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Preface

Welcome.

Time-series analysis is a relatively new branch of statistics. Most of the techniques
described in this book did not exist prior to World War II, and many of the techniques
date from just the last few decades. The novelty of these techniques is somewhat
surprising, given the importance of forecasting in general and of predicting the future
consequences of today’s policy actions in particular. The explanation lies in the relative
difficulty of the statistical theory for time series. When I was in graduate school, one
of my econometrics professors admitted that he had switched his focus from time series
when he realized he could produce three research papers a year on cross-section topics
but only one paper per year on time-series topics.

Why another book on time series?

The explosion of research in recent decades has delivered a host of powerful and complex
tools for time-series analysis. However, it can take a little while to become comfortable
with applying these tools, even for experienced empirical researchers. And in industry,
these tools sometimes are applied indiscriminately with little appreciation for their
subtleties and limitations. There are several excellent books on time-series analysis at
varying levels of difficulty and abstraction. But few of those books are linked to software
tools that can immediately be applied to data analysis.

I wrote this book to provide a step-by-step guide to essential time-series techniques—
from the incredibly simple to the quite complex—and, at the same time, to demonstrate
how these techniques can be applied in the Stata statistical package.

Why Stata? There are, after all, a number of established, powerful statistical pack-
ages offering time-series tools. Interestingly, the conventions adopted by these programs
for describing and analyzing time series vary widely, much more widely than the conven-
tions used for cross-section techniques and classical hypothesis testing. Some of these
packages focus primarily on time series and can be used on non-time-series questions
only with a bit of difficulty. Others have to twist their time-series procedures into a
form that fits the rest of the structure of their package.

I helped out in a small way when Stata was first introduced. At that time, the
most frequent question posed by users (and potential users) was, “When will time series
be available?” For a long time, we would tell users (completely sincerely) that these
techniques would appear in the next release, in six to twelve months. However, we
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repeatedly failed to deliver on this promise. Version after version appeared with many
new features, but not time series. I moved on to other endeavors, remaining a Stata user
but not a participant in its production. Like other users, I kept asking for time-series
features—I needed them in my own research. I finally became frustrated and, using
Stata’s programming capabilities, cobbled together some primitive Stata functions that
helped a bit.

Why the delay? Part of the reason was other, more time-critical demands on what
was, at the beginning, a small company. However, I think the primary reason was
StataCorp’s commitment to what they call the “human-machine interface”. There are
lots of packages that reliably calculate estimates of time-series models. Many of them
are difficult to use. They present a series of obstacles that must be overcome before you
can test your hypotheses on data. Frequently, it is challenging to thoroughly examine
all aspects of your data. And they make it onerous to switch directions as the data
begin to reveal their structure.

Stata makes these tasks easy—at least, easy by comparison to the alternatives. I
find that the facility of Stata contributes to better analyses. I attempt more, I look more
deeply, because it is easy. The teams that work for me use several different packages,
not just Stata, depending on the task at hand. I find that I get better, more thorough
analyses from the team members using Stata. I do not think it is a coincidence.

When Stata finally gained time-series capabilities, it incorporated a design that
retains the ease of use and intuitiveness that has always been the hallmark of this
package. That is why I use Stata rather than any of the other candidate packages.

Despite the good design poured into Stata, time-series analysis is still tough. That
is just the nature of the time-series inference task. I tend to learn new programs by
picking up the manual and playing around. I certainly have learned a lot of the newer,
more complex features of Stata that way. However, I do not think it is easy to learn
the time-series techniques of Stata just from reading the Stata Time-Series Reference
Manual—and it is a very well-written manual. I know—I tried. For a long time, I
stuck with my old, home-brew Stata functions to avoid the task of learning something
different, even after members of my staff had adopted the new Stata tools.

Writing this book provided me with the opportunity to break out of my bad habits
and make the transition to Stata’s powerful time-series features. And I am glad I did.
Once you come up the learning curve, I think these tools will knock your socks off. They
certainly lower the barrier to many ambitious types of empirical research.

I hope you are the beneficiary of my learning process. I have attempted in these
pages to link theory with tools in a way that smooths the path for you. Please let me
know if I have succeeded. Contact the folks at Stata Press with your feedback—good
or bad—and they will pass it along to me.
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Who should read this book?

Stata users trying to figure out Stata’s time-series tools. You will find detail-
ed descriptions of the tools and how to apply them combined with detailed exam-
ples and an intuitive explanation of the theory underlying each tool.

Time-series researchers considering Stata for their work. Each commercial
time-series package takes a different approach to characterizing time-series data
and models. Stata’s unique approach offers distinct advantages that this book
highlights.

Researchers who know a bit about time series but want to know more.
The gestalt of time-series analysis is not immediately intuitive, even to researchers
with a deep background in other statistical techniques.

Researchers who want more extensive help than the manual can provide.
It is clear and well written, but, at the end of the day, it is a manual, not a tutorial.

How is this book organized?

Like Gaul, this book is divided into three parts.

Preliminaries. Preparation for reading the rest of the book.

Chapter 1: Just enough Stata. A quick and easy introduction for the com-
plete novice. Also useful if you have not used Stata for a while.

Chapter 2: Just enough Statistics. A cheat sheet for the statistical knowl-
edge assumed in later chapters.

Filtering and Forecasting. A nontechnical introduction to the basic ways to analyze
and forecast time series. Lots of practical advice.

Chapter 3: Filtering time-series data. A checklist of questions to answer be-
fore your analysis. The four components of a time series. Using filters to
suppress the random noise and reveal the underlying structure.

Chapter 4: A first pass at forecasting. Forecast fundamentals. Filters that
forecast.

Time-series models. Modern approaches to time-series models.

Chapter 5: Autocorrelated disturbances. What is autocorrelation? Regres-
sion models with autocorrelation. Testing for autocorrelation. Estimation
with first-order autocorrelated data.

Chapter 6: Univariate time-series models. The general linear process. No-
tation conventions. The mixed autoregressive moving-average model. Sta-
tionarity and invertibility.



xxiv Preface

Chapter 7: Modeling a real-world time series: The example of U.S.
gross domestic product. Getting ready to model a time series. The
Box–Jenkins approach. How to specify, estimate, and test an autoregressive
moving-average model. Forecasting with autoregressive integrated moving-
average models. Comparing forecasts.

Chapter 8: Time-varying volatility: Autoregressive conditional
heteroskedasticity and generalized autoregressive conditional het-
eroskedasticity models. Examples of time-varying volatility. A model
of time-varying volatility. Extensions to the autoregressive conditional het-
eroskedasticity model.

Chapter 9: Models of multiple time series. Vector autoregressions. A vec-
tor autoregression of the U.S. macroeconomy. Cross correlations, causality,
impulse–response functions, and forecast-error decompositions. Structural
vector autoregressions.

Chapter 10: Models of nonstationary time series. Trends and unit roots.
Cointegration. From intuition to vector error-correction models.

Chapter 11: Closing observations. Making sense of it all. What did we miss?

Ready, set, . . .

I am a reporter. I am reporting on the work of others. Work on the statistical theory
of time-series processes. Work on the Stata statistical package to apply this theory. As
a reporter, I must give you an unvarnished view of these topics. However, as we are
frequently reminded in this postmodern world, none of us can be completely objective,
try as we will. Each of us has a perspective, a slant informed by our life experiences.

Here is my slant. I was trained as an academic economist. I became a software
developer to pay my way through graduate school and found I liked the challenges of
good software design as much as I liked economic research. I began my postgraduate
career in academics, transitioned to the Federal Reserve System, and eventually ended
up in research in the financial services industry, where I have worked for a number
of leading firms (some of them still in existence). I believe I have learned something
valuable at each stage along the way.

For the purposes of this book, the most important experience has been to see how
statistical research, good and bad, is performed in academics, the Fed, and industry.
Good academic research applies cutting-edge research to thorny problems. Bad aca-
demic research gets caught up in footnotes and trivia and loses sight of real-world
phenomena. The Federal Reserve produces high-quality research, frequently published
in the best academic journals. A signature characteristic of research within the Fed
is a deep knowledge of the institutional details that can influence statistical relation-
ships. However, Fed research occasionally exhibits an oversimplified perspective of the
workings of the financial services industry. Industry has to make decisions in real time.
Accordingly, industry research has to generate answers quickly. Good industry research
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makes wise tactical choices and selects reasonable shortcuts around technical obstacles.
Bad industry research is “quick and dirty”.

Embrace the good, avoid the bad. Perhaps because the latter half of my career has
been spent in industry, my personal bent is to recognize the limitations of the tools I
use without becoming distressed over them. I am more interested in intuition than in
proofs.

Here are three articles that sum up the approach I try to emulate:

• Diaconis, P. 1985. Theories of data analysis: From magical thinking through clas-
sical statistics. In Exploring Data Tables, Trends, and Shapes, ed. D. C. Hoaglin,
F. Mosteller, and J. W. Tukey, 1–36. New York: Wiley.

• Ehrenberg, A. S. C. 1977. Rudiments of numeracy. Journal of the Royal Statistical
Society, Series A 140: 277–297.

• Wainer, H. 1984. How to display data badly. American Statistician 38: 137–147.

Do not say I did not warn you. Now get cracking and learn some stuff.
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Chapter map

4.1 Forecast fundamentals. The types of forecasts covered in this book. Other types
of forecasts. Measuring the quality of a forecast. The elements of a forecast.

4.2 Filters that forecast. And ones that do not. Trailing moving averages. Forecasts
based on exponentially weighted moving averages (EWMAs). Forecasting a trend-
ing series with a seasonal component. Matching the filter to the type of forecast
needed. Pros and cons of each approach.

4.3 Points to remember. Three models. Different filters for different situations.

4.4 Looking ahead. Moving from an intuitive approach to forecasting to a formal
statistical approach. Short-horizon versus long-horizon forecasts.

Forecasting is perhaps the most familiar and certainly one of the most important
uses of time-series models. Accordingly, much of this book is concerned with aspects of
forecasting. We have not introduced modern time-series models yet; nonetheless, some
useful forecasting can be done with tools we have already discussed. Indeed a great deal
of forecasting in industry uses these methods.

This chapter provides a gentle introduction to forecasting. First, we introduce some
of the fundamentals of forecasting—the different types of forecasts, the elements of
a forecast, and the criteria for choosing one forecasting method over another. Next
we explain how some of the filters discussed in the previous chapter can be used for
forecasting and the situations to which they are suited. Most of the information we
need was discussed in detail in the last chapter, so this first pass at practical forecasting
will be brief. More advanced methods for forecasting will be introduced—and compared
with these simpler methods—in later chapters.

4.1 Forecast fundamentals

A forecast is a statement about the outcome, timing, or probability distribution of some
event whose realization is not known currently. That said, there are many different kinds
of forecasts, and the time-series techniques discussed in this book apply to only a subset
of them.

141
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4.1.1 Types of forecasts

For the most part, this book explores stochastic, linear, dynamic time-series models for
forecasting continuous variables. Let’s consider the import of these adjectives one at a
time.

Stochastic: We cannot forecast perfectly because the variables we are interested in are
influenced by random disturbances in addition to any systematic determinants.

Linear: Linear models provide adequate, tractable time-series representations of many
variables. As a practical matter, nonlinear models are much more difficult to
analyze and understand, and there are fewer established techniques for nonlinear
models.

Dynamic: This feature is the defining characteristic of time-series models—the influ-
ence of the past on the present and future values of a variable. Analyzing the
dynamic relationships among variables comprises the bulk of this book.

Continuous: Modeling discrete variables such as the outcomes of elections or sporting
events requires specialized statistical techniques, even in a cross-section setting.
Dynamic relationships—the essence of time-series models—already add significant
complexity to statistical analysis. Indeed this complexity justifies the writing
of a book such as this one. Adding discrete variables to the mix increases the
complexity beyond the scope of this book.

The time-series models we consider can do a lot. The most common application
is the generation of point forecasts, that is, the likeliest values at each future date.
However, these models also can produce confidence intervals and complete probability
distributions of future events. As with static (non-time-series) regression models, they
also can be used for policy experiments: to calculate the likely impact of changes in an
explanatory variable on a dependent variable. Moreover, these time-series models are
well suited to analyzing the relationships among jointly dependent time series. These
models also can produce forecasts of the timing of events, although the forecasts typically
are expressed in terms of rates of decay of random disturbances to the time path of a
variable or the expected time until a variable crosses a specified threshold.

Before we start generating forecasts, let’s review some of the types of forecasts
that arise in practice and point out whether the time-series models we discuss are well
adapted to producing these types of forecasts.
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Although we are restricting our attention to models of continuous variables, predic-
tions of events with discrete, qualitative outcomes may be the most familiar.1 Which
candidate will win the presidential election? Which football team will win this Sunday’s
contest? If I ask Cindy to the prom, will she say yes? Some of these forecasts concern
unique, one-time events. In these cases, time-series models, which emphasize the in-
fluence of the past on the present and future, generally are not applicable. In these
situations, handicapping can be a useful approach. Instead of attempting to construct
a model for the probability distribution of an event—say, the winner of this year’s Ken-
tucky Derby—we may base our forecast on the opinion of an expert (the racing form),
the empirical distribution of the opinions of a panel of experts (a group of professional
handicappers), or the opinions of the public at large (the betting odds that reflect the
volume of betting on each horse).

Some forecasts concern events that have occurred already but whose outcome is
unknown at present. The most familiar examples arise in gambling. Does my opponent’s
hole card give him a higher-valued poker hand than mine? Many government and
industry statistics are published only with a significant lag, and participants in financial
markets forecast these not-yet-disclosed measurements of past events to anticipate their
likely impacts on the prices of stocks, bonds, and other financial assets. Time-series
models can be used for these types of forecasts as long as dynamic relationships play a
role in the determination of the variable of interest.

Some forecasts are focused primarily on the timing of an event whose eventual oc-
currence is assumed to be nearly certain. For example, market participants generally
agreed that the rapid increases in house prices in the years prior to 2007 were unsus-
tainable and that an eventual collapse of this housing bubble was inevitable. However,
there was no consensus on the timing (or, as it turns out, the magnitude) of the housing
collapse. Time-series models can be used for this type of forecast, but frequently some
other type of analysis is better adapted to this task. Survival analysis and the failure
analysis techniques of statistical quality control often provide convenient methods.

A final class of forecasts—clearly beyond the scope of this book—includes specula-
tions about alternative histories (how would the United States be different today if the
South had won the Civil War?) and the forecasts of futurists (what will computers be
like in 30 years, or how will human society adapt to climate change in the 21st century?)
These types of forecasts are fascinating. However, time-series models are of little use in
producing and evaluating forecasts with such global and open-ended scope.

1. Stata provides a rich set of tools for models with discrete outcomes (see the Stata Press book
Regression Models for Categorical Dependent Variables Using Stata [2nd ed., 2006] or type help

logistic from within Stata if you are in a hurry). Survival analysis—also well covered by Stata—
provides models for the timing of discrete events. See the Stata 12 manual Survival Analysis and

Epidemiological Tables Reference Manual or the Stata Press book An Introduction to Survival

Analysis Using Stata (3rd ed., 2010) for more information.
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4.1.2 Measuring the quality of a forecast

As we develop different approaches to forecasting, we need some way to measure the
quality of each approach to choose among them. The primary measure of the quality
of a forecast is a loss function, that is, a function that assigns a value—the loss—to the
difference between the forecast of a variable, ŷt, and its realization, yt:

Loss = L (yt − ŷt)

A model that produces forecasts with smaller expected loss is preferred, other things
being equal, to a model that produces forecasts with larger expected loss. Except in
special cases, we measure loss by the square of the forecast error,

L(yt − ŷt) = (yt − ŷt)
2

Expected loss is not the only statistical criterion for choosing a forecasting method. Un-
biasedness generally is a desirable characteristic, and the forecast method with minimum
expected loss may not be unbiased, forcing us to choose between objectives.

Pragmatic criteria can be as important as statistical ones. Some forecast methods
are more difficult to apply and understand, more computationally intensive, or more
expensive to use than others. These costs may outweigh any statistical advantages
of these methods. Fitting and interpreting modern time-series models requires both
a significant degree of statistical sophistication and a considerable amount of practical
experience—in other words, a firm may have to employ an experienced statistician to use
these techniques. In industry, the additional precision of advanced forecast techniques
may not justify the cost of employing a statistician—a simpler method that can be
applied by an analyst may be adequate. Moreover, it often is challenging for statisticians
to communicate effectively to business leaders the advantages and limitations of various
statistical approaches.

The forecast methods covered in this chapter are relatively simple to implement
and understand and do not require the assistance of a statistician. As a consequence,
these techniques are the workhorses of a great deal of forecasting in industry. Moreover,
their short-term to medium-term accuracy often is quite reasonable. In settings where
large numbers of forecasts are needed routinely—for example, in a company that must
forecast the inventory of hundreds or thousands of specialized parts—these methods
may be the only feasible ones. For now, we will evaluate the performance of forecast
methods on pragmatic and intuitive grounds. We will introduce more sophisticated
techniques in later chapters. At that point, we will focus on expected loss and similar
measures of forecast quality.

4.1.3 Elements of a forecast

The elements of a forecast consist of an information set; a projection date or time
(usually the latest date or time for which the information set is available); a forecast
horizon (the amount of time between the projection date and the event being predicted);
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and a model of some sort that relates the information set available at the projection date
to the event at the forecast horizon. These elements are not fixed by the phenomenon
under analysis. You can choose to invest in an extensive information set in an effort to
maximize the accuracy of your forecast. Alternatively, you may choose to save money
and effort by limiting the information set at the cost of a somewhat greater error variance
in your forecast. The forecast horizon is determined solely by your requirements. You
may need to forecast the value of a variable next period but may not care about longer-
horizon forecasts. Alternatively, you may need to predict the value at a later period—
for example, you may need to forecast your available cash at a distant date when you
are required to make a large payment—but you may not care about the value of the
variable in the intervening periods. To a certain extent, even the model is your choice.
All models are approximations to reality, and your choice of model may reflect your
trade-off between the closeness of the approximation and other objectives. Of course,
there are limits: not all possible model choices will be supported by the data.

The minimum-loss information set includes all the information that can improve the
forecast. A reduced information set will produce forecasts with a higher-expected loss.
However, it may be costly to construct a model that includes every potentially useful
predictor. It also may be costly to collect all the variables in the ideal information set,
especially if the forecast is updated frequently. As a result, forecasts frequently are
based on reduced information sets.

Univariate time-series models are based on the most commonly used reduced infor-
mation set. Univariate time-series models predict a variable based solely on its past
values (and, potentially, past values of random disturbances). In fact, the defining
characteristic of a time-series model is the inclusion of past values of the dependent
variable.

The univariate time-series model is a benchmark. More complex models are gauged
by their improvement (loss reduction) relative to a univariate time-series model (in
much the same way that R2 measures regression performance by the reduction in error
variance relative to a model based solely on the sample mean). It can be surprisingly
difficult to improve on the forecasts of a well-specified univariate model. As a result,
univariate time-series models are used frequently in practical forecasting. All the filter-
based forecasts illustrated in this chapter are types of univariate time-series models.

The most common forecast horizon is one-step-ahead, that is, the first unknown
value, and models often are compared based on their one-step-ahead performance alone.
The longer the forecast horizon, the greater the number of random disturbances that
affect the outcome. As a result, the error variance of a forecast generally increases with
the forecast horizon.

Note: A K-step-ahead forecast is a prediction of events in period t + K
conditional on information in period t. When K > 1, we have a multistep-
ahead forecast.
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It is important to distinguish between in-sample and out-of-sample forecasts
and between static forecasts and dynamic forecasts. Consider the forecast
equation

yt+1 = µ+ ρyt + ǫt+1

An in-sample forecast of yt+1 is given by

ŷt+1 = µ̂+ ρ̂yt

where the “hats” ( ̂ ) indicate estimates, and both yt+1 and yt are part of
the sample used to calculate µ̂ and ρ̂. Out-of-sample forecasts apply the
same formula to y’s that were not included in the estimation sample. In-
sample forecasts do not provide the most rigorous test of a model, because
the model is fit to optimize in-sample performance.

Static forecasts are based on the actual values of period t information. Stick-
ing to the same forecast equation, we write a static, one-period-ahead fore-
cast of yt+1 as

ŷt+1 = µ+ ρyt

that is, we use the observed value of yt in forecasting yt+1. In contrast, a
dynamic,2 one-period-ahead forecast of yt+1 is

ŷt+1 = µ+ ρŷt

In this case, we do not observe the actual value of yt, so we must base our
forecast of yt+1 on a prior forecast of yt. Dynamic forecasts generally are less
accurate than static forecasts because they include the error in predicting
yt in the forecast.

4.2 Filters that forecast

In the previous chapter, we introduced a wide variety of filters that help in highlighting
patterns in time series. Some of these filters also can be used for forecasting. These
methods have the advantage of low cost, both in the time and effort required for estima-
tion and in the amount of computation required for forecasting. This low cost comes at
the expense of some of the sophistication, flexibility, and (sometimes) accuracy provided
by formal time-series models.

To generate a forecast, a filter must estimate future values as a function of current
and past information (or, equivalently, current values as a function of past information).3

2. We use the word “dynamic” in two senses in this book. Sometimes “dynamic” indicates the
calculation of distant predictions based on earlier predictions, as described here. Earlier in the
chapter, we used “dynamic” to denote a formula or model that describes the evolution of a variable
over time. Related, but not identical, ideas. Unfortunately, accepted terminology in time-series
analysis can be confusing, as you will see in later chapters. We will do our best to make our
meaning clear from context.

3. When trying to forecast the value of a variable that has already been realized but is not yet known,
we may include any information available when the forecast is calculated. Some of this information
may postdate the variable we are forecasting.
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This condition eliminates all the smoothers provided by the tssmooth nl command
because they combine information from the past, present, and future.

Filters that can produce forecasts are provided by the tssmooth command. The
four flavors of EWMAs—tssmooth exponential, tssmooth dexponential, tssmooth
hwinters, and tssmooth shwinters—include a forecast(#) option that appends
predicted values to the end of the smoothed series.4 Each of these methods operates
differently and is suitable for a specific type of forecasting task. The table below lists
the types of forecasts produced by each of these tssmooth subcommands.

Table 4.1. Forecasting with tssmooth

Subcommand Able to Nature of forecast Uses
generate
forecasts?

nl No — —
ma No — —
exponential Yes All forecasts are equal to Noisy but nontrending

the last in-sample EWMA series
dexponential Yes Forecasts follow the last Series with a linear

estimated trend secular trend
hwinters Yes Forecasts follow the last Series with a linear

estimated trend secular trend
shwinters Yes Forecasts follow the last Series with a regular

estimated trend and seasonal pattern on
seasonal pattern top of a linear secular

trend

To compare the forecasts produced by these methods, we will construct several
forecasts of the U.S. civilian unemployment rate, a series we introduced in the prior
chapter on filters.

4. Technically, the tssmooth ma command can be used to forecast as long as the window option includes
only past values, that is, as long as we specify a trailing moving average. However, this smoother
offers no advantage over tssmooth exponential, so Stata does not provide a forecast option for
tssmooth ma.
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4.2.1 Forecasts based on EWMAs

Let’s start by reexamining the time series of unemployment rates.

2
.0

4
.0

6
.0

8
.0

1
0
.0

U
n
e
m

p
lo

y
m

e
n
t 
ra

te
, 
%

Jan 50 Jan 60 Jan 70 Jan 80 Jan 90 Jan 00 Jan 10
Date

Figure 4.1. U.S. civilian unemployment rate, January 1948 through March 2012

In chapter 3, we used the unemployment rate as an example of a series with a
prominent cyclical component. Unlike the artificial cyclical series we constructed to
demonstrate the performance of alternative smoothers, the cycle in the unemployment
rate is irregular in frequency and shape. It exhibits sharp, inverted, V-shaped peaks
associated with recessions and slightly skewed, U-shaped troughs associated with eco-
nomic expansions.

From this inspection, it is clear that none of our smoothers can produce useful
long-run forecasts. Simple EWMAs set all future values to a constant equal to the final
estimate of the local mean. The other smoothers project constant trends. None of
these smoothers project future oscillations, a key feature of the unemployment rate
series. Nonetheless, these forecasts may be useful for short periods, especially when the
unemployment rate is hovering near a peak or trough. And, in practice, we usually are
most interested in fairly short-term forecasts of the unemployment rate—often just the
forecast of next month’s rate.
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The U.S. unemployment rate began increasing sharply in May 2008 and peaked in
October 2009 at 10%. To highlight the strengths and weaknesses of these forecasting
approaches, we will generate forecasts from two different starting dates—April 2009,
when unemployment was 8.9% and still trending up, and December 2009, just after
the peak. We will begin with the tssmooth exponential command. We have set
α, the weight on the current observation, to 0.9, higher than Granger’s recommended
maximum of 0.7 but lower than Stata’s estimate of 0.9998.5 We could generate these
two forecasts by running the tssmooth exponential command twice, once through
April 2009 and once through December 2009, and use the forecast() option to append
as many projections as we need.6 For this example, though, there is an easier way. The
forecasts of tssmooth exponential all are equal to the final smoothed value, so we can
smooth the entire series once and generate two forecast series equal to the smoothed
values in April and December 2009.

. use ${ITSUS_DATA}/monthly, clear
(Monthly data for ITSUS)

. keep date unrate

. keep if unrate!=.
(420 observations deleted)

. tsset
time variable: date, Jan 48 to Mar 12

delta: 1 month

. tssmooth exponential ewma = unrate, parms(0.9)

exponential coefficient = 0.9000
sum-of-squared residuals = 39.882
root mean squared error = .22744

. label variable ewma "EWMA(0.9)"

. list date if date==tm(2009m4) | date==tm(2009m12)

date

736. Apr 09
744. Dec 09

. generate apr = ewma[736] if _n>736
(736 missing values generated)

. label variable apr "April 2009 forecast"

. generate dec = ewma[744] if _n>744
(744 missing values generated)

. label variable dec "December 2009 forecast"

5. The Stata estimate suggests that α ≈ 1. In other words, the best estimate of tomorrow’s unemploy-
ment rate is today’s rate. That random walk view of the unemployment rate clearly does not hold
up over an extended horizon, but, as we shall see below, it works pretty well for a one-step-ahead
forecast.

6. The forecast() option will extend the current dataset if necessary.
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. twoway (conn unrate date, msymbol(o)) (line apr dec date, lpattern(solid dash))
> if date>tm(2005m12), ytitle(Percent)
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Figure 4.2. EWMA forecasts with different projection dates

The April forecast—when unemployment is still rising—performs very poorly. The
December forecast fares better, at least for a few months, because the unemployment
rate remained within 0.2% points of 9.9% (the December forecast) until May 2010.
Of course, it was impossible to be certain in April 2009 that unemployment was still
trending upward or to be certain a few months later in December that the rate was
flattening out for a while.

The double exponential smoother projects future values along the last estimated
local trend. We will repeat this exercise with the tssmooth dexponential command
to see how that approach performs.7

. tssmooth dexponential dewma = unrate if date<tm(2009m5), parms(0.5)
> forecast(35)

double-exponential coefficient = 0.5000
sum-of-squared residuals = 32.311
root mean squared error = .20952

. generate dapr = dewma if date>tm(2009m4)
(736 missing values generated)

7. Now we need the forecast() option because the projections of the double exponential smoother
are not constant.
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. label variable dapr "April 2009 forecast"

. drop dewma

. tssmooth dexponential dewma = unrate if date<tm(2010m1), parms(0.5)
> forecast(27)

double-exponential coefficient = 0.5000
sum-of-squared residuals = 32.703
root mean squared error = .20966

. generate ddec = dewma if date>tm(2009m12)
(744 missing values generated)

. label variable ddec "December 2009 forecast"

. twoway (conn unrate date, msymbol(o)) (line dapr ddec date, lpattern(solid dash))
> if date>tm(2005m12), ytitle(Percent)
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Figure 4.3. DEWMA forecasts with different projection dates

By projecting a fixed trend, both forecasts end up overpredicting by increasing
amounts as the forecast horizon increases. Again the December forecast is a little
luckier because the forecast begins after the turning point in the unemployment rate.




