Interpreting and Visualizing Regression Models Using Stata

Michael N. Mitchell

A Stata Press Publication StataCorp LP College Station, Texas

Copyright © 2012 by StataCorp LP All rights reserved. First edition 2012

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in IATEX 2ε Printed in the United States of America

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

ISBN-10: 1-59718-107-2 ISBN-13: 978-1-59718-107-5

Library of Congress Control Number: 2011943975

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LP.

Stata, STaTa, Stata Press, Mata, Mata, and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

 \LaTeX 2ε is a trademark of the American Mathematical Society.

Contents

	List of figures				
	Pref	ace		xxvii	
	Ack	nowledg	ments	xxix	
1	Intr	oduction	1	1	
	1.1	Overvie	ew of the book	1	
	1.2	Getting	the most out of this book	3	
	1.3	Downlo	ading the example datasets and programs	4	
	1.4	The GS	S dataset	4	
		1.4.1	Income	5	
		1.4.2	Age	6	
		1.4.3	Education	10	
		1.4.4	Gender	12	
	1.5	The pai	in datasets	12	
	1.6	The opt	timism datasets	12	
	1.7	The sch	nool datasets	13	
	1.8	The slee	ep datasets	13	
Ι	Cor	ntinuou	s predictors	15	
2	Con	tinuous	predictors: Linear	17	
	2.1	Chapter	r overview	17	
	2.2	Simple	linear regression	17	
		2.2.1	Computing predicted means using the margins command	20	
		2.2.2	Graphing predicted means using the marginsplot comman	nd 22	
	2.3	Multiple	e regression	25	

vi

		2.3.1	Computing adjusted means using the margins command	20
		2.3.2	Some technical details about adjusted means	28
		2.3.3	Graphing adjusted means using the margins plot command $% \left(1,,n\right) =0$.	29
	2.4	Checkir	ng for nonlinearity graphically	30
		2.4.1	Using scatterplots to check for nonlinearity	31
		2.4.2	Checking for nonlinearity using residuals	31
		2.4.3	Checking for nonlinearity using locally weighted smoother $% \left(1\right) =\left(1\right) \left(1\right) \left($	33
		2.4.4	Graphing outcome mean at each level of predictor	34
		2.4.5	Summary	37
	2.5	Checkir	ng for nonlinearity analytically	37
		2.5.1	Adding power terms	38
		2.5.2	Using factor variables	39
	2.6	Summa	ry	43
3	Cont	tinuous	predictors: Polynomials	45
	3.1	Chapte	r overview	45
	3.2	Quadra	atic (squared) terms	45
		3.2.1	Overview	45
		3.2.2	Examples	49
	3.3	Cubic ((third power) terms	55
		3.3.1	Overview	55
		3.3.2	Examples	56
	3.4	Fraction	nal polynomial regression	62
		3.4.1	Overview	62
		3.4.2	Example using fractional polynomial regression	66
	3.5	Main ef	ffects with polynomial terms	75
	3.6	Summa	ry	77
4	Cont	tinuous	predictors: Piecewise models	79
	4.1	Chapte	r overview	79
	4.2	Introdu	action to piecewise regression models	80
	4.3	Piecewi	ise with one known knot	82

Contents	vii

		4.3.1 Overview	
		4.3.2 Examples using the GSS	
	4.4	Piecewise with two known knots	
		4.4.1 Overview	
		4.4.2 Examples using the GSS	
	4.5	Piecewise with one knot and one jump	
		4.5.1 Overview	
		4.5.2 Examples using the GSS	
	4.6	Piecewise with two knots and two jumps	
		4.6.1 Overview	
		4.6.2 Examples using the GSS	
	4.7	Piecewise with an unknown knot	
	4.8	Piecewise model with multiple unknown knots	
	4.9	Piecewise models and the marginsplot command	
	4.10	Automating graphs of piecewise models	
	4.11	Summary	
5	Cont	tinuous by continuous interactions 127	
	5.1	Chapter overview	
	5.2	Linear by linear interactions	
		5.2.1 Overview	
		5.2.2 Example using GSS data	
		5.2.3 Interpreting the interaction in terms of age 133	
		5.2.4 Interpreting the interaction in terms of education 135	
		5.2.5 Interpreting the interaction in terms of age slope 137	
		5.2.6 Interpreting the interaction in terms of the educ slope 138	
	5.3	Linear by quadratic interactions	
		5.3.1 Overview	
		5.3.2 Example using GSS data	
	5 4	Summary 148	

viii Contents

6	Con	inuous by continuous by continuous interactions 14	49
	6.1	Chapter overview	49
	6.2	Overview	49
	6.3	Examples using the GSS data	54
		6.3.1 A model without a three-way interaction 15	54
		6.3.2 A three-way interaction model	58
	6.4	Summary	64
II	Cat	egorical predictors 16	i5
7	$\operatorname{Cat}\epsilon$	gorical predictors 16	37
	7.1	Chapter overview	67
	7.2	Comparing two groups using a t test	68
	7.3	More groups and more predictors	69
	7.4	Overview of contrast operators	75
	7.5	Compare each group against a reference group	76
		7.5.1 Selecting a specific contrast $\dots \dots \dots$	77
		7.5.2 Selecting a different reference group	78
		7.5.3 Selecting a contrast and reference group $\dots \dots \dots$	79
	7.6	Compare each group against the grand mean $\dots \dots \dots$	79
		7.6.1 Selecting a specific contrast $\dots \dots \dots$	81
	7.7	Compare adjacent means	82
		7.7.1 Reverse adjacent contrasts	85
		7.7.2 Selecting a specific contrast $\dots \dots \dots$	86
	7.8	Comparing the mean of subsequent or previous levels	87
		7.8.1 Comparing the mean of previous levels	91
		7.8.2 Selecting a specific contrast $\dots \dots \dots$	92
	7.9	Polynomial contrasts	93
	7.10	Custom contrasts	95
	7.11	Weighted contrasts	98
	7.12	Pairwise comparisons	00

Contents

	7.13	Interpr	eting confidence intervals	202
	7.14	Testing	g categorical variables using regression	205
	7.15	Summa	ary	208
8	Cate	egorical	by categorical interactions	209
	8.1	Chapte	er overview	209
	8.2	Two by	y two models: Example 1	211
		8.2.1	Simple effects	215
		8.2.2	Estimating the size of the interaction	216
		8.2.3	More about interaction	217
		8.2.4	Summary	218
	8.3	Two by	y three models	218
		8.3.1	Example 2	218
		8.3.2	Example 3	223
		8.3.3	Summary	228
	8.4	Three l	by three models: Example 4	228
		8.4.1	Simple effects	230
		8.4.2	Simple contrasts	231
		8.4.3	Partial interaction	233
		8.4.4	Interaction contrasts	234
		8.4.5	Summary	236
	8.5	Unbala	nced designs	236
	8.6	Main e	ffects with interactions: anova versus regress	241
	8.7	Interpr	eting confidence intervals	244
	8.8	Summa	ary	246
9	Cate	egorical	by categorical by categorical interactions	24 9
	9.1	Chapte	er overview	249
	9.2	Two by	y two by two models	250
		9.2.1	Simple interactions by season	252
		9.2.2	Simple interactions by depression status	253
		9.2.3	Simple effects	255

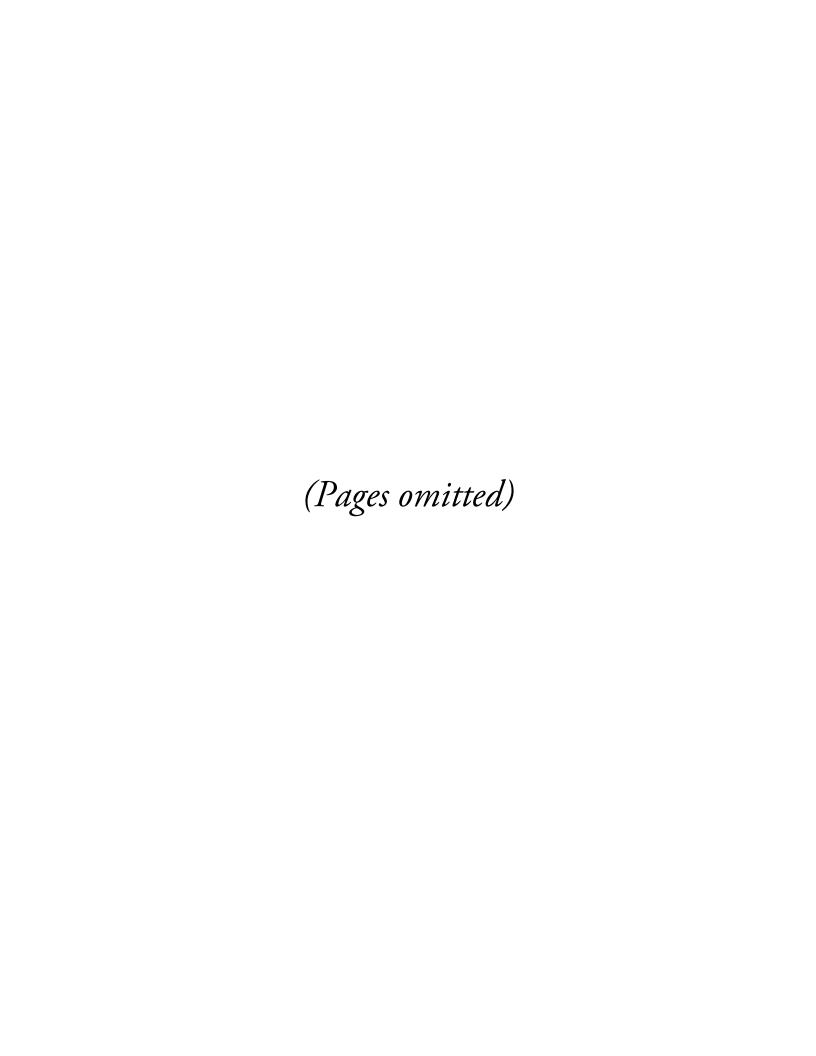
X Contents

	9.3	Two by two by three models
		9.3.1 Simple interactions by depression status
		9.3.2 Simple partial interaction by depression status
		9.3.3 Simple contrasts
		9.3.4 Partial interactions
	9.4	Three by three by three models and beyond
		9.4.1 Partial interactions and interaction contrasts
		9.4.2 Simple interactions
		9.4.3 Simple effects and simple comparisons
	9.5	Summary
III	Con	inuous and categorical predictors 273
10	Line	r by categorical interactions 275
	10.1	Chapter overview
	10.2	Linear and two-level categorical: No interaction
		10.2.1 Overview
		10.2.2 Examples using the GSS
	10.3	Linear by two-level categorical interactions
		10.3.1 Overview
		10.3.2 Examples using the GSS
	10.4	Linear by three-level categorical interactions
		10.4.1 Overview
		10.4.2 Examples using the GSS
	10.5	Summary
11	Poly	nomial by categorical interactions 301
	11.1	Chapter overview
	11.2	Quadratic by categorical interactions
		11.2.1 Overview
		11.2.2 Quadratic by two-level categorical
		11.2.3 Quadratic by three-level categorical

Contents

	11.3	Cubic b	by categorical interactions	318
	11.4	Summa	xy	323
12	Piec	ewise by	y categorical interactions 33	25
	12.1	Chapte	r overview	325
	12.2	One kn	ot and one jump $\ldots 3$	328
		12.2.1	Comparing slopes across gender	32
		12.2.2	Comparing slopes across education	33
		12.2.3	Difference in differences of slopes	33
		12.2.4	Comparing changes in intercepts	34
		12.2.5	Computing and comparing adjusted means	34
		12.2.6	Graphing adjusted means	37
	12.3	Two kn	ots and two jumps	841
		12.3.1	Comparing slopes across gender	846
		12.3.2	Comparing slopes across education	847
		12.3.3	Difference in differences of slopes	348
		12.3.4	Comparing changes in intercepts by gender	349
		12.3.5	Comparing changes in intercepts by education	3 50
		12.3.6	Computing and comparing adjusted means	851
		12.3.7	Graphing adjusted means	3 54
	12.4	Compa	ring coding schemes	3 56
		12.4.1	Coding scheme #1	856
		12.4.2	Coding scheme #2	858
		12.4.3	Coding scheme #3	6 0
		12.4.4	Coding scheme #4	61
		12.4.5	Choosing coding schemes	63
	12.5	Summa	ry	3 64
13	Cont	tinuous	by continuous by categorical interactions 36	65
	13.1	Chapte	r overview	865
	13.2	Linear	by linear by categorical interactions	866
		13.2.1	Fitting separate models for males and females	866

xii Contents


		13.2.2 Fitting a combined model for males and females 368
		13.2.3 Interpreting the interaction focusing in the age slope 370
		13.2.4 Interpreting the interaction focusing on the educ slope 372
		13.2.5 Estimating and comparing adjusted means by gender 374
	13.3	Linear by quadratic by categorical interactions
		13.3.1 Fitting separate models for males and females 376
		13.3.2 Fitting a common model for males and females 378
		13.3.3 Interpreting the interaction
		13.3.4 Estimating and comparing adjusted means by gender 380
	13.4	Summary
14	Cont	cinuous by categorical by categorical interactions 383
	14.1	Chapter overview
	14.2	Simple effects of gender on the age slope
	14.3	Simple effects of education on the age slope
	14.4	Simple contrasts on education for the age slope
	14.5	Partial interaction on education for the age slope
	14.6	Summary
IV	\mathbf{Bey}	ond ordinary linear regression 391
15	Mult	tilevel models 393
	15.1	Chapter overview
	15.2	Example 1: Continuous by continuous interaction
	15.3	Example 2: Continuous by categorical interaction
	15.4	Example 3: Categorical by continuous interaction 401
	15.5	Example 4: Categorical by categorical interaction 404
	15.6	Summary
16	Time	e as a continuous predictor 411
	16.1	Chapter overview
	16.2	Example 1: Linear effect of time
	16.3	Example 2: Linear effect of time by a categorical predictor 416

Contents	xiii
Contents	AIII

	16.4	Example 3: Piecewise modeling of time	421
	16.5	Example 4: Piecewise effects of time by a categorical predictor $$	426
		16.5.1 Baseline slopes	430
		16.5.2 Change in slopes: Treatment versus baseline	431
		16.5.3 Jump at treatment	432
		16.5.4 Comparisons among groups	433
	16.6	Summary	434
17	Time	e as a categorical predictor	437
	17.1	Chapter overview	437
	17.2	Example 1: Time treated as a categorical variable	438
	17.3	Example 2: Time (categorical) by two groups	443
	17.4	Example 3: Time (categorical) by three groups	447
	17.5	Comparing models with different residual covariance structures $$	452
	17.6	Summary	454
18	Non	linear models	455
	18.1	Chapter overview	455
	18.2	Binary logistic regression	456
		18.2.1 A logistic model with one categorical predictor $\dots \dots$	456
		18.2.2 A logistic model with one continuous predictor $\dots \dots$	463
		18.2.3 A logistic model with covariates	465
	18.3	Multinomial logistic regression	470
	18.4	Ordinal logistic regression	475
	18.5	Poisson regression	478
	18.6	More applications of nonlinear models	481
		18.6.1 Categorical by categorical interaction	481
		18.6.2 Categorical by continuous interaction	487
		18.6.3 Piecewise modeling	492
	18.7	Summary	498
19	Com	plex survey data	499

xiv	Contents
-----	----------

\mathbf{V}	App	pendices	505	
A	The margins command			
	A.1	The predict() and expression() options	507	
	A.2	The at() option	510	
	A.3	Margins with factor variables	513	
	A.4	Margins with factor variables and the at () option	517	
	A.5	The dydx() and related options	519	
В	The	marginsplot command	523	
${f C}$	The	contrast command	535	
D	The	pwcompare command	539	
	Refe	erences	545	
	Aut	hor index	549	
	Sub	ject index	551	

Preface

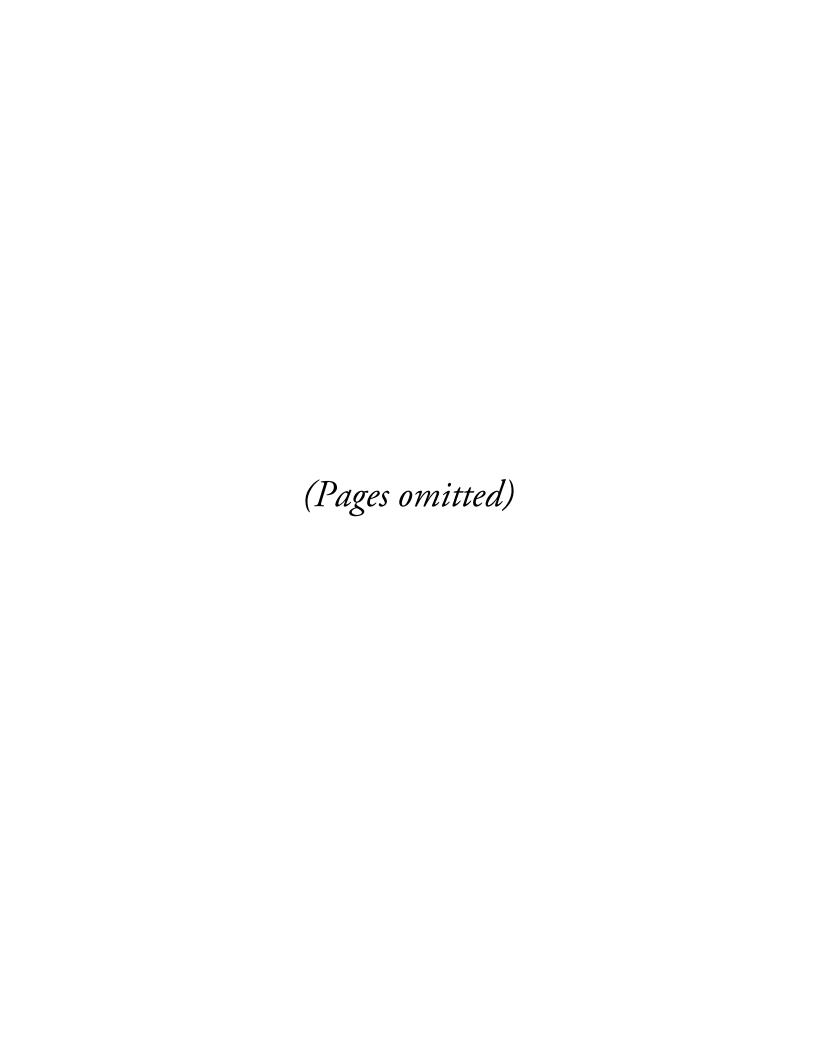
Think back to the first time you learned about simple linear regression. You probably learned about the underlying theory of linear regression, the meaning of the regression coefficients, and how to create a graph of the regression line. The graph of the regression line provided a visual representation of the intercept and slope coefficients. Using such a graph, you could see that as the intercept increased, so did the overall height of the regression line, and as the slope increased, so did the tilt of the regression line. Within Stata, the graph twoway lfit command can be used to easily visualize the results of a simple linear regression.

Over time we learn about and use fancier and more abstract regression models—models that include covariates, polynomial terms, piecewise terms, categorical predictors, interactions, and nonlinear models such as logistic. Compared with a simple linear regression model, it can be challenging to visualize the results of such models. The utility of these fancier models diminishes if we have greater difficulty interpreting and visualizing the results.

With the introduction of the marginsplot command in Stata 12, visualizing the results of a regression model, even complex models, is a snap. As implied by the name, the marginsplot command works in tandem with the margins command by plotting (graphing) the results computed by the margins command. For example, after fitting a linear model, the margins command can be used to compute adjusted means as a function of one or more predictors. The marginsplot command graphs the adjusted means, allowing you to visually interpret the results.

The margins and marginsplot commands can be used following nearly all Stata estimation commands (including regress, anova, logit, ologit, and mlogit). Furthermore, these commands work with continuous linear predictors, categorical predictors, polynomial (power) terms, as well as interactions (for example, two-way interactions, three-way interactions). This book uses the marginsplot command not only as an interpretive tool, but also as an instructive tool to help you understand the results of regression models by visualizing them.

Categorical predictors pose special difficulties with respect to interpreting regression models, especially models that involve interactions of categorical predictors. Categorical predictors are traditionally coded using dummy (indicator) coding. Many research questions cannot be answered directly in terms of dummy variables. Furthermore, interactions involving dummy categorical variables can be confusing and even misleading. Stata 12 introduces the contrast command, a general-purpose command that can be


xxviii Preface

used to precisely test the effects of categorical variables by forming contrasts among the levels of the categorical predictors. For example, you can compare adjacent groups, compare each group with the overall mean, or compare each group with the mean of the previous groups. The contrast command allows you to easily focus on the comparisons that are of interest to you.

The contrast command works with interactions as well. You can test the simple effect of one predictor at specific levels of another predictor or form interactions that involve comparisons of your choosing. In the parlance of analysis of variance, you can test simple effects, simple contrasts, partial interactions, and interaction contrasts. These kinds of tests allow you to precisely understand and dissect interactions with surgical precision. The contrast command works not only with the regress command, but also with commands such as logit, ologit, mlogit, as well as random-effects models like xtmixed.

As you can see, the scope of the application of the margins, marginsplot, and contrast commands is broad. Likewise, so is the scope of this book. It covers continuous variables (modeled linearly, using polynomials, and piecewise), interactions of continuous variables, categorical predictors, interactions of categorical predictors, as well as interactions of continuous and categorical predictors. The book also illustrates how the margins, marginsplot, and contrast commands can be used to interpret results from multilevel models, models where time is a continuous predictor, models with time as a categorical predictor, nonlinear models (such as logistic regression or ordinal logistic regression), and analyses that involve complex survey data. However, this book does not contain information about the theory of these statistical models, how to perform diagnostics for the models, the formulas for the models, and so forth. The summary section concluding each chapter includes references to books and articles that provide background for the techniques illustrated in the chapter.

My goal for this book is to provide simple and clear examples that illustrate how to interpret and visualize the results of regression models. To that end, I have selected examples that illustrate large effects generally combined with large sample sizes to create patterns of effects that are easy to visualize. Most of the examples are based on real data, but some are based on hypothetical data. In either case, I hope the examples help you understand the results of your regression models so you can interpret and present them with clarity and confidence.

14 Continuous by categorical by categorical interactions

14.1	Chapter overview	383
14.2	Simple effects of gender on the age slope	387
14.3	Simple effects of education on the age slope	388
14.4	Simple contrasts on education for the age slope	389
14.5	Partial interaction on education for the age slope	389
14.6	Summary	390

14.1 Chapter overview

This chapter considers models that involve the interaction of two categorical predictors with a linear continuous predictor. Such models blend ideas from chapter 10 on categorical by continuous interactions and ideas from chapter 8 on categorical by categorical interactions. As we saw in chapter 10, interactions of categorical and continuous predictors describe how the slope of the continuous variable differs as a function of the categorical variable. In chapter 8, we saw models that involve the interaction of two categorical variables. This chapter blends these two modeling techniques by exploring how the slope of the continuous variable varies as a function of the interaction of the two categorical variables.

Let's consider a hypothetical example of a model with income as the outcome variable. The predictors include gender (a two-level categorical variable), education (treated as a three-level categorical variable), and age (a continuous variable). Income can be modeled as a function of each of the predictors, as well as the interactions of all the predictors. A three-way interaction of age by gender by education would imply that the effect of age interacts with gender by education. One way to visualize such an interaction would be to graph age on the x axis, with separate lines for the levels of education and separate graphs for gender. Figure 14.1 shows such an example, illustrating how the slope of the relationship between income and age varies as a function of education and gender.

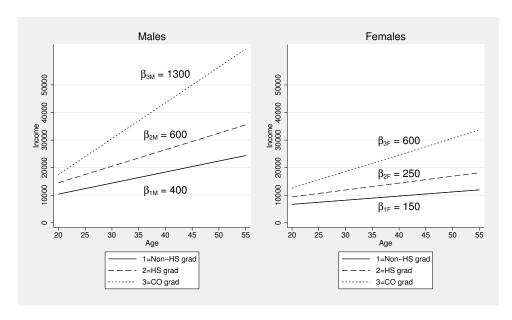


Figure 14.1. Fitted values of income as a function of age, education, and gender

The graph can be augmented by a table that shows the age slope broken down by education and gender. Such a table is shown in 14.1. The age slope shown in each cell of table 14.1 reflects the slope of the relationship between income and age for each of the lines illustrated in figure 14.1. For example, β_{3M} represents the age slope for male college graduates, and this slope is 1,300.

Table 14.1. The age slope by level of education and gender

	Non-HS grad	HS grad	CO grad
Male	$\beta_{1M} = 400$	$\beta_{2M} = 600$	$\beta_{3M} = 1,300$
Female	$\beta_{1F} = 150$	$\beta_{2F} = 250$	$\beta_{3F} = 600$

The age by education by gender interaction described in table 14.1 can be understood and dissected like the two by three interactions illustrated in chapter 8. The key difference is that table 14.1 is displaying the slope of the relationship between income and age, and the three-way interaction refers to the way that the slope varies as a function of education and gender.¹

If there were no three-way interaction of age by gender by education, we would expect (for example) that the gender difference in the age slope would be approximately the

^{1.} More precisely, how the slope varies as a function of the interaction of age and gender.

same at each level of education. But, consider the differences in the age slopes between females and males at each level of education. This difference is -250~(150-400) for non–high school graduates, whereas this difference is -350~(250-600) for high school graduates, and the difference is -700~(600-1300) for college graduates. The difference in the age slopes between females and males seems to be much larger for college graduates than for high school graduates and non–high school graduates. This pattern of results appears consistent with a three-way interaction of age by education by gender.

Let's explore this in more detail with an example using the GSS dataset. To focus on the linear effect of age, we will keep those who are 22 to 55 years old.

```
. use gss_ivrm
. keep if age>=22 & age<=55
(18936 observations deleted)</pre>
```

In this example, let's predict income as a function of gender (female), a three-level version of education (educ3), and age. The regress command below predicts realring from i.female, i.educ3, and c.age (as well as all interactions of the predictors). The variable i.race is also included as a covariate.

. regress realrinc i.female##i.educ3##c.age	i.race,	vce(robust) vsqu	ish	
Linear regression		Number of obs	=	25718
		F(13, 25704)	=	411.30
		Prob > F	=	0.0000
		R-squared	=	0.1839
		Root MSE	=	23556

realrinc	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
1.female	1337.125	1693.694	0.79	0.430	-1982.61	4656.861
educ3 2	550.476	1782.192	0.31	0.757	-2942.721	4043.673
3	-11156.1	2618.976	-4.26	0.000	-16289.44	-6022.756
female#educ3	1110011	2020.0.0	1.20	0.000	10200111	00221100
1 2	783.0991	2021.654	0.39	0.698	-3179.457	4745.655
1 3	7657.907	3164.299	2.42	0.016	1455.703	13860.11
age	413.8695	45.62015	9.07	0.000	324.4515	503.2876
female#c.age						
1	-264.9842	50.65695	-5.23	0.000	-364.2746	-165.6937
educ3#c.age						
2	175.8497	54.7504	3.21	0.001	68.53584	283.1636
3	897.3326	77.47101	11.58	0.000	745.4851	1049.18
female#						
educ3#c.age						
1 2	-80.30545	60.94575	-1.32	0.188	-199.7625	39.15165
1 3	-414.6562	93.26714	-4.45	0.000	-597.465	-231.8473
race						
2	-2935.138	273.3294	-10.74	0.000	-3470.879	-2399.397
3	185.3956	956.338	0.19	0.846	-1689.081	2059.872
_cons	2691.23	1495.778	1.80	0.072	-240.5797	5623.039

Let's test the interaction of gender, education, and age using the contrast command below. The three-way interaction is significant.

. contrast i.female#i.educ3#c.age
Contrasts of marginal linear predictions
Margins : asbalanced

	df	F	P>F
female#educ3#c.age	2	10.17	0.0000
Residual	25704		

To begin the process of interpreting the three-way interaction, let's create a graph of the adjusted means as a function of age, education, and gender. First, the margins command below is used to compute the adjusted means by gender and education for ages 22 and 55 (the output is omitted to save space). Then the marginsplot command is used to graph the adjusted means, as shown in figure 14.2.

- . margins female#educ3, at(age=(22 55))
 (output omitted)
- . marginsplot, bydimension(female) noci
 Variables that uniquely identify margins: age female educ3

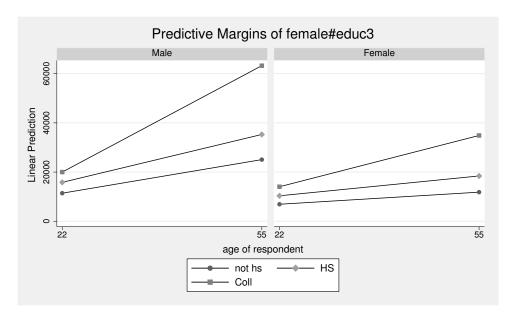


Figure 14.2. Fitted values of income as a function of age, education, and gender

The graph in figure 14.2 illustrates how the age slope varies as a function of gender and education. Let's compute the age slope for each of the lines shown in this graph. The margins command is used with the dydx(age) and over() options to compute the age slopes separately for each combination of gender and education.

. margins, dydx(age) over(female educ3)

Average marginal effects Number of obs = 25718

Model VCE : Robust

Expression : Linear prediction, predict()

dy/dx w.r.t. : age

over : female educ3

	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
age						
female#educ3						
0 1	413.8695	45.62015	9.07	0.000	324.4557	503.2834
0 2	589.7192	30.37993	19.41	0.000	530.1757	649.2628
0 3	1311.202	62.88374	20.85	0.000	1187.952	1434.452
1 1	148.8854	22.09037	6.74	0.000	105.589	192.1817
1 2	244.4296	15.25412	16.02	0.000	214.5321	274.3272
1 3	631.5618	46.90854	13.46	0.000	539.6227	723.5008

Let's reformat the output of the margins command to emphasize how the age slope varies as a function of the interaction of gender and education (see table 14.2). Each cell of table 14.2 shows the age slope for the particular combination of gender and education. For example, the age slope for males with a college degree is 1,311.20 and is labeled as β_{3M} .

Table 14.2. The age slope by level of education and gender

	Non-HS grad	HS grad	CO grad
Male	$\beta_{1M} = 413.87$	$\beta_{2M} = 589.72$	$\beta_{3M} = 1,311.20$
Female	$\beta_{1F} = 148.89$	$\beta_{2F} = 244.43$	$\beta_{3F} = 631.56$

We can dissect the three-way interaction illustrated in table 14.2 using the techniques from section 8.3 on two by three models. Specifically, we can use simple effects analysis, simple contrasts, and partial interactions.

14.2 Simple effects of gender on the age slope

We can use the contrast command to test the simple effect of gender on the age slope. This is illustrated below.

. contrast female#c.age@educ3, nowald pveffects Contrasts of marginal linear predictions

Margins : asbalanced

	Contrast	Std. Err.	t	P> t
female@educ3#c.age (1 vs base) 1 (1 vs base) 2 (1 vs base) 3	-264.9842 -345.2896 -679.6404	50.65695 33.98931 78.4498	-5.23 -10.16 -8.66	0.000 0.000 0.000

Each of these tests represents the comparison of females versus males in terms of the age slope. The first test compares the age slope for females versus males among non-high school graduates. Referring to table 14.2, this test compares β_{1F} with β_{1M} . The difference in these age slopes is -264.98 (148.89 - 413.87), and this difference is significant. The age slope for females who did not graduate high school is 264.98 units smaller than the age slope for males who did not graduate high school. The second test is similar to the first, except the comparison is made among high school graduates, comparing β_{2F} with β_{2M} from table 14.2. This test is also significant. The third test compares the age slope between females and males among college graduates (that is, comparing β_{3F} with β_{3M}). This test is also significant. In summary, the comparison of the age slope for females versus males is significant at each level of education.

14.3 Simple effects of education on the age slope

We can also look at the simple effects of education on the age slope at each level of gender. This test is performed using the contrast command below.

. contrast educ3#c.age@female

Contrasts of marginal linear predictions

Margins : asbalanced

	df	F	P>F
educ3@female#c.age			
Ō	2	70.96	0.0000
1	2	43.37	0.0000
Joint	4	57.21	0.0000
Residual	25704		

The first test compares the age slope among the three levels of education for males. Referring to table 14.2, this tests the following null hypothesis.

$$H_0: \ \beta_{1M} = \beta_{2M} = \beta_{3M}$$

This test is significant. The **age** slope significantly differs as a function of education among males.

The second test is like the first test, except that the comparisons are made for females. This tests the following null hypothesis.

$$H_0: \ \beta_{1F} = \beta_{2F} = \beta_{3F}$$

This test is also significant. Among females, the age slope significantly differs among the three levels of education.

14.4 Simple contrasts on education for the age slope

We can further dissect the simple effects tested above by applying contrast coefficients to the education factor. For example, say that we used the ar. contrast operator to form reverse adjacent group comparisons. This would yield comparisons of group 2 versus 1 (high school graduates with non-high school graduates) and group 3 versus 2 (college graduates with high school graduates). Applying this contrast operator yields simple contrasts on education at each level of gender, as shown below.

. contrast ar.educ3#c.age@female, nowald pveffects
Contrasts of marginal linear predictions
Margins : asbalanced

	Contrast	Std. Err.	t	P> t
educ3@female#c.age				
(2 vs 1) 0	175.8497	54.7504	3.21	0.001
(2 vs 1) 1	95.54426	26.83611	3.56	0.000
(3 vs 2) 0	721.4829	69.74939	10.34	0.000
(3 vs 2) 1	387.1322	49.38976	7.84	0.000

The first test compares the age slope for male high school graduates with the age slope for males who did not graduate high school. In terms of table 14.2, this is the comparison of β_{2M} with β_{1M} . The difference in these age slopes is 175.85 and is significant. The second test is the same as the first test, except the comparison is made for females, comparing β_{2F} with β_{1F} . The difference is 95.54 and is significant. The third and fourth tests compare college graduates with high school graduates. The third test forms this comparison among males and is significant, and the fourth test forms this comparison among females and is also significant.

14.5 Partial interaction on education for the age slope

The three-way interaction can be dissected by forming contrasts on the three-level categorical variable. Say that we use reverse adjacent group comparisons on education, which compares high school graduates with non-high school graduates and college graduates with high school graduates. We can interact that contrast with gender and age, as shown in the margins command below.