Maximum Likelihood Estimation
with Stata

Fifth Edition

JEFFREY PITBLADO
StataCorp LLC

BRIAN POI
Poi Consulting LLC

WILLIAM GOULD
StataCorp LLC

E‘) ~
v) Press

A Stata Press Publication
StataCorp LLC
College Station, Texas

- « Copyright ©) 1999, 2003, 2006, 2010, 2024 StataCorp LLC
.,Q\} All rights reserved. First edition 1999

/ Second edition 2003

Third edition 2006

Fourth edition 2010

Fifth edition 2024

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in BTEX 2¢
Printed in the United States of America

10987654321

Print ISBN-10: 1-59718-411-X
Print ISBN-13: 978-1-59718-411-3
ePub ISBN-10: 1-59718-412-8
ePub ISBN-13: 978-1-59718-412-0

Library of Congress Control Number: 2023947523

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without
the prior written permission of StataCorp LLC.

Stata, STaTQ, Stata Press, Mata, MATAQ, and NetCourse are registered trademarks of
StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organi-
zation of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.
ETEX 2¢ is a trademark of the American Mathematical Society.

Other brand and product names are registered trademarks or trademarks of their respective
companies.

Contents

List of tables xiii
List of figures XV
Preface to the fifth edition xvii
Versions of Stata xix
Notation and typography xxi
1 Theory and practice 1
1.1 The likelihood-maximization problem 3
1.2 Likelihood theory o 5
1.2.1 All results are asymptotic 9

1.2.2 Likelihood-ratio tests and Wald tests 10

1.2.3 The outer product of gradients variance estimator 11

1.2.4 Robust variance estimates 12

1.3 The maximization problem 14
1.3.1 Numerical root finding 14
Newton’s method 14

The Newton-Raphson algorithm 16

1.3.2 Quasi-Newton methods 18

The BHHH algorithm 19

The DFP and BFGS algorithms 19

1.3.3 Numerical maximization 20

1.34 Numerical derivatives 21

1.3.5 Numerical second derivatives 25

1.4 Monitoring convergence 26

vi

Contents

Estimation with mlexp 29
2.1 Syntax 29
2.2 Normal linear regression 30
2.3 Imitial values 31
2.4 Restricted parameters L oL 33
2.5 Robust standard errorso L Lo 35
2.6 The probit model Lo L 36
2.7 Specifying derivatives 38
2.8 Additional estimation features 40
2.9 Wrapping up 42
Introduction to ml 43
3.1 The probit model 43
3.2 Normal linear regression 46
3.3 Robust standard errors Lo Lo 48
3.4 Weighted estimation 49
3.5 Other features of method-gfO evaluators 49
3.6 Limitations 50
Overview of ml 53
4.1 The terminology of ml Lo 53
42 Equationsinml o oo 54
4.3 Likelihood-evaluator methods 62
4.4 Tools for the ml programmer 65
4.5 Common ml options 65

4.5.1 Subsamples oL 66

45.2 Weights 67

4.5.3 OPG estimates of variance 68

4.5.4 Robust estimates of variance 69

4.5.5 Survey data Lo 70

4.5.6 Constraints L 71

4.5.7 Choosing among the optimization algorithms 71

Contents vii
4.6 Maximizing your own likelihood functions 75

4.7 Appendix: More about scalar parameters 76

5 Method If 79
5.1 The linear-form restrictions 80

5.2 Examples 81

5.2.1 The probit model 0L 81

5.2.2 Normal linear regression 83

5.2.3 The Weibull model L. 85

5.3 The importance of generating temporary variables as doubles 87

5.4 Problems you can safely ignore 89

5.5 Nonlinear specifications 90

5.6 The advantages of If in terms of execution speed 91

6 Methods 1f0, 1f1, and 1f2 95
6.1 Comparing these methods 95

6.2 Outline of evaluators of methods 1f0, Ifl, and 1f2. 96

6.2.1 The todo argument L oL 97

6.2.2 Thebargument 97

Using mleval to obtain equation and free-parameter values . 99

6.2.3 The Infjargumento 101

6.2.4 Arguments for scores 102

6.2.5 The Hargument 103

Using mlmatsum todefine H. 105

6.2.6 Aside: Stata’sscalars 107

6.3 Summary of methods 1f0, Ifl, and 1f2 110

6.3.1 Method If0. 110

6.3.2 Method Ifl o 111

6.3.3 Method If2 113

6.4 Examples 115

6.4.1 The probit model 0o 115

6.4.2 Normal linear regression 117

Contents

viii
6.4.3 The Weibull model 124
7 Methods d0, d1, and d2 129
7.1 Comparing these methods 129
7.2 Outline of method d0, d1, and d2 evaluators 130
7.2.1 The todo argument, L. 131
7.2.2 The b argument Lo 131
7.2.3 Thelnfargument 132
Using Inf to indicate that the likelihood cannot be calculated 133
Using mlsum to define Inf 134
7.2.4 The gargument 136
Using mlvecsum to defineg 136
7.2.5 The H argument 138
7.3 Summary of methods d0, dl,andd2 139
731 MethoddO 139
732 Methoddl 142
733 Methodd2. 144
7.4 Panel-data likelihoods 0L 146
7.4.1 Calculating Inf o o oo 148
7.4.2 Calculating g 152
7.4.3 Calculating H oo 156
Using mlmatbysum to help define H 156
7.5 Other models that do not meet the linear-form restrictions 164
8 Debugging likelihood evaluators 171
81 mlcheck 171
8.2 Using the debug methods 173
8.2.1 First derivatives L . 175
8.2.2 Second derivatives L oL oL 185
83 mltrace 188
9 Setting initial values 191
9.1 mlsearch 192

Contents

10

11

12

13

9.2 mlplot. e
9.3 mlinit L
Interactive maximization
10.1 Theiteration log Lo
10.2 Pressing the Break keyo o000
10.3 Maximizing difficult likelihood functions
Final results
11.1 Graphing convergence
11.2 Redisplaying output Lo
Writing do-files to maximize likelihoods
12.1 The structure of ado-file.
12.2 Putting the do-file into production
Writing ado-files to maximize likelihoods
13.1 Writing estimation commands L.
13.2 The standard estimation-command outline
13.3 Outline for estimation commands usingml
13.4 Using ml in noninteractive mode
13.4.1 Parsing with help from _get_diopts
13.5 Advice

13.5.3 Parsing with help from mlopts
13.5.4 Weights L
13.5.5 Constant-only model
13.5.6 Imitial values Lo Lo
13.5.7 Storing resultsine() L.
13.5.8 Displaying ancillary parameters
13.5.9 Exponentiated coefficientso
13.5.10 Offsetting linear equations
13.5.11 Program properties L.

ix

14

15

16

Contents

Writing ado-files for survey data analysis 251
14.1 Program propertieso 251
14.2 Writing your own predict command 254
Mata-based likelihood evaluators 257
15.1 Introductory examples 257
15.1.1 The probit model 257
15.1.2 The Weibull model 260

15.2 Evaluator function prototypes 262
Method-If evaluators 263

If-family evaluators L. 263

d-family evaluators L. 264

15.3 Utilitieso 265
Dependent variables 266

Obtaining model parameters 266

Summing individual or group-level log likelihoods 267

Calculating the gradient vector 267

Calculating the Hessian 268

15.4 Randome-effects linear regression., 269
15.4.1 Calculating Inf oo oo 270
15.4.2 Calculatingg o 271
15.4.3 Calculating H oo oo 272
15.4.4 Resultsatlast L. 273

15.5 Ado-file considerations 276
Mata’s moptimize() function 279
16.1 Introductory examples Lo 280
16.1.1 The probit model 280
16.1.2 The Weibull model 283

16.2 Restricting the estimation sample 286
16.2.1 Using moptimize_init_touse() 286
16.2.2 Not using moptimize_init_touse() 287

Contents

17

16.3

16.4
16.5

16.6

16.7

Estimation preliminaries

16.3.1 Weights
16.3.2 Panel data and clusters . . .
16.3.3 Survey data
16.3.4 Initial values.
Estimation.
Results

16.5.1 Displaying results
16.5.2 Retrieving results
16.5.3 Storing results ine()

Estimation commands

16.6.1
16.6.2
16.6.3

Regression redux

Common maximization options

Initial values

Constraints

Other examples

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

17.9

The logit model
The probit model
Normal linear regression
The Weibull model

The Cox proportional hazards model

The random-effects regression model

The seemingly unrelated regression model

A bivariate Poisson regression model

17.8.1
17.8.2
17.8.3

Epilogue

A bivariate Poisson distribution

Bivariate Poisson regression

Discussion

Syntax of mlexp

Syntax of ml

xi

288
289
289
290
290
291
292
292
293
293
294
295
296
299
302
309
309
311
313
316
319
322
325
338
338
347
356
357
359
365

xii

Q

Syntax of moptimize()

Likelihood-evaluator checklists

D.1 Method1f L
D.2 Methodd0.
D.3 Methoddl.
D4 Methodd2.
D.5 Method1fO.
D6 Method Ifl.
D.7 Method If2.o o

Listing of estimation commands

E.1 Thelogit model
E.2 The probit model
E.3 The normal model
E.4 The Weibull model
E.5 The Cox proportional hazards model

E.6 The random-effects regression model

E.7 The seemingly unrelated regression model

E.8 A bivariate Poisson regression model

References
Author index

Subject index

Contents

391
419

(Pages omitted)

Preface to the fifth edition

Maximum Likelihood Estimation with Stata, Fifth Edition is written for researchers
in all disciplines who need to compute maximum likelihood estimators that are not
available as prepackaged routines. To get the most from this book, you should be
familiar with Stata, but you will not need any special programming skills, except in
chapters 13 and 14, which detail how to take an estimation technique you have written
and add it as a new command to Stata. No special theoretical knowledge is needed
either, other than an understanding of the likelihood function that will be maximized.

Like the rest of Stata, the tools one uses to implement maximum likelihood esti-
mators in Stata have undergone many enhancements over the years, and a new version
of this book reflecting those changes is warranted. The core of the book continues to
focus on the ml suite of commands. We have also added a new chapter for the mlexp
command, which is useful not only for pedagogical and prototyping purposes but also
for implementing relatively simple estimators with zero programming. For those who
are familiar with Mata, Stata’s matrix programming language, we have also included a
new chapter describing the moptimize () suite of functions for implementing maximum
likelihood estimators entirely within Mata.

Chapter 1 provides a general overview of maximum likelihood estimation theory
and numerical optimization methods, with an emphasis on the practical implications of
each for applied work. Chapter 2 covers the mlexp command for implementing relatively
simple estimators with no programming skills required. Chapter 3 is an introduction
to the m1 command, which provides substantially more flexibility than mlexp and can
be used to implement arbitrarily complex maximum-likelihood estimators. Chapter 4
is an overview of the ml1 command and the notation used throughout the rest of the
book. Chapters 5-11 detail, step by step, how to use Stata to maximize user-written
likelihood functions. Chapter 12 describes how to package all the user-written code
in a do-file so that it can be conveniently reapplied to different datasets and model
specifications. Chapter 13 details how to structure the code in an ado-file to create
a new Stata estimation command. Chapter 14 shows how to add survey estimation
features to existing m1-based estimation commands.

Chapters 15 and 16 are more advanced and show how to use Mata to implement
maximum likelihood estimators. Chapter 15 shows how to write your likelihood evalu-
ator in Mata while continuing to use the m1 command to specify your model, maximize
the likelihood function, and report results. Chapter 16 shows how to implement an
estimator using Mata’s moptimize () function and bypass ml altogether.

xviii Preface to the fifth edition

Chapter 17, the final chapter, provides examples. For a set of estimation problems,
we derive the log-likelihood function, show the derivatives that make up the gradient
and Hessian, write one or more likelihood-evaluation programs, and so provide a fully
functional estimation command. We use the estimation command to fit the model to a
dataset. An estimation command is developed for each of the following:

e Logit and probit models

e Linear regression

o Weibull regression

e Cox proportional hazards model

e Random-effects linear regression for panel data
e Seemingly unrelated regression

e Bivariate Poisson regression

Appendices contain full syntax diagrams for all the m1 subroutines, useful checklists
for implementing each maximization method, and program listings of each estimation
command covered in chapter 17.

We acknowledge William Sribney as one of the original developers of m1 and the
principal author of the first edition of this book.

College Station, TX Jeffrey Pitblado
October 2023 Brian Poi
William Gould

Versions of Stata

This book was written for Stata 18. Regardless of what version of Stata you are using,
verify that your copy of Stata is up to date and obtain any free updates; to do this,
enter Stata, type

. update query

and follow the instructions.

Having done that, if you are still using a version older than 18—such as Stata 16—
you will likely run into compatibility issues with some of the code and examples in this
book. In that case, you should purchase an upgrade to Stata before continuing. We will
assume that you are running Stata 18 or perhaps an even newer version.

All the programs in this book follow the outline

program myprog
version 18

end

Because Stata 18 is the current release of Stata at the time this book was written, we
write version 18 at the top of our programs. You could omit the line, but we recom-
mend that you include it because Stata is continually being developed and sometimes
details of syntax change. Placing version 18 at the top of your program tells Stata
that, if anything has changed, you want the version 18 interpretation.

Coding version 18 at the top of your programs ensures they will continue to work
in the future.

What about programs you write in the future? Perhaps the here and now for you
is Stata 19 or Stata 20. Using this book, should you put version 18 at the top of
your programs, or should you put version 19 or version 207 Probably, you should
substitute the more modern version number. The only reason you would not want to
make the substitution is that the syntax of ml itself has changed and you want to use
the version of syntax described in this book.

Anyway, if you are using a version more recent than 18, type help whatsnew to see
a complete listing of what has changed. That will help you decide what to code at the
top of your programs: unless the listing clearly states that ml’s syntax has changed,
substitute the more recent version number.

(Pages omitted)

3 Introduction to ml

ml is the Stata command to implement maximum likelihood (ML) estimators that cannot
be handled by mlexp and to write your own commands that perform ML estimation.
Obtaining ML estimates requires the following steps:

1. Derive the log-likelihood function from your probability model.

2. Write a program that calculates the log-likelihood values and, optionally, its
derivatives. This program is known as a likelihood evaluator.

3. Identify a particular model to fit using your data variables and the ml model
statement.

4. Fit the model using ml maximize.

This chapter illustrates steps 2, 3, and 4 using the probit model for dichotomous
(0/1) variables and the linear regression model assuming normally distributed errors.

In this chapter, we fit our models explicitly, handling each coefficient and variable
individually. New users of m1 will appreciate this approach because it closely reflects
how you would write down the model you wish to fit on paper; and it allows us to
focus on some of the basic features of m1 without becoming overly encumbered with
programming details. We will also illustrate this strategy’s shortcomings so that once
you become familiar with the basics of m1 by reading this chapter, you will want to
think of your model in a slightly more abstract form, providing much more flexibility.

In the next chapter, we discuss ml’s probability model parameter notation, which
is particularly useful when, as is inevitably the case, you decide to change some of the
variables appearing in your model. If you are already familiar with ml’s #-parameter
notation, you can skip this chapter with virtually no loss of continuity with the rest of
the book.

Chapter 17 contains the derivations of log-likelihood functions (step 1) for models
discussed in this book.

3.1 The probit model

In section 2.6, we fit a probit model to predict whether a car is foreign or domestic
based on its weight and price using auto.dta. Here we illustrate how to fit that model
using m1l. Recall that our statistical model is

43

44 Chapter 3 Introduction to ml

mj = Pr(foreign; | weight,, price;)

= @(ﬁlweightj + Boprice; + Bo)

where we use the subscript j to denote observations and ®(-) denotes the standard
normal distribution function. The log likelihood for the jth observation is

It — In ®(B1weight; + Baoprice; + (o) %f foreign; = 1
J 1 —In®(Biweight; + foprice; + fy) if foreign; =0

B In®(Biweight; + foprice; + fy) if foreign; =1
"1 In @(—ﬁlweightj — Boprice; — Bo) if foreign; =0

where we used the fact that 1 — ®(w) = ¢(—w).

With our log-likelihood function in hand, we write a program to evaluate it:

begin myprobit_gf0.ado
program myprobit_gf0

version 18

args todo b 1nfj

tempvar xb

quietly generate double ‘xb’ = ‘b’[1,1]*weight + ‘b’[1,2]*price + ///
‘b’ [1,3]

quietly replace ‘lnfj’ = 1ln(normal(‘xb’)) if foreign ==

quietly replace ‘Infj’ = ln(normal(-1%‘xb’)) if foreign ==

end

end myprobit_gf0.ado

We named our program myprobit_gf0.ado, but you could name it anything you want
as long as it has the extension .ado. The name without the .ado extension is what
we use to tell m1 model about our likelihood function. We added gf0 to our name to
emphasize that our evaluator is a general-form problem and that we are going to specify
no (0) derivatives. We will return to this issue when we use the m1 model statement.

Our program accepts three arguments. The first, todo, we can safely ignore for now.
In later chapters, when we discuss other types of likelihood-evaluator programs, we will
need that argument. The second, b, contains a row vector containing the parameters
of our model (8y, 51, and B2). The third argument, 1nfj, is the name of a temporary
variable that we are to fill in with the values of the log-likelihood function evaluated
at the coefficient vector b. Our program then created a temporary variable to hold
the values of Jiweight; + fBaprice; + fp. We created that variable to have storage
type double; we will discuss this point in greater detail in the next chapter, but for
now you should remember that when coding your likelihood evaluator, you must create
temporary variables as doubles. The last two lines replace 1nfj with the values of the
log likelihood for foreign; equal to 0 and 1, respectively. We could have used Stata’s
cond() function to combine those two statements into one, but using two statements
is arguably clearer. Because b and 1nfj are arguments passed to our program and xb

3.1 The probit model 45

is a temporary variable we created with the tempvar commands, their names are local
macros that must be dereferenced using left- and right-hand single quote marks to use
them; see [U] 18.7 Temporary objects.

The next step is to identify our model using m1 model. To that end, we type

. sysuse auto
(1978 automobile data)

. ml model gfO myprobit_gfO (foreign = weight price)

We first loaded in our dataset, because ml model will not work without the dataset
in memory. Next we told ml that we have a method-gf0 likelihood evaluator named
myprobit_gf0, our dependent variable is foreign, and our independent variables are
weight and price. In subsequent chapters, we examine all the likelihood-evaluator
types; method-g£0 (general form) evaluator programs most closely follow the mathe-
matical notation we used in (3.1) and are therefore perhaps easiest for new users of ml
to grasp, but we will see that they have disadvantages as well. This general-form evalu-
ator simply receives a vector of parameters and a variable into which the observations’
log-likelihood values are to be stored.

The final step is to tell m1 to maximize the likelihood function and report the coef-
ficients:

. ml maximize

Initial: Log likelihood = -51.292891
Alternative: Log likelihood = -45.055272
Rescale: Log likelihood = -45.055272
Iteration 0: Log likelihood = -45.055272
Iteration 1: Log likelihood = -20.770386
Iteration 2: Log likelihood = -18.023563
Iteration 3: Log likelihood = -18.006584
Iteration 4: Log likelihood = -18.006571
Iteration 5: Log likelihood = -18.006571

Number of obs = 74

Wald chi2(2) = 14.09

Log likelihood = -18.006571 Prob > chi2 = 0.0009

foreign | Coefficient Std. err. z P>|z| [95% conf. intervall

weight -.003238 .0008643 -3.75 0.000 -.004932 -.0015441

price .000517 .0001591 3.25 0.001 .0002052 .0008287

_cons 4.921935 1.330065 3.70 0.000 2.315055 7.528816

You can verify that we would obtain identical results using probit:
. probit foreign weight price

This example was straightforward because we had only one equation and no auxiliary
parameters. Next we consider linear regression with normally distributed errors.

46 Chapter 3 Introduction to ml

3.2 Normal linear regression
Now suppose we want to fit a linear regression of turn on length and headroom:
turn; = Silength; + frheadroom; + f5 + €;

where €; is an error term. If we assume that each ¢; is independent and identically
distributed as a normal random variable with mean zero and variance o2, we have what
is often called normal linear regression; and we can fit the model by ML. As derived in
section 17.3, when we assume homoskedasticity, we can write the log likelihood for the
jth observation in terms of ¢(z), the standard normal density function, as

turn; — fS1length. — Soheadroom; —
ln@:ln(b(j — Pilength; — [z / ﬂ3>—lna

g

There are four parameters in our model: (1, B2, B3, and o, so we will specify our ml
model statement so that our likelihood evaluator receives a vector of coefficients with
four columns. As a matter of convention, we will use the four elements of that vector
in the order we just listed so that, for example, S5 is the second element and o is the
fourth element. Our likelihood-evaluator program is

begin mynormall_gf0.ado ————
program mynormall_gfO

version 18

args todo b 1nfj

tempvar xb
quietly generate double ‘xb’ = ‘b’[1,1]*length + ///
‘b’ [1,2]*headroom + ‘b’[1,3]

quietly replace ‘Infj’ = ln(normalden((turn - ‘xb’)/‘b’[1,4]1)) - ///
In(‘b’[1,4])
end

end mynormall_gf0.ado ————
In our previous example, when we typed
. ml model gfO myprobit_gfO (foreign = weight price)

ml knew to create a coefficient vector with three elements because we specified two
right-hand-side variables, and by default m1 includes a constant term unless we specify
the noconstant option, which we discuss in the next chapter. How do we get ml to
include a fourth parameter for 7 Perhaps the most transparent solution is to type

. ml model gfO mynormall_gfO (turn = length headroom) /sigma

The notation /sigma tells m1 to include a fourth element in our coefficient vector and to
label it sigma in the output. In chapter 4, we will see other ways to specify parameters
like 0 and have them labeled slightly differently. Having identified our model, we can
now maximize the log-likelihood function:

3.2

Normal linear regression

. ml maximize

Initial: Log likelihood = —-<inf> (could not be evaluated)
Feasible: Log likelihood = -8418.567
Rescale: Log likelihood = -327.16314
Rescale eq: Log likelihood = -215.53986
Iteration 0: Log likelihood = -215.53986 (not concave)
Iteration 1: Log likelihood = -213.33272 (not concave)
Iteration 2: Log likelihood = -211.10519 (not concave)
Iteration 3: Log likelihood = -209.60577 (not concave)
Iteration 4: Log likelihood = -207.93771 (not concave)
Iteration 5: Log likelihood = -206.43844 (not concave)
Iteration 6: Log likelihood = -205.19618 (not concave)
Iteration 7: Log likelihood = -204.11373 (not concave)
Iteration 8: Log likelihood = -203.00329 (not concave)
Iteration 9: Log likelihood = -202.1822 (not concave)
Iteration 10: Log likelihood = -201.42449 (not concave)
Iteration 11: Log likelihood = -200.64468 (not concave)
Iteration 12: Log likelihood = -199.9014 (not concave)
Iteration 13: Log likelihood = -199.18937 (not concave)
Iteration 14: Log likelihood = -198.48172 (not concave)
Iteration 15: Log likelihood = -197.78556 (not concave)
Iteration 16: Log likelihood = -197.10597 (not concave)
Iteration 17: Log likelihood = -196.43819 (not concave)
Iteration 18: Log likelihood = -195.78002 (not concave)
Iteration 19: Log likelihood = -195.13253 (not concave)
Iteration 20: Log likelihood = -194.4956 (not concave)
Iteration 21: Log likelihood = -193.86829 (not concave)
Iteration 22: Log likelihood = -193.2503 (not concave)
Iteration 23: Log likelihood = -192.64164 (not concave)
Iteration 24: Log likelihood = -192.0421 (not concave)
Iteration 25: Log likelihood = -191.45135 (not concave)
Iteration 26: Log likelihood = -190.86936 (not concave)
Iteration 27: Log likelihood = -190.29601 (not concave)
Iteration 28: Log likelihood = -189.73109 (not concave)
Iteration 29: Log likelihood = -189.17464 (not concave)
Iteration 30: Log likelihood = -188.62662
Iteration 31: Log likelihood = -167.31438 (backed up)
Iteration 32: Log likelihood = -163.31365
Iteration 33: Log likelihood = -163.18798
Iteration 34: Log likelihood = -163.18765
Iteration 35: Log likelihood = -163.18765
Number of obs = 74
Wald chi2(2) = 219.18
Log likelihood = -163.18765 Prob > chi2 = 0.0000
turn | Coefficient Std. err. z P>|z| [95% conf. interval]
length .1737846 .0134739 12.90 0.000 .1473762 .2001929
headroom -.1542078 .3546293 -0.43 0.664 -.8492685 .5408529
_cons 7.450477 2.19735 3.39 0.001 3.143751 11.7572
/sigma 2.195259 .1804492 12.17 0.000 1.841585 2.548933

The point estimates match those we obtain from typing

. regress turn length headroom

48 Chapter 3 Introduction to ml

The standard errors differ by a factor of 1/71/74 because of the same degree-of-freedom
adjustment we discussed in section 2.5.

3.3 Robust standard errors

Robust standard errors are commonly reported nowadays along with linear regression
results because they allow for correct statistical inference even when the tenuous assump-
tion of homoskedasticity is not met. Cluster—robust standard errors can be used when
related observations’ errors are correlated. Obtaining standard errors with most esti-
mation commands is trivial: you just specify the option vce(robust) or vce(cluster
id), where id is the name of a variable identifying groups. Using our previous regression
example, you might type

. regress turn length headroom, vce(robust)

For the evaluator functions we have written so far, both of which have been method
gf0, obtaining robust or cluster—robust standard errors is no more difficult than with
other estimation commands. To refit our linear regression model, obtaining robust
standard errors, we type

. ml model gfO mynormall_gfO (turn = length headroom) /sigma, vce(robust)

. ml maximize, nolog

Initial: Log pseudolikelihood = -<inf> (could not be evaluated)

Feasible: Log pseudolikelihood = -8418.567
Rescale: Log pseudolikelihood = -327.16314
Rescale eq: Log pseudolikelihood = -215.53986

Number of obs = 74

Wald chi2(2) = 298.85

Log pseudolikelihood = -163.18765 Prob > chi2 = 0.0000

Robust

turn | Coefficient std. err. z P>|z| [95% conf. intervall

length .1737846 .0107714 16.13 0.000 .152673 .1948961

headroom -.1542078 .2955882 -0.52 0.602 -.73355 .4251344

_cons 7.450477 1.858003 4.01 0.000 3.808857 11.0921

/sigma 2.195259 .2886184 7.61 0.000 1.629577 2.760941

ml model accepts vce(cluster id) with method-gf0 evaluators just as readily as it
accepts vce (robust).

Being able to obtain robust standard errors just by specifying an option to m1 model
should titillate you. When we discuss other types of evaluator programs, we will see that
in fact there is a lot of work happening behind the scenes to produce robust standard
errors. With method-gf0 evaluators (and other linear-form evaluators), ml does all the
work for you.

3.5 Other features of method-gf0 evaluators 49

3.4 Weighted estimation

Stata provides four types of weights that the end-user can apply to estimation prob-
lems. Frequency weights, known as fweights in the Stata vernacular, represent dupli-
cated observations; instead of having five observations that record identical information,
fweights allow you to record that observation once in your dataset along with a fre-
quency weight of 5, indicating that observation is to be repeated a total of five times.
Analytic weights, called aweights, are inversely proportional to the variance of an obser-
vation and are used with group-mean data. Sampling weights, called pweights, denote
the inverse of the probability that an observation is sampled and are used with survey
data where some people are more likely to be sampled than others. Importance weights,
called iweights, indicate the relative “importance” of the observation and are intended
for use by programmers who want to produce a certain computation.

Obtaining weighted estimates with method-gf0 likelihood evaluators is the same as
with most other estimation commands. Suppose that in auto.dta, rep78 is actually a
frequency weight variable. To obtain frequency-weighted estimates of our probit model,
we type

. ml model gfO myprobit_gfO (foreign = weight price) [fweight = rep78]

. ml maximize

Initial: Log likelihood = -162.88959
Alternative: Log likelihood = -159.32929
Rescale: Log likelihood = -156.55825
Iteration 0: Log likelihood = -156.55825
Iteration 1: Log likelihood = -72.414357
Iteration 2: Log likelihood = -66.82292
Iteration 3: Log likelihood = -66.426129
Iteration 4: Log likelihood = -66.424675
Iteration 5: Log likelihood = -66.424675

Number of obs = 235

Wald chi2(2) = 58.94

Log likelihood = -66.424675 Prob > chi2 = 0.0000

foreign | Coefficient Std. err. z P>|z| [95% conf. intervall

weight -.0027387 .0003576 -7.66 0.000 -.0034396 -.0020379

price .0004361 .0000718 6.07 0.000 .0002953 .0005768

_cons 4.386445 .5810931 7.55 0.000 3.247523 5.525366

Just like with obtaining robust standard errors, we did not have to do anything to
our likelihood-evaluator program. We just added a weight specification, and m1 did all
the heavy lifting to make that work. You should be impressed. Other evaluator types
require you to account for weights yourself, which is not always a trivial task.

3.5 Other features of method-gf0 evaluators

In addition to easily obtaining robust standard errors and weighted estimates, method-
gf0 likelihood evaluators provide several other features. By specifying the svy option

50 Chapter 3 Introduction to ml

to ml model, you can obtain results that take into account the complex survey de-
sign of your data. Before using the svy option, you must first svyset your data; see
[U] 26.19 Survey data.

You can restrict the estimation sample by using if and in conditions in your ml
model statement. Again, method-gf0 evaluators require you to do nothing special to
make them work. See [U] 11 Language syntax to learn about if and in qualifiers.

3.6 Limitations

We have introduced ml using method-gfO evaluators because they align most closely
with the way you would write the likelihood function for a specific model. However,
writing your likelihood evaluator in terms of a particular model with prespecified vari-
ables severely limits your flexibility.

For example, say that we had a binary variable good that we wanted to use instead
of foreign as the dependent variable in our probit model. If we simply change our ml
model statement to read

. ml model gfO myprobit_gfO (good = weight price)

the output from m1 maximize will label the dependent variable as good, but the output
will otherwise be unchanged! When we wrote our likelihood-evaluator program, we
hardcoded in the name of the dependent variable. As far as our likelihood-evaluator
program is concerned, changing the dependent variable in our m1 model statement did
nothing.

When you specify the dependent variable in your m1 model statement, m1 stores the
variable name in the global macro $ML_y1. Thus a better version of our myprobit_gf0
program would be

begin myprobit_gf0_good.ado
program myprobit_gfO_good

version 18

args todo b 1lnfj

tempvar xb

quietly generate double ‘xb’ = ‘b’[1,1]*weight + ‘b’[1,2]*price + ///
‘b’ [1,3]

In(normal(‘xb’)) if $ML_yl ==

In(normal(-1*‘xb’)) if $ML_yl ==

quietly replace ‘lnfj’
quietly replace ‘Infj’

end

end myprobit_gf0_good.ado

With this change, we can specify dependent variables at will.

Adapting our program to accept an arbitrary dependent variable was straightfor-
ward. Unfortunately, making it accept an arbitrary set of independent variables is
much more difficult. We wrote our likelihood evaluator assuming that the coefficient
vector ‘b’ had three elements, and we hardcoded the names of our independent variables

3.6 Limitations 51

in the likelihood-evaluator program. If we were hell-bent on making our method-gf0
evaluator work with an arbitrary number of independent variables, we could examine
the column names of ‘b’ and deduce the number of variables, their names, and even
the number of equations. In the next chapter, we will learn a better way to approach
problems using ml that affords us the ability to change regressors without having to
modify our evaluator program in any way.

