
Maximum Likelihood Estimation

with Stata

Fourth Edition

WILLIAM GOULD
StataCorp

JEFFREY PITBLADO
StataCorp

BRIAN POI
StataCorp

®

A Stata Press Publication
StataCorp LP
College Station, Texas

® Copyright c© 1999, 2003, 2006, 2010 by StataCorp LP
All rights reserved. First edition 1999
Second edition 2003
Third edition 2006
Fourth edition 2010

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in LATEX2ε

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-59718-078-5
ISBN-13: 978-1-59718-078-8

Library of Congress Control Number: 2010935284

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without
the prior written permission of StataCorp LP.

Stata, Mata, NetCourse, and Stata Press are registered trademarks of StataCorp LP. LATEX2ε

is a trademark of the American Mathematical Society.

Contents

List of tables xiii

List of figures xv

Preface to the fourth edition xvii

Versions of Stata xix

Notation and typography xxi

1 Theory and practice 1

1.1 The likelihood-maximization problem 2

1.2 Likelihood theory . 4

1.2.1 All results are asymptotic 8

1.2.2 Likelihood-ratio tests and Wald tests 9

1.2.3 The outer product of gradients variance estimator 10

1.2.4 Robust variance estimates 11

1.3 The maximization problem . 13

1.3.1 Numerical root finding . 13

Newton’s method . 13

The Newton–Raphson algorithm 15

1.3.2 Quasi-Newton methods . 17

The BHHH algorithm . 18

The DFP and BFGS algorithms 18

1.3.3 Numerical maximization . 19

1.3.4 Numerical derivatives . 20

1.3.5 Numerical second derivatives 24

1.4 Monitoring convergence . 25

vi Contents

2 Introduction to ml 29

2.1 The probit model . 29

2.2 Normal linear regression . 32

2.3 Robust standard errors . 34

2.4 Weighted estimation . 35

2.5 Other features of method-gf0 evaluators 36

2.6 Limitations . 36

3 Overview of ml 39

3.1 The terminology of ml . 39

3.2 Equations in ml . 40

3.3 Likelihood-evaluator methods . 48

3.4 Tools for the ml programmer . 51

3.5 Common ml options . 51

3.5.1 Subsamples . 51

3.5.2 Weights . 52

3.5.3 OPG estimates of variance 53

3.5.4 Robust estimates of variance 54

3.5.5 Survey data . 56

3.5.6 Constraints . 57

3.5.7 Choosing among the optimization algorithms 57

3.6 Maximizing your own likelihood functions 61

4 Method lf 63

4.1 The linear-form restrictions . 64

4.2 Examples . 65

4.2.1 The probit model . 65

4.2.2 Normal linear regression . 66

4.2.3 The Weibull model . 69

4.3 The importance of generating temporary variables as doubles 71

4.4 Problems you can safely ignore . 73

Contents vii

4.5 Nonlinear specifications . 74

4.6 The advantages of lf in terms of execution speed 75

5 Methods lf0, lf1, and lf2 77

5.1 Comparing these methods . 77

5.2 Outline of evaluators of methods lf0, lf1, and lf2 78

5.2.1 The todo argument . 79

5.2.2 The b argument . 79

Using mleval to obtain values from each equation 80

5.2.3 The lnfj argument . 82

5.2.4 Arguments for scores . 83

5.2.5 The H argument . 84

Using mlmatsum to define H 86

5.2.6 Aside: Stata’s scalars . 87

5.3 Summary of methods lf0, lf1, and lf2 90

5.3.1 Method lf0 . 90

5.3.2 Method lf1 . 92

5.3.3 Method lf2 . 94

5.4 Examples . 96

5.4.1 The probit model . 96

5.4.2 Normal linear regression . 98

5.4.3 The Weibull model . 104

6 Methods d0, d1, and d2 109

6.1 Comparing these methods . 109

6.2 Outline of method d0, d1, and d2 evaluators 110

6.2.1 The todo argument . 111

6.2.2 The b argument . 111

6.2.3 The lnf argument . 112

Using lnf to indicate that the likelihood cannot be calculated 113

Using mlsum to define lnf 114

viii Contents

6.2.4 The g argument . 116

Using mlvecsum to define g 116

6.2.5 The H argument . 118

6.3 Summary of methods d0, d1, and d2 119

6.3.1 Method d0 . 119

6.3.2 Method d1 . 122

6.3.3 Method d2 . 124

6.4 Panel-data likelihoods . 126

6.4.1 Calculating lnf . 128

6.4.2 Calculating g . 132

6.4.3 Calculating H . 136

Using mlmatbysum to help define H 136

6.5 Other models that do not meet the linear-form restrictions 144

7 Debugging likelihood evaluators 151

7.1 ml check . 151

7.2 Using the debug methods . 153

7.2.1 First derivatives . 155

7.2.2 Second derivatives . 165

7.3 ml trace . 168

8 Setting initial values 171

8.1 ml search . 172

8.2 ml plot . 175

8.3 ml init . 177

9 Interactive maximization 181

9.1 The iteration log . 181

9.2 Pressing the Break key . 182

9.3 Maximizing difficult likelihood functions 184

10 Final results 187

10.1 Graphing convergence . 187

10.2 Redisplaying output . 188

Contents ix

11 Mata-based likelihood evaluators 193

11.1 Introductory examples . 193

11.1.1 The probit model . 193

11.1.2 The Weibull model . 196

11.2 Evaluator function prototypes . 198

Method-lf evaluators . 199

lf-family evaluators . 199

d-family evaluators . 200

11.3 Utilities . 201

Dependent variables . 202

Obtaining model parameters 202

Summing individual or group-level log likelihoods 203

Calculating the gradient vector 203

Calculating the Hessian . 204

11.4 Random-effects linear regression . 205

11.4.1 Calculating lnf . 206

11.4.2 Calculating g . 207

11.4.3 Calculating H . 208

11.4.4 Results at last . 209

12 Writing do-files to maximize likelihoods 213

12.1 The structure of a do-file . 213

12.2 Putting the do-file into production 214

13 Writing ado-files to maximize likelihoods 217

13.1 Writing estimation commands . 217

13.2 The standard estimation-command outline 219

13.3 Outline for estimation commands using ml 220

13.4 Using ml in noninteractive mode . 221

13.5 Advice . 222

13.5.1 Syntax . 223

13.5.2 Estimation subsample . 225

x Contents

13.5.3 Parsing with help from mlopts 229

13.5.4 Weights . 232

13.5.5 Constant-only model . 233

13.5.6 Initial values . 237

13.5.7 Saving results in e() . 240

13.5.8 Displaying ancillary parameters 240

13.5.9 Exponentiated coefficients 242

13.5.10 Offsetting linear equations 244

13.5.11 Program properties . 246

14 Writing ado-files for survey data analysis 249

14.1 Program properties . 249

14.2 Writing your own predict command 252

15 Other examples 255

15.1 The logit model . 255

15.2 The probit model . 257

15.3 Normal linear regression . 259

15.4 The Weibull model . 262

15.5 The Cox proportional hazards model 265

15.6 The random-effects regression model 268

15.7 The seemingly unrelated regression model 271

A Syntax of ml 285

B Likelihood-evaluator checklists 307

B.1 Method lf . 307

B.2 Method d0 . 308

B.3 Method d1 . 309

B.4 Method d2 . 311

B.5 Method lf0 . 314

B.6 Method lf1 . 315

B.7 Method lf2 . 317

Contents xi

C Listing of estimation commands 321

C.1 The logit model . 321

C.2 The probit model . 323

C.3 The normal model . 325

C.4 The Weibull model . 327

C.5 The Cox proportional hazards model 330

C.6 The random-effects regression model 332

C.7 The seemingly unrelated regression model 335

References 343

Author index 347

Subject index 349

Preface to the fourth edition

Maximum Likelihood Estimation with Stata, Fourth Edition is written for researchers
in all disciplines who need to compute maximum likelihood estimators that are not
available as prepackaged routines. To get the most from this book, you should be
familiar with Stata, but you will not need any special programming skills, except in
chapters 13 and 14, which detail how to take an estimation technique you have written
and add it as a new command to Stata. No special theoretical knowledge is needed
either, other than an understanding of the likelihood function that will be maximized.

Stata’s ml command was greatly enhanced in Stata 11, prescribing the need for a
new edition of this book. The optimization engine underlying ml was reimplemented
in Mata, Stata’s matrix programming language. That allowed us to provide a suite of
commands (not discussed in this book) that Mata programmers can use to implement
maximum likelihood estimators in a matrix programming language environment; see
[M-5] moptimize(). More important to users of ml, the transition to Mata provided us
the opportunity to simplify and refine the syntax of various ml commands and likelihood
evaluators; and it allowed us to provide a framework whereby users could write their
likelihood-evaluator functions using Mata while still capitalizing on the features of ml.

Previous versions of ml had just two types of likelihood evaluators. Method-lf
evaluators were used for simple models that satisfied the linear-form restrictions and
for which you did not want to supply analytic derivatives. d-family evaluators were for
everything else. Now ml has more evaluator types with both long and short names:

Short name Long name

lf linearform

lf0 linearform0

lf1 linearform1

lf1debug linearform1debug

lf2 linearform2

lf2debug linearform2debug

d0 derivative0

d1 derivative1

d1debug derivative1debug

d2 derivative2

d2debug derivative2debug

gf0 generalform0

xviii Preface to the fourth edition

You can specify either name when setting up your model using ml model; however,
out of habit, we use the short name in this book and in our own software development
work. Method lf, as in previous versions, does not require derivatives and is particularly
easier to use.

Chapter 1 provides a general overview of maximum likelihood estimation theory
and numerical optimization methods, with an emphasis on the practical implications
of each for applied work. Chapter 2 provides an introduction to getting Stata to fit
your model by maximum likelihood. Chapter 3 is an overview of the ml command and
the notation used throughout the rest of the book. Chapters 4–10 detail, step by step,
how to use Stata to maximize user-written likelihood functions. Chapter 11 shows how
to write your likelihood evaluators in Mata. Chapter 12 describes how to package all
the user-written code in a do-file so that it can be conveniently reapplied to different
datasets and model specifications. Chapter 13 details how to structure the code in an
ado-file to create a new Stata estimation command. Chapter 14 shows how to add
survey estimation features to existing ml-based estimation commands.

Chapter 15, the final chapter, provides examples. For a set of estimation problems,
we derive the log-likelihood function, show the derivatives that make up the gradient
and Hessian, write one or more likelihood-evaluation programs, and so provide a fully
functional estimation command. We use the estimation command to fit the model to a
dataset. An estimation command is developed for each of the following:

• Logit and probit models

• Linear regression

• Weibull regression

• Cox proportional hazards model

• Random-effects linear regression for panel data

• Seemingly unrelated regression

Appendices contain full syntax diagrams for all the ml subroutines, useful checklists
for implementing each maximization method, and program listings of each estimation
command covered in chapter 15.

We acknowledge William Sribney as one of the original developers of ml and the
principal author of the first edition of this book.

College Station, TX William Gould
September 2010 Jeffrey Pitblado

Brian Poi

2 Introduction to ml

ml is the Stata command to maximize user-defined likelihoods. Obtaining maximum
likelihood (ML) estimates requires the following steps:

1. Derive the log-likelihood function from your probability model.

2. Write a program that calculates the log-likelihood values and, optionally, its
derivatives. This program is known as a likelihood evaluator.

3. Identify a particular model to fit using your data variables and the ml model

statement.

4. Fit the model using ml maximize.

This chapter illustrates steps 2, 3, and 4 using the probit model for dichotomous
(0/1) variables and the linear regression model assuming normally distributed errors.

In this chapter, we fit our models explicitly, handling each coefficient and variable
individually. New users of ml will appreciate this approach because it closely reflects
how you would write down the model you wish to fit on paper; and it allows us to
focus on some of the basic features of ml without becoming overly encumbered with
programming details. We will also illustrate this strategy’s shortcomings so that once
you become familiar with the basics of ml by reading this chapter, you will want to
think of your model in a slightly more abstract form, providing much more flexibility.

In the next chapter, we discuss ml’s probability model parameter notation, which
is particularly useful when, as is inevitably the case, you decide to change some of the
variables appearing in your model. If you are already familiar with ml’s θ-parameter
notation, you can skip this chapter with virtually no loss of continuity with the rest of
the book.

Chapter 15 contains the derivations of log-likelihood functions (step 1) for models
discussed in this book.

2.1 The probit model

Say that we want to fit a probit model to predict whether a car is foreign or domestic
based on its weight and price using the venerable auto.dta that comes with Stata. Our
statistical model is

29

30 Chapter 2 Introduction to ml

πj = Pr(foreignj | weightj , pricej)

= Φ(β1weightj + β2pricej + β0)

where we use the subscript j to denote observations and Φ(·) denotes the standard
normal distribution function. The log likelihood for the jth observation is

ln ℓj =

{
ln Φ(β1weightj + β2pricej + β0) if foreignj = 1

1 − ln Φ(β1weightj + β2pricej + β0) if foreignj = 0

Because the normal density function is symmetric about zero, 1 − Φ(w) = Φ(−w), and
computers can more accurately calculate the latter than the former. Therefore, we are
better off writing the log likelihood as

ln ℓj =

{
ln Φ(β1weightj + β2pricej + β0) if foreignj = 1

ln Φ(−β1weightj − β2pricej − β0) if foreignj = 0
(2.1)

With our log-likelihood function in hand, we write a program to evaluate it:

begin myprobit_gf0.ado
program myprobit_gf0

args todo b lnfj

tempvar xb
quietly generate double ‘xb’ = ‘b’[1,1]*weight + ‘b’[1,2]*price + ///

‘b’[1,3]

quietly replace ‘lnfj’ = ln(normal(‘xb’)) if foreign == 1
quietly replace ‘lnfj’ = ln(normal(-1*‘xb’)) if foreign == 0

end
end myprobit_gf0.ado

We named our program myprobit gf0.ado, but you could name it anything you want
as long as it has the extension .ado. The name without the .ado extension is what
we use to tell ml model about our likelihood function. We added gf0 to our name to
emphasize that our evaluator is a general-form problem and that we are going to specify
no (0) derivatives. We will return to this issue when we use the ml model statement.

Our program accepts three arguments. The first, todo, we can safely ignore for now.
In later chapters, when we discuss other types of likelihood-evaluator programs, we will
need that argument. The second, b, contains a row vector containing the parameters
of our model (β0, β1, and β2). The third argument, lnfj, is the name of a temporary
variable that we are to fill in with the values of the log-likelihood function evaluated
at the coefficient vector b. Our program then created a temporary variable to hold
the values of β1weightj + β2pricej + β0. We created that variable to have storage
type double; we will discuss this point in greater detail in the next chapter, but for
now you should remember that when coding your likelihood evaluator, you must create

2.1 The probit model 31

temporary variables as doubles. The last two lines replace lnfj with the values of
the log likelihood for foreignj equal to 0 and 1, respectively. Because b and lnfj are
arguments passed to our program and xb is a temporary variable we created with the
tempvar commands, their names are local macros that must be dereferenced using left-
and right-hand single quote marks to use them; see [U] 18.7 Temporary objects.

The next step is to identify our model using ml model. To that end, we type

. sysuse auto
(1978 Automobile Data)

. ml model gf0 myprobit_gf0 (foreign = weight price)

We first loaded in our dataset, because ml model will not work without the dataset
in memory. Next we told ml that we have a method-gf0 likelihood evaluator named
myprobit gf0, our dependent variable is foreign, and our independent variables are
weight and price. In subsequent chapters, we examine all the likelihood-evaluator
types; method-gf0 (general form) evaluator programs most closely follow the mathe-
matical notation we used in (2.1) and are therefore perhaps easiest for new users of ml
to grasp, but we will see that they have disadvantages as well. General-form evalua-
tors simply receive a vector of parameters and a variable into which the observations’
log-likelihood values are to be stored.

The final step is to tell ml to maximize the likelihood function and report the coef-
ficients:

. ml maximize

initial: log likelihood = -51.292891
alternative: log likelihood = -45.055272
rescale: log likelihood = -45.055272
Iteration 0: log likelihood = -45.055272
Iteration 1: log likelihood = -20.770386
Iteration 2: log likelihood = -18.023563
Iteration 3: log likelihood = -18.006584
Iteration 4: log likelihood = -18.006571
Iteration 5: log likelihood = -18.006571

Number of obs = 74
Wald chi2(2) = 14.09

Log likelihood = -18.006571 Prob > chi2 = 0.0009

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.003238 .0008643 -3.75 0.000 -.004932 -.0015441
price .000517 .0001591 3.25 0.001 .0002052 .0008287
_cons 4.921935 1.330066 3.70 0.000 2.315054 7.528816

You can verify that we would obtain identical results using probit:

. probit foreign weight price

32 Chapter 2 Introduction to ml

This example was straightforward because we had only one equation and no auxiliary
parameters. Next we consider linear regression with normally distributed errors.

2.2 Normal linear regression

Now suppose we want to fit a linear regression of turn on length and headroom:

turnj = β1lengthj + β2headroomj + β3 + ǫj

where ǫj is an error term. If we assume that each ǫj is independent and identically
distributed as a normal random variable with mean zero and variance σ2, we have what
is often called normal linear regression; and we can fit the model by ML. As derived
in section 15.3, the log likelihood for the jth observation assuming homoskedasticity
(constant variance) is

ln ℓj = lnφ

(
turnj − β1lengthj − β2headroomj − β3

σ

)
− lnσ

There are four parameters in our model: β1, β2, β3, and σ, so we will specify our ml

model statement so that our likelihood evaluator receives a vector of coefficients with
four columns. As a matter of convention, we will use the four elements of that vector
in the order we just listed so that, for example, β2 is the second element and σ is the
fourth element. Our likelihood-evaluator program is

begin mynormal1_gf0.ado
program mynormal1_gf0

args todo b lnfj

tempvar xb
quietly generate double ‘xb’ = ‘b’[1,1]*length + ///

‘b’[1,2]*headroom + ‘b’[1,3]

quietly replace ‘lnfj’ = ln(normalden((turn - ‘xb’)/‘b’[1,4])) - ///
ln(‘b’[1,4])

end
end mynormal1_gf0.ado

In our previous example, when we typed

. ml model gf0 myprobit_gf0 (foreign = weight price)

ml knew to create a coefficient vector with three elements because we specified two
right-hand-side variables, and by default ml includes a constant term unless we specify
the noconstant option, which we discuss in the next chapter. How do we get ml to
include a fourth parameter for σ? The solution is to type

. ml model gf0 mynormal1_gf0 (turn = length headroom) /sigma

The notation /sigma tells ml to include a fourth element in our coefficient vector and
to label it sigma in the output. Having identified our model, we can now maximize the
log-likelihood function:

2.2 Normal linear regression 33

. ml maximize

initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -8418.567
rescale: log likelihood = -327.16314
rescale eq: log likelihood = -215.53986
Iteration 0: log likelihood = -215.53986 (not concave)
Iteration 1: log likelihood = -213.33272 (not concave)
Iteration 2: log likelihood = -211.10519 (not concave)
Iteration 3: log likelihood = -209.6059 (not concave)
Iteration 4: log likelihood = -207.93809 (not concave)
Iteration 5: log likelihood = -206.43891 (not concave)
Iteration 6: log likelihood = -205.1962 (not concave)
Iteration 7: log likelihood = -204.11317 (not concave)
Iteration 8: log likelihood = -203.00323 (not concave)
Iteration 9: log likelihood = -202.1813 (not concave)
Iteration 10: log likelihood = -201.42353 (not concave)
Iteration 11: log likelihood = -200.64586 (not concave)
Iteration 12: log likelihood = -199.9028 (not concave)
Iteration 13: log likelihood = -199.19009 (not concave)
Iteration 14: log likelihood = -198.48271 (not concave)
Iteration 15: log likelihood = -197.78686 (not concave)
Iteration 16: log likelihood = -197.10722 (not concave)
Iteration 17: log likelihood = -196.43923 (not concave)
Iteration 18: log likelihood = -195.78098 (not concave)
Iteration 19: log likelihood = -195.13352 (not concave)
Iteration 20: log likelihood = -194.49664 (not concave)
Iteration 21: log likelihood = -193.86938 (not concave)
Iteration 22: log likelihood = -193.25148 (not concave)
Iteration 23: log likelihood = -192.64285 (not concave)
Iteration 24: log likelihood = -192.04319 (not concave)
Iteration 25: log likelihood = -191.45242 (not concave)
Iteration 26: log likelihood = -190.87034 (not concave)
Iteration 27: log likelihood = -190.29685 (not concave)
Iteration 28: log likelihood = -189.73203 (not concave)
Iteration 29: log likelihood = -189.17561 (not concave)
Iteration 30: log likelihood = -188.62745
Iteration 31: log likelihood = -177.20678 (backed up)
Iteration 32: log likelihood = -163.35109
Iteration 33: log likelihood = -163.18766
Iteration 34: log likelihood = -163.18765

Number of obs = 74
Wald chi2(2) = 219.18

Log likelihood = -163.18765 Prob > chi2 = 0.0000

turn Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
length .1737845 .0134739 12.90 0.000 .1473762 .2001929

headroom -.1542077 .3546293 -0.43 0.664 -.8492684 .540853
_cons 7.450477 2.197352 3.39 0.001 3.143747 11.75721

sigma
_cons 2.195259 .1804491 12.17 0.000 1.841585 2.548932

34 Chapter 2 Introduction to ml

The point estimates match those we obtain from typing

. regress turn length headroom

The standard errors differ by a factor of sqrt(71/74) because regress makes a small-
sample adjustment in estimating the error variance. In the special case of linear re-
gression, the need for a small-sample adjustment is not difficult to prove. However, in
general ML estimators are only justified asymptotically, so small-sample adjustments
have dubious value.

q Technical note

The log-likelihood function is only defined for σ > 0—standard deviations must be
nonnegative and ln(0) is not defined. ml assumes that all coefficients can take on any
value, but it is designed to gracefully handle situations where this is not the case. For
example, the output indicates that at the initial values (all four coefficients set to zero),
ml could not evaluate the log-likelihood function; but ml was able to find alternative
values with which it could begin the optimization process. In other models, you may
have coefficients that are restricted to be in the range (0, 1) or (−1, 1), and in those
cases, ml is often unsuccessful in finding feasible initial values. The best solution is to
reparameterize the likelihood function so that all the parameters appearing therein are
unrestricted; subsequent chapters contain examples where we do just that.

q

2.3 Robust standard errors

Robust standard errors are commonly reported nowadays along with linear regression
results because they allow for correct statistical inference even when the tenuous assump-
tion of homoskedasticity is not met. Cluster–robust standard errors can be used when
related observations’ errors are correlated. Obtaining standard errors with most esti-
mation commands is trivial: you just specify the option vce(robust) or vce(cluster
id), where id is the name of a variable identifying groups. Using our previous regression
example, you might type

. regress turn length headroom, vce(robust)

For the evaluator functions we have written so far, both of which have been method
gf0, obtaining robust or cluster–robust standard errors is no more difficult than with
other estimation commands. To refit our linear regression model, obtaining robust
standard errors, we type

2.4 Weighted estimation 35

. ml model gf0 mynormal1_gf0 (turn = length headroom) /sigma, vce(robust)

. ml maximize, nolog
initial: log pseudolikelihood = -<inf> (could not be evaluated)
feasible: log pseudolikelihood = -8418.567
rescale: log pseudolikelihood = -327.16314
rescale eq: log pseudolikelihood = -215.53986

Number of obs = 74
Wald chi2(2) = 298.85

Log pseudolikelihood = -163.18765 Prob > chi2 = 0.0000

Robust
turn Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
length .1737845 .0107714 16.13 0.000 .152673 .1948961

headroom -.1542077 .2955882 -0.52 0.602 -.73355 .4251345
_cons 7.450477 1.858007 4.01 0.000 3.80885 11.0921

sigma
_cons 2.195259 .2886183 7.61 0.000 1.629577 2.76094

ml model accepts vce(cluster id) with method-gf0 evaluators just as readily as it
accepts vce(robust).

Being able to obtain robust standard errors just by specifying an option to ml model

should titillate you. When we discuss other types of evaluator programs, we will see that
in fact there is a lot of work happening behind the scenes to produce robust standard
errors. With method-gf0 evaluators (and other linear-form evaluators), ml does all the
work for you.

2.4 Weighted estimation

Stata provides four types of weights that the end-user can apply to estimation prob-
lems. Frequency weights, known as fweights in the Stata vernacular, represent dupli-
cated observations; instead of having five observations that record identical information,
fweights allow you to record that observation once in your dataset along with a fre-
quency weight of 5, indicating that observation is to be repeated a total of five times.
Analytic weights, called aweights, are inversely proportional to the variance of an obser-
vation and are used with group-mean data. Sampling weights, called pweights, denote
the inverse of the probability that an observation is sampled and are used with survey
data where some people are more likely to be sampled than others. Importance weights,
called iweights, indicate the relative “importance” of the observation and are intended
for use by programmers who want to produce a certain computation.

Obtaining weighted estimates with method-gf0 likelihood evaluators is the same as
with most other estimation commands. Suppose that in auto.dta, rep78 is actually a
frequency weight variable. To obtain frequency-weighted estimates of our probit model,
we type

36 Chapter 2 Introduction to ml

. ml model gf0 myprobit_gf0 (foreign = weight price) [fw = rep78]

. ml maximize

initial: log likelihood = -162.88959
alternative: log likelihood = -159.32929
rescale: log likelihood = -156.55825
Iteration 0: log likelihood = -156.55825
Iteration 1: log likelihood = -72.414357
Iteration 2: log likelihood = -66.82292
Iteration 3: log likelihood = -66.426129
Iteration 4: log likelihood = -66.424675
Iteration 5: log likelihood = -66.424675

Number of obs = 235
Wald chi2(2) = 58.94

Log likelihood = -66.424675 Prob > chi2 = 0.0000

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.0027387 .0003576 -7.66 0.000 -.0034396 -.0020379
price .0004361 .0000718 6.07 0.000 .0002953 .0005768
_cons 4.386445 .5810932 7.55 0.000 3.247523 5.525367

Just like with obtaining robust standard errors, we did not have to do anything to
our likelihood-evaluator program. We just added a weight specification, and ml did all
the heavy lifting to make that work. You should be impressed. Other evaluator types
require you to account for weights yourself, which is not always a trivial task.

2.5 Other features of method-gf0 evaluators

In addition to easily obtaining robust standard errors and weighted estimates, method-
gf0 likelihood evaluators provide several other features. By specifying the svy option
to ml model, you can obtain results that take into account the complex survey de-
sign of your data. Before using the svy option, you must first svyset your data; see
[U] 26.19 Survey data.

You can restrict the estimation sample by using if and in conditions in your ml

model statement. Again, method-gf0 evaluators require you to do nothing special to
make them work. See [U] 11 Language syntax to learn about if and in qualifiers.

2.6 Limitations

We have introduced ml using method-gf0 evaluators because they align most closely
with the way you would write the likelihood function for a specific model. However,
writing your likelihood evaluator in terms of a particular model with prespecified vari-
ables severely limits your flexibility.

2.6 Limitations 37

For example, say that we had a binary variable good that we wanted to use instead
of foreign as the dependent variable in our probit model. If we simply change our ml
model statement to read

. ml model gf0 myprobit_gf0 (good = weight price)

the output from ml maximize will label the dependent variable as good, but the output
will otherwise be unchanged! When we wrote our likelihood-evaluator program, we
hardcoded in the name of the dependent variable. As far as our likelihood-evaluator
program is concerned, changing the dependent variable in our ml model statement did
nothing.

When you specify the dependent variable in your ml model statement, ml stores the
variable name in the global macro $ML y1. Thus a better version of our myprobit gf0

program would be

begin myprobit_gf0_good.ado
program myprobit_gf0_good

args todo b lnfj

tempvar xb
quietly generate double ‘xb’ = ‘b’[1,1]*weight + ‘b’[1,2]*price + ///

‘b’[1,3]

quietly replace ‘lnfj’ = ln(normal(‘xb’)) if $ML_y1 == 1
quietly replace ‘lnfj’ = ln(normal(-1*‘xb’)) if $ML_y1 == 0

end
end myprobit_gf0_good.ado

With this change, we can specify dependent variables at will.

Adapting our program to accept an arbitrary dependent variable was straightfor-
ward. Unfortunately, making it accept an arbitrary set of independent variables is
much more difficult. We wrote our likelihood evaluator assuming that the coefficient
vector ‘b’ had three elements, and we hardcoded the names of our independent variables
in the likelihood-evaluator program. If we were hell-bent on making our method-gf0
evaluator work with an arbitrary number of independent variables, we could examine
the column names of ‘b’ and deduce the number of variables, their names, and even
the number of equations. In the next chapter, we will learn a better way to approach
problems using ml that affords us the ability to change regressors without having to
modify our evaluator program in any way.

