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Preface to the Second Edition

Microeconometrics Using Stata, published in December 2008, was written for Stata 10.1.
Microeconometrics Using Stata, Revised Edition, published in January 2010, was writ-
ten for Stata 11.0. This second edition is written for Stata 17.

Whereas the scope and coverage of the preceding editions were reasonably synchro-
nized with our own Microeconometrics: Methods and Applications (Cambridge, 2005),
this second edition has broader scope in several respects. We have attempted not only
to update our previous coverage to bring it in line with newer tools in the latest edition
of Stata but also to bring into the book many topics and methods that are now actively
studied and increasingly used in applied microeconometrics. This coverage includes
several topics, listed below, that were not covered in our 2005 text.

This second edition covers over ten years of both enhancements to Stata and devel-
opments in the methods most commonly used in empirical microeconometrics analysis.
The focus of the book remains the use of linear and nonlinear regression methods for
cross-sectional and short panel data. In particular, we give only short treatment to
other features of Stata that are useful for data analysis such as data management, use
within Stata of other programming languages such as Python, and automated document
preparation. The new edition is much expanded and is split into two volumes.

The first volume, comprising chapters 1–15 and Stata and Mata appendixes, focuses
on the linear regression model and provides a brief introduction to nonlinear regression
models. This volume is an expanded version of chapters 1–10, 12–13, and the appendixes
of the first and revised editions. In places, there is greater explanation of underlying
methods, and much of the first volume is intended to be suitable for an advanced
undergraduate course in addition to serving graduate students and researchers.

The second volume, comprising chapters 16–30, covers the standard nonlinear mod-
els as well as more advanced and more recent material. In addition to updated versions
of chapters 14–18 of the first edition and the revised edition, the second volume in-
cludes new chapters on duration models, treatment effects in randomized control trials,
treatment effects with endogenous treatments, parametric models for endogeneity and
heterogeneity, spatial regression, semiparametric regression, machine learning and pre-
diction, and Bayesian methods.

Some methods we cover are well established. Other methods we present are in areas
of active research, so they may become replaced by better methods. In particular,
many methods for causal analysis using observational or experimental methods are
still being established and improved upon, at a remarkably rapid pace. This includes
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inference for instrumental variables with weak instruments, cluster–robust inference
with few clusters, treatment-effects estimation with heterogeneous treatment effects,
regression discontinuity design, and causal analysis using machine learning methods.
Accordingly, we plan to periodically add some supplementary material on the book’s
website (http://cameron.econ.ucdavis.edu/mus2).

Our target user base consists of practitioners of applied microeconometrics. This
group is quite diverse in terms of familiarity with the available econometric tools. In
deference to such diversity, we have chosen to separate the more advanced aspects of
many topics and place them in different parts of the book. This is a challenging task
because often the same material could, and in some cases should, appear in several
alternative places. To assist the reader, we have provided numerous cross-references
and a much lengthier subject index. The reader will benefit from checking out these
connections.

Datasets and the do-files used in this book are available on the Stata Press website
at https://www.stata-press.com/data/mus2.html. Any corrections to the book will be
documented at https://www.stata-press.com/books/microeconometrics-stata/.

The preparation of this second edition has benefited from generous help from many
sources. We thank our colleagues, coauthors, students, and many users of the previous
editions for their suggested improvements, for reading parts of the book, for permission
to use datasets developed in joint research, and for encouragement to proceed with the
project. We have benefited from presenting some of the material in various short courses
around the world and from positive feedback from readers of the earlier editions that
encouraged writing this updated edition. Colin Cameron would especially like to thank
Shu Shen, Takuya Ura, Oscar Jorda, Marianne Bitler, the broader econometrics and
empirical microeconomics community at the University of California–Davis, and Doug
Miller and Adrian Pagan. Pravin Trivedi gratefully acknowledges the support provided
by the School of Economics, University of Queensland. We thank Yulia Marchenko
and Nikolay Balov for very detailed comments on the Bayesian chapters, and Kristin
MacDonald for a careful reading of the final draft of the book. We thank David Culwell
for his excellent editing and Stephanie White for managing the LATEX formatting and
production of this book. Most especially, both authors acknowledge their debt of grat-
itude to David Drukker for extensive feedback on many aspects of the material in the
book throughout this project, including a complete reading, as well as feedback on the
substantive aspects of applying the econometric and statistical tools. Finally, we thank
our respective families for their patience and understanding during the long gestation
period of the evolution of this project.

Davis, CA A. Colin Cameron
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3 Linear regression basics

3.1 Introduction
Linear regression analysis is often the starting point of an empirical investigation. Be-
cause of its relative simplicity, it is useful for illustrating the different steps of a typical
modeling cycle that involves an initial specification of the model followed by estimation,
diagnostic checks, and model respecification. The purpose of such a linear regression
analysis may be to summarize the data, generate conditional predictions, or test and
evaluate the role of specific regressors. We will illustrate these aspects using a specific
data example.

This chapter is limited to basic linear regression analysis on cross-sectional data
of a continuous dependent variable. The setup is for a single equation and exogenous
regressors. Some standard complications of linear regression, such as misspecification of
the conditional mean and model errors that are heteroskedastic, will be considered. In
particular, we model the natural logarithm of medical expenditures instead of the level.
We will ignore other various aspects of the data that can lead to more sophisticated
nonlinear models presented in later chapters.

3.2 Data and data summary
The first step is to decide what dataset will be used. In turn, this decision depends on
the population of interest and the research question itself. We discussed how to convert
a raw dataset to a form amenable to regression analysis in section 2.4. In this section,
we present ways to summarize and gain some understanding of the data, a necessary
step before any regression analysis.

3.2.1 Data description

We analyze medical expenditures in 2003 of individuals 65 years and older who qualify
for healthcare under the U.S. Medicare program. The original data source is the Medical
Expenditure Panel Survey.

Medicare does not cover all medical expenses. For example, copayments for medical
services and expenses of prescribed pharmaceutical drugs were not covered for the time
period studied here. About half of eligible individuals therefore purchase supplementary
insurance in the private market that provides insurance coverage against various out-
of-pocket expenses.
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In this chapter, we consider the impact of this supplementary insurance on total an-
nual medical expenditures of an individual, measured in dollars. A formal investigation
must control for the influence of other factors that also determine individual medical
expenditure, notably, sociodemographic factors such as age, gender, education and in-
come, geographical location, and health-status measures such as self-assessed health
and presence of chronic or limiting conditions. In this chapter, as in other chapters,
we instead deliberately use a short list of regressors. This permits shorter output and
simpler discussion of the results, an advantage because our intention is to simply explain
the methods and tools available in Stata.

3.2.2 Variable description

Given the Stata dataset for analysis, we begin by using the describe command to list
various features of the variables to be used in the linear regression. The command with-
out a variable list describes all the variables in the dataset. Here we restrict attention
to the variables used in this chapter.

. * Variable description for medical expenditure dataset

. use mus203mepsmedexp
(A.C.Cameron & P.K.Trivedi (2022): Microeconometrics Using Stata, 2e)
. describe totexp ltotexp posexp suppins phylim actlim totchr age female income
Variable Storage Display Value

name type format label Variable label

totexp double %12.0g Total medical expenditure
ltotexp float %9.0g ln(totexp) if totexp > 0
posexp float %9.0g posexp Total expenditure > 0
suppins float %9.0g suppins Has supp priv insurance
phylim double %12.0g phylim Has functional limitation
actlim double %12.0g actlim Has activity limitation
totchr double %12.0g # of chronic problems
age double %12.0g Age
female double %12.0g female Female
income double %12.0g Annual household income/1000

The variable types and format columns indicate that all the data are numeric. In this
case, some variables are stored in single precision (float) and some in double precision
(double). From the variable labels, we expect totexp to be nonnegative; ltotexp to be
missing if totexp equals 0; posexp, suppins, phylim, actlim, and female to be 0 or 1;
totchr to be a nonnegative integer; age to be positive; and income to be nonnegative or
positive. Note that the integer variables could have been stored much more compactly
as integer or byte. The variable labels provide a short description that is helpful but
may not fully describe the variable. For example, the key regressor suppins was created
by aggregating across several types of private supplementary insurance.
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3.2.3 Summary statistics

It is essential in any data analysis to first check the data by using the summarize
command.

. * Summary statistics for medical expenditure dataset

. summarize totexp ltotexp posexp suppins phylim actlim totchr age female income
Variable Obs Mean Std. dev. Min Max

totexp 3,064 7030.889 11852.75 0 125610
ltotexp 2,955 8.059866 1.367592 1.098612 11.74094
posexp 3,064 .9644256 .1852568 0 1
suppins 3,064 .5812663 .4934321 0 1
phylim 3,064 .4255875 .4945125 0 1

actlim 3,064 .2836162 .4508263 0 1
totchr 3,064 1.754243 1.307197 0 7

age 3,064 74.17167 6.372938 65 90
female 3,064 .5796345 .4936982 0 1
income 3,064 22.47472 22.53491 -1 312.46

On average, 96% of individuals incur medical expenditures during a year; 58% have
supplementary insurance; 43% have functional limitations; 28% have activity limita-
tions; and 58% are female because the elderly population is disproportionately female
because of the greater longevity of women. The only variable to have missing data is
ltotexp, the natural logarithm of totexp, which is missing for the (3064−2955) = 109
observations with totexp = 0.

All variables have the expected range, except that income is negative. To see how
many observations on income are negative, we use the tabulate command, restricting
attention to nonpositive observations to limit output.

. * Tabulate variable

. tabulate income if income <= 0
Annual

household
income/1000 Freq. Percent Cum.

-1 1 1.14 1.14
0 87 98.86 100.00

Total 88 100.00

Only one observation is negative, and negative income is possible for income from self-
employment or investment. We include the observation in the analysis here, though
checking the original data source may be warranted.

Much of the subsequent regression analysis will drop the 109 observations with 0
medical expenditures, so in a research article, it would be best to report summary
statistics without these observations.
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3.2.4 More detailed summary statistics

Additional descriptive analysis of key variables, especially the dependent variable, is
useful. For totexp, the level of medical expenditures, summarize, detail yields

. * Detailed summary statistics of a single variable

. summarize totexp, detail
Total medical expenditure

Percentiles Smallest
1% 0 0
5% 112 0
10% 393 0 Obs 3,064
25% 1271 0 Sum of wgt. 3,064
50% 3134.5 Mean 7030.889

Largest Std. dev. 11852.75
75% 7151 104823
90% 17050 108256 Variance 1.40e+08
95% 27367 123611 Skewness 4.165058
99% 62346 125610 Kurtosis 26.26796

Medical expenditures vary greatly across individuals, with a standard deviation of
11,853, which is almost twice the mean. The median of 3,135 is much smaller than the
mean of 7,031, reflecting the skewness of the data. For variable x, the skewness statistic
is a scale-free measure of skewness that estimates E[{(x − µ)/σ}3] = E{(x − µ)3}/σ3,
the third central moment standardized by the cube of the standard deviation. The
skewness is zero for symmetrically distributed data. The value here of 4.17 indicates
considerable right skewness. The kurtosis statistic is an estimate of E[{(x− µ)/σ}4] =
E{(x − µ)4}/σ4, the fourth central moment standardized by the fourth power of the
standard deviation. The reference value is 3, the value for normally distributed data.
The much higher value here of 26.27 indicates that the tails are much thicker than those
of a normal distribution. You can obtain additional summary statistics by using the
centile command to obtain other percentiles and by using the table command, which
is explained in section 3.2.6.

We conclude that the distribution of the dependent variable is considerably skewed
and has thick tails. These complications often arise for commonly studied individual-
level economic variables such as expenditures, income, earnings, wages, and house prices.
It is possible that including regressors will eliminate the skewness, but in practice, much
of the variation in the data will be left unexplained (R2 < 0.3 is common for individual-
level data), and skewness and excess kurtosis will remain.

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of
additive errors. A standard solution is to transform the dependent variable by taking the
natural logarithm. Here this is complicated by the presence of 109 0-valued observations.
We take the expedient approach of dropping the zero observations from analysis in either
logs or levels. This should make little difference here because only 3.6% of the sample
is then dropped. A better approach, using two-part or selection models, is covered in
sections 19.5–19.7.
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The output for tabstat in section 3.2.6 reveals that taking the natural logarithm
for these data essentially eliminates the skewness and excess kurtosis.

The community-contributed fsum command (Wolfe 2002) is an enhancement of
summarize that enables formatting the output and including additional information
such as percentiles and variable labels. The community-contributed outsum command
(Papps 2006) produces a text file of means and standard deviations for one or more sub-
sets of the data, for example, one column for the full sample, one for a male subsample,
and one for a female subsample.

3.2.5 Tables of frequencies

One-way tables can be created by using the tabulate command, presented in sec-
tion 3.2.3, the table command, and the tabstat command. Two-way tables can also
be created by using these commands.

For two-way tables of frequencies, only table produces clean output. For example,

. * Two-way table of frequencies

. table female totchr

# of chronic problems
0 1 2 3 4 5 6 7 Total

Female
No 239 415 323 201 82 23 4 1 1,288
Yes 313 466 493 305 140 46 11 2 1,776
Total 552 881 816 506 222 69 15 3 3,064

provides frequencies for a two-way tabulation of gender against the number of chronic
conditions. The option stat(percent) provides percentages rather than frequencies.
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The tabulate command can provide both row and column percentages. For exam-
ple,

. * Two-way table with row and column percentages and Pearson chi-squared

. tabulate female suppins, row col chi2

Key

frequency
row percentage

column percentage

Has supp priv
insurance

Female No Yes Total

No 488 800 1,288
37.89 62.11 100.00
38.04 44.92 42.04

Yes 795 981 1,776
44.76 55.24 100.00
61.96 55.08 57.96

Total 1,283 1,781 3,064
41.87 58.13 100.00
100.00 100.00 100.00

Pearson chi2(1) = 14.4991 Pr = 0.000

Comparing the row percentages for this sample, we see that while a woman is more
likely to have supplemental insurance than not, the probability that a woman in this
sample has purchased supplemental insurance is lower than the probability that a man
in this sample has purchased supplemental insurance. Although we do not have the
information to draw these inferences for the population, the results for Pearson’s chi-
squared test soundly reject the null hypothesis that these variables are independent.
Other tests of association are available. The related command tab2 will produce all
possible two-way tables that can be obtained from a list of several variables.
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For multiway tables, it is best to use table. For the example at hand, we have

. * Three-way table of frequencies

. table female suppins totchr, nototals

# of chronic problems
0 1 2 3 4 5 6 7

Female
No

Has supp priv insurance
No 102 165 121 68 25 6 1
Yes 137 250 202 133 57 17 3 1

Yes
Has supp priv insurance
No 135 212 233 134 56 22 1 2
Yes 178 254 260 171 84 24 10

An alternative is to use tabulate with the by prefix, but the results are not as neat as
those from table.

3.2.6 Tables of summary statistics

The preceding tabulations will produce voluminous output if one of the variables being
tabulated takes on many values. Then it is much better to use command table with
the statistics() option to present tables that give key summary statistics for that
variable, such as the mean and standard deviation. Note that the statistics() option,
abbreviated stat(), was introduced in Stata 17 and replaces the contents() option
available in earlier versions of Stata. Such tabulations can be useful even when variables
take on few values. For example, when summarizing the number of chronic problems
by gender, table yields

. * One-way table of summary statistics

. table (result) female, stat(count totchr) stat(mean totchr) stat(sd totchr)
> stat(p50 totchr)

Female
No Yes Total

Number of nonmissing values 1,288 1,776 3,064
Mean 1.659938 1.822635 1.754243
Standard deviation 1.261175 1.335776 1.307197
50th percentile 1 2 2

Women on average have more chronic problems (1.82 versus 1.66 for men). The option
stat() can produce many other statistics, including the minimum, maximum, and key
percentiles.



92 Chapter 3 Linear regression basics

The table command with the stat() options can additionally produce two-way and
multiway tables of summary statistics. As an example,

. * Two-way table of summary statistics

. table female suppins, stat(count totchr) stat(mean totchr) nototals

Has supp priv insurance
No Yes

Female
No

Number of nonmissing values 488 800
Mean 1.530738 1.73875

Yes
Number of nonmissing values 795 981
Mean 1.803774 1.83792

shows that those with supplementary insurance on average have more chronic problems.
This is especially so for males (1.74 versus 1.53).

The tabulate, summarize() command can be used to produce one-way and two-
way tables with means, standard deviations, and frequencies. This is a small subset of
the statistics that can be produced using table, so we might as well use table.

The tabstat command provides a table of summary statistics that permits more
flexibility than summarize. The following output presents summary statistics on medical
expenditures and the natural logarithm of expenditures that are useful in determining
skewness and kurtosis.

. * Summary statistics obtained using command tabstat

. tabstat totexp ltotexp, statistics(count mean p50 sd skew kurt)
> columns(statistics)

Variable N Mean p50 SD Skewness Kurtosis

totexp 3064 7030.889 3134.5 11852.75 4.165058 26.26796
ltotexp 2955 8.059866 8.111928 1.367592 -.3857887 3.842263

This reproduces information given in section 3.2.4 and shows that taking the natural
logarithm eliminates most skewness and kurtosis. The columns(statistics) option
presents the results with summary statistics being given in the columns and each variable
being given in a separate row. Without this option, we would have summary statistics
in rows and variables in the columns. A two-way table of summary statistics can be
obtained by using the by() option.

The collect command, introduced in Stata 17, provides great flexibility in creating
production-quality tables. The command is illustrated in section 3.5.7.
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3.2.7 Hypothesis tests on the population mean

The ttest command can be used to test hypotheses about the population mean of a
single variable (H0 : µ = µ∗ for specified value µ∗) and to test the equality of means
(H0 : µ1 = µ2). For more general analysis of variance and analysis of covariance,
the oneway and anova commands can be used, and several other tests exist for more
specialized examples such as testing the equality of proportions.

These commands are rarely used in microeconometrics because they can be recast
as a special case of regression with an intercept and appropriate indicator variables.
Furthermore, regression has the advantage of reliance on less restrictive distributional
assumptions, provided samples are large enough for asymptotic theory to provide a good
approximation.

For examples of the ttest command and comparison with tests based on OLS esti-
mation, see section 3.5.12.

3.2.8 Data plots

It is useful to plot a smoothed histogram or a density estimate of the dependent variable.
Here we use the kdensity command, which provides a kernel estimate of the density.

The data are highly skewed, with a 97th percentile of approximately $40,000 and
a maximum of $125,000. The kdensity totexp command will therefore bunch 97% of
the density in the first 30% of the x axis. One possibility is to type kdensity totexp
if totexp < 40000, but this produces a kernel density estimate assuming the data
are truncated at $40,000. Instead, we use command kdensity totexp, we save the
evaluation points in kx1 and the kernel density estimates in kd1, and then we line-plot
kd1 against kx1.

We do this for both the level and the natural logarithm of medical expenditures, and
we use graph combine to produce a figure that includes both density graphs (shown in
figure 3.1). We have

. * Kernel density plots with adjustment for highly skewed data

. kdensity totexp if posexp==1, generate(kx1 kd1) n(500)

. graph twoway (line kd1 kx1) if kx1 < 40000, name(levels, replace)

. label variable ltotexp "Natural logarithm of expenditure"

. kdensity ltotexp if posexp==1, generate(kx2 kd2) n(500)

. graph twoway (line kd2 kx2) if kx2 < ln(40000), name(logs, replace)

. graph combine levels logs, iscale(1.2) ysize(2.5) xsize(6.0)
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Figure 3.1. Comparison of densities of level and natural logarithm of medical expendi-
tures

Only positive expenditures are considered, and for graph readability, the very long
right tail of totexp has been truncated at $40,000. In figure 3.1, the distribution of
totexp is very right skewed, whereas that of ltotexp is fairly symmetric.

3.3 Transformation of data before regression
When one specifies a linear regression model, the presumption is that the specified
relationship between the variable of interest y and the regressors x is linear, which
means that the marginal response of y to a unit change in x is constant.

The preferred model linking y and the regressors, however, may not be linear. For
example, the relation between total production costs and output is usually specified
to be nonlinear. In such cases, it is usual to interpret the regression as linear after
transformation from the original units. Transformations to the linear form may involve
both y and x, or just one of those components.

The purpose of the transformation is to “straighten out” a relationship. Consider
some leading examples. Suppose that the relationship takes the form y = exp(β1+β2x+
u), where x denotes the regressor and u is the error term. Then the transformation
ln y = β1 + β2x+ u is a “semilog” or “log-linear” regression that relates ln y to x. After
transformation, β2 measures ∂E(ln y)/∂x = (1/y)× ∂y/∂x, which varies inversely with
y.

Now consider the multiplicative relationship y = eβ1xβ2u. Taking logs on both sides
of the equality yields ln y = β1 + β2 lnx+ lnu, a linear-in-logs or log–log regression. In
this case, the coefficient β1 measures ∂E{ln(y)/∂ lnx}, that is, the elasticity of y with
respect to x based on the constant elasticity model.
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In both the preceding examples, while the dependent variable and, in the second
example, the regressor have been transformed, the transformed models are linear in the
parameters. So the transformed models can be fit using OLS regression, the subject of
this chapter.

More generally, we may consider a regression such as g(y) = f(x, β) + u, where
g(·) and f(·) denote some linearizing transformation whose specific form will depend
upon the context. Choosing the functions that provide the best approximations to the
data-generating process (DGP) is a part of model specification. Having chosen one, one
relies on statistical tests to check whether the functional form is such that the remaining
unexplained variation is roughly random.

Although the least-squares estimator of the linear regression requires only the data,
or the error on the regression, to have quite weak distributional properties, transfor-
mations are often motivated by a preference for some particular features. For example,
some outcomes such as income and expenditure often display a highly skewed distribu-
tion. A log transformation will typically make the distribution more symmetric and less
nonnormal.

Another motivation for transformation is to make the error variance less hetero-
skedastic. For example, in its original form, a regression may display dependence
between (say) the location parameter E(y|x) and scale parameter Var(y|x); a trans-
formation may get rid of such dependence by reducing the heteroskedasticity of the
error term. A family of power transformations, known as Box–Cox transformations,
that replaces y by yp is motivated by a similar consideration. A special case is p = 1/2,
the square-root transformation. In a third example, suppose y is positive and we want
to ensure that fitted values of y remain positive. A log transformation ensures this. In
the final example, suppose y is a proportion, that is, 0 < y < 1, and again we want the
fitted values from the regression to preserve this property, whereas the linear regression
of y on x will not. The logit transformation uses the transformed dependent variable
log{y/(1 − y)}, which satisfies this requirement. This transformation also changes the
range of values of the dependent variable, producing greater symmetry and spread in the
tails of the distribution. In some cases, such changes make the least-squares estimator
more robust.

Transformations generally affect the interpretations of regression coefficients, and
transformations involving the dependent variables will also affect measures of goodness
of fit such as regression R2. This means that regression statistics such as R2 with g(y)
as a dependent variable cannot be directly compared with those with y as the dependent
variable. This complicates the comparison of regressions with different transformations
of the dependent variable. A substantial literature exists on the topic of comparison
of linear and linear-in-logs regressions; see Godfrey and Wickens (1981) and references
cited there.

Finally, even if one chooses to regress g(y) on h(x), one may want to interpret the
results in terms of the original units of y and x. This involves a thorny problem of
retransformation that is discussed in section 4.2.3. In some cases, retransformation can
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be avoided by directly modeling y using methods more advanced than OLS regression. In
particular, we can use Poisson regression (poisson command) in place of the log-linear
model and use logit regression (logit command) for proportions data.

Economic theory rarely suggests a specific parametric form of a regression model,
thereby leaving room for empirical explorations. Nonparametric regressions (see sec-
tion 14.6) are less restrictive in this respect.

3.4 Linear regression
We present the linear regression model, first in levels and then for a transformed de-
pendent variable, here in logs.

3.4.1 Basic regression theory

We begin by introducing terminology used throughout the rest of this book. Let θ
denote the vector of parameters to be estimated, and let θ̂ denote an estimator of θ.
Ideally, the distribution of θ̂ is centered on θ with small variance, for precision, and a
known distribution, to permit statistical inference. We restrict analysis to estimators
that are consistent for θ, meaning that in infinitely large samples, θ̂ equals θ aside from
negligible random variation. This is denoted by θ̂

p→ θ or, more formally, by θ̂
p→ θ0,

where θ0 denotes the unknown “true” parameter value. A necessary condition for
consistency is correct model specification or, in some leading cases, correct specification
of key components of the model, most notably the conditional mean.

Under additional assumptions, most of the estimators considered in this book are
asymptotically normally distributed, meaning that their distribution is well approxi-
mated by the multivariate normal in large samples. This is denoted by

θ̂
a∼ N

{
θ, Var

(
θ̂
)}

where Var(θ̂) denotes the (asymptotic) variance–covariance matrix of the estimator
(VCE). More efficient estimators have smaller VCEs. The VCE depends on unknown
parameters, so we use an estimate of the VCE, denoted by V̂ (θ̂). Standard errors of
the parameter estimates are obtained as the square root of diagonal entries in V̂ (θ̂).
Different assumptions about the DGP, such as heteroskedasticity, can lead to different
estimates of the VCE.

Test statistics based on asymptotic normal results lead to the use of the standard
normal distribution and chi-squared distribution to compute critical values and p-values.
For some estimators, notably, the OLS estimator, tests are instead based on the t dis-
tribution and the F distribution. This makes essentially no difference in large samples
with, say, degrees of freedom greater than 100, but in practice it provides a better ap-
proximation especially for cluster–robust inference with few clusters; see section 3.4.6.
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3.4.2 OLS regression and matrix algebra

The goal of linear regression is to estimate the parameters of the linear conditional mean

E(y|x) = x′β = β1x1 + β2x2 + · · ·+ βKxK (3.1)
where usually an intercept is included so that x1 = 1. Here x is a K × 1 column vector
with the jth entry—the jth regressor xj—and β is a K× 1 column vector with the jth
entry βj .

Sometimes, E(y|x) is of direct interest for prediction. More often, however, econo-
metrics studies are interested in one or more of the associated marginal effects (MEs),

∂E(y|x)
∂xj

= βj

for the jth regressor. For example, we are interested in the MEs of supplementary
private health insurance on medical expenditures. An attraction of the linear model is
that estimated MEs are given directly by estimates of the slope coefficients.

The linear regression model specifies an additive (often specified to be independent
and identically distributed) error so that, for the typical ith observation,

yi = x′
iβ + ui, i = 1, . . . , N

The OLS estimator minimizes the sum of squared errors,
∑N

i=1(yi − x′
iβ)

2.

Matrix notation provides a compact way to represent the estimator and variance
matrix formulas that involve sums of products and cross products. We define the N ×1
column vector y to have the ith entry yi, and we define the N ×K regressor matrix X
to have the ith row x′

i. Then the OLS estimator can be written in several ways, with

β̂ = (X′X)
−1

X′y

=

(
N∑
i=1

xix
′
i

)−1 N∑
i=1

xiyi

=



N∑
i=1

x2
1i

N∑
i=1

x1ix2i · · ·
N∑
i=1

x1ixKi

N∑
i=1

x2ix1i

N∑
i=1

x2
2i

...
...

. . .
...

N∑
i=1

xKix1i · · · · · ·
N∑
i=1

x2
Ki



−1 

N∑
i=1

x1iyi

N∑
i=1

x2iyi

...
N∑
i=1

xKiyi


We define all vectors as column vectors, with a transpose if row vectors are desired.

By contrast, Stata commands and Mata commands define vectors as row vectors, so in
parts of Stata and Mata code, we need to take a transpose to conform to the notation
in the book.
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3.4.3 Properties of the OLS estimator

The properties of any estimator vary with the assumptions made about the DGP. For
the linear regression model, this reduces to assumptions about the regression error ui.

The starting point for analysis is to assume that ui satisfies the following classical
conditions:

1. E(ui|xi) = 0 (exogeneity of regressors)
2. E(u2

i |xi) = σ2 (conditional homoskedasticity)
3. E(uiuj |xi,xj) = 0, i 6= j (conditionally uncorrelated observations)

Assumption 1 is essential for consistent estimation of β and implies that the condi-
tional mean given in (3.1) is correctly specified. This means that the conditional mean
is linear and that all relevant variables have been included in the regression. Assump-
tion 1 is relaxed in chapter 7. Assumptions 2 and 3 determine the form of the VCE of
β̂.

3.4.4 Default standard errors

Assumptions 1–3 lead to β̂ being asymptotically normally distributed with the default
estimator of the VCE

V̂default

(
β̂
)
= s2(X′X)−1

where

s2 = (N −K)−1
N∑
i=1

û2
i (3.2)

and ûi = yi − x′
iβ̂. Under assumptions 1–3, the OLS estimator is fully efficient. If,

additionally, ui is normally distributed, then “t statistics” are exactly t distributed. This
fourth assumption is not made, but it is common to continue to use the t distribution
in the hope that it provides a better approximation than the standard normal in finite
samples.

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 6,
we present examples of more efficient, feasible generalized least-squares estimation. In
the current chapter, we continue to use the OLS estimator, as is often done in practice,
but we use alternative estimates of the VCE that are valid when assumption 2, assump-
tion 3, or both are relaxed, provided the sample size is sufficiently large for the relevant
asymptotic theory to provide a good approximation.
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3.4.5 Heteroskedasticity-robust standard errors

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors.
Then a robust estimator, or more precisely a heteroskedasticity-robust estimator, of the
VCE of the OLS estimator is

V̂robust

(
β̂
)
= (X′X)−1

(
N

N −K

N∑
i=1

û2
ixix

′
i

)
(X′X)−1 (3.3)

For cross-sectional data that are independent, this estimator, introduced by White
(1980), has supplanted the default variance matrix estimate in most applied work be-
cause heteroskedasticity is the norm, and in that case, the default estimate of the VCE
is incorrect.

In Stata, a robust estimate of the VCE is obtained by using the vce(robust) option
of the regress command, as illustrated in section 3.5.2. Related options are vce(hc2)
and vce(hc3), which may provide better heteroskedasticity-robust estimates of the VCE
when the sample size is small; see [R] regress. The robust estimator of the VCE has been
extended to other estimators and models, and a feature of Stata is the vce(robust) op-
tion, which is applicable for many estimation commands. Some community-contributed
commands use robust in place of vce(robust).

3.4.6 Cluster–robust standard errors

When errors for different observations are correlated, assumption 3 is violated. Then
both default and heteroskedastic robust estimates of the VCE are invalid, and different
ways in which error correlation may arise lead to different robust estimates of the VCE.
Various robust estimates of the VCE are presented in section 13.4.

For cross-sectional data, the most common violation of assumption 3 is that errors
are clustered. Clustered or grouped errors are errors that are correlated within a cluster
or group and are uncorrelated across clusters. A simple example of clustering arises
when sampling is of independent units but errors for individuals within the unit are
correlated. For example, 100 independent villages may be sampled, with several people
from each village surveyed. Then, if a regression model overpredicts y for one village
member, it is likely to overpredict for other members of the same village, indicating
positive correlation. Similar comments apply when sampling is of households with
several individuals in each household. Another leading example is panel data with
independence over individuals but with correlation over time for a given individual.

Given assumption 1, but not 2 or 3, a cluster–robust estimator of the VCE of the
OLS estimator is

V̂cluster

(
β̂
)
= (X′X)

−1

(
G

G− 1

N − 1

N −K

G∑
g=1

Xgûgû
′
gX

′
g

)
(X′X)

−1

where g = 1, . . . , G denotes the cluster (such as village), ûg is the vector of residuals
for the observations in the gth cluster, and Xg is a matrix of the regressors for the
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observations in the gth cluster. The key assumptions made are error independence
across clusters and that the number of clusters G → ∞.

Cluster–robust standard errors can be computed by using the vce(cluster clust-
var) option in Stata, where clusters are defined by the different values taken by the
clustvar variable. The estimate of the VCE is in fact heteroskedasticity-robust and clus-
ter–robust because there is no restriction on Cov(ugi, ugj). The cluster VCE estimate
can be applied to many estimators and models; see section 13.4.6.

Cluster–robust standard errors must be used when data are clustered. For a scalar
regressor x, a rule of thumb is that cluster–robust standard errors are

τ '
√

1 + ρxρu(M − 1) (3.4)

times the incorrect default standard errors, where ρx is the within-cluster correlation
coefficient of the regressor, ρu is the within-cluster correlation coefficient of the error, and
M is the average cluster size. This rule of thumb is a good guide in most settings, but
when x is an experimentally assigned treatment with values that vary across observations
within the same cluster, one should use the more general rule of thumb that τ '√
1 + ρxu(M − 1), where ρxu is the within-cluster correlation of xiui. Cluster–robust

standard errors can be much larger than default or heteroskedastic–robust standard
errors.

It can be necessary to use cluster–robust standard errors even where it is not im-
mediately obvious. This is particularly the case when a regressor is an aggregated or
macrovariable because then ρx = 1. For example, suppose we use data from the U.S.
Current Population Survey and regress individual earnings on individual characteristics
and a state-level regressor that does not vary within a state. Then, if there are many
individuals in each state so M is large, even slight error correlation for individuals
in the same state can lead to great downward bias in default standard errors and in
heteroskedasticity-robust standard errors. Clustering can also be induced by the design
of sample surveys. This topic is pursued in section 6.9.

Statistical inference for OLS based on cluster–robust standard errors uses critical
values and p-values based on the t distribution with (G− 1) degrees of freedom, where
G is the number of clusters. When there are few clusters, this approximation can lead
to considerable underestimation of standard errors and associated test p-values and to
confidence intervals that are too narrow. Better inference for OLS with few clusters
is pursued in section 6.4.6 and in section 12.6. In particular, see section 12.6 for the
community-contributed boottest command (Roodman et al. 2019), which implements
a wild cluster bootstrap that can lead to better finite cluster inference.

Many microeconometric applications use clustered data. Then other estimators than
OLS are often used, most notably fixed-effects and random-effects estimators. For linear
models, these methods are presented in sections 6.5–6.7 and, for panel data, in chapter 8.
For nonlinear models, see section 13.9 and, for panel data, see chapter 22. For the
recently proposed design-based approach to inference, see section 24.4.7.
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3.4.7 Bootstrap standard errors

An appropriate alternative way to compute heteroskedasticity-robust or cluster–robust
standard errors is to use an appropriate bootstrap. This is a widely applicable method
for obtaining standard errors and confidence intervals for parameters in cases where
the asymptotic distribution is either not available or is available but is inconvenient to
implement.

Here we present simple bootstraps that yield standard errors that are asymptoti-
cally equivalent to those obtained using the vce(robust) and vce(cluster clustvar)
options. A refined bootstrap procedure, if feasible, provides an improvement over the
usual asymptotic distribution. These distinctions are further developed and used in
section 12.5.

The basic idea of the bootstrap is that the sample is used as a population, and
we then obtain a number of samples from this “population” by repeatedly resampling
observations with replacement. Such samples are referred to as bootstrap samples. This
is a substitute for the ideal but impractical situation of having multiple independent
samples. We then obtain the sampling distribution of the parameters of interest by
fitting the same model to the many bootstrap samples. Moments of the distribution
can then be computed from the collection of estimates.

Resampling from a given sample is easiest to understand in the independent and
identically distributed setting with sample yi, i = 1, . . . , N . Suppose that the target
parameter is the population mean, denoted µ, and the estimator µ̂ is the sample mean
y. Then we can draw B different samples of N observations each by sampling with
replacement. Each sample generates a sample mean, yb, b = 1, . . . , B, so we have B
independent estimates. Moments of the distribution of µ̂ can then be computed given
the empirical distribution of these B estimates.

Now consider the linear regression setting with data (yi,xi), i = 1, . . . , N , and model
errors that are independent but heteroskedastic. A bootstrap called a paired bootstrap
or nonparametric bootstrap obtains bootstrap resamples by sampling (yi,xi), jointly
and with replacement. Each bootstrap sample of N observations generates an estimate
of the regression parameters, denoted β̂b, b = 1, . . . , B.

The bootstrap estimate of variance of an estimator is the usual formula for estimating
a variance of (say) βj , applied to the B bootstrap replications

s2
β̂j

=
1

B − 1

∑
b

(
β̂jb − β̂jb

)2
The bootstrap 100(1 − α) percent confidence interval for βj is obtained by using the
asymptotic α percent critical values from the standard normal distribution,(

β̂j − zα/2 × sβ̂j
, β̂j + zα/2 × sβ̂j

)
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where Pr(Z > zα/2) = α/2. This bootstrap yields standard errors and confidence
intervals that are asymptotically equivalent to those obtained using heteroskedastic–
robust standard errors.

When regression model errors are instead clustered, the preceding method is adapted
by resampling entire clusters with replacement. Each bootstrap sample of G clusters
generates an estimate of the regression parameters, denoted β̂b, b = 1, . . . , B. Then
s2
β̂j

and the associated confidence interval are computed using the preceding formulas.
This cluster pairs bootstrap yields standard errors and confidence intervals that are
equivalent as G → ∞ to those obtained using cluster–robust standard errors.

3.4.8 Regression in logs

The medical expenditure data are very right skewed. Then a linear model in levels can
provide very poor predictions because it restricts the effects of regressors to be additive.
For example, aging 10 years is assumed to increase medical expenditures by the same
amount regardless of observed health status. Instead, it is more reasonable to assume
that aging 10 years has a multiplicative effect. For example, it may increase medical
expenditures by 20%.

We begin with an exponential mean model for positive expenditures, with error
that is also multiplicative, so yi = exp(x′

iβ)εi. Defining εi = exp(ui), we have yi =
exp(x′

iβ + ui), and taking the natural logarithm, we fit the log-linear model

ln yi = x′
iβ + ui

by OLS regression of ln y on x. The conditional mean of ln y is being modeled, rather
than the conditional mean of y. In particular,

E(ln y|x) = x′β

assuming ui has conditional mean zero.

Parameter interpretation requires care. For regression of ln y on x, the coefficient βj

measures the effect of a change in regressor xj on E(ln y|x), but ultimate interest lies
instead on the effect on E(y|x). Some algebra shows that βj measures the proportionate
change in E(y|x) as xj changes, called a semielasticity, rather than the level of change
in E(y|x). For example, if βj = 0.02, then a one-unit change in xj is associated with a
proportionate increase of 0.02, or a 2% increase, in E(y|x).

Prediction of E(y|x) is substantially more difficult because it can be shown that
E(ln y|x) 6= exp(x′β). This is pursued in section 4.2.3. Buntin and Zaslavsky (2004)
compare several alternative regression models for medical expenditures.

3.5 Basic regression analysis
We use regress to run an OLS regression of the natural logarithm of medical expendi-
tures, ltotexp, on suppins and several demographic and health-status measures. Using




