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Preface

This book is about applied multilevel and longitudinal modeling. Other terms for mul-
tilevel models include hierarchical models, random-effects or random-coefficient models,
mixed-effects models, or simply mixed models. Longitudinal data are also referred to
as panel data, repeated measures, or cross-sectional time series. A popular type of
multilevel model for longitudinal data is the growth-curve model.

The common theme of this book is regression modeling when data are clustered
in some way. In cross-sectional settings, students may be nested in schools, people in
neighborhoods, employees in firms, or twins in twin-pairs. Longitudinal data are by
definition clustered because multiple observations over time are nested within units,
typically subjects.

Such clustered designs often provide rich information on processes operating at dif-
ferent levels, for instance, people’s characteristics interacting with institutional charac-
teristics. Importantly, the standard assumption of independent observations is likely to
be violated because of dependence among observations within the same cluster. The
multilevel and longitudinal methods discussed in this book extend conventional regres-
sion to handle such dependence and exploit the richness of the data.

Volume 1 is on multilevel and longitudinal modeling of continuous responses using
linear models. The volume consists of four parts: I. Preliminaries (a review of linear
regression modeling, preparing the reader for the rest of the book), II. Two-level models,
III. Models for longitudinal and panel data, and IV. Models with nested and crossed
random effects. For readers who are new to multilevel and longitudinal modeling, the
chapters in part II should be read sequentially and can form the basis of an introductory
course on this topic. A one-semester course on multilevel and longitudinal modeling can
be based on most of the chapters in volume 1 plus chapter 10 on binary or dichotomous
responses from volume 2. For this purpose, we have made chapter 10 freely downloadable
from http://www.stata-press.com/books/mlmus3 ch10.pdf.

Volume 2 is on multilevel and longitudinal modeling of categorical responses, counts,
and survival data. This volume also consists of four parts: I. Categorical responses
(binary or dichotomous responses, ordinal responses, and nominal responses or discrete
choice), II. Counts, III. Survival (in both discrete and continuous time), and IV. Models
with nested and crossed random effects. Chapter 10 on binary or dichotomous responses
is a core chapter of this volume and should be read before embarking on the other
chapters. It is also a good idea to read chapter 14 on discrete-time survival before
reading chapter 15 on continuous-time survival.
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Our emphasis is on explaining the models and their assumptions, applying the meth-
ods to real data, and interpreting results. Many of the issues are conceptually demand-
ing but do not require that you understand complex mathematics. Wherever possible,
we therefore introduce ideas through examples and graphical illustrations, keeping the
technical descriptions as simple as possible, often confining formulas to subsections
that can be skipped. Some sections that go beyond an introductory course on multi-
level and longitudinal modeling are tagged with the symbol q . Derivations that can
be skipped by the reader are given in displays. For an advanced treatment, placing
multilevel modeling within a general latent-variable framework, we refer the reader to
Skrondal and Rabe-Hesketh (2004a), which uses the same notation as this book.

This book shows how all the analyses described can be performed using Stata. There
are many advantages of using a general-purpose statistical package such as Stata. First,
for those already familiar with Stata, it is convenient not having to learn a new stand-
alone package. Second, conducting multilevel-analysis within a powerful package has
the advantage that it allows complex data manipulation to be performed, alternative
estimation methods to be used, and publication-quality graphics to be produced, all
without having to switch packages. Finally, Stata is a natural choice for multilevel
and longitudinal modeling because it has gradually become perhaps the most powerful
general-purpose statistics package for such models.

Each chapter is based on one or more research problems and real datasets. After de-
scribing the models, we walk through the analysis using Stata, pausing when statistical
issues arise that need further explanation. Stata can be used either via a graphical user
interface (GUI) or through commands. We recommend using commands interactively—
or preferably in do-files—for serious analysis in Stata. For this reason, and because
the GUI is fairly self-explanatory, we use commands exclusively in this book. However,
the GUI can be useful for learning the Stata syntax. Generally, we use the typewriter

font to refer to Stata commands, syntax, and variables. A “dot” prompt followed by
a command indicates that you can type verbatim what is displayed after the dot (in
context) to replicate the results in the book. Some readers may find it useful to inter-
sperse reading with running these commands. We encourage readers to write do-files
for solving the data analysis exercises because this is standard practice for professional
data analysis.

The commands used for data manipulation and graphics are explained to some
extent, but the purpose of this book is not to teach Stata from scratch. For basic
introductions to Stata, we refer the reader to Acock (2010), Kohler and Kreuter (2009),
or Rabe-Hesketh and Everitt (2007). Other books and further resources for learning
Stata are listed at the Stata website.

If you are new to Stata, we recommend running all the commands given in chapter 1
of volume 1. A list of commands that are particularly useful for manipulating, describ-
ing, and plotting multilevel and longitudinal data is given in the appendix of volume 1.
Examples of the use of these and other commands can easily be found by referring to
the “commands” entry in the subject index.



Preface xxvii

We have included applications from a wide range of disciplines, including medicine,
economics, education, sociology, and psychology. The interdisciplinary nature of this
book is also reflected in the choice of models and topics covered. If a chapter is
primarily based on an application from one discipline, we try to balance this by in-
cluding exercises with real data from other disciplines. The two volumes contain
over 140 exercises based on over 100 different real datasets. Solutions to exercises
that are available to readers are marked with Solutions and can be downloaded from
http://www.stata-press.com/books/mlmus3-answers.html. Instructors can obtain solu-
tions to all exercises from Stata Press.

All datasets used in this book are freely available for download; for details, see
http://www.stata-press.com/data/mlmus3.html. These datasets can be downloaded
into a local directory on your computer. Alternatively, individual datasets can be loaded
directly into net-aware Stata by specifying the complete URL. For example,

. use http://www.stata-press.com/data/mlmus3/pefr

If you have stored the datasets in a local directory, omit the path and just type

. use pefr

We will generally describe all Stata commands that can be used to fit a given model,
discussing their advantages and disadvantages. An exception to this rule is that we
do not discuss our own gllamm command in volume 1 (see the gllamm companion,
downloadable from http://www.gllamm.org, for how to fit the models of volume 1 in
gllamm). In volume 1, we extensively use the Stata commands xtreg and xtmixed,
and we introduce several more specialized commands for longitudinal modeling, such
as xthtaylor, xtivreg, and xtabond. The new sem command for structural equation
modeling is used for growth-curve modeling.

In volume 2, we use Stata’s xt commands for the different response types. For
example, we use xtlogit and xtmelogit for binary responses, and xtpoisson and
xtmepoisson for counts. We use stcox and streg for multilevel survival modeling with
shared frailties. gllamm is used for all response types, including ordinal and nominal
responses, for which corresponding official Stata commands do not yet exist. We also
discuss commands for marginal models and fixed-effects models, such as xtgee and
clogit. The Stata Longitudinal-Data/Panel-Data Reference Manual (StataCorp 2011)
provides detailed information on all the official Stata commands for multilevel and
longitudinal modeling.

The nolog option has been used to suppress the iteration logs showing the progress
of the log likelihood. This option is not shown in the command line because we do not
recommend it to users; we are using it only to save space.

We assume that readers have a good knowledge of linear regression modeling, in
particular, the use and interpretation of dummy variables and interactions. However,
the first chapter in volume 1 reviews linear regression and can serve as a refresher.
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Errata for different editions and printings of the book can be downloaded from
http://www.stata-press.com/books/errata/mlmus3.html, and answers to exercises can
be downloaded from http://www.stata-press.com/books/mlmus3-answers.html.

In this third edition, we have split the book into two volumes and have added five new
chapters, comprehensive updates for Stata 12, 49 new exercises, and 36 new datasets.
All chapters of the previous edition have been substantially revised.

Berkeley and Oslo Sophia Rabe-Hesketh
February 2012 Anders Skrondal



 

 

 

 

 

 

 



4 Random-coefficient models

4.1 Introduction

In the previous chapter, we considered linear random-intercept models where the overall
level of the response was allowed to vary between clusters after controlling for covariates.
In this chapter, we include random coefficients or random slopes in addition to random
intercepts, thus also allowing the effects of covariates to vary between clusters. Such
models involving both random intercepts and random slopes are often called random-
coefficient models. In longitudinal settings, where the level-1 units are occasions and
the clusters are typically subjects, random-coefficient models are also referred to as
growth-curve models (see chapter 7).

4.2 How effective are different schools?

We start by analyzing a dataset on inner-London schools that accompanies the ML-

wiN software (Rasbash et al. 2009) and is part of the data analyzed by Goldstein et al.
(1993).

At age 16, students took their Graduate Certificate of Secondary Education (GCSE)
exams in a number of subjects. A score was derived from the individual exam results.
Such scores often form the basis for school comparisons, for instance, to allow parents
to choose the best school for their child. However, schools can differ considerably in
their intake achievement levels. It may be argued that what should be compared is
the “value added”; that is, the difference in mean GCSE score between schools after
controlling for the students’ achievement before entering the school. One such measure
of prior achievement is the London Reading Test (LRT) taken by these students at
age 11.

The dataset gcse.dta has the following variables:

• school: school identifier

• student: student identifier

• gcse: Graduate Certificate of Secondary Education (GCSE) score (z score, multi-
plied by 10)

• lrt: London Reading Test (LRT) score (z score, multiplied by 10)

• girl: dummy variable for student being a girl (1: girl; 0: boy)

• schgend: type of school (1: mixed gender; 2: boys only; 3: girls only)

181
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One purpose of the analysis is to investigate the relationship between GCSE and LRT and
how this relationship varies between schools. The model can then be used to address
the question of which schools appear to be most effective, taking prior achievement into
account.

We read the data using

. use http://www.stata-press.com/data/mlmus3/gcse

4.3 Separate linear regressions for each school

Before developing a model for all 65 schools combined, we consider a separate model
for each school. For school j, an obvious model for the relationship between GCSE and
LRT is a simple regression model,

yij = β1j + β2jxij + ǫij

where yij is the GCSE score for the ith student in school j, xij is the corresponding LRT

score, β1j is the school-specific intercept, β2j is the school-specific slope, and ǫij is a
residual error term with school-specific variance θj .

For school 1, OLS estimates of the intercept β̂11 and the slope β̂21 can be obtained
using regress,

. regress gcse lrt if school==1

Source SS df MS Number of obs = 73
F( 1, 71) = 59.44

Model 4084.89189 1 4084.89189 Prob > F = 0.0000
Residual 4879.35759 71 68.7233463 R-squared = 0.4557

Adj R-squared = 0.4480
Total 8964.24948 72 124.503465 Root MSE = 8.29

gcse Coef. Std. Err. t P>|t| [95% Conf. Interval]

lrt .7093406 .0920061 7.71 0.000 .5258856 .8927955
_cons 3.833302 .9822377 3.90 0.000 1.874776 5.791828

where we have selected school 1 by specifying the condition if school==1.

To assess whether this is a reasonable model for school 1, we can obtain the predicted
(ordinary least squares) regression line for the school,

ŷi1 = β̂11 + β̂21xi1

by using the predict command with the xb option:

. predict p_gcse, xb

We superimpose this line on the scatterplot of the data for the school, as shown in
figure 4.1.
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. twoway (scatter gcse lrt) (line p_gcse lrt, sort) if school==1,
> xtitle(LRT) ytitle(GCSE)
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Figure 4.1: Scatterplot of gcse versus lrt for school 1 with ordinary least-squares
regression line

We can also produce a trellis graph containing such plots for all 65 schools by using

. twoway (scatter gcse lrt) (lfit gcse lrt, sort lpatt(solid)),
> by(school, compact legend(off) cols(5))
> xtitle(LRT) ytitle(GCSE) ysize(3) xsize(2)

with the result shown in figure 4.2. The resulting graphs suggest that the model as-
sumptions are reasonably met.
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Figure 4.2: Trellis of scatterplots of gcse versus lrt with fitted regression lines for all
65 schools
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We will now fit a simple linear regression model for each school, which is easily done
using Stata’s prefix command statsby. Then we will examine the variability in the
estimated intercepts and slopes.

We first calculate the number of students per school by using egen with the count()
function to preclude fitting lines to schools with fewer than five students:

. egen num = count(gcse), by(school)

We then use statsby to create a new dataset, ols.dta, in the local directory with
the variables inter and slope containing OLS estimates of the intercepts ( b[ cons])
and slopes ( b[lrt]) from the command regress gcse lrt if num>4 applied to each
school (as well as containing the variable school):

. statsby inter=_b[_cons] slope=_b[lrt], by(school) saving(ols):
> regress gcse lrt if num>4
(running regress on estimation sample)

command: regress gcse lrt if num>4
inter: _b[_cons]
slope: _b[lrt]

by: school

Statsby groups
1 2 3 4 5

.................................................. 50

..............

We can merge the estimates inter and slope into the gcse dataset by using the
merge command (after sorting the “master data” that are currently loaded by school;
the “using data” created by statsby are already sorted by school):

. sort school

. merge m:1 school using ols

Result # of obs.

not matched 2
from master 2 (_merge==1)
from using 0 (_merge==2)

matched 4,057 (_merge==3)

. drop _merge

Here we have specified m:1 in the merge command, which stands for “many-to-one
merging” (observations for several students per school in the master data, but only
one observation per school in the using data). We see that two of the schools in the
master data did not have matches in the using data (because they had fewer than five
students per school, so we did not compute OLS estimates for them). We have deleted
the variable merge produced by the merge command to avoid error messages when we
run the merge command in the future.

A scatterplot of the OLS estimates of the intercept and slope is produced using the
following command and given in figure 4.3:
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. twoway scatter slope inter, xtitle(Intercept) ytitle(Slope)
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Figure 4.3: Scatterplot of estimated intercepts and slopes for all schools with at least
five students

We see that there is considerable variability between the estimated intercepts and
slopes of different schools. To investigate this further, we first create a dummy variable
to pick out one observation per school,

. egen pickone = tag(school)

and then we produce summary statistics for the schools by using the summarize com-
mand:

. summarize inter slope if pickone == 1

Variable Obs Mean Std. Dev. Min Max

inter 64 -.1805974 3.291357 -8.519253 6.838716
slope 64 .5390514 .1766135 .0380965 1.076979

To allow comparison with the parameter estimates obtained from the random-
coefficient model considered later on, we also obtain the covariance matrix of the esti-
mated intercepts and slopes:

. correlate inter slope if pickone == 1, covariance
(obs=64)

inter slope

inter 10.833
slope .208622 .031192
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The diagonal elements, 10.83 and 0.03, are the sample variances of the intercepts and
slopes, respectively. The off-diagonal element, 0.21, is the sample covariance between
the intercepts and slopes, equal to the correlation times the product of the intercept
and slope standard deviations.

We can also obtain a spaghetti plot of the predicted school-specific regression lines
for all schools. We first calculate the fitted values ŷij = β̂1j + β̂2jxij ,

. generate pred = inter + slope*lrt
(2 missing values generated)

and sort the data so that lrt increases within a given school and then jumps to its
lowest value for the next school in the dataset:

. sort school lrt

We then produce the plot by typing

. twoway (line pred lrt, connect(ascending)), xtitle(LRT)
> ytitle(Fitted regression lines)

The connect(ascending) option is used to connect points only as long as lrt is in-
creasing; it ensures that only data for the same school are connected. The resulting
graph is shown in figure 4.4.
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Figure 4.4: Spaghetti plot of ordinary least-squares regression lines for all schools with
at least five students
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4.4 Specification and interpretation of a random-coefficient

model

4.4.1 Specification of a random-coefficient model

How can we develop a joint model for the relationships between gcse and lrt in all
schools?

One way would be to use dummy variables for all schools (omitting the overall
constant) to estimate school-specific intercepts and interactions between these dummy
variables and lrt to estimate school-specific slopes. The only difference between the
resulting model and separate regressions is that a common residual error variance θj =θ
is assumed. However, this model has 130 regression coefficients! Furthermore, if the
schools are viewed as a (random) sample of schools from a population of schools, we
are not interested in the individual coefficients characterizing each school’s regression
line. Rather, we would like to estimate the mean intercept and slope as well as the
(co)variability of the intercepts and slopes in the population of schools.

A parsimonious model for the relationships between gcse and lrt can be obtained
by specifying a school-specific random intercept ζ1j and a school-specific random slope
ζ2j for lrt (xij):

yij = β1 + β2xij + ζ1j + ζ2jxij + ǫij

= (β1 + ζ1j) + (β2 + ζ2j)xij + ǫij (4.1)

Here ζ1j represents the deviation of school j’s intercept from the mean intercept β1, and
ζ2j represents the deviation of school j’s slope from the mean slope β2.

Given all covariates Xj in cluster j, it is assumed that the random effects ζ1j and
ζ2j have zero expectations:

E(ζ1j |Xj) = 0

E(ζ2j |Xj) = 0

It is also assumed that the level-1 residual ǫij has zero expectation, given the covariates
and the random effects:

E(ǫij |Xj , ζ1j , ζ2j) = 0

It follows from these mean-independence assumptions that the random terms ζ1j , ζ2j ,
and ǫij are all uncorrelated with the covariate xij and that ǫij is uncorrelated with both
ζ1j and ζ2j . Both the intercepts ζ1j and slopes ζ2j are assumed to be uncorrelated across
schools, and the level-1 residuals ǫij are assumed to be uncorrelated across schools and
students.

An illustration of this random-coefficient model with one covariate xij for one cluster
j is shown in the bottom panel of figure 4.5. A random-intercept model is shown for
comparison in the top panel.
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Figure 4.5: Illustration of random-intercept and random-coefficient models
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In each panel, the lower bold and solid line represents the population-averaged or
marginal regression line

E(yij |xij) = β1 + β2xij

across all clusters. The thinner solid line represents the cluster-specific regression line
for cluster j. For the random-intercept model, this is

E(yij |xij , ζ1j) = (β1 + ζ1j) + β2xij

which is parallel to the population-averaged line with vertical displacement given by the
random intercept ζ1j . In contrast, in the random-coefficient model, the cluster-specific
or conditional regression line

E(yij |xij , ζ1j , ζ2j) = (β1 + ζ1j) + (β2 + ζ2j)xij

is not parallel to the population-averaged line but has a greater slope because the
random slope ζ2j is positive in the illustration. Here the dashed line is parallel to the
population-averaged regression line and has the same intercept as cluster j. The vertical
deviation between this dashed line and the line for cluster j is ζ2jxij , as shown in the
diagram for xij =1. The bottom panel illustrates that the total intercept for cluster j is
β1 + ζ1j and the total slope is β2 + ζ2j . The arrows from the cluster-specific regression
lines to the responses yij are the within-cluster residual error terms ǫij (with variance
θ). It is clear that ζ2jxij represents an interaction between the clusters, treated as
random, and the covariate xij .

Given Xj , the random intercept and random slope have a bivariate distribution
assumed to have zero means and covariance matrix Ψ:

Ψ =

[
ψ11 ψ12

ψ21 ψ22

]
≡
[

Var(ζ1j |Xj) Cov(ζ1j , ζ2j |Xj)
Cov(ζ2j , ζ1j |Xj) Var(ζ2j |Xj)

]
, ψ21 = ψ12

Hence, given the covariates, the variance of the random intercept is ψ11, the variance
of the random slope is ψ22, and the covariance between the random intercept and the
random slope is ψ21. The correlation between the random intercept and random slope
given the covariates becomes

ρ21 ≡ Cor(ζ1j , ζ2j |Xj) =
ψ21√
ψ11ψ22

It is sometimes assumed that given Xj , the random intercept and random slope have
a bivariate normal distribution. An example of a bivariate normal distribution with
ψ11 =ψ22 =4 and ψ21 =ψ12 =1 is shown as a perspective plot in figure 4.6. Specifying
a bivariate normal distribution implies that the (marginal) univariate distributions of
the intercept and slope are also normal.
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Figure 4.6: Perspective plot of bivariate normal distribution

4.4.2 Interpretation of the random-effects variances and covariances

Interpreting the covariance matrix Ψ of the random effects (given the covariates Xj) is
not straightforward.

First, the random-slope variance ψ22 and the covariance between random slope and
intercept ψ21 depend not just on the scale of the response variable but also on the
scale of the covariate, here lrt. Let the units of the response and explanatory variable
be denoted as uy and ux, respectively. For instance, in an application considered in
chapter 7 on children’s increase in weight, uy is kilograms and ux is years. The units
of ψ11 are u2

y, the units of ψ21 are u2
y/ux, and the units of ψ22 are u2

y/u
2
x. It therefore

does not make sense to compare the magnitude of random-intercept and random-slope
variances.

Another issue is that the total residual variance is no longer constant as in random-
intercept models. The total residual is now

ξij ≡ ζ1j + ζ2jxij + ǫij

and the conditional variance of the responses given the covariate, or the conditional
variance of the total residual, is

Var(yij |Xj) = Var(ξij |Xj) = ψ11 + 2ψ21xij + ψ22x
2
ij + θ (4.2)

This variance depends on the value of the covariate xij , and the total residual is therefore
heteroskedastic. The conditional covariance for two students i and i′ with covariate
values xij and xi′j in the same school j is
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Cov(yij , yi′j |Xj) = Cov(ξij , ξi′j |Xj)

= ψ11 + ψ21xij + ψ21xi′j + ψ22xijxi′j (4.3)

and the conditional intraclass correlation becomes

Cor(yij , yi′j |Xj) =
Cov(ξij , ξi′j |Xj)√

Var(ξij |Xj)Var(ξi′j |Xj)

When xij =xi′j =0, the expression for the intraclass correlation is the same as for the
random-intercept model and represents the correlation of the residuals (from the overall
mean regression line) for two students in the same school who both have lrt scores
equal to 0 (the mean). However, for pairs of students in the same school with other
values of lrt, the intraclass correlation is a complicated function of lrt (xij and xi′j).

Due to the heteroskedastic total residual variance, it is not straightforward to define
coefficients of determination—such as R2, R2

2, and R2
1, discussed in section 3.5—for

random-coefficient models. Snijders and Bosker (2012, 114) suggest removing the ran-
dom coefficient(s) for the purpose of calculating the coefficient of determination because
this will usually yield values that are close to the correct version (see their section 7.2.2
for how to obtain the correct version).

Finally, interpreting the parameters ψ11 and ψ21 can be difficult because their values
depend on the translation of the covariate or, in other words, on how much we add or
subtract from the covariate. Adding a constant to lrt and refitting the model would
result in different estimates of ψ11 and ψ21 (see also exercise 4.9). This is because the
intercept variance is the variability in the vertical positions of school-specific regression
lines where lrt=0 (which changes when lrt is translated) and the covariance or cor-
relation is the tendency for regression lines that are higher up where lrt=0 to have
higher slopes. This lack of invariance of ψ11 and ψ21 to translation of the covariate xij

is illustrated in figure 4.7. Here identical cluster-specific regression lines are shown in
the two panels, but the covariate x′ij =xij−3.5 in the lower panel is translated relative
to the covariate xij in the upper panel. The intercepts are the intersections of the re-
gression lines with the vertical lines at zero. Clearly these intercepts vary more in the
upper panel than the lower panel, whereas the correlation between intercepts and slopes
is negative in the upper panel and positive in the lower panel.
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Figure 4.7: Cluster-specific regression lines for random-coefficient model, illustrating
lack of invariance under translation of covariate (Source: Skrondal and Rabe-Hesketh
2004a)

To make ψ11 and ψ21 interpretable, it makes sense to translate xij so that the value
xij = 0 is a useful reference point in some way. Typical choices are either mean centering
(as for lrt) or, if xij is time, as in growth-curve models, defining 0 to be the initial time
in some sense. Because the magnitude and interpretation of ψ21 depend on the location



194 Chapter 4 Random-coefficient models

(or translation) of xij , which is often arbitrary, it generally does not make sense to set
ψ21 to 0 by specifying uncorrelated intercepts and slopes.

A useful way of interpreting the magnitude of the estimated variances ψ̂11 and ψ̂22

is by considering the intervals β̂1 ± 1.96

√
ψ̂11 and β̂2 ± 1.96

√
ψ̂22, which contain about

95% of the intercepts and slopes in the population, respectively. To aid interpretation
of the random part of the model, it is also useful to produce plots of school-specific
regression lines, as discussed in section 4.8.3.

4.5 Estimation using xtmixed

xtmixed can be used to fit linear random-coefficient models by maximum likelihood
(ML) estimation or restricted maximum likelihood (REML) estimation. (xtreg can only
fit two-level random-intercept models.)

4.5.1 Random-intercept model

We first consider the random-intercept model discussed in the previous chapter:

yij = (β1 + ζ1j) + β2xij + ǫij

This model is a special case of the random-coefficient model in (4.1) with ζ2j = 0 or,
equivalently, with zero random-slope variance and zero random intercept and slope
covariance, ψ22 =ψ21 =0.

Maximum likelihood estimates for the random-intercept model can be obtained using
xtmixed with the mle option (the default):

. xtmixed gcse lrt || school:, mle

Mixed-effects ML regression Number of obs = 4059
Group variable: school Number of groups = 65

Obs per group: min = 2
avg = 62.4
max = 198

Wald chi2(1) = 2042.57
Log likelihood = -14024.799 Prob > chi2 = 0.0000

gcse Coef. Std. Err. z P>|z| [95% Conf. Interval]

lrt .5633697 .0124654 45.19 0.000 .5389381 .5878014
_cons .0238706 .4002255 0.06 0.952 -.760557 .8082982

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Identity
sd(_cons) 3.035269 .3052513 2.492261 3.696587

sd(Residual) 7.521481 .0841759 7.358295 7.688285

LR test vs. linear regression: chibar2(01) = 403.27 Prob >= chibar2 = 0.0000
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To allow later comparison with random-coefficient models using likelihood-ratio tests,
we store these estimates using

. estimates store ri

The random-intercept model assumes that the school-specific regression lines are
parallel. The common coefficient or slope β2 of lrt, shared by all schools, is esti-
mated as 0.56 and the mean intercept as 0.02. Schools vary in their intercepts with
an estimated standard deviation of 3.04. Within the schools, the estimated residual
standard deviation around the school-specific regression lines is 7.52. The within-school
correlation, after controlling for lrt, is therefore estimated as

ρ̂ =
ψ̂11

ψ̂11 + θ̂
=

3.0352

3.0352 + 7.5212
= 0.14

The ML estimates for the random-intercept model are also given under “Random
intercept” in table 4.1.

Table 4.1: Maximum likelihood estimates for inner-London schools data

Random Random Rand. coefficient
intercept coefficient & level-2 covariates

Parameter Est (SE) Est (SE) Est (SE) γxx

Fixed part
β1 [ cons] 0.02 (0.40) −0.12 (0.40) −1.00 (0.51) γ11

β2 [lrt] 0.56 (0.01) 0.56 (0.02) 0.57 (0.03) γ21

β3 [boys] 0.85 (1.09) γ12

β4 [girls] 2.43 (0.84) γ13

β5 [boys lrt] −0.02 (0.06) γ22

β6 [girls lrt] −0.03 (0.04) γ23

Random part√
ψ11 3.04 3.01 2.80√
ψ22 0.12 0.12

ρ21 0.50 0.60√
θ 7.52 7.44 7.44

Log likelihood −14, 024.80 −14, 004.61 −13, 998.83




