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Preface

This book is about applied multilevel and longitudinal modeling. Other terms for mul-
tilevel models include hierarchical models, random-effects or random-coefficient models,
mixed-effects models, or simply mixed models. Longitudinal data are also referred to
as panel data, repeated measures, or cross-sectional time series. A popular type of
multilevel model for longitudinal data is the growth-curve model.

The common theme of this book is regression modeling when data are clustered
in some way. In cross-sectional settings, students may be nested in schools, people in
neighborhoods, employees in firms, or twins in twin-pairs. Longitudinal data are by
definition clustered because multiple observations over time are nested within units,
typically subjects.

Such clustered designs often provide rich information on processes operating at dif-
ferent levels, for instance, people’s characteristics interacting with institutional charac-
teristics. Importantly, the standard assumption of independent observations is likely to
be violated because of dependence among observations within the same cluster. The
multilevel and longitudinal methods discussed in this book extend conventional regres-
sion to handle such dependence and exploit the richness of the data.

Volume 1 is on multilevel and longitudinal modeling of continuous responses using
linear models. The volume consists of four parts: I. Preliminaries (a review of linear
regression modeling, preparing the reader for the rest of the book), II. Two-level models,
III. Models for longitudinal and panel data, and IV. Models with nested and crossed
random effects. For readers who are new to multilevel and longitudinal modeling, the
chapters in part II should be read sequentially and can form the basis of an introductory
course on this topic. A one-semester course on multilevel and longitudinal modeling can
be based on most of the chapters in volume 1 plus chapter 10 on binary or dichotomous
responses from volume 2. For this purpose, we have made chapter 10 freely downloadable
from https://www.stata-press.com/books/mlmus4 ch10.pdf.

Volume 2 is on multilevel and longitudinal modeling of categorical responses, counts,
and survival data. This volume also consists of four parts: I. Categorical responses (bi-
nary or dichotomous responses, ordinal responses, and nominal responses or discrete
choice), II. Counts, III. Survival (in both discrete and continuous time), and IV. Models
with nested and crossed random effects. Each chapter starts by introducing models
for nonclustered data (for example, logistic and Poisson regression) and then extends
the models for clustered data by introducing random effects, leading to generalized lin-
ear mixed models. Subsequently, alternatives such as generalized estimating equations
(GEE) and fixed-effects approaches are discussed. Chapter 10 on binary or dichotomous
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responses is a core chapter of this volume and should be read before embarking on the
other chapters. It is also a good idea to read chapter 14 on discrete-time survival before
reading chapter 15 on continuous-time survival.

Our emphasis is on explaining the models and their assumptions, applying the meth-
ods to real data, and interpreting results. Many of the issues are conceptually demand-
ing but do not require that you understand complex mathematics. Therefore, wherever
possible, we introduce ideas through examples and graphical illustrations, keeping the
technical descriptions as simple as possible. Some sections that go beyond an intro-
ductory course on multilevel and longitudinal modeling are tagged with the q symbol.
Derivations that can be skipped by the reader are given in displays. For an advanced
treatment, placing multilevel modeling within a general latent-variable framework, we
refer the reader to Skrondal and Rabe-Hesketh (2004), which uses the same notation as
this book.

This book shows how all the analyses described can be performed using Stata. There
are many advantages of using a general-purpose statistical package such as Stata. First,
for those already familiar with Stata, it is convenient not having to learn a new stand-
alone package. Second, conducting multilevel analysis within a powerful package has
the advantage that it allows complex data manipulation to be performed, alternative
estimation methods to be used, and publication-quality graphics to be produced, all
without having to switch packages. Finally, Stata is a natural choice for multilevel
and longitudinal modeling because it has gradually become perhaps the most powerful
general-purpose statistics package for such models.

Each chapter is based on one or more research problems and real datasets. After
describing the models, we walk through the analysis using Stata, pausing to address
statistical issues that need further explanation. Do-files for each chapter can be down-
loaded from https://www.stata-press.com/data/mlmus4.html. Some readers may find
it useful to perform the analyses while reading the book.

Stata can be used either via a graphical user interface (GUI) or through commands.
We recommend using commands interactively—or preferably in do-files—for serious
analysis in Stata. For this reason, and because the GUI is fairly self-explanatory, we
use commands exclusively in this book. However, the GUI can be useful for learning
the Stata syntax. Generally, we use the typewriter font to refer to Stata commands,
syntax, and variables. A “dot” prompt followed by a command indicates that you can
type verbatim what is displayed after the dot (in context) to replicate the results in
the book. Some readers may find it useful to intersperse reading with running these
commands. We encourage readers to write do-files for solving the data analysis exercises
because this is standard practice for professional data analysis.

The commands used for data manipulation and graphics are explained to some
extent, but the purpose of this book is not to teach Stata from scratch. For a basic
introduction to Stata, we refer the reader to Acock (2018). Other books and further
resources for learning Stata are listed at the Stata website.
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If you are new to Stata, we recommend running all the commands given in chap-
ter 1 of volume 1. A list of commands that are particularly useful for manipulating,
describing, and plotting multilevel and longitudinal data is given in the appendix of
volume 1. Examples using these and other commands can easily be found by referring
to the “commands” entry in the subject index.

We have included applications from a wide range of disciplines, including medicine,
economics, education, sociology, and psychology. The interdisciplinary nature of this
book is also reflected in the choice of models and topics covered. If a chapter is pri-
marily based on an application from one discipline, we try to balance this by including
exercises with real data from other disciplines. The two volumes contain over 140 exer-
cises based on over 100 different real datasets. Exercises for which solutions are avail-
able to readers are marked with Solutions , and the solutions can be downloaded from
https://www.stata-press.com/books/mlmus4-answers.html. Instructors can obtain so-
lutions to all exercises from Stata Press.

All datasets used in this book are freely available for download; for details, see
https://www.stata-press.com/data/mlmus4.html. These datasets can be downloaded
into a local directory on your computer. Alternatively, individual datasets can be loaded
directly into net-aware Stata by specifying the complete URL. For example,

. use https://www.stata-press.com/data/mlmus4/pefr

If you have stored the datasets in the working directory, omit the path and just type

. use pefr

We will generally describe all Stata commands that can be used to fit a given model,
discussing their advantages and disadvantages. An exception to this rule is that we
do not discuss our own gllamm command in volume 1 (see the gllamm companion,
downloadable from http://www.gllamm.org, for how to fit the models of volume 1 in
gllamm). In volume 1, we extensively use the Stata commands xtreg and mixed, and
we introduce several more specialized commands for longitudinal modeling, such as
xthtaylor, xtivreg, and xtabond. The sem command for structural equation modeling
is used for growth-curve modeling.

In volume 2, we use Stata’s xt and me commands for different response types. For
example, we use xtlogit and melogit for binary responses, meologit for ordinal re-
sponses, xtpoisson and mepoisson for counts, and mestreg for multilevel continuous-
time survival modeling with shared frailties. In chapter 12 on nominal responses, we use
Stata’s new cm (for “choice model”) suite of commands, such as cmxtmixlogit. gllamm
is also used throughout volume 2. We also discuss commands for marginal models and
fixed-effects models, such as xtgee and clogit. The online reference manuals available
through the help command within Stata provide detailed information on all the official
Stata commands for multilevel and longitudinal modeling.



xxviii Preface

The nolog option has been used to suppress the iteration logs showing the progress
of the log likelihood. This option is not shown in the command line because we do not
recommend it to users; we are using it only to save space.

We assume that readers have a good knowledge of linear regression modeling, in
particular, the use and interpretation of dummy variables and interactions. However,
the first chapter in volume 1 reviews linear regression and can serve as a refresher.

Errata for different editions and printings of the book can be downloaded from
https://www.stata-press.com/books/errata/mlmus4.html, and answers to exercises can
be downloaded from https://www.stata-press.com/books/mlmus4-answers.html.

In this fourth edition, we have thoroughly revised all chapters and updated the Stata
syntax for release 17. Major additions in volume 1 include the Kenward–Roger degree-
of-freedom correction for improved inference with a small number of clusters, difference-
in-difference estimation for quasi experiments, and instrumental-variables estimation
to handle level-1 endogeneity. In volume 2, we now introduce Bayesian estimation
for crossed-effects models and extensively use several new commands (since the third
edition), including meologit, cmxtmixlogit, mestreg, and menbreg.

Berkeley and Oslo Sophia Rabe-Hesketh
August 2021 Anders Skrondal



 

 

 

 

 

 

 



4 Random-coefficient models

4.1 Introduction

In the previous chapter, we considered linear random-intercept models where the overall
level of the response was allowed to vary between clusters after controlling for covariates.
In this chapter, we include random coefficients or random slopes in addition to random
intercepts, thus also allowing the effects of covariates to vary between clusters. Such
models involving both random intercepts and random slopes are often called random-
coefficient models. In longitudinal settings, where the level-1 units are occasions and
the clusters are typically subjects, models with a random-coefficient of time are also
referred to as growth-curve models. Such models are the topic of chapter 7.

4.2 How effective are different schools?

Here we analyze a dataset on inner-London schools that accompanies the MLwiN software
(Rasbash et al. 2019) and is part of the data analyzed by Goldstein et al. (1993).

At age 16, students took their Graduate Certificate of Secondary Education (GCSE)
exams in a number of subjects. A score was derived from the individual exam results.
Such scores often form the basis for school comparisons, for instance, to allow parents
to choose the best school for their child. However, schools can differ considerably in
their intake achievement levels. It may be argued that what should be compared is
the “value added”; that is, the difference in mean GCSE score between schools after
controlling for the students’ achievement before entering the school. One such measure
of prior achievement is the London Reading Test (LRT) taken by these students at
age 11.

The dataset gcse.dta has the following variables:

• school: school identifier

• student: student identifier

• gcse: Graduate Certificate of Secondary Education (GCSE) score (z score, multi-
plied by 10)

• lrt: London Reading Test (LRT) score (z score, multiplied by 10)

• girl: dummy variable for student being a girl (1: girl; 0: boy)

• schgend: type of school (1: mixed gender; 2: boys only; 3: girls only)

201
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One purpose of the analysis is to investigate the relationship between GCSE and LRT and
how this relationship varies between schools. The model can then be used to address
the question of which schools appear to be most effective, taking prior achievement into
account.

We read in the data by using

. use https://www.stata-press.com/data/mlmus4/gcse

4.3 Separate linear regressions for each school

Before developing a model for all 65 schools combined, we consider a separate model
for each school. For school j, an obvious model for the relationship between GCSE and
LRT is a simple regression model,

yij = β1j + β2jxij + ǫij

where yij is the GCSE score for the ith student in school j, xij is the corresponding LRT

score, β1j is the school-specific intercept, β2j is the school-specific slope, and ǫij is a
residual error term with school-specific variance θj .

For school 1, OLS estimates of the intercept β̂11 and the slope β̂21 can be obtained
using regress,

. regress gcse lrt if school==1

Source SS df MS Number of obs = 73
F(1, 71) = 59.44

Model 4084.89189 1 4084.89189 Prob > F = 0.0000
Residual 4879.35759 71 68.7233463 R-squared = 0.4557

Adj R-squared = 0.4480
Total 8964.24948 72 124.503465 Root MSE = 8.29

gcse Coefficient Std. err. t P>|t| [95% conf. interval]

lrt .7093406 .0920061 7.71 0.000 .5258856 .8927955
_cons 3.833302 .9822377 3.90 0.000 1.874776 5.791828

where we have selected school 1 by specifying the condition if school==1.

To assess whether this is a reasonable model for school 1, we can obtain the predicted
(ordinary least squares) regression line for this school (with j = 1),

ŷi1 = β̂11 + β̂21xi1

by using the predict command with the xb option:

. predict p_gcse, xb

We superimpose this line on the scatterplot of the data for the school, as shown in
figure 4.1.
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. twoway (scatter gcse lrt) (line p_gcse lrt, sort) if school==1,
> xtitle(LRT) ytitle(GCSE)
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gcse Linear prediction

Figure 4.1: Scatterplot of gcse versus lrt for school 1 with ordinary least-squares
regression line

We can also produce a trellis graph containing such plots for all 65 schools by using

. twoway (scatter gcse lrt) (lfit gcse lrt, sort lpatt(solid)),
> by(school, compact legend(off) cols(5))
> xtitle(LRT) ytitle(GCSE) ysize(3) xsize(2)

where lfit plots regression lines estimated by OLS. The resulting graph, shown in
figure 4.2, suggests that the model assumptions are reasonably met. The schools appear
to vary in both their intercepts and slopes.
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Figure 4.2: Trellis of scatterplots of gcse versus lrt with fitted regression lines for all
65 schools
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We will now fit a simple linear regression model for each school, which is easily done
using Stata’s prefix command statsby. Then we will examine the variability in the
estimated intercepts and slopes.

First, calculate the number of students per school by using egen with the count()

function to preclude fitting lines to schools with fewer than five students below:

. egen num = count(gcse), by(school)

Then, use statsby to create a new dataset, ols.dta, in the working directory with
the variables inter and slope containing OLS estimates of the intercepts ( b[ cons])
and slopes ( b[lrt]) from the command regress gcse lrt if num>4 applied to each
school:

. statsby inter=_b[_cons] slope=_b[lrt], by(school) saving(ols):
> regress gcse lrt if num>4
(running regress on estimation sample)

Command: regress gcse lrt if num>4
inter: _b[_cons]
slope: _b[lrt]

By: school

Statsby groups
1 2 3 4 5

.................................................. 50

..............

The new dataset also contains the variable school and is sorted by school, making
it easy to merge it into the original dataset (the “master data”) after sorting the latter
by school:

. sort school

. merge m:1 school using ols

Result Number of obs

Not matched 2
from master 2 (_merge==1)
from using 0 (_merge==2)

Matched 4,057 (_merge==3)

. drop _merge

Here we have specified m:1 in the merge command, which stands for “many-to-one
merging” (observations for several students per school in the master data, but only one
observation per school in the “using data”). We see that two of the students in the
master data did not have matches in the using data (because their school, school 48,
had fewer than 5 students in the data, so we did not compute OLS estimates for that
school). We have deleted the variable merge produced by the merge command to avoid
error messages when we run the merge command in the future.

A scatterplot of the OLS estimates of the intercept and slope is produced using the
following command and given in figure 4.3:
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. twoway scatter slope inter, xtitle(Intercept) ytitle(Slope)
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Figure 4.3: Scatterplot of estimated intercepts and slopes for all schools with at least
five students

We see that there is considerable variability between the estimated intercepts and
slopes of different schools. To investigate this further, we first create a dummy variable
to pick out one observation per school,

. egen pickone = tag(school)

and then produce summary statistics for the schools by using the summarize command:

. summarize inter slope if pickone==1

Variable Obs Mean Std. dev. Min Max

inter 64 -.1805974 3.291357 -8.519253 6.838716
slope 64 .5390514 .1766135 .0380965 1.076979

To allow comparison with the parameter estimates obtained from the random-coefficient
model considered later on, we also obtain the covariance matrix of the estimated inter-
cepts and slopes:

. correlate inter slope if pickone==1, covariance
(obs=64)

inter slope

inter 10.833
slope .208622 .031192
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The diagonal elements, 10.83 and 0.03, are the sample variances of the intercepts and
slopes, respectively. The off-diagonal element, 0.21, is the sample covariance between
the intercepts and slopes, equal to the correlation times the product of the intercept
and slope standard deviations.

We can also obtain a spaghetti plot of the predicted school-specific regression lines
for all schools. We first calculate the fitted values ŷij = β̂1j + β̂2jxij ,

. generate pred = inter + slope*lrt
(2 missing values generated)

and sort the data so that lrt increases within a given school and then jumps to its
lowest value for the next school in the dataset:

. sort school lrt

We then produce the plot by typing

. twoway (line pred lrt, connect(ascending)), xtitle(LRT)
> ytitle(Fitted regression lines)

The connect(ascending) option is used to connect points only as long as lrt is in-
creasing and ensures that only data for the same school are connected. The resulting
graph is shown in figure 4.4.
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Figure 4.4: Spaghetti plot of ordinary least-squares regression lines for all schools with
at least five students



208 Chapter 4 Random-coefficient models

4.4 Specification and interpretation of a random-coefficient

model

4.4.1 Specification of a random-coefficient model

How can we develop a joint model for the relationships between gcse and lrt in all
schools that allows intercepts and slopes to differ between schools?

One way would be to use dummy variables for all schools (omitting the overall in-
tercept) and interactions between these dummy variables and lrt (omitting the overall
slope of lrt). The school-specific intercepts are then the coefficients of the dummy
variables and the school-specific slopes are the interaction coefficients. The only differ-
ence between the resulting model and separate regressions is that a common residual
error variance θj = θ is assumed. However, this model has 130 regression coefficients!
Furthermore, if the schools are viewed as a (random) sample of schools from a popula-
tion of schools, we are not interested in the individual coefficients characterizing each
school’s regression line. Rather, we would like to estimate the mean intercept and slope
as well as the (co)variability of the intercepts and slopes in the population of schools.

A parsimonious model for the relationships between gcse and lrt can be obtained
by specifying a school-specific random intercept ζ1j and a school-specific random slope
ζ2j for lrt (xij):

yij = β1 + β2xij + ζ1j + ζ2jxij + ǫij

= (β1 + ζ1j) + (β2 + ζ2j)xij + ǫij (4.1)

Here ζ1j represents the deviation of school j’s intercept from the mean intercept β1, and
ζ2j represents the deviation of school j’s slope from the mean slope β2.

Given all covariates Xj in cluster j, it is assumed that the random effects ζ1j and
ζ2j have zero expectations:

E(ζ1j |Xj) = 0

E(ζ2j |Xj) = 0

It is also assumed that the level-1 residual ǫij has zero expectation, given the covariates
and the random effects:

E(ǫij |Xj , ζ1j , ζ2j) = 0

It follows from these mean-independence assumptions that the random terms ζ1j , ζ2j ,
and ǫij are all uncorrelated with the covariate xij and with x·j and that ǫij is uncorre-
lated with both ζ1j and ζ2j . Both the intercepts ζ1j and slopes ζ2j are assumed to be
uncorrelated across schools, and the level-1 residuals ǫij are assumed to be uncorrelated
across schools and students.

An illustration of this random-coefficient model with one covariate xij for one cluster
j is shown in the bottom panel of figure 4.5. A random-intercept model is shown for
comparison in the top panel.
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Figure 4.5: Illustration of random-intercept and random-coefficient models
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In each panel, the lower bold and solid line represents the population-averaged or
marginal regression line

E(yij |xij) = β1 + β2xij

across all clusters. The higher and thinner solid line represents the cluster-specific
regression line for cluster j. The arrows from the cluster-specific regression lines to the
responses yij are the within-cluster residual error terms ǫij (with variance θ).

For the random-intercept model, the cluster-specific line is

E(yij |xij , ζ1j) = (β1 + ζ1j) + β2xij

which is parallel to the population-averaged line with vertical displacement given by the
random intercept ζ1j . In contrast, in the random-coefficient model, the cluster-specific
or conditional regression line

E(yij |xij , ζ1j , ζ2j) = (β1 + ζ1j) + (β2 + ζ2j)xij

is not parallel to the population-averaged line but has a greater slope because the
random slope ζ2j is positive in the illustration. Here the dashed line is parallel to the
population-averaged regression line and has the same intercept as cluster j. The vertical
deviation between this dashed line and the line for cluster j is ζ2jxij , as shown in the
diagram for xij=1. The bottom panel illustrates that the total intercept for cluster j is
β1 + ζ1j and the total slope is β2 + ζ2j . It is clear that ζ2jxij represents an interaction
between the clusters, treated as random, and the covariate xij .

Given Xj , the random intercept and random slope have a bivariate distribution
assumed to have 0 means and covariance matrix Ψ:

Ψ =

[
ψ11 ψ12

ψ21 ψ22

]
≡
[

Var(ζ1j |Xj) Cov(ζ1j , ζ2j |Xj)
Cov(ζ2j , ζ1j |Xj) Var(ζ2j |Xj)

]
, ψ21 = ψ12

Hence, given the covariates, the variance of the random intercept is ψ11, the variance
of the random slope is ψ22, and the covariance between the random intercept and the
random slope is ψ21. The correlation between the random intercept and random slope
given the covariates becomes

ρ21 ≡ Cor(ζ1j , ζ2j |Xj) =
ψ21√
ψ11ψ22

For maximum likelihood (ML) and restricted maximum likelihood (REML) estima-
tion a normal distribution is specified for the level-1 error ǫij and a bivariate normal
distribution for the random intercept and random slope, given Xj . An example of a
bivariate normal distribution with ψ11 =ψ22 = 4 and ψ21 = ψ12 = 1 is shown as a per-
spective plot in figure 4.6. Specifying a bivariate normal distribution implies that the
(marginal) univariate distributions of the intercept and slope are also normal.
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Figure 4.6: Perspective plot of bivariate normal distribution

4.4.2 Interpretation of the random-effects variances and covariances

Interpreting the covariance matrix Ψ of the random effects (given the covariates Xj) is
not completely straightforward.

First, the random-slope variance ψ22 and the covariance between random slope and
intercept ψ21 depend not just on the scale of the response variable but also on the scale
of the covariate, here lrt. Let the units of the response and covariate be denoted as
uy and ux, respectively. For instance, in an application in chapter 7 that considers
children’s increase in weight over time, uy is kilograms and ux is years. The units of
ψ11 are u2y, the units of ψ21 are u2y/ux, and the units of ψ22 are u2y/u

2
x. It therefore

does not make sense to compare the magnitude of random-intercept and random-slope
variances.

Another issue is that the total residual variance is no longer constant as in random-
intercept models. The total residual is now

ξij ≡ ζ1j + ζ2jxij + ǫij

and the conditional variance of the responses given the covariate, or the conditional
variance of the total residual, is

Var(yij |Xj) = Var(ξij |Xj) = ψ11 + 2ψ21xij + ψ22x
2
ij + θ (4.2)

This variance is a (quadratic) function of the covariate xij , and the total residual is
therefore heteroskedastic. The conditional covariance for two students i and i′ with
covariate values xij and xi′j in the same school j is
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Cov(yij , yi′j |Xj) = Cov(ξij , ξi′j |Xj)

= ψ11 + ψ21xij + ψ21xi′j + ψ22xijxi′j (4.3)

and the conditional intraclass correlation becomes

Cor(yij , yi′j |Xj) =
Cov(ξij , ξi′j |Xj)√

Var(ξij |Xj)Var(ξi′j |Xj)

where we can plug in the covariance from (4.3) and the variances from (4.2). When
xij=xi′j=0, the expression for the intraclass correlation is the same as for the random-
intercept model and represents the correlation of the total residuals (from the overall
mean regression line) for two students in the same school who both have lrt scores
equal to 0 (the mean in this case). However, for pairs of students i and i′ in the same
school j with other values of lrt, the intraclass correlation is a complicated function of
lrt (xij and xi′j).

Due to the heteroskedastic total residual variance, it is not straightforward to define
coefficients of determination—such as R2, R2

2, and R2
1, discussed in section 3.5—for

random-coefficient models. Snijders and Bosker (2012, 114) suggest removing the ran-
dom coefficient(s) for the purpose of calculating the coefficient of determination because
this will usually yield values that are close to correct (see their section 7.2.2 for how to
obtain the correct version).

Finally, interpreting the parameters ψ11 and ψ21 can be difficult because their values
depend on the translation of the covariate or, in other words, on how much we add or
subtract from the covariate. Adding a constant to lrt and refitting the model would
result in different estimates of ψ11 and ψ21 (see also exercise 4.9). This is because the
intercept variance is the variability in the vertical positions of school-specific regression
lines where lrt=0 (the position where lrt=0 changes when lrt is translated) and the
covariance or correlation is the tendency for regression lines that are higher up where
lrt=0 to have higher slopes. This lack of invariance of ψ11 and ψ21 to translation of
the covariate xij is illustrated in figure 4.7. Here identical cluster-specific regression
lines are shown in the two panels, but the covariate x′ij = xij−3.5 in the lower panel
is translated relative to the covariate xij in the upper panel. The intercepts are the
intersections of the regression lines with the vertical lines at 0. Clearly these intercepts
vary more in the upper panel than the lower panel, whereas the correlation between
intercepts and slopes is negative in the upper panel and positive in the lower panel.
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Figure 4.7: Cluster-specific regression lines for random-coefficient model, illustrating
lack of invariance under translation of covariate (Source: Skrondal and Rabe-Hesketh
2004)
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To make ψ11 and ψ21 interpretable, it makes sense to translate xij so that the value
xij = 0 is a useful reference point in some way. Typical choices are either mean centering
(as for lrt) or, if xij is time, as in growth-curve models, defining 0 to be the initial time
in some sense. Because the magnitude and interpretation of ψ21 depend on the location
(or translation) of xij , which is often arbitrary, it generally does not make sense to set
ψ21 to 0 by specifying uncorrelated intercepts and slopes.

A useful way of interpreting the magnitudes of the estimated variances ψ̂11 and ψ̂22

is by constructing intervals that contain the intercepts and slopes of 95% of clusters in
the population (treating estimates as known parameters). Assuming that the intercepts

and slopes are normally distributed with means β̂1 and β̂2 and variances ψ̂11 and ψ̂22,

these intervals are β̂1 ± 1.96

√
ψ̂11 and β̂2 ± 1.96

√
ψ̂22. To aid interpretation of the

random part of the model, it is also useful to produce plots of predicted school-specific
regression lines, as discussed in section 4.8.3.

4.5 Estimation using mixed

The mixed command can be used to fit linear random-coefficient models by ML or REML.
(xtreg can only fit two-level random-intercept models.)

4.5.1 Random-intercept model

We first consider a random-intercept model discussed in the previous chapter:

yij = (β1 + ζ1j) + β2xij + ǫij

This model is a special case of the random-coefficient model in (4.1) with ζ2j = 0 or,
equivalently, with zero random-slope variance and zero random-intercept and random-
slope covariance, ψ22=ψ21=0.

ML estimates for the random-intercept model can be obtained using mixed with the
mle option (the default), and we also use the vce(robust) option for robust standard
errors:
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. mixed gcse lrt || school:, mle stddeviations vce(robust)

Mixed-effects regression Number of obs = 4,059
Group variable: school Number of groups = 65

Obs per group:
min = 2
avg = 62.4
max = 198

Wald chi2(1) = 852.73
Log pseudolikelihood = -14024.799 Prob > chi2 = 0.0000

(Std. err. adjusted for 65 clusters in school)

Robust
gcse Coefficient std. err. z P>|z| [95% conf. interval]

lrt .5633697 .0192925 29.20 0.000 .5255572 .6011823
_cons .0238706 .4050143 0.06 0.953 -.7699428 .8176841

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

school: Identity
sd(_cons) 3.035269 .3154741 2.475863 3.72107

sd(Residual) 7.521481 .1306016 7.269813 7.781861

To allow later comparison with random-coefficient models via likelihood-ratio tests, we
store these estimates by using

. estimates store ri

The random-intercept model assumes that the school-specific regression lines are
parallel. The common coefficient or slope β2 of lrt, shared by all schools, is esti-
mated as 0.56 and the mean intercept as 0.02. Schools vary in their intercepts with
an estimated standard deviation of 3.04. Within the schools, the estimated residual
standard deviation around the school-specific regression lines is 7.52. The within-school
correlation, after controlling for lrt, is therefore estimated as

ρ̂ =
ψ̂11

ψ̂11 + θ̂
=

3.0352

3.0352 + 7.5212
= 0.14

We could obtain this within-school correlation by typing estat icc.

The ML estimates for the random-intercept model are also given under “Random
intercept” in table 4.1.
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Table 4.1: Maximum likelihood estimates for inner-London-schools data with robust
standard errors

Random Random Rand. coefficient
intercept coefficient & level-2 covariates

Parameter Est (SE) Est (SE) Est (SE) γxx

Fixed part
β1 [ cons] 0.02 (0.41) −0.12 (0.40) −1.00 (0.55) γ11
β2 [lrt] 0.56 (0.02) 0.56 (0.02) 0.57 (0.02) γ21
β3 [boys] 0.85 (0.96) γ12
β4 [girls] 2.43 (0.84) γ13
β5 [boys lrt] −0.02 (0.05) γ22
β6 [girls lrt] −0.03 (0.05) γ23

Random part√
ψ11 3.04 3.01 2.80√
ψ22 0.12 0.12

ρ21 0.50 0.60√
θ 7.52 7.44 7.44

Log likelihood −14, 024.80 −14, 004.61 −13, 998.83

4.5.2 Random-coefficient model

We now relax the assumption that the school-specific regression lines are parallel by
introducing random school-specific slopes β2 + ζ2j of lrt:

yij = (β1 + ζ1j) + (β2 + ζ2j)xij + ǫij

To introduce a random slope for lrt using mixed, we simply add that variable name
in the specification of the random part, replacing school: with school: lrt. We must
also specify the covariance(unstructured) option because mixed will otherwise set
the covariance ψ21 (and the corresponding correlation) to 0 by default. ML estimates
for the random-coefficient model are then obtained using
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. mixed gcse lrt || school: lrt, covariance(unstructured) mle stddeviations
> vce(robust)

Mixed-effects regression Number of obs = 4,059
Group variable: school Number of groups = 65

Obs per group:
min = 2
avg = 62.4
max = 198

Wald chi2(1) = 767.80
Log pseudolikelihood = -14004.613 Prob > chi2 = 0.0000

(Std. err. adjusted for 65 clusters in school)

Robust
gcse Coefficient std. err. z P>|z| [95% conf. interval]

lrt .556729 .0200919 27.71 0.000 .5173496 .5961084
_cons -.115085 .4009294 -0.29 0.774 -.9008922 .6707222

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

school: Unstructured
sd(lrt) .1205646 .0236268 .0821128 .1770224

sd(_cons) 3.007444 .3134589 2.451765 3.689065
corr(lrt,_cons) .4975415 .1751841 .0894796 .7625783

sd(Residual) 7.440787 .1251535 7.19949 7.690172

Because the stddeviations option was used, the output shows the standard devi-
ations, sd(lrt), of the slope and sd( cons) of the intercept instead of variances. It
also shows the correlation between intercepts and slopes, corr(lrt, cons), instead of
the covariance. We can obtain the estimated covariance matrix either by replaying the
estimation results without the stddeviations option (or with the variance option),

mixed, variance

or by using the postestimation command estat recovariance:

. estat recovariance

Random-effects covariance matrix for level school

lrt _cons

lrt .0145358
_cons .1804042 9.04472

The ML estimates for the random-coefficient model were also given under “Random
coefficient” in table 4.1. We store the estimates under the name rc for later use:

. estimates store rc

We can also obtain the model-implied residual standard deviations and correla-
tions among the GCSE scores for students in a particular school by using the estat
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wcorrelation command. For schools that have many students in the data, the corre-
lation matrix is too large to display without wrapping, so we choose school 54, which
has 8 students in the data, for illustration. First, we sort the data in ascending order of
lrt within school and list the values of lrt because they will affect both the standard
deviations and correlations, as shown in equations (4.3) and (4.2):

. sort school lrt

. list school lrt if school==54, clean noobs

school lrt
54 -5.3806
54 2.058
54 2.8845
54 3.711
54 9.4967
54 10.323
54 11.976
54 11.976

Now, we obtain the estimated residual standard deviations and correlations for school 54:

. estat wcorrelation, at(school=54)

Standard deviations and correlations for school = 54:

Standard deviations:

obs 1 2 3 4 5 6 7 8

sd 7.930 8.076 8.098 8.121 8.315 8.348 8.415 8.415

Correlations:

obs 1 2 3 4 5 6 7 8

1 1.000
2 0.129 1.000
3 0.130 0.153 1.000
4 0.131 0.155 0.158 1.000
5 0.137 0.170 0.173 0.177 1.000
6 0.138 0.172 0.175 0.179 0.202 1.000
7 0.139 0.176 0.179 0.183 0.208 0.212 1.000
8 0.139 0.176 0.179 0.183 0.208 0.212 0.218 1.000

The standard deviations increase with increasing lrt. To interpret the pattern of the
correlations, we can look down the columns, which corresponds to holding the lrt for
one student constant and looking at the correlations as the lrt of the other student
increases. We see that the corresponding correlations increase.

Here we used ML estimation. REML estimation should be used instead when the
number of clusters is small (J − q < 42, see display 2.1) and this method is requested
by specifying the reml option.
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4.6 Testing the slope variance

Before interpreting the parameter estimates, we may want to test whether the ran-
dom slope is needed in addition to the random intercept. Specifically, we test the null
hypothesis

H0: ψ22 = 0 against Ha: ψ22 > 0

Note that H0 is equivalent to the hypothesis that the random slopes ζ2j are all 0. The
null hypothesis also implies that ψ21 = 0, because a variable that does not vary also does
not covary with other variables. Setting ψ22 = 0 and ψ21 = 0 gives the random-intercept
model.

A näıve likelihood-ratio test can be performed using the lrtest command:

. lrtest ri rc, force

Likelihood-ratio test
Assumption: ri nested within rc

LR chi2(2) = 40.37
Prob > chi2 = 0.0000

The force option was used here because without it, Stata will not perform likelihood-
ratio tests when robust standard errors have been specified. This is because inferences
based on robust standard errors do not require the likelihood to be correct (that is, to
correspond to the data-generating mechanism), which is why Stata calls it a pseudolike-
lihood in the output. Because likelihood-ratio tests require correct likelihoods, Stata
will not perform such tests unless forced to do so. Here we accept that, unlike inferences
for the regression coefficients based on robust standard errors, likelihood-ratio tests for
variance and covariance parameters will not be robust to misspecification of the resid-
ual covariance structure. Remember that point estimators of variance and covariance
parameters are inconsistent if the residual covariance structure is misspecified (which is
also unlike regression coefficients).

This likelihood-ratio test is näıve because the variance ψ22 must be nonnegative
so that the null hypothesis is on the boundary of the parameter space. As discussed
in section 2.6.2 for random-intercept models, the asymptotic null distribution of the
likelihood-ratio statistic L is therefore no longer a simple χ2 distribution as assumed by
the lrtest command.

In mixed, the default estimation metric (transformation used during estimation) for
the covariance matrix of the random effects is the square root or Cholesky decomposition
(which is requested by the matsqrt option). This parameterization forces the covariance
matrix to be positive semidefinite (estimates on the boundary of parameter space, for
example, 0 variance or perfect correlations, are allowed). It can be shown that the
asymptotic null distribution for testing the null hypothesis that the variance of the
r+1th random effect is 0 becomes 0.5χ2(r) + 0.5χ2(r + 1). For our case of testing the
random slope variance in a model with a random intercept and a random slope, r=1; it
follows that the asymptotic null distribution is 0.5χ2(1)+0.5χ2(2). The correct p-value
can be obtained as
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. display 0.5*chi2tail(1,40.37) + 0.5*chi2tail(2,40.37)
9.616e-10

We see that the conclusion remains the same as for the näıve approach for this applica-
tion.

If the matlog option is used, the estimation metric for the covariance matrix of the
random effects is matrix logarithms, which forces the covariance matrix to be positive
definite (estimates on the boundary of the parameter space are not allowed). Conse-
quently, convergence is not achieved if the ML estimates are on the boundary of the
parameter space. If this leads to reverting to the model under the null hypothesis,
giving a likelihood-ratio statistic equal to 0, then the asymptotic null distribution for
testing the null hypothesis that the variance of the r + 1th random effect is 0 becomes
0.5χ2(0) + 0.5χ2(r + 1), where χ2(0) has a probability mass of 1 at 0. For testing the
random slope variance in a model with a random intercept and a random slope, r = 1
and the distribution becomes 0.5χ2(0)+0.5χ2(2) so that the correct p-value can simply
be obtained by dividing the näıve p-value based on the χ2(2) by 2.

Keep in mind that the näıve likelihood-ratio test for testing the slope variance is
conservative. Hence, if the null hypothesis of a zero slope variance is rejected by the
näıve approach, it is also rejected by the correct approach.

Unfortunately, there is no straightforward procedure available for testing several
variances simultaneously, unless the random effects are independent (see section 8.8),
and simulations (for example, parametric bootstrapping) must be used in this case to
obtain the empirical null distribution.

4.7 Interpretation of estimates

The population-mean intercept and slope are estimated as −0.12 and 0.56, respectively.
These estimates are similar to those for the random-intercept model (see table 4.1) and
are also close to the means of the school-specific intercept and slope estimates given in
section 4.3.

The estimated random-intercept standard deviation and level-1 residual standard
deviation are somewhat lower than for the random-intercept model. The latter is be-
cause of a better fit of the school-specific regression lines for the random-coefficient
model, which relaxes the restriction of parallel regression lines. The estimated covari-
ance matrix of the intercepts and slopes is similar to the sample covariance matrix of
the ordinary least-squares estimates reported in section 4.3.

As discussed in section 4.4.2, the easiest way to interpret the estimated standard
deviations of the random intercept and random slope (conditional on the covariates)
is to form intervals within which 95% of the schools’ random intercepts and slopes are
expected to lie assuming normality. Remember that these intervals represent ranges
within which 95% of the realizations of a random variable are expected to lie, a con-
cept different from confidence intervals, which are ranges within which an unknown
parameter is believed to lie.
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For the intercepts, we obtain −0.115 ± 1.96 × 3.007, so 95% of schools have their
intercept in the range −6.0 to 5.8. In other words, the school mean GCSE scores for
children with average LRT scores (lrt=0) vary between −6.0 and 5.8. For the slopes, we
obtain 0.557± 1.96× 0.121, giving an interval from 0.32 to 0.80. Thus, 95% of schools
have slopes between 0.32 and 0.80.

This exercise of forming intervals is particularly important for slopes because it is
useful to know whether the slopes have different signs for different schools (which would
be odd in the current example). The range from 0.32 to 0.80 is fairly wide and the
regression lines for schools may cross: one school could add more value (produce higher
mean GCSE scores for given LRT scores) than another school for students with low LRT

scores and add less value than the other school for students with high LRT scores.

The estimated correlation ρ̂21 = 0.50 between random intercepts and slopes (given
the covariates) means that schools with larger mean GCSE scores for students with
average LRT scores than other schools also tend to have larger slopes than those other
schools. This correlation, combined with the random-intercept and slope variances and
the range of LRT scores, determines how much the lines cross, something that is best
explored by plotting the predicted regression lines for the schools, as demonstrated in
section 4.8.3.

The variance of the total residual ξij (equal to the conditional variance of the re-
sponses yij given the covariates Xj) was given in (4.2). We can estimate the corre-
sponding standard deviation by plugging in the ML estimates:

√
V̂ar(ξij |Xj) =

√
ψ̂11 + 2ψ̂21xij + ψ̂22x2ij + θ̂

=
√

9.0447 + 2× 0.1804× xij + 0.0145× x2ij + 55.3653

A graph of the estimated standard deviation of the total residual against the covariate
lrt (xij) can be obtained using the following twoway function command, which is
graphed in figure 4.8:
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. twoway function sqrt(9.0447+2*0.1804*x+0.0145*x^2+55.3653), range(-30 30)
> xtitle(LRT) ytitle(Estimated standard deviation of total residual)
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Figure 4.8: Heteroskedasticity of total residual ξij as function of lrt

The estimated standard deviation of the total residual varies between just under 8 and
just under 9.5 for the range of lrt in the data.

4.8 Assigning values to the random intercepts and slopes

Having obtained estimated model parameters β̂1, β̂2, ψ̂11, ψ̂22, ψ̂21, and θ̂, we now assign
values to the random intercepts and slopes (see also section 2.11). This is useful for
model visualization, residual diagnostics, and inference for individual clusters, as will be
demonstrated. Until section 4.8.5, the estimated parameters will be treated as known.
In section 4.8.5, we will use REML estimation to obtain standard errors for empirical
Bayes predictions that take uncertainty in estimating β̂1 and β̂2 into account.

4.8.1 Maximum “likelihood” estimation

Maximum “likelihood” estimates of the random intercepts and slopes can be obtained
by first predicting the total residuals ξ̂ij = yij − (β̂1+ β̂2xij) and then fitting individual

regressions of ξ̂ij on xij for each school by OLS. As explained in section 2.11.1, we
put “likelihood” in quotes in the section heading because it differs from the marginal
likelihood that is used to estimate the model parameters.
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We can fit the individual regression models by using the statsby prefix command
as shown in section 4.3. We first retrieve the mixed estimates stored under rc,

. estimates restore rc
(results rc are active now)

and obtain the predicted total residuals,

. predict fixed, xb

. generate totres = gcse - fixed

We can then use statsby to produce the variables mli and mls, which contain the ML

estimates ζ̂1j and ζ̂2j of the random intercepts and slopes, respectively:

. statsby mli=_b[_cons] mls=_b[lrt], by(school) saving(ols, replace):
> regress totres lrt
(running regress on estimation sample)

Command: regress totres lrt
mli: _b[_cons]
mls: _b[lrt]
By: school

Statsby groups
1 2 3 4 5

.................................................. 50

...............

. sort school

. merge m:1 school using ols

Result Number of obs

Not matched 0
Matched 4,059 (_merge==3)

. drop _merge

Maximum likelihood estimates will not be available for schools with only one obser-
vation or for schools within which xij does not vary. There are no such schools in the
dataset, but school 48 has only two observations, and the ML estimates of the intercept
and slope look odd:

. list lrt gcse mli mls if school==48, clean noobs

lrt gcse mli mls
-4.5541 -1.2908 -32.607 -7.458484
-3.7276 -6.9951 -32.607 -7.458484

Because there are only two students, the fitted line connects the points perfectly. The
school’s intercept and slope are determined by ǫ1j and ǫ2j roughly as much as they are by
the true intercept and slope. The intercept and slope estimates are therefore imprecise
and can be extreme; the so-called “bouncing beta” phenomenon often encountered when
using ML estimation of random effects for clusters that provide little information. In
general, we therefore do not recommend using this method and suggest using empirical
Bayes prediction instead.
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4.8.2 Empirical Bayes prediction

As discussed for random-intercept models in section 2.11.2, empirical Bayes (EB) pre-
dictions have a smaller prediction error variance (for given model parameters) than ML

estimates because of shrinkage toward the mean. Furthermore, EB predictions are avail-
able for schools with only one observation or only one unique value of xij , for which ML

estimates cannot be obtained.

Empirical Bayes predictions ζ̃1j and ζ̃2j of the random intercepts ζ1j and slopes ζ2j ,
respectively, can be obtained using the predict command with the reffects option
after estimation with mixed:

. estimates restore rc

. predict ebs ebi, reffects

Here we specified the variable names ebs and ebi for the EB predictions ζ̃2j and ζ̃1j
of the random slopes and intercepts. The intercept variable comes last because mixed

treats the intercept as the last random effect, as reflected by the output. This order is
consistent with Stata’s convention of treating the fixed intercept as the last regression
parameter in estimation commands.

To compare the EB predictions with the ML estimates, we list one observation per
school for schools 1–9 and school 48:

. list school mli ebi mls ebs if pickone==1 & (school<10 | school==48), noobs

school mli ebi mls ebs

1 3.948387 3.749336 .1526116 .1249761
2 4.937838 4.702127 .2045585 .1647271
3 5.69259 4.797687 .0222565 .0808662
4 .1526221 .3502472 .2047174 .1271837
5 2.719525 2.462807 .1232876 .0720581

6 6.147151 5.183819 -.0213858 .0586235
7 4.100312 3.640948 -.314454 -.1488728
8 -.136885 -.1218853 .0106781 .0068856
9 -2.258599 -1.767985 -.1555332 -.0886202

48 -32.607 -.4098203 -7.458484 -.0064854

Most of the time, the EB predictions are closer to 0 than the ML estimates because
of shrinkage, as discussed for random-intercept models in section 2.11.2. However, for
models with several random effects, the relationship between EB predictions and ML

estimates is somewhat more complex than for random-intercept models. The benefit of
shrinkage is apparent for school 48, where the EB predictions appear more reasonable
than the ML estimates.
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We can see shrinkage more clearly by plotting the EB predictions against the ML

estimates and superimposing a y = x line. For the random intercept, the command is

. twoway (scatter ebi mli if pickone==1 & school!=48, mlabel(school))
> (function y=x, range(-10 10)), xtitle(ML estimate)
> ytitle(EB prediction) legend(off) xline(0)

and for the random slope, it is

. twoway (scatter ebs mls if pickone==1 & school!=48, mlabel(school))
> (function y=x, range(-0.6 0.6)), xtitle(ML estimate)
> ytitle(EB prediction) legend(off) xline(0)

These commands produce the graphs in figure 4.9 (we excluded school 48 from the
graphs because the ML estimates are so extreme).
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Figure 4.9: Scatterplots of empirical Bayes (EB) predictions versus maximum likelihood
(ML) estimates of school-specific intercepts (left) and slopes (right); equality of EB and
ML shown as dashed reference lines and ML estimates of 0 shown as solid reference lines

For ML estimates above 0, the EB prediction tends to be smaller than the ML esti-
mate; the reverse is true for ML estimates below 0. There is more shrinkage for slopes
than for intercepts.

4.8.3 Model visualization

To better understand the estimates obtained for random-intercept models and random-
coefficient models—and in particular, the variability implied by the random part—it is
useful to produce graphs of predicted model-implied regression lines for the individual
schools.
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This can be achieved using the predict command with the fitted option to obtain
school-specific fitted regression lines, with ML estimates substituted for the regression
parameters (β1 and β2) and EB predictions substituted for the random effects (ζ1j for
the random-intercept model, and ζ1j and ζ2j for the random-coefficient model). For
instance, for the random-coefficient model, the predicted regression line for school j is

ŷij = β̂1 + β̂2xij + ζ̃1j + ζ̃2jxij

These predictions are obtained by typing

. predict murc, fitted

and a spaghetti plot is produced as follows:

. sort school lrt

. twoway (line murc lrt, connect(ascending)), xtitle(LRT)
> ytitle(Empirical Bayes regression lines for model 2)

To obtain predictions for the random-intercept model, we must first restore the
estimates stored under the name ri:

. estimates restore ri
(results ri are active now)

. predict muri, fitted

. sort school lrt

. twoway (line muri lrt, connect(ascending)), xtitle(LRT)
> ytitle(Empirical Bayes regression lines for model 1)

The resulting spaghetti plots of the school-specific regression lines for both the random-
intercept model and the random-coefficient model are given in figure 4.10.
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Figure 4.10: Spaghetti plots of empirical Bayes (EB) predictions of school-specific re-
gression lines for the random-intercept model (left) and the random-coefficient model
(right)
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The predicted school-specific regression lines are parallel for the random-intercept model
(with vertical shifts from the population-averaged regression line given by the ζ̃1j) but

are not parallel for the random-coefficient model, where the slopes β2 + ζ̃2j also vary
across schools. Because of shrinkage, the predicted lines vary somewhat less than implied
by the estimated variances and covariance.

When there are many clusters, spaghetti plots become messy, and it may be a good
idea to plot the lines for a random sample of clusters (see Part III: Introduction to
models for longitudinal and panel data for an example).

4.8.4 Residual diagnostics

If normality is assumed for the random intercepts ζ1j , random slopes ζ2j , and level-1
residuals ǫij , the corresponding EB predictions should also have normal distributions.

To plot the distributions of the predicted random effects, we must pick one pre-
diction per school, and we can accomplish this by using the pickone variable created
with the command egen pickone = tag(school) in section 4.3. We can now plot the
distributions by using

. histogram ebi if pickone==1, normal xtitle(Predicted random intercepts)

. histogram ebs if pickone==1, normal xtitle(Predicted random slopes)
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Figure 4.11: Histograms of predicted random intercepts and slopes

The histograms in figure 4.11 look approximately normal although the one for the
slopes is perhaps a little positively skewed. It should be noted, however, that moderate
nonnormality of random effects can easily be missed because EB predictions tend to be
closer to normal than the true random effects.
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It is also useful to look at the bivariate distribution of the predicted random inter-
cepts and slopes by using a scatterplot, or to display such a scatterplot together with
the two histograms:

. scatter ebs ebi if pickone==1, saving(yx, replace)
> xtitle("Random intercept") ytitle("Random slope") ylabel(, nogrid)

. histogram ebs if pickone==1, freq horizontal saving(hy, replace) normal
> yscale(alt) ytitle(" ") fxsize(35) ylabel(, nogrid)

. histogram ebi if pickone==1, freq saving(hx, replace) normal
> xscale(alt) xtitle(" ") fysize(35) ylabel(, nogrid)

. graph combine hx.gph yx.gph hy.gph, hole(2) imargin(0 0 0 0)

Here the scatterplot and histograms are first plotted separately and then combined using
the graph combine command. In the first histogram command, the horizontal option
is used to produce a rotated histogram of the random slopes. In the histogram com-
mands, the yscale(alt) and xscale(alt) options are used to put the corresponding
axes on the other side, and the normal option is used to overlay normal density curves.
The fysize(35) and fxsize(35) options change the aspect ratios of the histograms,
making them more flat so that they use up a smaller portion of the combined graph.
Finally, in the graph combine command, the graphs are listed in lexicographic order,
the hole(2) option denotes that there should be a hole in the second position—that
is, the top-right corner—and the imargin(0 0 0 0) option reduces the space between
the graphs. The resulting graph is shown in figure 4.12.

0
5

1
0

1
5

2
0

F
re

q
u

e
n

c
y

−10 −5 0 5 10
 

−
.2

0
.2

.4
R

a
n

d
o

m
 s

lo
p

e

−10 −5 0 5 10
Random intercept

−
.2

0
.2

.4
 

0 5 10 15 20
Frequency

Figure 4.12: Scatterplot and histograms of predicted random intercepts and slopes
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After estimation with mixed, we obtain the predicted level-1 residuals,

ǫ̃ij = yij − (β̂1 + β̂2xij + ζ̃1j + ζ̃2jxij)

by using

. predict res1, residuals

We plot the residuals by using the following command, which produces the graph in
figure 4.13:

. histogram res1, normal xtitle(Predicted level-1 residuals)
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Figure 4.13: Histogram of predicted level-1 residuals

To obtain standardized level-1 residuals, use the rstandard option in the predict

command after estimation using mixed.

4.8.5 Inferences for individual schools

Random-intercept predictions ζ̃1j are sometimes viewed as measures of institutional
performance—in the present context, how much value the schools add for children with
LRT scores equal to 0 (the mean). However, we may not have adequately controlled
for covariates correlated with achievement that are outside the control of the school,
such as student SES. Furthermore, the model assumes that the random intercepts are
uncorrelated with the LRT scores, so if schools with higher mean LRT scores tend to
add more value, their value added would be underestimated. Nevertheless, predicted
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random intercepts shed some light on the research question: Which schools are most
effective for children with LRT = 0?

It does not matter whether we add the predicted fixed part of the model because
the ranking of schools is not affected by this.

Returning to the question of comparing the schools’ effectiveness for children with
LRT scores equal to 0, we can plot the predicted random intercepts with approximate
95% confidence intervals based on comparative standard errors (see section 2.11.3).
We recommend fitting the model by REML before using predict in order to obtain
estimated comparative standard errors that take uncertainty in the estimated regression
coefficients into account:

. quietly mixed gcse lrt || school: lrt, covariance(unstructured) reml

. predict slope1 inter1, reffects reses(slope_se inter_se)

Here we only need inter se. We first produce ranks for the schools in ascending order
of the random-intercept predictions inter1:

. gsort + inter1 - pickone

. generate rank = sum(pickone)

Here the gsort command is used to sort in ascending order of inter1 (indicated by
“+ inter1”) and, within inter1, in descending order of pickone (indicated by “-
pickone”). The sum() function forms the cumulative sum, so the variable rank increases
by 1 every time a new school with higher value of inter1 is encountered. Before
producing the graph, we generate a variable, labpos, for the vertical positions in the
graph where the school identifiers should go:

. generate labpos = inter1 + 1.96*inter_se + .5

We are now ready to produce a so-called caterpillar plot:

. serrbar inter1 inter se rank if pickone==1, addplot(scatter labpos rank,
> mlabel(school) msymbol(none) mlabpos(0)) scale(1.96) xtitle(Rank)
> ytitle(Prediction) legend(off)

The school labels were added to the graph by superimposing a scatterplot onto the error
bar plot with the addplot() option, where the vertical positions of the labels are given
by the variable labpos. The resulting caterpillar plot is shown in figure 4.14.
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Figure 4.14: Caterpillar plot of random-intercept predictions and approximate 95% con-
fidence intervals versus ranking (school identifiers shown on top of confidence intervals)

The interval for school 48 is particularly wide because there are only two students from
this school in the dataset. It is clear from the large confidence intervals that the rankings
are not precise and that perhaps only a coarse classification into poor, medium, and
good schools can be justified.

An alternative method for producing a caterpillar plot is to first generate the confi-
dence limits lower and upper,

. generate lower = inter1 - 1.96*inter se

. generate upper = inter1 + 1.96*inter se

and then use the rcap plot type to produce the intervals:

. twoway (rcap lower upper rank, blpatt(solid) lcol(black))
> (scatter inter1 rank)
> (scatter labpos rank, mlabel(school) msymbol(none) mlabpos(0)
> mlabcol(black) mlabsiz(medium)),
> xtitle(Rank) ytitle(Prediction) legend(off)
> xscale(range(1 65)) xlabel(1/65) ysize(1)

Here scatter is first used to overlay the point estimates and then the labels. The
ysize() option is used to change the aspect ratio and obtain the horizontally stretched
graph shown in figure 4.15.
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Figure 4.15: Stretched caterpillar plot of random-intercept predictions and approximate
95% confidence intervals versus ranking (school identifiers shown on top of confidence
intervals)

We could also produce similar plots for children with different values x0 of the LRT

scores:
β̂1 + β̂2x

0 + ζ̃1j + ζ̃2jx
0

For instance, in a similar application, Goldstein et al. (2000) substitute the 10th per-
centile of the intake measure to compare school effectiveness for poorly performing
children. (To obtain confidence intervals for different values of x0 requires posterior
correlations that can be obtained by gllamm; see the gllamm companion.)

4.9 Two-stage model formulation

In this section, we describe an alternative way of specifying random-coefficient models
that is popular in some areas such as education (for example, Raudenbush and Bryk
2002). As shown below, models are specified in two stages (for levels 1 and 2), ne-
cessitating a distinction between level-1 and level-2 covariates. Many people find this
formulation helpful for interpreting and specifying models. Identical models can be
formulated using either the approach discussed up to this point or the two-stage formu-
lation.

To express the random-coefficient model by using a two-stage formulation, Rauden-
bush and Bryk (2002) specify a level-1 model:

yij = β0j + β1jxij + rij

where the intercept β0j and slope β1j are school-specific coefficients. Their level-2
models have these coefficients as responses:

β0j = γ00 + u0j

β1j = γ10 + u1j (4.4)
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Sometimes the first of these level-2 models is referred to as a “means as outcomes” or
“intercepts as outcomes” model, and the second as a “slopes as outcomes” model. It is
typically assumed that given the covariate(s), the residuals or disturbances u0j and u1j
in the level-2 model have a bivariate normal distribution with 0 mean and covariance
matrix

T =

[
τ00 τ01
τ10 τ11

]
, τ10 = τ01

The level-2 models cannot be fit on their own because the school-specific coefficients
β0j and β1j are not observed. Instead, we must substitute the level-2 models into the
level-1 model to obtain the reduced-form model for the observed responses, yij :

yij = γ00 + u0j︸ ︷︷ ︸
β0j

+(γ10 + u1j)︸ ︷︷ ︸
β1j

xij + rij

= γ00 + γ10xij︸ ︷︷ ︸
fixed

+u0j + u1jxij + rij︸ ︷︷ ︸
random

≡ β1 + β2xij + ζ1j + ζ2jxij + ǫij

In the reduced form, the fixed part is usually written first, followed by the random part.
As shown in the last line of the equation above, we can return to our previous notation
by defining β1≡γ00, β2≡γ10, ζ1j≡u0j , ζ2j≡u1j , and ǫij≡rij . The above model is thus
equivalent to the model in (4.1).

The level-1 model contains only level-1 covariates (that vary between units within
clusters). Any level-2 covariates (that do not vary within clusters) are included in the
level-2 models. For instance, we could include dummy variables for type of school: w1j

for boys-only schools and w2j for girls-only schools, with mixed schools as the reference
category. If we include these dummy variables in the model for the random intercept,

β0j = γ00 + γ01w1j + γ02w2j + u0j

the reduced form becomes

yij = γ00 + γ01w1j + γ02w2j + u0j︸ ︷︷ ︸
β0j

+(γ10 + u1j)︸ ︷︷ ︸
β1j

xij + rij

= γ00 + γ01w1j + γ02w2j + γ10xij︸ ︷︷ ︸
fixed

+u0j + u1jxij + rij︸ ︷︷ ︸
random

If we also include the dummy variables for type of school in the model for the random
slope,

β1j = γ10 + γ11w1j + γ12w2j + u1j
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we obtain so-called cross-level interactions between covariates varying at different
levels—w1j by xij as well as w2j by xij—in the reduced form

yij = γ00 + γ01w1j + γ02w2j + u0j︸ ︷︷ ︸
β0j

+(γ21 + γ22w2j + γ23w3j + u1j)︸ ︷︷ ︸
β1j

xij + rij

= γ00 + γ01w1j + γ02w2j + γ10xij + γ11w1jxij + γ12w2jxij︸ ︷︷ ︸
fixed

+u0j + u1jxij + rij︸ ︷︷ ︸
random

The effect of lrt now depends on the type of school, with γ11 representing the addi-
tional effect of lrt on gcse for boys-only schools compared with mixed schools and γ12
representing the additional effect for girls-only schools compared with mixed schools.

For estimation in mixed, it is necessary to convert the two-stage formulation to
the reduced form because the fixed part of the model is specified first, followed by the
random part of the model. Using factor variables in mixed, the command is

. mixed gcse i.schgend##c.lrt || school: lrt, covariance(unstructured) mle
> stddeviations vce(robust)

Mixed-effects regression Number of obs = 4,059
Group variable: school Number of groups = 65

Obs per group:
min = 2
avg = 62.4
max = 198

Wald chi2(5) = 930.12
Log pseudolikelihood = -13998.825 Prob > chi2 = 0.0000

(Std. err. adjusted for 65 clusters in school)

Robust
gcse Coefficient std. err. z P>|z| [95% conf. interval]

schgend
boys .8546715 .9648313 0.89 0.376 -1.036363 2.745706
girls 2.43341 .836635 2.91 0.004 .7936359 4.073185

lrt .5712361 .0235687 24.24 0.000 .5250423 .61743

schgend#c.lrt
boys -.0230098 .0541404 -0.43 0.671 -.1291229 .0831034
girls -.029544 .0493976 -0.60 0.550 -.1263616 .0672735

_cons -.9976073 .5544969 -1.80 0.072 -2.084401 .0891867

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

school: Unstructured
sd(lrt) .1199154 .0242665 .0806535 .1782899

sd(_cons) 2.797934 .3028989 2.263018 3.45929
corr(lrt,_cons) .5967727 .1391651 .2584913 .8046796

sd(Residual) 7.441831 .1251251 7.200588 7.691158



4.10.2 Many random coefficients 235

Here mixed schools are the reference category for schgend to which boys-only schools
and girls-only schools are compared. We see that, when lrt is 0, students from girls-
only schools perform significantly better at the 5% level than students from mixed
schools, whereas students from boys-only schools do not perform significantly better
than students from mixed schools. The effect of lrt does not differ significantly between
boys-only schools and mixed schools or between girls-only schools and mixed schools.
The estimates and the corresponding parameters in the two-stage formulation are given
under “Rand. coefficient & level-2 covariates” in the last three columns of table 4.1.

Although equivalent models can be specified using either the reduced-form (used by
mixed) or the two-stage (used by the HLM software of Raudenbush et al. [2019]) formu-
lation, in practice, model specification to some extent depends on the approach adopted.
For instance, cross-level interactions are easily included using the two-stage specification
in HLM, whereas same-level interactions must be created outside the program. Papers
using HLM therefore tend to include more cross-level interactions and fewer same-level
interactions. They also tend to include more random coefficients than papers using, for
instance, Stata because the level-2 models look odd without residuals.

4.10 Some warnings about random-coefficient models

4.10.1 Meaningful specification

It rarely makes sense to include a random slope if there is no random intercept, just
like interactions between two covariates usually do not make sense without including
the covariates themselves in standard regression models. Similarly, it is seldom sensible
to include a random slope without including the corresponding fixed slope because it is
usually strange to allow the slope to vary randomly but constrain its population mean
to 0.

It is generally not a good idea to include a random coefficient for a covariate that does
not vary at a lower level than the random coefficient itself. For example, in the inner-
London-schools data, it does not make sense to include a school-level random slope for
type of school because type of school does not vary within schools. Because we cannot
estimate the effect of type of school for individual schools, it also appears impossible
to estimate the variability of the effect of type of school between schools. However,
level-2 random coefficients of level-2 covariates can be used to construct heteroskedastic
random intercepts (see section 7.5.2).

4.10.2 Many random coefficients

It may be tempting to allow many different covariates to have random slopes. However,
the number of parameters for the random part of the model increases rapidly with the
number of random slopes because there is a variance parameter for each random effect
(intercept or slope) and a covariance parameter for each pair of random effects. If there
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are k random slopes plus one random intercept, then there are (k + 2)(k + 1)/2 + 1
parameters in the random part (for example, k = 3 gives 11 parameters).

Another problem is that clusters may not provide much information on cluster-
specific slopes and hence on the slope variance either if the clusters are small, or if xij
does not vary much within clusters or varies only in a small number of clusters. Perhaps
a useful rule is to consider the random part of the model (ignoring the fixed part) and
replace the random effects with fixed regression coefficients. It should be possible (even
if not very sensible) to fit the resulting model to a good number of clusters (say, 20 or
more), with some error degrees of freedom. Note, however, that it does not matter if
some of the clusters have insufficient data as long as there are an adequate number of
clusters that do have sufficient data. It is never a good idea to discard clusters merely
because they provide little information on some of the parameters of the model.

In general, it makes sense to allow for more flexibility in the fixed part of the model
than in the random part. For instance, the fixed part of the model may include a dummy
variable for each occasion in longitudinal data, but in the random part of the model it
may be sufficient to allow for a random intercept and a random slope of time, keeping
in mind that in this case it is only assumed that the deviation from the population-
average curve is linear in time, not that the relationship itself is linear. See section 7.3
for examples of modeling a nonlinear relationship in the fixed part of the model but not
in the random part.

The overall message is that random slopes should be included only if strongly sug-
gested by the subject-matter theory related to the application and if the data provide
sufficient information.

4.10.3 Convergence problems

Convergence problems can manifest themselves in different ways. Either estimates are
never produced, or standard errors are missing, or mixed produces messages such as
“nonconcave”, or “backed-up”, or “standard error calculation has failed”. Sometimes
none of these things happen, but the confidence intervals for some of the correlations
cover the full permissible range from −1 to 1 (see sections 7.3 and 8.13.2 for examples).

Convergence problems can occur because the estimated covariance matrix “tries”
to become negative definite, meaning, for instance, that variances try to become neg-
ative or correlations try to be greater than 1 or less than −1. All the commands in
Stata force the covariance matrix to be positive (semi)definite, and when parameters
approach nonpermissible values, convergence can be slow or even fail. It may help to
translate and rescale xij because variances and covariances are not invariant to these
transformations. Often a better remedy is to simplify the model by removing some
random slopes. Convergence problems can also occur because of lack of identification,
and again, a remedy is to simplify the model.

However, before giving up on a model, it is worth attempting to achieve convergence
by trying both the mle and the reml options, specifying the difficult option, trying the
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matlog option (which parameterizes the random part differently during maximization),
or increasing the number of EM iterations by using either the emiterate() option or
even the emonly option. It can also be helpful to monitor the iterations more closely
by using trace, which displays the parameter estimates at the end of each iteration
(unfortunately, not for the EM iterations). Lack of identification of a parameter might
be recognized by that parameter changing wildly between iterations without much of a
change in the log likelihood. Problems with a variance approaching 0 can be detected
by noticing that the log-standard deviation takes on very large negative values.

4.10.4 Lack of identification

Sometimes random-coefficient models are simply not identified (or in other words, un-
deridentified). As an important example, consider balanced data with clusters of size
nj = 2 and with a covariate xij taking the same two values t1 = 0 and t2 = 1 for each
cluster (an example would be the peak-expiratory-flow data from chapter 2). A model
with a random intercept, a random slope of xij , and a level-1 residual, all of which are
normally distributed, is not identified in this case. This can be seen by considering the
two distinct variances (for i = 1 and i = 2) and one covariance of the total residuals
when t1 = 0 and t2 = 1:

Var(ξ1j) = ψ11 + θ

Var(ξ2j) = ψ11 + 2ψ21 + ψ22 + θ

Cov(ξ1j , ξ2j) = ψ11 + ψ21

The marginal distribution of yij given the covariates is normal and therefore com-
pletely characterized by the fixed part of the model and these three model-implied
moments (two variances and a covariance). However, the three moments are deter-
mined by four parameters of the random part (ψ11, ψ22, ψ21, and θ), so fitting the
model-implied moments to the data would effectively involve solving three equations for
four unknowns. The model is therefore not identified. We could identify the model by
setting θ = 0, which does not impose any restrictions on the covariance matrix (how-
ever, such a constraint is not allowed in mixed). The original model becomes identified
if the covariate xij , which has a random slope, varies also between clusters because
the model-implied covariance matrix of the total residuals then differs between clusters,
yielding more equations to solve for the four parameters.

Still assuming that the random effects and level-1 residual are normally distributed,
consider now the case of balanced data with clusters of size nj = 3 and with a covariate
xij taking the same three values t1, t2, and t3 for each cluster. An example would be
longitudinal data with three occasions at times t1, t2, and t3. Instead of including a
random intercept and a random slope of time, it may be tempting to specify a random-
coefficient model with a random intercept and two random coefficients for the dummy
variables for occasions two and three. In total, such a model would contain seven
(co)variance parameters: six for the three random effects and one for the level-1 residual
variance. Because the covariance matrix of the responses for the three occasions given
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the covariates only has six elements, it is impossible to solve for all unknowns. The
same problem would occur when attempting to fit this kind of model for more than
three occasions.

4.11 Summary and further reading

In this chapter, we introduced the notion of slopes or regression coefficients varying
randomly between clusters in linear models. Linear random-coefficient models are par-
simonious representations of situations where each cluster has a separate regression
model with its own intercept and slope. The linear random-coefficient model was ap-
plied to a cross-sectional study of school effectiveness. Here students were nested in
schools, and we considered school-specific regressions.

An important consideration when using random-coefficient models is that the in-
terpretation of the covariance matrix of the random effects depends on the scale and
location of the covariates having random slopes. One should thus be careful when in-
terpreting the variance and covariance estimates. We briefly demonstrated a two-stage
formulation of random-coefficient models that is popular in some fields. This formu-
lation can be used to specify models that are equivalent to models specified using the
reduced-form formulation used in this book.

The utility of empirical Bayes prediction was demonstrated for visualizing the model,
making inferences for individual clusters, and for diagnostics. See Skrondal and Rabe-
Hesketh (2009) for a detailed discussion of prediction of random effects.

In section 3.7.4, we discussed the problem of level-2 endogeneity in random-intercept
models, where the random intercept is correlated with covariates. In random-coefficient
models, random slopes can also be correlated with covariates, a problem that is ad-
dressed in section 5.5.2 and by Bates et al. (2014).

Introductory books discussing random-coefficient models include Snijders and Bosker
(2012, chap. 5), Kreft and de Leeuw (1998, chap. 3), and Raudenbush and Bryk (2002,
chap. 2, 4). Papers and chapters with good overviews of much of the material we
covered in chapters 2–4 include Snijders (2004), Duncan, Jones, and Moon (1998), and
Steenbergen and Jones (2002); a useful list of multilevel terminology is provided by
Diez Roux (2002). These papers and chapters are among those collected in Skrondal
and Rabe-Hesketh (2010).

The first six exercises are on standard random-coefficient models applied to data from
different disciplines, whereas exercises 4.7 and 4.8 use random-coefficient models that
correspond to biometrical genetic models for nuclear family data. Random-coefficient
models for longitudinal data, often called growth-curve models, are considered in chap-
ter 7. Exercises 7.2, 7.5, 7.6, and 7.7, and parts of the other exercises in that chapter
can be viewed as supplementary exercises for the current chapter. Parts of exercises 6.1
and 6.2 are also relevant.
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4.12 Exercises

4.1 q Inner-London-schools data

1. Fit the random-coefficient model fit in section 4.9 by explicitly constructing
the covariates (not using factor variables).

2. Write down a model with the same covariates as in step 1 that also allows the
mean for mixed schools to differ between boys and girls controlling for LRT

(girl is a dummy for the student being a girl.) Write down null hypotheses
in terms of linear combinations of regression coefficients for the following
research questions:

a. Do girls perform better in girls-only schools than in mixed schools (after
controlling for the other covariates)?

b. Do boys perform better in boys-only schools than in mixed schools (after
controlling for the other covariates)?

3. Fit the model from step 2, and test the null hypotheses from step 2. Discuss
whether there is evidence that children of a given gender perform better in
single-sex schools.

4.2 High-school-and-beyond data

Raudenbush and Bryk (2002) and Raudenbush et al. (2019) analyzed data from
the High School and Beyond Survey.

The dataset hsb.dta has the following variables:

• Level 1 (student)

– mathach: a measure of mathematics achievement
– minority: dummy variable for student being non-White (versus White)
– female: dummy variable for student being female (versus male)
– ses: socioeconomic status (SES) based on parental education, occupa-

tion, and income

• Level 2 (school)

– schoolid: school identifier
– sector: dummy variable for school being Catholic (versus public)
– pracad: proportion of students in the academic track
– disclim: scale measuring disciplinary climate
– himinty: dummy variable for more than 40% minority enrollment

Raudenbush et al. (2019) specify a two-level model. We will use their model and
notation here. At level 1, math achievement Yij is regressed on student’s SES,
centered around the school mean:

Yij = β0j + β1j(X1ij −X1.j) + rij , rij ∼ N(0, σ2)

where X1ij is the student’s SES, X1.j is the school mean SES, and rij is a level-1
residual. At level 2, the intercepts and slopes are regressed on the dummy variable
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W1j for the school being a Catholic school (sector) and on the school mean SES

βpj = γp0 + γp1W1j + γp2X1.j + upj , p=0, 1, (u0j , u1j)
′ ∼ N(0,T)

where upj is a random effect (a random intercept if p=0 and a random slope if
p=1). The covariance matrix

T =

[
τ00 τ01
τ10 τ11

]

has three unique elements with τ10=τ01.

1. Substitute the level-2 models into the level-1 model, and write down the
resulting reduced form using the notation of this book.

2. Construct the variables meanses, equal to the school-mean SES (X1.j), and
devses, equal to the deviations of the student’s SES from their school means
(X1ij −X1.j).

3. Fit the model considered by Raudenbush et al. (2019) by using ML in mixed

and interpret the coefficients. In particular, interpret the estimate of γ12.

4. Fit the model that also includes disclim in the level-2 models and minority

in the level-1 model.

4.3 Homework data

Kreft and de Leeuw (1998) consider a subsample of eighth grade students from
the National Education Longitudinal Study of 1988 (NELS–88) collected by the
National Center for Educational Statistics of the U.S. Department of Education.
The students are viewed as nested in schools.

The data are given in homework.dta. In this exercise, we will use the following
subset of the variables:

• schid: school identifier

• math: continuous measure of achievement in mathematics (standardized to
have a mean of 50 and a standard deviation of 10)

• homework: number of hours of homework done per week

• white: student’s race (1: White; 0: non-White)

• ratio: class size as measured by the student–teacher ratio

• meanses: school mean socioeconomic status (SES)

1. Write down and state the assumptions of a random-coefficient model with
math as response variable and homework, white, and ratio as covariates.
Let the intercept and the effect of homework vary between schools.

2. Fit the model by REML using Kenward–Roger degrees of freedom and inter-
pret the parameter estimates.

3. Derive an expression for the estimated variance of math achievement condi-
tional on the covariates.
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4. How would you extend the model to investigate whether the effect of home-
work on math achievement depends on the mean SES of schools? Write down
both the two-stage and the reduced-form formulation of your extended model.

5. Fit the model from step 4.

4.4 Wheat-and-moisture data

Littell et al. (2006) describe data on ten randomly chosen varieties of winter wheat.
Each variety was planted on six randomly selected 1-acre plots of land in a 60-acre
field. The amount of moisture in the top 36 inches of soil was determined for each
plot before planting the wheat. The response variable is the yield in bushels per
acre.

The data, wheat.dta, contain the following variables:

• variety: variety (or type) of wheat (j)

• plot: plot (1 acre) on which wheat was planted (i)

• yield: yield in bushels per acre (yij)

• moist: amount of moisture in top 36 inches of soil prior to planting (xij)

In this exercise, variety of wheat will be treated as the cluster.

1. Write down the model for yield with a fixed and random intercept for variety
of wheat and a fixed and variety-specific random slope of moist. State all
model assumptions.

2. Fit the random-coefficient model by using REML with Kenward–Roger de-
grees of freedom.

3. Use a likelihood-ratio test to test the null hypothesis that the random-
coefficient variance is 0 (although this asymptotic test may require a larger
number of clusters).

4. For the chosen model, obtain the predicted yields for each variety (with EB

predictions substituted for the random effects).

5. Produce a trellis graph of predicted yield versus moisture, using the by()

option to obtain a separate graph for each variety.

6. Produce the same graphs as above but with observed values of yield added
as dots.

4.5 Well-being-in-the-U.S.-army data
Solutions

Bliese (2009) provides the data analyzed by Bliese and Halverson (1996). The data
are on soldiers (with the lowest five enlisted ranks) from 99 U.S. army companies
in noncombat environments stationed in the U.S. and Europe.
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The variables in the dataset army.dta are the following:

• grp: army company identification number

• wbeing: well-being assessed using the General Well-Being Schedule (Dupuy
1978), an 18-item scale measuring depression, anxiety, somatic complaints,
positive well-being, and emotional control

• hrs: answer to the question “How many hours do you usually work in a
day?”

• cohes: score on horizontal cohesion scale consisting of eight items, including
“My closest relationships are with people I work with”

• lead: score on an 11-item leadership consideration (vertical cohesion) scale
with a typical item being “The noncommissioned officer in this company
would lead well in combat”

1. Fit a random-intercept model for wbeing with fixed coefficients for hrs,
cohes, and lead, and a random intercept for grp. Use ML estimation with
robust standard errors.

2. Form the cluster means of the three covariates from step 1, and add them
as further covariates to the random-intercept model. Which of the cluster
means have coefficients that are significant at the 5% level?

3. Refit the model from step 2 after removing the cluster means that have
nonsignificant coefficient estimates at the 5% level. Interpret the remaining
coefficients and obtain the estimated intraclass correlation.

4. We have included soldier-specific covariates xij in addition to the cluster
means x·j . The coefficients of the cluster means represent the contextual
effects (see section 3.7.6). Use lincom to estimate the corresponding between
effects.

5. Add a random slope for lead to the model in step 3, and compare this model
with the model from step 3 using a likelihood-ratio test (Hint: use lrtest

with the force option).

6. Add a random slope for cohes to the model chosen in step 5, and compare
this model with the model from step 3 using a likelihood-ratio test. Retain
the preferred model.

7. Perform residual diagnostics for the level-1 errors, random intercept, and
random slope(s). Do the model assumptions appear to be satisfied?

4.6 Dialyzer data

Vonesh and Chinchilli (1997) analyzed data on low-flux dialyzers used to treat
patients with end-stage renal disease (kidney disease) to remove excess fluid and
waste from their blood. In low-flux hemodialysis, the ultrafiltration rate at which
fluid is removed (volume per time) is thought to follow a straight-line relationship
with the transmembrane pressure applied across the dialyzer membrane. In a
study to investigate this relationship, three centers measured the ultrafiltration
rate at several transmembrane pressures for each of several dialyzers, or patients.
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The variables in dialyzer.dta are as follows:

• subject: subject (or dialyzer) identifier

• tmp: transmembrane pressure (mmHg)

• ufr: ultrafiltration rate (ml/hr)

• center: center at which study was conducted

1. For each center, plot a graph of ufr versus tmp with separate lines for each
subject. You may want to use the by(center) option.

2. Write down a model that assumes a linear relationship between ufr and tmp

(denoted yij and xij , respectively), with mean intercepts and mean slopes
differing between the three centers. In the random part of the model, include
a random intercept and a random slope of xij .

3. Fit the model by REML using Kenward–Roger degrees of freedom.

4. Test whether the mean slopes differ significantly at the 5% level for each pair
of centers.

5. Plot the estimated mean line for each center on one graph, using twoway

function.

6. For center 1, produce a trellis graph of the data and fitted subject-specific
regression lines.

4.7 q Family-birthweight data
Solutions

Rabe-Hesketh, Skrondal, and Gjessing (2008) analyzed a random subset of the
birthweight data from the Medical Birth Registry of Norway described in Magnus
et al. (2001). There are 1,000 nuclear families each comprising mother, father,
and one child (not necessarily the only child in the family).

The data are given in family.dta. In this exercise, we will use the following
variables:

• family: family identifier (j)

• member: family member (i) (1: mother; 2: father; 3: child)

• bwt: birthweight in grams (yij)

• male: dummy variable for being male (x1ij)

• first: dummy variable for being the first child (x2ij)

• midage: dummy variable for mother of family member being aged 20–35 at
time of birth (x3ij)

• highage: dummy variable for mother of family member being older than 35
at time of birth (x4ij)

• birthyr: year of birth minus 1967 (1967 was the earliest birth year in the
birth registry) (x5ij)

In this dataset, family members are nested within families. Because of additive ge-
netic and environmental influences, there will be a particular covariance structure
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between the members of the same family. Rabe-Hesketh, Skrondal, and Gjessing
(2008) show that the following random-coefficient model can be used to induce
the required covariance structure (see also exercise 4.8):

yij = β1 + ζ1j(Mi +Ki/2) + ζ2j(Fi +Ki/2) + ζ3j(Ki/
√
2) + ǫij (4.5)

whereMi is a dummy variable for mothers, Fi is a dummy variable for fathers, and
Ki is a dummy variable for children. The random coefficients ζ1j , ζ2j , and ζ3j are
constrained to have the same variance ψ and to be uncorrelated with each other.
We assume that ζ1j ∼ N(0, ψ), ζ2j ∼ N(0, ψ), ζ3j ∼ N(0, ψ), and ǫij ∼ N(0, θ).
The variances ψ and θ can be interpreted as additive genetic and environmental
variances, respectively, and the total residual variance is ψ + θ.

1. Produce the required dummy variables Mi, Fi, and Ki.

2. Generate variables equal to the terms in parentheses in (4.5).

3. Which of the covariance structures available in mixed should be specified for
the random coefficients (see the help file for details on the covariance()

option)?

4. Fit the model given in (4.5) by using ML. The model does not include a
random intercept, so use the noconstant option.

5. Obtain the estimated proportion of the total variance that is attributable to
additive genetic effects.

6. Now fit the model including all the covariates listed above and having the
same random part as the model in step 3.

7. Interpret the estimated coefficients from step 6.

8. Conditional on the covariates, what proportion of the residual variance is
estimated to be due to additive genetic effects?

4.8 q Covariance-structure-for-nuclear-family data

This exercise concerns family data such as those of exercise 4.7 consisting of a
mother, father, and child. Here we consider three types of influences on birth-
weight: additive genetic effects (due to shared genes), common environmental
effects (due to shared environment), and unique environmental effects. These
random effects have variances σ2

A, σ
2
C , and σ

2
E , respectively.

The additive genetic effects have the following properties:

• The parents share no genes by descent, so their additive genetic effects are
uncorrelated.

• The child shares half its genes with each parent by decent, giving a correlation
of 1/2 with each parent.

• The additive genetic variance should be the same for each family member.

For birth outcomes, no two family members share a common environment because
they all developed in different wombs. We therefore cannot distinguish between
common and unique environmental effects.
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Rabe-Hesketh, Skrondal, and Gjessing (2008) show that we can use the following
random-coefficient model to produce the required covariance structure:

yij = β1 + ζ1j(Mi +Ki/2) + ζ2j(Fi +Ki/2) + ζ3j(Ki/
√
2) + ǫij (4.6)

where Mi, Fi, and Ki are dummy variables for mothers, fathers, and children,
respectively. The random coefficients ζ1j , ζ2j , and ζ3j produce the required addi-
tive genetic correlations and variances. These random coefficients are constrained
to have the same variance ψ = σ2

A and to be uncorrelated with each other. We
assume that ζ1j ∼ N(0, σ2

A), ζ2j ∼ N(0, σ2
A), ζ3j ∼ N(0, σ2

A), and ǫij ∼ N(0, θ).

1. By substituting the appropriate numerical values for the dummy variables
Mi, Fi, and Ki in (4.6), write down three separate models, one for mothers,
one for fathers, and one for children. It is useful to substitute i = 1 for
mothers, i = 2 for fathers, and i = 3 for children in these equations.

2. Using the equations from step 1, demonstrate that the total variance is the
same for mothers, fathers, and children.

3. Using the equations from step 1, demonstrate that the covariance between
mothers and fathers from the same families is 0.

4. Using the equations from step 1, demonstrate that the correlation between
the additive genetic components (terms involving ζ1j , ζ2j , or ζ3j) of mothers
and their children is 1/2.

5. What is the interpretation of θ in terms of variances of the common and
unique environment effects, σ2

C and σ2
E , respectively?

4.9 q Effect of covariate translation on random-effects covariance matrix

Using (4.2) and the estimates for the random-coefficient model without level-2

covariates given in section 4.5.2, calculate what values ψ̂11 and ψ̂21 would take if
you were to subtract 5 from the variable lrt and refit the model.
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