Maximum Likelihood Estimation with Stata

Fourth Edition

 $\begin{array}{l} \mbox{WILLIAM GOULD} \\ StataCorp \end{array}$

JEFFREY PITBLADO StataCorp

BRIAN POI StataCorp

A Stata Press Publication StataCorp LP College Station, Texas

Copyright © 1999, 2003, 2006, 2010 by StataCorp LP All rights reserved. First edition 1999 Second edition 2003 Third edition 2006 Fourth edition 2010

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in $\rm IAT_EX~2_{\mathcal{E}}$ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-59718-078-5 ISBN-13: 978-1-59718-078-8

Library of Congress Control Number: 2010935284

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LP.

Stata, Mata, NetCourse, and Stata Press are registered trademarks of StataCorp LP. $\square T_E X 2_{\varepsilon}$ is a trademark of the American Mathematical Society.

	\mathbf{List}	ist of tables						
	\mathbf{List}	ist of figures						
	Preface to the fourth edition							
	Vers	Stata	xix					
	Nota	tion an	d typography	xxi				
1	Theo	ory and	practice	1				
	1.1	The lik	elihood-maximization problem	2				
	1.2	Likeliho	bod theory	. 4				
		1.2.1	All results are asymptotic	8				
		1.2.2	Likelihood-ratio tests and Wald tests	9				
	1.2.3 The outer product of gradients variance estimator .							
		1.2.4	Robust variance estimates	11				
	1.3	The ma	aximization problem	13				
		1.3.1	Numerical root finding	13				
			Newton's method	13				
			The Newton–Raphson algorithm	15				
		1.3.2	Quasi-Newton methods	17				
			The BHHH algorithm	18				
			The DFP and BFGS algorithms	18				
		1.3.3 Numerical maximization						
		1.3.4	Numerical derivatives	20				
		1.3.5	Numerical second derivatives	24				
	1.4	Monito	ring convergence	25				

2 Introduction to ml									
	2.1	The pro	bit model	29					
	2.2	Normal	linear regression	32					
	2.3 Robust standard errors								
	2.4	2.4 Weighted estimation							
	2.5	Other fe	eatures of method-gf0 evaluators	36					
	2.6	Limitati	ions	36					
3	Over	view of	ml	39					
	3.1	The term	minology of ml	39					
	3.2	Equatio	ns in ml	40					
	3.3	Likeliho	ood-evaluator methods	48					
	3.4	Tools fo	or the ml programmer	51					
	3.5	Commo	n ml options	51					
		3.5.1	Subsamples	51					
		3.5.2	Weights	52					
		3.5.3	OPG estimates of variance	53					
		3.5.4	Robust estimates of variance	54					
		3.5.5	Survey data	56					
		3.5.6	Constraints	57					
		3.5.7	Choosing among the optimization algorithms	57					
	3.6	Maximi	zing your own likelihood functions	61					
4	Meth	nod lf		63					
	4.1	The line	ear-form restrictions	64					
	4.2	Exampl	es	65					
		4.2.1	The probit model	65					
		4.2.2	Normal linear regression	66					
		4.2.3	The Weibull model	69					
	4.3	The imp	portance of generating temporary variables as doubles \ldots .	71					
	4.4	Problem	ns you can safely ignore	73					

vi

	4.5	Nonline	ear specifications	74
	4.6	The adv	vantages of lf in terms of execution speed	75
5	Meth	nods lf0	, lf1, and lf2	77
	5.1	Compar	ring these methods	77
	5.2	Outline	of evaluators of methods lf0, lf1, and lf2	78
		5.2.1	The todo argument \ldots	79
		5.2.2	The b argument	79
			Using mleval to obtain values from each equation \ldots .	80
		5.2.3	The lnfj argument	82
		5.2.4	Arguments for scores	83
		5.2.5	The H argument	84
			Using mlmatsum to define H	86
		5.2.6	Aside: Stata's scalars	87
	5.3	Summa	ry of methods lf0, lf1, and lf2 \ldots	90
		5.3.1	Method lf0	90
		5.3.2	Method lf1	92
		5.3.3	Method lf2	94
	5.4	Exampl	les	96
		5.4.1	The probit model \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	96
		5.4.2	Normal linear regression	98
		5.4.3	The Weibull model	104
6	Meth	nods d0	, d1, and d2 $($	109
	6.1	Compar	ring these methods	109
	6.2	Outline	of method d0, d1, and d2 evaluators	110
		6.2.1	The todo argument \ldots	111
		6.2.2	The b argument	111
		6.2.3	The lnf argument \ldots	112
			Using lnf to indicate that the likelihood cannot be calculated	113
			Using mlsum to define $lnf \dots \dots \dots \dots \dots \dots \dots \dots$	114

vii

		$6.2.4 \qquad \text{The g argument} \dots \dots \dots \dots \dots \dots \dots \dots 116$
		Using mlvecsum to define g $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 116$
		6.2.5 The H argument
	6.3	Summary of methods d0, d1, and d2
		6.3.1 Method d0
		6.3.2 Method d1
		6.3.3 Method d2
	6.4	Panel-data likelihoods 126
		6.4.1 Calculating $\ln f$
		6.4.2 Calculating g
		6.4.3 Calculating H
		Using mlmatby sum to help define H $\ldots \ldots \ldots \ldots \ldots 136$
	6.5	Other models that do not meet the linear-form restrictions 144
7	Debu	agging likelihood evaluators 151
	7.1	ml check
	7.2	Using the debug methods $\ldots \ldots 153$
		7.2.1 First derivatives $\ldots \ldots 155$
		7.2.2 Second derivatives $\ldots \ldots 165$
	7.3	ml trace
8	Setti	ng initial values 171
	8.1	ml search
	8.2	ml plot
	8.3	ml init
9	Inter	eactive maximization 181
	9.1	The iteration log $\ldots \ldots 181$
	9.2	Pressing the Break key
	9.3	Maximizing difficult likelihood functions
10	Final	l results 187
	10.1	Graphing convergence
	10.2	Redisplaying output

viii

11	Mata-based likelihood evaluators						
	11.1	Introductory examples					
		11.1.1 The probit model $\ldots \ldots 193$					
		11.1.2 The Weibull model $\ldots \ldots 196$					
	11.2	Evaluator function prototypes					
		Method-lf evaluators $\dots \dots \dots$					
		lf-family evaluators					
		d-family evaluators					
	11.3	Utilities					
		Dependent variables					
		Obtaining model parameters					
		Summing individual or group-level log likelihoods $\ldots \ldots 203$					
		Calculating the gradient vector					
		Calculating the Hessian 204					
	11.4	Random-effects linear regression					
		11.4.1 Calculating lnf					
		11.4.2 Calculating g					
		11.4.3 Calculating H					
		11.4.4 Results at last $\ldots \ldots 209$					
12	Writ	ing do-files to maximize likelihoods 213					
	12.1	The structure of a do-file $\ldots \ldots 213$					
	12.2	Putting the do-file into production 214					
13	Writ	ing ado-files to maximize likelihoods 217					
	13.1	Writing estimation commands					
	13.2	The standard estimation-command outline					
	13.3	Outline for estimation commands using ml					
	13.4	Using ml in noninteractive mode					
	13.5	Advice					
		13.5.1 Syntax					
		13.5.2 Estimation subsample $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 225$					

ix

		13.5.3]	Parsing with help from mlopts	229
		13.5.4	Weights	232
		13.5.5	Constant-only model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	233
		13.5.6	Initial values	237
		13.5.7	Saving results in $e()$	240
		13.5.8	Displaying ancillary parameters	240
		13.5.9	Exponentiated coefficients	242
		13.5.10	Offsetting linear equations	244
		13.5.11	Program properties	246
14	Writ	ing ado-f	iles for survey data analysis	249
	14.1	Program	properties	249
	14.2	Writing y	$ \text{ our own predict command } \dots $	252
15	Othe	er examp	les	255
	15.1	The logit	$\mathrm{model}\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	255
	15.2	The prob	it model	257
	15.3	Normal li	inear regression	259
	15.4	The Weil	pull model	262
	15.5	The Cox	proportional hazards model	265
	15.6	The rand	om-effects regression model	268
	15.7	The seem	ingly unrelated regression model	271
\mathbf{A}	Synt	ax of ml		285
В	Likel	lihood-ev	aluator checklists	307
	B.1	Method l	f	307
	B.2	Method o	10	308
	B.3	Method o	11	309
	B.4	Method o	12	311
	B.5	Method 1	f0	314
	B.6	Method 1	f1	315
	B.7	Method l	f2	317

\mathbf{C}	Listing of estimation commands										
	C.1	The logit model	321								
	C.2	The probit model	323								
	C.3	The normal model	325								
	C.4	The Weibull model	327								
	C.5	The Cox proportional hazards model	330								
	C.6	The random-effects regression model \hdots	332								
	C.7	The seemingly unrelated regression model $\hdots \ldots \hdots \hdots\$	335								
	References										
	Author index										
	Subject index										

xi

(Pages omitted)

Preface to the fourth edition

Maximum Likelihood Estimation with Stata, Fourth Edition is written for researchers in all disciplines who need to compute maximum likelihood estimators that are not available as prepackaged routines. To get the most from this book, you should be familiar with Stata, but you will not need any special programming skills, except in chapters 13 and 14, which detail how to take an estimation technique you have written and add it as a new command to Stata. No special theoretical knowledge is needed either, other than an understanding of the likelihood function that will be maximized.

Stata's ml command was greatly enhanced in Stata 11, prescribing the need for a new edition of this book. The optimization engine underlying ml was reimplemented in Mata, Stata's matrix programming language. That allowed us to provide a suite of commands (not discussed in this book) that Mata programmers can use to implement maximum likelihood estimators in a matrix programming language environment; see [M-5] moptimize(). More important to users of ml, the transition to Mata provided us the opportunity to simplify and refine the syntax of various ml commands and likelihood evaluators; and it allowed us to provide a framework whereby users could write their likelihood-evaluator functions using Mata while still capitalizing on the features of ml.

Previous versions of ml had just two types of likelihood evaluators. Method-lf evaluators were used for simple models that satisfied the linear-form restrictions and for which you did not want to supply analytic derivatives. d-family evaluators were for everything else. Now ml has more evaluator types with both long and short names:

Short name	Long name
lf	linearform
lfO	linearform0
lf1	linearform1
lf1debug	linearform1debug
lf2	linearform2
lf2debug	linearform2debug
d0	derivative0
d1	derivative1
d1debug	derivative1debug
d2	derivative2
d2debug	derivative2debug
gf0	generalform0

You can specify either name when setting up your model using ml model; however, out of habit, we use the short name in this book and in our own software development work. Method lf, as in previous versions, does not require derivatives and is particularly easier to use.

Chapter 1 provides a general overview of maximum likelihood estimation theory and numerical optimization methods, with an emphasis on the practical implications of each for applied work. Chapter 2 provides an introduction to getting Stata to fit your model by maximum likelihood. Chapter 3 is an overview of the ml command and the notation used throughout the rest of the book. Chapters 4–10 detail, step by step, how to use Stata to maximize user-written likelihood functions. Chapter 11 shows how to write your likelihood evaluators in Mata. Chapter 12 describes how to package all the user-written code in a do-file so that it can be conveniently reapplied to different datasets and model specifications. Chapter 13 details how to structure the code in an ado-file to create a new Stata estimation command. Chapter 14 shows how to add survey estimation features to existing ml-based estimation commands.

Chapter 15, the final chapter, provides examples. For a set of estimation problems, we derive the log-likelihood function, show the derivatives that make up the gradient and Hessian, write one or more likelihood-evaluation programs, and so provide a fully functional estimation command. We use the estimation command to fit the model to a dataset. An estimation command is developed for each of the following:

- Logit and probit models
- Linear regression
- Weibull regression
- Cox proportional hazards model
- Random-effects linear regression for panel data
- Seemingly unrelated regression

Appendices contain full syntax diagrams for all the ml subroutines, useful checklists for implementing each maximization method, and program listings of each estimation command covered in chapter 15.

We acknowledge William Sribney as one of the original developers of ml and the principal author of the first edition of this book.

College Station, TX September 2010 William Gould Jeffrey Pitblado Brian Poi (Pages omitted)

2 Introduction to ml

ml is the Stata command to maximize user-defined likelihoods. Obtaining maximum likelihood (ML) estimates requires the following steps:

- 1. Derive the log-likelihood function from your probability model.
- 2. Write a program that calculates the log-likelihood values and, optionally, its derivatives. This program is known as a likelihood evaluator.
- 3. Identify a particular model to fit using your data variables and the ml model statement.
- 4. Fit the model using ml maximize.

This chapter illustrates steps 2, 3, and 4 using the probit model for dichotomous (0/1) variables and the linear regression model assuming normally distributed errors.

In this chapter, we fit our models explicitly, handling each coefficient and variable individually. New users of ml will appreciate this approach because it closely reflects how you would write down the model you wish to fit on paper; and it allows us to focus on some of the basic features of ml without becoming overly encumbered with programming details. We will also illustrate this strategy's shortcomings so that once you become familiar with the basics of ml by reading this chapter, you will want to think of your model in a slightly more abstract form, providing much more flexibility.

In the next chapter, we discuss ml's probability model parameter notation, which is particularly useful when, as is inevitably the case, you decide to change some of the variables appearing in your model. If you are already familiar with ml's θ -parameter notation, you can skip this chapter with virtually no loss of continuity with the rest of the book.

Chapter 15 contains the derivations of log-likelihood functions (step 1) for models discussed in this book.

2.1 The probit model

Say that we want to fit a probit model to predict whether a car is foreign or domestic based on its weight and price using the venerable auto.dta that comes with Stata. Our statistical model is

$$\pi_j = \Pr(\texttt{foreign}_j \mid \texttt{weight}_j, \texttt{price}_j) \\ = \Phi(\beta_1 \texttt{weight}_i + \beta_2 \texttt{price}_i + \beta_0)$$

where we use the subscript j to denote observations and $\Phi(\cdot)$ denotes the standard normal distribution function. The log likelihood for the jth observation is

$$\ln \ell_j = \begin{cases} \ln \Phi(\beta_1 \texttt{weight}_j + \beta_2 \texttt{price}_j + \beta_0) & \text{if foreign}_j = 1\\ 1 - \ln \Phi(\beta_1 \texttt{weight}_j + \beta_2 \texttt{price}_j + \beta_0) & \text{if foreign}_j = 0 \end{cases}$$

Because the normal density function is symmetric about zero, $1 - \Phi(w) = \Phi(-w)$, and computers can more accurately calculate the latter than the former. Therefore, we are better off writing the log likelihood as

$$\ln \ell_j = \begin{cases} \ln \Phi(\beta_1 \texttt{weight}_j + \beta_2 \texttt{price}_j + \beta_0) & \text{if } \texttt{foreign}_j = 1\\ \ln \Phi(-\beta_1 \texttt{weight}_j - \beta_2 \texttt{price}_j - \beta_0) & \text{if } \texttt{foreign}_j = 0 \end{cases}$$
(2.1)

With our log-likelihood function in hand, we write a program to evaluate it:

```
begin myprobit_gf0.ado
program myprobit_gf0
args todo b lnfj
tempvar xb
quietly generate double 'xb' = 'b'[1,1]*weight + 'b'[1,2]*price + ///
'b'[1,3]
quietly replace 'lnfj' = ln(normal('xb')) if foreign == 1
quietly replace 'lnfj' = ln(normal(-1*'xb')) if foreign == 0
end
end
```

We named our program myprobit_gf0.ado, but you could name it anything you want as long as it has the extension .ado. The name without the .ado extension is what we use to tell ml model about our likelihood function. We added gf0 to our name to emphasize that our evaluator is a general-form problem and that we are going to specify no (0) derivatives. We will return to this issue when we use the ml model statement.

Our program accepts three arguments. The first, todo, we can safely ignore for now. In later chapters, when we discuss other types of likelihood-evaluator programs, we will need that argument. The second, b, contains a row vector containing the parameters of our model (β_0 , β_1 , and β_2). The third argument, lnfj, is the name of a temporary variable that we are to fill in with the values of the log-likelihood function evaluated at the coefficient vector b. Our program then created a temporary variable to hold the values of β_1 weight_j + β_2 price_j + β_0 . We created that variable to have storage type double; we will discuss this point in greater detail in the next chapter, but for now you should remember that when coding your likelihood evaluator, you must create

2.1 The probit model

temporary variables as doubles. The last two lines replace lnfj with the values of the log likelihood for foreign_j equal to 0 and 1, respectively. Because **b** and lnfj are arguments passed to our program and **xb** is a temporary variable we created with the tempvar commands, their names are local macros that must be dereferenced using left-and right-hand single quote marks to use them; see [U] **18.7 Temporary objects**.

The next step is to identify our model using ml model. To that end, we type

```
. sysuse auto
(1978 Automobile Data)
. ml model gf0 myprobit_gf0 (foreign = weight price)
```

We first loaded in our dataset, because ml model will not work without the dataset in memory. Next we told ml that we have a method-gf0 likelihood evaluator named myprobit_gf0, our dependent variable is foreign, and our independent variables are weight and price. In subsequent chapters, we examine all the likelihood-evaluator types; method-gf0 (general form) evaluator programs most closely follow the mathematical notation we used in (2.1) and are therefore perhaps easiest for new users of ml to grasp, but we will see that they have disadvantages as well. General-form evaluators simply receive a vector of parameters and a variable into which the observations' log-likelihood values are to be stored.

The final step is to tell ml to maximize the likelihood function and report the coefficients:

. ml maximize							
initial:	log likeliho	pod = -51.29	2891				
alternative:	log likeliho	pod = -45.05	5272				
rescale:	log likeliho	pod = -45.05	5272				
Iteration 0:	log likeliho	pod = -45.05	5272				
Iteration 1:	log likeliho	pod = -20.77	0386				
Iteration 2:	log likeliho	pod = -18.02	3563				
Iteration 3:	log likeliho	pod = -18.00	6584				
Iteration 4:	log likeliho	pod = -18.00	6571				
Iteration 5:	log likeliho	pod = -18.00	6571				
				Number	r of obs	=	74
				Wald (chi2(2)	=	14.09
Log likelihood	l = -18.006572	1		Prob 3	> chi2	=	0.0009
	~ ~ ~					~ ^	
foreign	Coef.	Std. Err.	Z	P> z	L95%	Conf.	Interval
weight	003238	.0008643	-3.75	0.000	004	932	0015441
price	.000517	.0001591	3.25	0.001	.0002	052	.0008287
_cons	4.921935	1.330066	3.70	0.000	2.315	054	7.528816

You can verify that we would obtain identical results using probit:

. probit foreign weight price

This example was straightforward because we had only one equation and no auxiliary parameters. Next we consider linear regression with normally distributed errors.

2.2 Normal linear regression

Now suppose we want to fit a linear regression of turn on length and headroom:

 $\mathtt{turn}_j = \beta_1 \mathtt{length}_i + \beta_2 \mathtt{headroom}_j + \beta_3 + \epsilon_j$

where ϵ_j is an error term. If we assume that each ϵ_j is independent and identically distributed as a normal random variable with mean zero and variance σ^2 , we have what is often called normal linear regression; and we can fit the model by ML. As derived in section 15.3, the log likelihood for the *j*th observation assuming homoskedasticity (constant variance) is

$$\ln \ell_j = \ln \phi \left(\frac{\texttt{turn}_j - \beta_1 \texttt{length}_j - \beta_2 \texttt{headroom}_j - \beta_3}{\sigma} \right) - \ln \sigma$$

There are four parameters in our model: β_1 , β_2 , β_3 , and σ , so we will specify our ml model statement so that our likelihood evaluator receives a vector of coefficients with four columns. As a matter of convention, we will use the four elements of that vector in the order we just listed so that, for example, β_2 is the second element and σ is the fourth element. Our likelihood-evaluator program is

```
begin mynormal1_gf0.ado

program mynormal1_gf0

args todo b lnfj

tempvar xb

quietly generate double 'xb' = 'b'[1,1]*length + ///

'b'[1,2]*headroom + 'b'[1,3]

quietly replace 'lnfj' = ln(normalden((turn - 'xb')/'b'[1,4])) - ///

ln('b'[1,4])

end

end mynormal1_gf0.ado
```

In our previous example, when we typed

. ml model gf0 myprobit_gf0 (foreign = weight price)

ml knew to create a coefficient vector with three elements because we specified two right-hand-side variables, and by default ml includes a constant term unless we specify the noconstant option, which we discuss in the next chapter. How do we get ml to include a fourth parameter for σ ? The solution is to type

. ml model gf0 mynormal1_gf0 (turn = length headroom) /sigma

The notation /sigma tells ml to include a fourth element in our coefficient vector and to label it sigma in the output. Having identified our model, we can now maximize the log-likelihood function:

. ml maximize					
initial:	log likelihoo	d = - <inf></inf>	> (could not	be evaluated)	
feasible:	log likelihoo	d = -8418.567	7		
rescale:	log likelihoo	d = -327.16314	1		
rescale eq:	log likelihoo	d = -215.53986	5		
Iteration 0:	log likelihoo	d = -215.53986	6 (not concav	e)	
Iteration 1:	log likelihoo	d = -213.33272	2 (not concav	e)	
Iteration 2:	log likelihoo	d = -211.10519	9 (not concav	e)	
Iteration 3:	log likelihoo	d = -209.6059	9 (not concav	e)	
Iteration 4:	log likelihoo	d = -207.93809	9 (not concav	e)	
Iteration 5:	log likelihoo	d = -206.43891	l (not concav	e)	
Iteration 6:	log likelihoo	d = -205.1962	2 (not concav	e)	
Iteration 7:	log likelihoo	d = -204.11317	7 (not concav	e)	
Iteration 8:	log likelihoo	d = -203.00323	3 (not concav	e)	
Iteration 9:	log likelihoo	d = -202.1813	3 (not concav	e)	
Iteration 10:	log likelihoo	d = -201.42353	3 (not concav	e)	
Iteration 11:	log likelihoo	d = -200.64586	6 (not concav	e)	
Iteration 12:	log likelihoo	d = -199.9028	3 (not concav	e)	
Iteration 13:	log likelihoo	d = -199.19009) (not concav	e)	
Iteration 14:	log likelihoo	d = -198.48271	l (not concav	e)	
Iteration 15:	log likelihoo	d = -197.78686	o (not concav	e)	
Iteration 16:	log likelihoo	d = -197.10722	2 (not concav	e)	
Iteration 17:	log likelihoo	d = -196.43923	3 (not concav	e)	
Iteration 18:	log likelihoo	d = -195.78098	3 (not concav	e)	
Iteration 19:	log likelinoc	d = -195.13352	2 (not concav	e)	
Iteration 20:	log likelinoo	d = -194.49664	+ (not concav	e) a)	
Iteration 21:	log likelinoo	d = -193.86938	3 (not concav	e) a)	
Iteration 22:	log likelihoo	d = -193.25140	(not concav	e) a)	
Iteration 23:	log likelihoo	d = -192.04200) (not concav		
Iteration 24:	log likelihoo	d = -192.04313 d = -191 / 52/13	(not concav	e) a)	
Iteration 26:	log likelihoo	d = -190.87034	1 (not concav	e)	
Iteration 27:	log likelihoo	d = -190.29689	(not concav	e)	
Iteration 28:	log likelihoo	d = -189 73203	(not concav	e)	
Iteration 29:	log likelihoo	d = -189.17561	(not concav	e)	
Iteration 30:	log likelihoo	d = -188.62745	5	.,	
Iteration 31:	log likelihoo	d = -177.20678	3 (backed up)		
Iteration 32:	log likelihoo	d = -163.35109)		
Iteration 33:	log likelihoo	d = -163.18766	5		
Iteration 34:	log likelihoo	d = -163.18765	5		
	0		Maarka	f - h	74
			Wold	r of obs =	010 19
Iog likelihood	= -163 18765		Prob	$c_{112}(2) =$	0 0000
rog ilvelinood	103.10705		FIOD	- CIII2 =	0.0000
turn	Coef.	Std. Err.	z P> z	[95% Conf.	Interval]
0.01					
length	17378/5	0134730 10		1473760	2001020
headroom	- 1542077	3546293 -0) 43 0 664	- 8492684	540853
CODE	7 450477	2 197352	3 39 0 001	3 143747	11 75721
	1.100111			0.140141	
sigma					

2.195259

_cons

.1804491

12.17 0.000

1.841585

2.548932

The point estimates match those we obtain from typing

. regress turn length headroom

The standard errors differ by a factor of sqrt(71/74) because **regress** makes a smallsample adjustment in estimating the error variance. In the special case of linear regression, the need for a small-sample adjustment is not difficult to prove. However, in general ML estimators are only justified asymptotically, so small-sample adjustments have dubious value.

□ Technical note

The log-likelihood function is only defined for $\sigma > 0$ —standard deviations must be nonnegative and $\ln(0)$ is not defined. ml assumes that all coefficients can take on any value, but it is designed to gracefully handle situations where this is not the case. For example, the output indicates that at the initial values (all four coefficients set to zero), ml could not evaluate the log-likelihood function; but ml was able to find alternative values with which it could begin the optimization process. In other models, you may have coefficients that are restricted to be in the range (0,1) or (-1,1), and in those cases, ml is often unsuccessful in finding feasible initial values. The best solution is to reparameterize the likelihood function so that all the parameters appearing therein are unrestricted; subsequent chapters contain examples where we do just that.

2.3 Robust standard errors

Robust standard errors are commonly reported nowadays along with linear regression results because they allow for correct statistical inference even when the tenuous assumption of homoskedasticity is not met. Cluster-robust standard errors can be used when related observations' errors are correlated. Obtaining standard errors with most estimation commands is trivial: you just specify the option vce(robust) or vce(cluster id), where *id* is the name of a variable identifying groups. Using our previous regression example, you might type

. regress turn length headroom, vce(robust)

For the evaluator functions we have written so far, both of which have been method gf0, obtaining robust or cluster-robust standard errors is no more difficult than with other estimation commands. To refit our linear regression model, obtaining robust standard errors, we type

```
. ml model gf0 mynormal1_gf0 (turn = length headroom) /sigma, vce(robust)
. ml maximize, nolog
               log pseudolikelihood =
initial:
                                            -<inf>
                                                    (could not be evaluated)
               log pseudolikelihood = -8418.567
feasible:
               log pseudolikelihood = -327.16314
rescale:
rescale eq:
               log pseudolikelihood = -215.53986
                                                    Number of obs
                                                                                74
                                                                            298.85
                                                    Wald chi2(2)
Log pseudolikelihood = -163.18765
                                                    Prob > chi2
                                                                            0.0000
                              Robust
                             Std. Err.
                                                             [95% Conf. Interval]
                     Coef.
                                                  P>|z|
        turn
                                             z
eq1
                              .0107714
                                                              .152673
      length
                  .1737845
                                          16.13
                                                  0.000
                                                                          .1948961
                 -.1542077
                              .2955882
                                                              -.73355
                                                                          .4251345
    headroom
                                          -0.52
                                                  0.602
                  7.450477
                             1.858007
                                                  0.000
                                                              3.80885
                                                                           11.0921
                                           4.01
       cons
sigma
                              .2886183
                                           7.61
                                                  0.000
                                                             1.629577
                                                                           2,76094
       _cons
                  2.195259
```

ml model accepts vce(cluster *id*) with method-gf0 evaluators just as readily as it accepts vce(robust).

Being able to obtain robust standard errors just by specifying an option to ml model should titillate you. When we discuss other types of evaluator programs, we will see that in fact there is a lot of work happening behind the scenes to produce robust standard errors. With method-gf0 evaluators (and other linear-form evaluators), ml does all the work for you.

2.4 Weighted estimation

Stata provides four types of weights that the end-user can apply to estimation problems. Frequency weights, known as fweights in the Stata vernacular, represent duplicated observations; instead of having five observations that record identical information, fweights allow you to record that observation once in your dataset along with a frequency weight of 5, indicating that observation is to be repeated a total of five times. Analytic weights, called aweights, are inversely proportional to the variance of an observation and are used with group-mean data. Sampling weights, called pweights, denote the inverse of the probability that an observation is sampled and are used with survey data where some people are more likely to be sampled than others. Importance weights, called iweights, indicate the relative "importance" of the observation and are intended for use by programmers who want to produce a certain computation.

Obtaining weighted estimates with method-gf0 likelihood evaluators is the same as with most other estimation commands. Suppose that in auto.dta, rep78 is actually a frequency weight variable. To obtain frequency-weighted estimates of our probit model, we type

. ml model gf0	myprobit_gf0	(foreign =	weight	price)	[fw = rep7	8]		
. ml maximize								
initial:	log likeliho	d = -162.88	3959					
alternative:	log likeliho	d = -159.32	2929					
rescale:	log likeliho	d = -156.55	5825					
Iteration 0:	log likeliho	d = -156.55	5825					
Iteration 1:	log likeliho	d = -72.414	1357					
Iteration 2:	log likeliho	d = -66.82	2292					
Iteration 3:	log likeliho	og likelihood = -66.426129						
Iteration 4:	log likeliho	.og likelihood = -66.424675						
Iteration 5:	log likeliho	d = -66.424	1675					
				Num	ber of obs	=	235	
				Wal	d chi2(2)	=	58.94	
Log likelihood	= -66.424675			Pro	b > chi2	=	0.0000	
foreign	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]	
weight	0027387	.0003576	-7.66	0.000	0034	396	0020379	
cons	4 386445	5810932	7 55	0.000	, .0002) 3.047	523	5 525367	
_00115	1.000110	.0010302	1.00	0.000	0.211	020	0.020007	

Just like with obtaining robust standard errors, we did not have to do anything to our likelihood-evaluator program. We just added a weight specification, and ml did all the heavy lifting to make that work. You should be impressed. Other evaluator types require you to account for weights yourself, which is not always a trivial task.

2.5 Other features of method-gf0 evaluators

In addition to easily obtaining robust standard errors and weighted estimates, methodgf0 likelihood evaluators provide several other features. By specifying the svy option to ml model, you can obtain results that take into account the complex survey design of your data. Before using the svy option, you must first svyset your data; see [U] 26.19 Survey data.

You can restrict the estimation sample by using if and in conditions in your ml model statement. Again, method-gf0 evaluators require you to do nothing special to make them work. See [U] 11 Language syntax to learn about if and in qualifiers.

2.6 Limitations

We have introduced ml using method-gf0 evaluators because they align most closely with the way you would write the likelihood function for a specific model. However, writing your likelihood evaluator in terms of a particular model with prespecified variables severely limits your flexibility.

2.6 Limitations

For example, say that we had a binary variable good that we wanted to use instead of foreign as the dependent variable in our probit model. If we simply change our ml model statement to read

```
. ml model gf0 myprobit_gf0 (good = weight price)
```

the output from ml maximize will label the dependent variable as good, but the output will otherwise be unchanged! When we wrote our likelihood-evaluator program, we hardcoded in the name of the dependent variable. As far as our likelihood-evaluator program is concerned, changing the dependent variable in our ml model statement did nothing.

When you specify the dependent variable in your ml model statement, ml stores the variable name in the global macro ML_y1 . Thus a better version of our myprobit_gf0 program would be

```
begin myprobit_gf0_good.ado
program myprobit_gf0_good
args todo b lnfj
tempvar xb
quietly generate double 'xb' = 'b'[1,1]*weight + 'b'[1,2]*price + ///
'b'[1,3]
quietly replace 'lnfj' = ln(normal('xb')) if $ML_y1 == 1
quietly replace 'lnfj' = ln(normal(-1*'xb')) if $ML_y1 == 0
end
end
```

With this change, we can specify dependent variables at will.

Adapting our program to accept an arbitrary dependent variable was straightforward. Unfortunately, making it accept an arbitrary set of independent variables is much more difficult. We wrote our likelihood evaluator assuming that the coefficient vector 'b' had three elements, and we hardcoded the names of our independent variables in the likelihood-evaluator program. If we were hell-bent on making our method-gf0 evaluator work with an arbitrary number of independent variables, we could examine the column names of 'b' and deduce the number of variables, their names, and even the number of equations. In the next chapter, we will learn a better way to approach problems using ml that affords us the ability to change regressors without having to modify our evaluator program in any way.