristin Mac-
Donald and Isabel Canette, Stata statisticians, for their expert assistance on various
programming issues.

Stata Press allowed us to dictate some of the style of this text. In writing this
material in other forms for short courses, we have always included equation numbers
for all equations rather than only for those equations mentioned in text. Although this
is not the standard editorial style for textbooks, we enjoy the benefits of students being
able to communicate questions and comments more easily (and efficiently). We hope
that readers find this practice as beneficial as our short-course participants have found
it.

Errata, datasets, and supporting Stata programs (do-files and ado-files) may be
found at the publisher’s site http://www.stata-press.com/books/glmext3.html.

James W. Hardin
Joseph M. Hilbe

April 2012
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Nelder and Wedderburn (1972) introduced the theory of GLMs. The authors derived
an underlying unity for an entire class of regression models. This class consisted of
models whose single response variable, the variable that the model is to explain, is
hypothesized to have the variance that is reflected by a member of the single-parameter
exponential family of probability distributions. This family of distributions includes
the Gaussian or normal, binomial, Poisson, gamma, inverse Gaussian, geometric, and
negative binomial.

To establish a basis, we begin discussion of GLMs by initially recalling important
results on linear models, specifically those results for linear regression. The standard
linear regression model relies on several assumptions, among which are the following:

1. Each observation of the response variable is characterized by the normal or Gaus-
sian distribution; yi ∼ N(µi, σ

2
i ).

2. The distributions for all observations have a common variance; σ2
i = σ2 for all i.

3. There is a direct or “identical” relationship between the linear predictor (linear
combination of covariate values and associated parameters) and the expected val-
ues of the model; xiβ = µi.

The purpose of GLMs, and the linear models that they generalize, is to specify the
relationship between the observed response variable and some number of covariates.
The outcome variable is viewed as a realization from a random variable.

Nelder and Wedderburn showed that general models could be developed by relaxing
the assumptions of the linear model. By restructuring the relationship between the
linear predictor and the fit, we can “linearize” relationships that initially seem to be

9
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nonlinear. Nelder and Wedderburn accordingly dubbed these models “generalized linear
models”.

Most models that were placed under the original GLM framework were well estab-
lished and popular—some more than others. However, these models had historically
been fit using maximum likelihood (ML) algorithms specific to each model. ML algo-
rithms, as we will call them, can be hard to implement. Starting or initial estimates for
parameters must be provided, and considerable work is required to derive model-specific
quantities to ultimately obtain parameter estimates and their standard errors. In the
next chapter, we show much effort is involved.

Ordinary least squares (OLS) extends ML linear regression such that the properties of
OLS estimates depend only on the assumptions of constant variance and independence.
ML linear regression carries the more restrictive distributional assumption of normality.
Similarly, although we may derive likelihoods from specific distributions in the expo-
nential family, the second-order properties of our estimates are shown to depend only
on the assumed mean–variance relationship and on the independence of the observa-
tions rather than on a more restrictive assumption that observations follow a particular
distribution.

The classical linear model assumes that the observations that our dependent variable
y represents are independent normal variates with constant variance σ2. Also covariates
are related to the expected value of the dependent variable such that

E(y) = µ (2.1)

µ = Xβ (2.2)

This last equation shows the “identical” or identity relationship between the linear
predictor Xβ and the mean µ.

Whereas the linear model conceptualizes the outcome y as the sum of its mean µ and
a random variable ǫ, Nelder and Wedderburn linearized each GLM family member by
means of a link function. They then altered a previously used algorithm called iterative
weighted least squares, which was used in fitting weighted least-squares regression mod-
els. Aside from introducing the link function relating the linear predictor to the fitted
values, they also introduced the variance function as an element in the weighting of
the regression. The iterations of the algorithm updates parameter estimates to produce
appropriate linear predictors, fitted values, and standard errors. We will clarify exactly
how all this falls together in the section on the iteratively reweighted least-squares (IRLS)
algorithm.

The estimation algorithm allowed researchers to easily fit many models previously
considered to be nonlinear by restructuring them into GLMs. Later, it was discovered
that an even more general class of linear models results from more relaxations of as-
sumptions for GLMs.

However, even though the historical roots of GLMs are based on IRLS methodology,
many generalizations to the linear model still require Newton–Raphson techniques com-
mon to ML methods. We take the position here that GLMs should not be constrained to
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those models first discussed by Nelder and Wedderburn but rather that they encompass
all such linear generalizations to the standard model.

Many other books and journal articles followed the cornerstone article by Nelder and
Wedderburn (1972) as well as the text by McCullagh and Nelder (1989) (the original
text was published in 1983). Lindsey (1997) illustrates the application of GLMs to bio-
statistics, most notably focusing on survival models. Hilbe (1994) gives an overview of
the GLM and its support from various software packages. Software was developed early
on. In fact, Nelder was instrumental in developing the first statistical program based
entirely on GLM principles—generalized linear interactive modeling (GLIM). Published
by the Numerical Algorithms Group (NAG), the software package has been widely used
since the mid-1970s. Other vendors began offering GLM capabilities in the 1980s, in-
cluding GENSTAT and S-Plus. Stata and SAS included it in their software offerings in
1993 and 1994, respectively.

This text covers much of the same foundation material as other books. What dis-
tinguishes our presentation of the material is twofold. First, we focus on the estimation
of various models via the estimation technique. Second, we present our derivation of
the methods of estimation in a more accessible manner than which is presented in other
sources. In fact, where possible, we present complete algebraic derivations that include
nearly every step in the illustrations. Pedagogically, we have found that this manner
of exposition imparts a more solid understanding and “feel” of the area than do other
approaches. The idea is this: if you can write your own GLM, then you are probably
more able to know how it works, when and why it does not work, and how it is to be
evaluated. Of course, we also discuss methods of fit assessment and testing. To model
data without subjecting them to evaluation is like taking a test without checking the
answers. Hence, we will spend considerable time dealing with model evaluation as well
as algorithm construction.

2.1 Components

Cited in various places such as Hilbe (1993b) and Francis, Green, and Payne (1993),
GLMs are characterized by an expanded itemized list given by the following:

1. A random component for the response, y, which has the characteristic variance
of a distribution that belongs to the exponential family.

2. A linear systematic component relating the linear predictor, η = Xβ, to the
product of the design matrix X and the parameters β.

3. A known monotonic, one-to-one, differentiable link function g(·) relating the linear
predictor to the fitted values. Because the function is one-to-one, there is an
inverse function relating the mean expected response, E(y) = µ, to the linear
predictor such that µ = g−1(η) = E(y).

4. The variance may change with the covariates only as a function of the mean.

5. There is one IRLS algorithm that suffices to fit all members of the class.
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Item 5 is of special interest. The traditional formulation of the theory certainly supposed
that there was one algorithm that could fit all GLMs. We will see later how this was
implemented. However, there have been extensions to this traditional viewpoint. Ad-
justments to the weight function have been added to match the usual Newton–Raphson
algorithms more closely and so that more appropriate standard errors may be calculated
for noncanonical link models. Such features as scaling and robust variance estimators
have also been added to the basic algorithm. More importantly, sometimes a traditional
GLM must be restructured and fit using a model-specific Newton–Raphson algorithm.
Of course, one may simply define a GLM as a model requiring only the standard approach
but doing so would severely limit the range of possible models. We prefer to think of
a GLM as a model that is ultimately based on the probability function belonging to
the exponential family of distributions, but with the proviso that this criterion may be
relaxed to include quasilikelihood models as well as certain types of multinomial, trun-
cated, censored, and inflated models. Most of the latter type require a Newton–Raphson
approach rather than the traditional IRLS algorithm.

Early GLM software development constrained GLMs to those models that could be fit
using the originally described estimation algorithm. As we will illustrate, the traditional
algorithm is relatively simple to implement and requires little computing power. In the
days when RAM was scarce and expensive, this was an optimal production strategy for
software development. Because this is no longer the case, a wider range of GLMs can
more easily be fit using a variety of algorithms. We will discuss these implementation
details at length.

In the classical linear model, the observations of the dependent variable y are
independent normal variates with constant variance σ2. We assume that the mean
value of y may depend on other quantities (predictors) denoted by the column vectors
X1,X2, . . . ,Xp−1. In the simplest situation, we assume that this dependency is linear
and write

E(y) = β0 + β1X1 + · · · + βp−1Xp−1 (2.3)

and attempt to estimate the vector β.

GLMs specify a relationship between the mean of the random variable y and a func-
tion of the linear combination of the predictors. This generalization admits a model
specification allowing for continuous or discrete outcomes and allows a description of
the variance as a function of the mean.

2.2 Assumptions

The link function relates the mean µ = E(y) to the linear predictor Xβ and the variance
function relates the variance as a function of the mean V (y) = a(φ)v(µ), where a(φ)
is the scale factor. For the Poisson, binomial, and negative binomial variance models,
a(φ) = 1.

Breslow (1996) points out that the critical assumptions in the GLM framework may
be stated as follows:
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1. Statistical independence of the n observations.

2. The variance function v(µ) is correctly specified.

3. a(φ) is correctly specified (1 for Poisson, binomial, and negative binomial).

4. The link function is correctly specified.

5. Explanatory variables are of the correct form.

6. There is no undue influence of the individual observations on the fit.

As a simple illustration, in table 2.1 we demonstrate the effect of the assumed vari-
ance function on the model and fitted values of a simple GLM.

Table 2.1: Predicted values for various choices of variance function

Observed (y) 1.00 2.00 9.00

Predicted (Normal: v(µ) = φ) 0.00 4.00 8.00 ŷ = −4.00 + 4.00x

Predicted (Poisson: v(µ) = µ) 0.80 4.00 7.20 ŷ = −2.40 + 3.20x

Predicted (Gamma: v(µ) = φµ2) 0.94 3.69 6.43 ŷ = −1.80 + 2.74x

Predicted (Inverse Gaussian: v(µ) = φµ3) 0.98 3.33 5.69 ŷ = −1.37 + 2.35x

Note: The models are all fit using the identity link and the data consist of 3 observations
(y, x) = {(1, 1), (2, 2), (9, 3)}. The fitted models are included in the last column.

2.3 Exponential family

GLMs are traditionally formulated within the framework of the exponential family of
distributions. In the associated representation, we can derive a general model that may
be fit using the scoring process (IRLS) detailed in section 3.3. Many people confuse the
estimation method with the class of GLMs. This is a mistake, because there are many
estimation methods. Some software implementations allow specification of more diverse
models than others. We will point this out throughout the text.

The exponential family is usually (there are other algebraically equivalent forms in
the literature) written as

fy(y; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
(2.4)

where θ is the canonical (natural) parameter of location and φ is the parameter of scale.
The canonical parameter relates to the means, and the scale parameter relates to the
variances for members of the exponential family of distributions including Gaussian,
gamma, inverse Gaussian, and others. Using the notation of the exponential family
provides a means to specify models for continuous, discrete, proportional, count, and
binary outcomes.
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In the exponential family presentation, we construe each of the yi observations as
being defined in terms of the parameters θ. Because the observations are independent,
the joint density of the sample of observations yi, given parameters θ and φ, is defined by
the product of the density over the individual observations (review sec. 2.2). Interested
readers can review Barndorff-Nielsen (1976) for the theoretical justification that allows
this factorization:

fy1,y2,...,yn
(y1, y2, . . . , yn; θ, φ) =

n∏

i=1

exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(2.5)

Conveniently, the joint probability density function may be expressed as a function
of θ and φ given the observations yi. This function is called the likelihood, L, and is
written as

L(θ, φ; y1, y2, . . . , yn) =

n∏

i=1

exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(2.6)

We wish to obtain estimates of (θ, φ) that maximize the likelihood function. Given
the product in the likelihood, it is more convenient to work with the log likelihood,

L(θ, φ; y1, y2, . . . , yn) =

n∑

i=1

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(2.7)

because the values that maximize the likelihood are the same values that maximize the
log likelihood.

Throughout the text, we will derive each distributional family member from the
exponential family notation so that the components are clearly illustrated. The log
likelihood for the exponential family is in a relatively basic form, admitting simple
calculations of first and second derivatives for ML estimation. The IRLS algorithm takes
advantage of this form of the log likelihood.

First, we generalize the log likelihood to include an offset to the linear predictor. This
generalization will allow us to investigate simple equality constraints on the parameters.

The idea of an offset is simple. To fit models with covariates, we specify that θ is
a function of specified covariates, X, and their associated coefficients, β. Within the
linear combination of the covariates and their coefficients Xβ, we may further wish to
constrain a particular subset of the coefficients βi to particular values. For example,
we may know or wish to test that β3 = 2 in a model with a constant, X0, and three
covariatesX1, X2, andX3. If we wish to enforce the β3 = 2 restriction on the estimation,
then we will want the optimization process to calculate the linear predictor as

η = β̂0 + β̂1X1 + β̂2X2 + 2X3 (2.8)

at each step. We know (or wish to enforce) that the linear predictor is composed of a
linear combination of the unrestricted parameters plus two times the X3 covariate. If
we consider that the linear predictor is generally written as

η = Xβ + offset (2.9)
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then we can appreciate the implementation of a program that allows an offset. We could
generate a new variable equal to two times the variable containing the X3 observations
and specify that generated variable as the offset. By considering this issue from the
outset, we can include an offset in our derivations, which will allow us to write programs
that include this functionality.

The offset is a given (nonstochastic) component in the estimation problem. By
including the offset, we gain the ability to fit (equality) restricted models without adding
unnecessary complexity to the model: the offset plays no role in derivative calculations.
If we do not include an offset in our derivations and subsequent programs, we can still
fit restricted models, but the justification is less clear; see the arguments of Nyquist
(1991) for obtaining restricted estimates in a GLM.

2.4 Example: Using an offset in a GLM

In subsequent chapters (especially chapter 3), we illustrate the two main components of
the specification of a GLM. The first component of a GLM specification is a function of the
linear predictor, which substitutes for the location (mean) parameter of the exponential
family. This function is called the link function because it links the expected value of
the outcome to the linear predictor comprising the regression coefficients; we specify
this function with the link() option. The second component of a GLM specification is
the variance as a scaled function of the mean. In Stata, this function is specified using
the name of a particular member distribution of the exponential family; we specify this
function with the family() option. The example below highlights a log-link Poisson
GLM.

For this example, it is important to note the treatment of the offset in the linear
predictor. The particular choices for the link and variance functions are not relevant to
the utility of the offset.
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Below we illustrate the use of an offset with Stata’s glm command. From an analysis
presented in chapter 13, consider the output of the following model:

. use http://www.stata-press.com/data/hh3/medpar

. glm los hmo white type2 type3, family(poisson) link(log) nolog

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 9.276131
Log likelihood = -6928.907786 BIC = -2749.057

OIM
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

hmo -.0715493 .023944 -2.99 0.003 -.1184786 -.02462
white -.153871 .0274128 -5.61 0.000 -.2075991 -.100143
type2 .2216518 .0210519 10.53 0.000 .1803908 .2629127
type3 .7094767 .026136 27.15 0.000 .6582512 .7607022
_cons 2.332933 .0272082 85.74 0.000 2.279606 2.38626

We would like to test whether the coefficient on white is equal to −0.20. We could use
Stata’s test command to obtain a Wald test

. test white=-.20

( 1) [los]white = -.2

chi2( 1) = 2.83
Prob > chi2 = 0.0924

which indicates that −0.15 (coefficient on white) is not significantly different at a 5%
level from −0.20. However, we want to use a likelihood-ratio test, a usually more
reliable test of parameter estimate significance. Stata provides a command that stores
the likelihood from the unrestricted model (above) and then compares it with a restricted
model. Having fit the unrestricted model, our attention now turns to fitting a model
satisfying our specific set of constraints. Our constraint is that the coefficient on white

be restricted to the constant value −0.20.

First, we store the log-likelihood value from the unrestricted model, and then we
generate a variable indicative of our constraint. This new variable contains the restric-
tions that we will then supply to the software for fitting the restricted model. In short,
the software will add our restriction any time that it calculates the linear predictor xiβ.
Because we envision a model for which the coefficient of white is equal to −0.20, we
need to generate a variable that is equal to −0.20 times the variable white.
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. estimates store Unconstrained

. generate offvar = -.20*white

. glm los hmo type2 type3, family(poisson) link(log) offset(offvar) nolog

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1491

Scale parameter = 1
Deviance = 8145.531652 (1/df) Deviance = 5.463133
Pearson = 9334.640731 (1/df) Pearson = 6.260658

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 9.27671
Log likelihood = -6930.340612 BIC = -2753.502

OIM
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

hmo -.0696133 .0239174 -2.91 0.004 -.1164906 -.022736
type2 .218131 .020951 10.41 0.000 .1770677 .2591942
type3 .7079687 .0261214 27.10 0.000 .6567717 .7591658
_cons 2.374881 .0107841 220.22 0.000 2.353744 2.396017

offvar 1 (offset)

. lrtest Unconstrained

Likelihood-ratio test LR chi2(1) = 2.87
(Assumption: . nested in Unconstrained) Prob > chi2 = 0.0905

Because we restricted one coefficient from our full model, the likelihood-ratio statistic
is distributed as a chi-squared random variable with 1 degree of freedom. We fail to
reject the hypothesis that the coefficient on white is equal to −0.20 at the 5% level.

Restricting coefficients for likelihood-ratio tests is just one use for offsets. Later, we
discuss how to use offsets to account for exposure in count data models.

2.5 Summary

The class of GLMs extends traditional linear models so that a linear predictor is mapped
through a link function to model the mean of a response characterized by any member
of the exponential family of distributions. Because we are able to develop one algorithm
to fit the entire class of models, we can support estimation of such useful statistical
models as logit, probit, and Poisson.

The traditional linear model is not appropriate when it is unreasonable to assume
that data are normally distributed or if the response variable has a limited outcome set.
Furthermore, in many instances in which homoskedasticity is an untenable requirement,
the linear model is again inappropriate. The GLM allows these extensions to the linear
model.

A GLM is constructed by first selecting explanatory variables for the response variable
of interest. A probability distribution that is a member of the exponential family is
selected, and an appropriate link function is specified, for which the mapped range of
values supports the implied variance function of the distribution.




