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Preface to the Revised Edition

Microeconometrics Using Stata, published in December 2008, was written for Stata 10.1.
The book incorporated version 10.1 additions to Stata 10.0, most notably, the new
random-number generators.

In this revised edition, we present other additions to Stata 10 that appear for the
first time in Stata 11. With few exceptions, we present these additions in a way that
reproduces the results given in the first edition.

First, we introduce the new construct of factor variables. These provide a simple way
to specify models with sets of indicator variables formed from a categorical variable and
to specify models with interactions. Factor variables replace the xi prefix command.
See especially section 1.3.4 and the end of section [2.4.7]

Second, we describe the new margins command for prediction and for computation of
marginal effects in regression models. The margins command with options including the
dydx () option replaces the Stata mfx command and the user-written margeff command.
Additionally, the margins command when used in conjunction with factor variables can
simplify computation of marginal effects in models with interactions. See sections[10.5
and [10.6, especially subsections [10.5.7) and [10.6.5. Throughout this revised edition,
notably, in chapters 14417, we replace mfx and margeff with the margins command.

In the first edition, we most often calculated the marginal effect at the mean (MEM),
rather than the average marginal effect (AME), because the mfx command did not com-
pute the AME. The new margins command can compute both the MEM and the AME.
In this revised edition, we have endeavored to replicate the results given in the first
edition. For that reason, we continue to most frequently calculate the MEM, though in
practice, the AME is usually preferred.

Third, we describe the new gmm command for generalized method of moments and
nonlinear instrumental-variables estimation. See sections|[10.3.8/and [17.5.2.

Fourth, we present some minor changes that need to be made to the existing ml
command when the d1 and d2 methods are used. These changes arise because the ml
command is now a front-end to the new Mata moptimize () function. We also present
the new 1£0, 1£1, and 1£2 methods. See section/11.6] The Mata optimize () v evaluator
has been renamed to gf evaluator; see section 11.7.



x1 Preface to the Revised Edition

We thank the Stata staff, especially Patricia Branton, David Drukker, Lisa Gilmore,
Deirdre Patterson, and Brian Poi, for their assistance in preparing this revised edition.

Davis, CA A. Colin Cameron
Bloomington, IN Pravin K. Trivedi
January 2010



Preface to the First Edition

This book explains how an econometrics computer package, Stata, can be used to per-
form regression analysis of cross-section and panel data. The term microeconometrics
is used in the book title because the applications are to economics-related data and be-
cause the coverage includes methods such as instrumental-variables regression that are
emphasized more in economics than in some other areas of applied statistics. However,
many issues, models, and methodologies discussed in this book are also relevant to other
social sciences.

The main audience is graduate students and researchers. For them, this book
can be used as an adjunct to our own Microeconometrics: Methods and Applications
(Cameron and Trivedi 2005), as well as to other graduate-level texts such as Greene
(2008) and Wooldridge (2002). By comparison to these books, we present little theory
and instead emphasize practical aspects of implementation using Stata. More advanced
topics we cover include quantile regression, weak instruments, nonlinear optimization,
bootstrap methods, nonlinear panel-data methods, and Stata’s matrix programming
language, Mata.

At the same time, the book provides introductions to topics such as ordinary least-
squares regression, instrumental-variables estimation, and logit and probit models so
that it is suitable for use in an undergraduate econometrics class, as a complement to
an appropriate undergraduate-level text. The following table suggests sections of the
book for an introductory class, with the caveat that in places formulas are provided
using matrix algebra.

Stata basics Chapter 1.1-1.4
Data management Chapter 2.1-2.4, 2.6
OLS Chapter 3.1-3.6
Simulation Chapter 4.6-4.7

GLS (heteroskedasticity) Chapter 5.3
Instrumental variables Chapter 6.2-6.3

Linear panel data Chapter 8
Logit and probit models Chapter 14.1-14.4
Tobit model Chapter 16.1-16.3

Although we provide considerable detail on Stata, the treatment is by no means
complete. In particular, we introduce various Stata commands but avoid detailed listing
and description of commands as they are already well documented in the Stata manuals
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and online help. Typically, we provide a pointer and a brief discussion and often an
example.

As much as possible, we provide template code that can be adapted to other prob-
lems. Keep in mind that to shorten output for this book, our examples use many fewer
regressors than necessary for serious research. Our code often suppresses intermedi-
ate output that is important in actual research, because of extensive use of command
quietly and options nolog, nodots, and noheader. And we minimize the use of graphs
compared with typical use in exploratory data analysis.

We have used Stata 10, including Stata updatesE Instructions on how to obtain
the datasets and the do-files used in this book are available on the Stata Press web
site at http://www.stata-press.com/data/mus.html. Any corrections to the book will
be documented at http://www.stata-press.com/books/mus.html.

We have learned a lot of econometrics, in addition to learning Stata, during this
project. Indeed, we feel strongly that an effective learning tool for econometrics is
hands-on learning by opening a Stata dataset and seeing the effect of using different
methods and variations on the methods, such as using robust standard errors rather than
default standard errors. This method is beneficial at all levels of ability in econometrics.
Indeed, an efficient way of familiarizing yourself with Stata’s leading features might be
to execute the commands in a relevant chapter on your own dataset.

We thank the many people who have assisted us in preparing this book. The project
grew out of our 2005 book, and we thank Scott Parris for his expert handling of that
book. Juan Du, Qian Li, and Abhijit Ramalingam carefully read many of the book
chapters. Discussions with John Daniels, Oscar Jorda, Guido Kuersteiner, and Doug
Miller were particularly helpful. We thank Deirdre Patterson for her excellent editing
and Lisa Gilmore for managing the IXTEX formatting and production of this book.
Most especially, we thank David Drukker for his extensive input and encouragement at
all stages of this project, including a thorough reading and critique of the final draft,
which led to many improvements in both the econometrics and Stata components of
this book. Finally, we thank our respective families for making the inevitable sacrifices
as we worked to bring this multiyear project to completion.

Davis, CA A. Colin Cameron
Bloomington, IN Pravin K. Trivedi
October 2008

1. To see whether you have the latest update, type update query. For those with earlier versions of
Stata, some key changes are the following: Stata 9 introduced the matrix programming language,
Mata. The syntax for Stata 10 uses the vce(robust) option rather than the robust option to
obtain robust standard errors. A mid-2008 update of version 10 introduced new random-number
functions, such as runiform() and rnormal().
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3 Linear regression basics

3.1 Introduction

Linear regression analysis is often the starting point of an empirical investigation. Be-
cause of its relative simplicity, it is useful for illustrating the different steps of a typical
modeling cycle that involves an initial specification of the model followed by estimation,
diagnostic checks, and model respecification. The purpose of such a linear regression
analysis may be to summarize the data, generate conditional predictions, or test and
evaluate the role of specific regressors. We will illustrate these aspects using a specific
data example.

This chapter is limited to basic regression analysis on cross-section data of a contin-
uous dependent variable. The setup is for a single equation and exogenous regressors.
Some standard complications of linear regression, such as misspecification of the condi-
tional mean and model errors that are heteroskedastic, will be considered. In particular,
we model the natural logarithm of medical expenditures instead of the level. We will
ignore other various aspects of the data that can lead to more sophisticated nonlinear
models presented in later chapters.

3.2 Data and data summary

The first step is to decide what dataset will be used. In turn, this decision depends on
the population of interest and the research question itself. We discussed how to convert
a raw dataset to a form amenable to regression analysis in chapter [2. In this section,
we present ways to summarize and gain some understanding of the data, a necessary
step before any regression analysis.

3.2.1 Data description

We analyze medical expenditures of individuals 65 years and older who qualify for
health care under the U.S. Medicare program. The original data source is the Medical
Expenditure Panel Survey (MEPS).

Medicare does not cover all medical expenses. For example, copayments for medical
services and expenses of prescribed pharmaceutical drugs were not covered for the time
period studied here. About half of eligible individuals therefore purchase supplementary
insurance in the private market that provides insurance coverage against various out-
of-pocket expenses.

73
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In this chapter, we consider the impact of this supplementary insurance on total an-
nual medical expenditures of an individual, measured in dollars. A formal investigation
must control for the influence of other factors that also determine individual medical
expenditure, notably, sociodemographic factors such as age, gender, education and in-
come, geographical location, and health-status measures such as self-assessed health
and presence of chronic or limiting conditions. In this chapter, as in other chapters,
we instead deliberately use a short list of regressors. This permits shorter output and
simpler discussion of the results, an advantage because our intention is to simply explain
the methods and tools available in Stata.

3.2.2 Variable description

Given the Stata dataset for analysis, we begin by using the describe command to list
various features of the variables to be used in the linear regression. The command with-
out a variable list describes all the variables in the dataset. Here we restrict attention
to the variables used in this chapter.

. * Variable description for medical expenditure dataset
. use musO3data.dta

. describe totexp ltotexp posexp suppins phylim actlim totchr age female income

storage display value
variable name type format label variable label
totexp double %12.0g Total medical expenditure
ltotexp float %9.0g In(totexp) if totexp > O
posexp float %9.0g =1 if total expenditure > 0O
suppins float %9.0g =1 if has supp priv insurance
phylim double %12.0g =1 if has functional limitation
actlim double %12.0g =1 if has activity limitation
totchr double %12.0g # of chronic problems
age double %12.0g Age
female double %12.0g =1 if female
income double %12.0g annual household income/1000

The variable types and format columns indicate that all the data are numeric. In this
case, some variables are stored in single precision (float) and some in double precision
(double). From the variable labels, we expect totexp to be nonnegative; 1totexp to
be missing if totexp equals zero; posexp, suppins, phylim, actlim, and female to
be 0 or 1; totchr to be a nonnegative integer; age to be positive; and income to be
negative or positive. Note that the integer variables could have been stored much more
compactly as integer or byte. The variable labels provide a short description that is
helpful but may not fully describe the variable. For example, the key regressor suppins
was created by aggregating across several types of private supplementary insurance. No
labels for the values taken by the categorical variables have been provided.
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It is essential in any data analysis to first check the data by using the summarize

command.

. * Summary statistics for medical expenditure dataset
. summarize totexp ltotexp posexp suppins phylim actlim totchr age female income

Variable Obs Mean Std. Dev. Min Max
totexp 3064 7030.889 11852.75 0 125610
ltotexp 2955 8.059866 1.367592 1.098612 11.74094
posexp 3064 .9644256 .1852568 0 1
suppins 3064 .5812663 .4934321 0 1
phylim 3064 .4255875 .4945125 0 1
actlim 3064 .2836162 .4508263 0 1
totchr 3064 1.754243 1.307197 0 7
age 3064 74.17167 6.372938 65 90
female 3064 .5796345 .4936982 0 1
income 3064 22.47472 22.53491 -1 312.46

On average, 96% of individuals incur medical expenditures during a year; 58% have

supplementary insurance; 43% have functional limitations; 28% have activity limita-
tions; and 58% are female, as the elderly population is disproportionately female be-
cause of the greater longevity of women. The only variable to have missing data is
ltotexp, the natural logarithm of totexp, which is missing for the (3064 —2955) = 109
observations with totexp = 0.

All variables have the expected range, except that income is negative. To see how
many observations on income are negative, we use the tabulate command, restricting
attention to nonpositive observations to limit output.

. * Tabulate variable
. tabulate income if income <= 0

annual
household
income/1000 Freq. Percent Cum.
-1 1 1.14 1.14
0 87 98.86 100.00
Total 88 100.00

Only one observation is negative, and negative income is possible for income from self-
employment or investment. We include the observation in the analysis here, though
checking the original data source may be warranted.

Much of the subsequent regression analysis will drop the 109 observations with zero
medical expenditures, so in a research paper, it would be best to report summary
statistics without these observations.
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3.2.4 More-detailed summary statistics

Additional descriptive analysis of key variables, especially the dependent variable, is
useful. For totexp, the level of medical expenditures, summarize, detail yields

. * Detailed summary statistics of a single variable
. summarize totexp, detail

Total medical expenditure

Percentiles Smallest

1% 0 0

5% 112 0
10% 393 0 Obs 3064
25% 1271 0 Sum of Wgt. 3064
50% 3134.5 Mean 7030.889
Largest Std. Dev. 11852.75

75% 7151 104823
90% 17050 108256 Variance 1.40e+08
95% 27367 123611 Skewness 4.165058
997% 62346 125610 Kurtosis 26.26796

Medical expenditures vary greatly across individuals, with a standard deviation of
11,853, which is almost twice the mean. The median of 3,134 is much smaller than
the mean of 7,031, reflecting the skewness of the data. For variable x, the skewness
statistic is a scale-free measure of skewness that estimates E{(z — )3} /0/2, the third
central moment standardized by the second central moment. The skewness is zero for
symmetrically distributed data. The value here of 4.16 indicates considerable right
skewness. The kurtosis statistic is an estimate of E{(z — p)*}/o*, the fourth central
moment standardized by the second central moment. The reference value is 3, the value
for normally distributed data. The much higher value here of 26.26 indicates that the
tails are much thicker than those of a normal distribution. You can obtain additional
summary statistics by using the centile command to obtain other percentiles and by
using the table command, which is explained in section [3.2.5.

We conclude that the distribution of the dependent variable is considerably skewed
and has thick tails. These complications often arise for commonly studied individual-
level economic variables such as expenditures, income, earnings, wages, and house prices.
It is possible that including regressors will eliminate the skewness, but in practice, much
of the variation in the data will be left unexplained (R? < 0.3 is common for individual-
level data) and skewness and excess kurtosis will remain.

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of
additive errors. A standard solution is to transform the dependent variable by taking
the natural logarithm. Here this is complicated by the presence of 109 zero-valued
observations. We take the expedient approach of dropping the zero observations from
analysis in either logs or levels. This should make little difference here because only
3.6% of the sample is then dropped. A better approach, using two-part or selection
models, is covered in chapter [16.

The output for tabstat in section [3.2.5/ reveals that taking the natural logarithm
for these data essentially eliminates the skewness and excess kurtosis.
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The user-written fsum command (Wolfe 2002) is an enhancement of summarize that
enables formatting the output and including additional information such as percentiles
and variable labels. The user-written outsum command (Papps 2006) produces a text
file of means and standard deviations for one or more subsets of the data, e.g., one
column for the full sample, one for a male subsample, and one for a female subsample.

3.2.5 Tables for data

One-way tables can be created by using the table command, which produces just
frequencies, or the tabulate command, which additionally produces percentages and
cumulative percentages; an example was given in section[3.2.3]

Two-way tables can also be created by using these commands. For frequencies, only

table produces clean output. For example,

. * Two-way table of frequencies
. table female totchr

=1 if # of chronic problems

female 0 1 2 3 4 5 6 7
0 239 415 323 201 82 23 4 1
1 313 466 493 305 140 46 11 2

provides frequencies for a two-way tabulation of gender against the number of chronic
conditions. The tabulate command is much richer. For example,

. * Two-way table with row and column percentages and Pearson chi-squared
. tabulate female suppins, row col chi2

Key

frequency
row percentage
column percentage

=1 if has supp priv

=1 if insurance
female 0 1 Total
0 488 800 1,288
37.89 62.11 100.00
38.04 44.92 42.04
1 795 981 1,776
44.76 55.24 100.00
61.96 55.08 57.96
Total 1,283 1,781 3,064
41.87 58.13 100.00
100.00 100.00 100.00

Pearson chi2(1) = 14.4991 Pr = 0.000



78 Chapter 3 Linear regression basics

Comparing the row percentages for this sample, we see that while a woman is more
likely to have supplemental insurance than not, the probability that a woman in this
sample has purchased supplemental insurance is lower than the probability that a man
in this sample has purchased supplemental insurance. Although we do not have the
information to draw these inferences for the population, the results for Pearson’s chi-
squared test soundly reject the null hypothesis that these variables are independent.
Other tests of association are available. The related command tab2 will produce all
possible two-way tables that can be obtained from a list of several variables.

For multiway tables, it is best to use table. For the example at hand, we have

. * Three-way table of frequencies
. table female totchr suppins

=1 if has supp priv insurance and # of chronic

problems
=1 if 0
female 0 1 2 3 4 5 6 7
102 165 121 68 25 6 1
1 135 212 233 134 56 22 1 2

=1 if has supp priv insurance and # of chronic

problems
=1 if 1
female 0 1 2 3 4 5 6 7
0 137 250 202 133 57 17 3 1

1 178 254 260 171 84 24 10

An alternative is to use tabulate with the by prefix, but the results are not as neat as
those from table.

The preceding tabulations will produce voluminous output if one of the variables
being tabulated takes on many values. Then it is much better to use table with the
contents () option to present tables that give key summary statistics for that variable,
such as the mean and standard deviation. Such tabulations can be useful even when
variables take on few values. For example, when summarizing the number of chronic
problems by gender, table yields

. * One-way table of summary statistics
. table female, contents(N totchr mean totchr sd totchr p50 totchr)

=1 if
female N(totchr) mean(totchr) sd(totchr) med (totchr)

1,288 1.659937888 1.261175 1
1 1,776 1.822635135 1.335776 2
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Women on average have more chronic problems (1.82 versus 1.66 for men). The option
contents () can produce many other statistics, including the minimum, maximum, and
key percentiles.

The table command with the contents () option can additionally produce two-way
and multiway tables of summary statistics. As an example,

. * Two-way table of summary statistics
. table female suppins, contents(N totchr mean totchr)

=1 if has supp priv
=1 if insurance
female 0 1
0 488 800
1.530737705 1.73875
1 795 981
1.803773585 1.837920489

shows that those with supplementary insurance on average have more chronic problems.
This is especially so for males (1.74 versus 1.53).

The tabulate, summarize() command can be used to produce one-way and two-
way tables with means, standard deviations, and frequencies. This is a small subset of
the statistics that can be produced using table, so we might as well use table.

The tabstat command provides a table of summary statistics that permits more
flexibility than summarize. The following output presents summary statistics on medical
expenditures and the natural logarithm of expenditures that are useful in determining
skewness and kurtosis.

. * Summary statistics obtained using command tabstat
. tabstat totexp ltotexp, stat (count mean p50 sd skew kurt) col(stat)

variable N mean p50 sd skewness kurtosis
totexp 3064 7030.889 3134.5 11852.75 4.165058 26.26796
ltotexp 2955 8.059866 8.111928 1.367592 -.3857887 3.842263

This reproduces information given in section [3.2.4 and shows that taking the natural
logarithm eliminates most skewness and kurtosis. The col(stat) option presents the
results with summary statistics given in the columns and each variable being given in
a separate row. Without this option, we would have summary statistics in rows and
variables in the columns. A two-way table of summary statistics can be obtained by
using the by () option.

(Continued on next page)
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3.2.6 Statistical tests

The ttest command can be used to test hypotheses about the population mean of a
single variable (Ho: p = p* for specified value p*) and to test the equality of means
(Ho: p1 = p2). For more general analysis of variance and analysis of covariance, the
oneway and anova commands can be used, and several other tests exist for more special-
ized examples such as testing the equality of proportions. These commands are rarely
used in microeconometrics because they can be recast as a special case of regression
with an intercept and appropriate indicator variables. Furthermore, regression has the
advantage of reliance on less restrictive distributional assumptions, provided samples
are large enough for asymptotic theory to provide a good approximation.

For example, consider testing the equality of mean medical expenditures for those
with and without supplementary health insurance. The ttest totexp, by(suppins)
unequal command performs the test but makes the restrictive assumption of a com-
mon variance for all those with suppins=0 and a (possibly different) common variance
for all those with suppins=1. An alternative method is to perform ordinary least-
squares (OLS) regression of totexp on an intercept and suppins and then test whether
suppins has coefficient zero. Using this latter method, we can permit all observations
to have a different variance by using the vce(robust) option for regress to obtain
heteroskedastic-consistent standard errors; see section [3.3.4.

3.2.7 Data plots

It is useful to plot a histogram or a density estimate of the dependent variable. Here
we use the kdensity command, which provides a kernel estimate of the density.

The data are highly skewed, with a 97th percentile of approximately $40,000 and a
maximum of $1,000,000. The kdensity totexp command will therefore bunch 97% of
the density in the first 4% of the z axis. One possibility is to type kdensity totexp
if totexp < 40000, but this produces a kernel density estimate assuming the data
are truncated at $40,000. Instead, we use command kdensity totexp, we save the
evaluation points in kx1 and the kernel density estimates in kd1, and then we line-plot
kd1 against kx1.

We do this for both the level and the natural logarithm of medical expenditures, and
we use graph combine to produce a figure that includes both density graphs (shown in
figure 3.1). We have

. * Kernel density plots with adjustment for highly skewed data
. kdensity totexp if posexp==1, generate (kx1 kd1l) n(500)

. graph twoway (line kdl kx1) if kx1 < 40000, name(levels)
. kdensity ltotexp if posexp==1, generate (kx2 kd2) n(500)
. graph twoway (line kd2 kx2) if kx2 < 1n(40000), name(logs)

. graph combine levels logs, iscale(1.0)
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Figure 3.1. Comparison of densities of level and natural logarithm of medical expendi-
tures

Only positive expenditures are considered, and for graph readability, the very long
right tail of totexp has been truncated at $40,000. In figure the distribution of
totexp is very right-skewed, whereas that of 1totexp is fairly symmetric.

3.3 Regression in levels and logs

We present the linear regression model, first in levels and then for a transformed de-
pendent variable, here in logs.

3.3.1 Basic regression theory

We begin by introducing terminology used throughout the rest of this book. Let 6
denote the vector of parameters to be estimated, and let § denote an estimator of 6.
Ideally, the distribution of € is centered on 6 with small variance, for precision, and a
known distribution, to permit statistical inference. We restrict analysis to estimators
that are consistent for 6, meaning that in infinitely large samples, € equals 8 aside
from negligible random variation. This is denoted by 0 2 6 or more formally by N
0y, where 8y denotes the unknown “true” parameter value. A necessary condition for
consistency is correct model specification or, in some leading cases, correct specification
of key components of the model, most notably the conditional mean.
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Under additional assumptions, the estimators considered in this book are asymptot-
ically normally distributed, meaning that their distribution is well approximated by the
multivariate normal in large samples. This is denoted by

6 L N{6, Var(8)}
where Var(@) denotes the (asymptotic) variance—covariance matrix of the estimator
(VCE). More efficient estimators have smaller VCEs. The VCE depends on unknown
parameters, so we use an estimate of the VCE, denoted by 17(5) Standard errors of the
parameter estimates are obtained as the square root of diagonal entries in f/(@) Differ-
ent assumptions about the data-generating process (DGP), such as heteroskedasticity,
can lead to different estimates of the VCE.

Test statistics based on asymptotic normal results lead to the use of the standard
normal distribution and chi-squared distribution to compute critical values and p-values.
For some estimators, notably, the OLS estimator, tests are instead based on the ¢ dis-
tribution and the F' distribution. This makes essentially no difference in large samples
with, say, degrees of freedom greater than 100, but it may provide a better approxima-
tion in smaller samples.

3.3.2 OLS regression and matrix algebra

The goal of linear regression is to estimate the parameters of the linear conditional mean
E(y|x) =x'8 = 121 + faza + - - + Pk (3.1)

where usually an intercept is included so that 1 = 1. Here x is a K x 1 column vector
with the jth entry—the jth regressor z;—and 3 is a K x 1 column vector with the jth

entry ;.

Sometimes E(y|x) is of direct interest for prediction. More often, however, econo-
metrics studies are interested in one or more of the associated marginal effects (MEs),

OB _

6l‘j
for the jth regressor. For example, we are interested in the marginal effect of supple-
mentary private health insurance on medical expenditures. An attraction of the linear
model is that estimated MEs are given directly by estimates of the slope coefficients.

The linear regression model specifies an additive error so that, for the typical ith
observation,
Yi :X26+ g, Z: 1,...,N

The OLS estimator minimizes the sum of squared errors, Ef\lzl(yZ —xi8)2.

Matrix notation provides a compact way to represent the estimator and variance
matrix formulas that involve sums of products and cross products. We define the N x 1
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column vector y to have the ith entry y;, and we define the N x K regressor matrix X
to have the ith row x}. Then the OLS estimator can be written in several ways, with

B=(xXX)'Xy

N A
§ PR A E i=1 iYi
N 2 N N -1 N
izt T Dim1 T1i2i vt )i TLTK D im1 T1iYi
N N 9 : N )
— D iz1 T2iT1i D et T3 : Dim1 T2iYi
' N
N N 2 . TR
D1 TRl c D il T 21 TKiYi

We define all vectors as column vectors, with a transpose if row vectors are desired.
By contrast, Stata commands and Mata commands define vectors as row vectors, so in
parts of Stata and Mata code, we need to take a transpose to conform to the notation
in the book.

3.3.3 Properties of the OLS estimator

The properties of any estimator vary with the assumptions made about the DGP. For
the linear regression model, this reduces to assumptions about the regression error wu;.

The starting point for analysis is to assume that u; satisfies the following classical
conditions:

1. E(u;|x;) = 0 (exogeneity of regressors)
2. E(u?|x;) = 02 (conditional homoskedasticity)

3. E(ujujlx;,x4) = 0, i # j, (conditionally uncorrelated observations)

Assumption 1 is essential for consistent estimation of 3 and implies that the condi-
tional mean given in (3.1)) is correctly specified. This means that the conditional mean is
linear and that all relevant variables have been included in the regression. Assumption 1
is relaxed in chapter[6.

_ Assumptions 2 and 3 determine the form of the VCE of B Assumptions 1-3 lead to
B3 being asymptotically normally distributed with the default estimator of the VCE

vdefault(a) = SQ(X/X) -t
where

§2 = (N — k) Za2 (3.2)

and u; = y; — X;B Under assumptions 1-3, the OLS estimator is fully efficient. If,
additionally, u; is normally distributed, then “t statistics” are exactly t distributed. This
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fourth assumption is not made, but it is common to continue to use the ¢ distribution
in the hope that it provides a better approximation than the standard normal in finite
samples.

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter (5]
we present examples of more-efficient feasible generalized least-squares (FGLS) estima-
tion. In the current chapter, we continue to use the OLS estimator, as is often done in
practice, but we use alternative estimates of the VCE that are valid when assumption
2, assumption 3, or both are relaxed.

3.3.4 Heteroskedasticity-robust standard errors

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors.
Then a robust estimator, or more precisely a heteroskedasticity-robust estimator, of the
VCE of the OLS estimator is

‘//\vrobust(B) = (XIX) -t <]V]ik Zi a?XZX;> (XIX) -1 (33)

For cross-section data that are independent, this estimator, introduced by White (1980),
has supplanted the default variance matrix estimate in most applied work because het-
eroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect.

In Stata, a robust estimate of the VCE is obtained by using the vce (robust) option
of the regress command, as illustrated in section[3.4.2] Related options are vce (hc2)
and vce (hc3), which may provide better heteroskedasticity-robust estimates of the VCE
when the sample size is small; see [R] regress. The robust estimator of the VCE has been
extended to other estimators and models, and a feature of Stata is the vce (robust) op-
tion, which is applicable for many estimation commands. Some user-written commands
use robust in place of vce(robust).

3.3.5 Cluster—robust standard errors

When errors for different observations are correlated, assumption 3 is violated. Then
both default and robust estimates of the VCE are invalid. For time-series data, this is
the case if errors are serially correlated, and the newey command should be used. For
cross-section data, this can arise when errors are clustered.

Clustered or grouped errors are errors that are correlated within a cluster or group
and are uncorrelated across clusters. A simple example of clustering arises when sam-
pling is of independent units but errors for individuals within the unit are correlated.
For example, 100 independent villages may be sampled, with several people from each
village surveyed. Then, if a regression model overpredicts y for one village member,
it is likely to overpredict for other members of the same village, indicating positive
correlation. Similar comments apply when sampling is of households with several indi-
viduals in each household. Another leading example is panel data with independence
over individuals but with correlation over time for a given individual.
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Given assumption 1, but not 2 or 3, a cluster—robust estimator of the VCE of the
OLS estimator is

~

‘/Cluster(a) = (X/X) -1 ( ? 1 ]]\\;— ]16 Z X u A/ ) (X’X) -

where g = 1,...,G denotes the cluster (such as village), 1, is the vector of residuals
for the observations in the gth cluster, and X, is a matrix of the regressors for the
observations in the gth cluster. The key assumptions made are error independence
across clusters and that the number of clusters G — co.

Cluster—robust standard errors can be computed by using the vce(cluster clust-
var) option in Stata, where clusters are defined by the different values taken by the
clustvar variable. The estimate of the VCE is in fact heteroskedasticity-robust and
cluster—robust, because there is no restriction on Cov(ugi,ugj). The cluster VCE esti-
mate can be applied to many estimators and models; see section [9.6]

Cluster—robust standard errors must be used when data are clustered. For a scalar

regressor x, a rule of thumb is that cluster—robust standard errors are \/ 14 prpu(M —1)
times the incorrect default standard errors, where p, is the within-cluster correlation
coefficient of the regressor, p, is the within-cluster correlation coefficient of the error,
and M is the average cluster size.

It can be necessary to use cluster—robust standard errors even where it is not im-
mediately obvious. This is particularly the case when a regressor is an aggregated or
macro variable, because then p, = 1. For example, suppose we use data from the U.S.
Current Population Survey and regress individual earnings on individual characteristics
and a state-level regressor that does not vary within a state. Then, if there are many
individuals in each state so M is large, even slight error correlation for individuals
in the same state can lead to great downward bias in default standard errors and in
heteroskedasticity-robust standard errors. Clustering can also be induced by the design
of sample surveys. This topic is pursued in section[5.5.

3.3.6 Regression in logs

The medical expenditure data are very right-skewed. Then a linear model in levels can
provide very poor predictions because it restricts the effects of regressors to be additive.
For example, aging 10 years is assumed to increase medical expenditures by the same
amount regardless of observed health status. Instead, it is more reasonable to assume
that aging 10 years has a multiplicative effect. For example, it may increase medical
expenditures by 20%.

We begin with an exponential mean model for positive expenditures, with error
that is also multiplicative, so y; = exp(x}3)e;. Defining &; = exp(u;), we have y; =
exp(x;08 + u;), and taking the natural logarithm, we fit the log-linear model

Iny; =x;8+ u;
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by OLS regression of Iny on x. The conditional mean of Iny is being modeled, rather
than the conditional mean of y. In particular,

E(lnylx) = x'8

assuming u; is independent with conditional mean zero.

Parameter interpretation requires care. For regression of Iny on x, the coefficient 3;
measures the effect of a change in regressor z; on E(Iny|x), but ultimate interest lies
instead on the effect on E(y|x). Some algebra shows that ; measures the proportionate
change in F(y|x) as z; changes, called a semielasticity, rather than the level of change
in E(y|x). For example, if 3; = 0.02, then a one-unit change in z; is associated with a
proportionate increase of 0.02, or 2%, in E(y|x).

Prediction of E(y|x) is substantially more difficult because it can be shown that
E(Iny|x) # exp(x’8). This is pursued in section 3.6.3!

3.4 Basic regression analysis

We use regress to run an OLS regression of the natural logarithm of medical expendi-
tures, 1totexp, on suppins and several demographic and health-status measures. Using
Iny rather than y as the dependent variable leads to no change in the implementation of
OLS but, as already noted, will change the interpretation of coefficients and predictions.

Many of the details we provide in this section are applicable to all Stata estimation
commands, not just to regress.

3.4.1 Correlations

Before regression, it can be useful to investigate pairwise correlations of the dependent
variables and key regressor variables by using correlate. We have

. * Pairwise correlations for dependent variable and regressor variables
. correlate ltotexp suppins phylim actlim totchr age female income

(obs=2955)
ltotexp suppins phylim actlim  totchr age

ltotexp 1.0000
suppins 0.0941 1.0000
phylim 0.2924 -0.0243 1.0000
actlim 0.2888 -0.0675 0.5904 1.0000
totchr 0.4283 0.0124 0.3334 0.3260 1.0000

age 0.0858 -0.1226 0.2538 0.2394 0.0904 1.0000
female -0.0058 -0.0796 0.0943 0.0499 0.0557 0.0774
income 0.0023 0.1943 -0.1142 -0.1483 -0.0816 -0.1542

female income

female 1.0000
income -0.1312 1.0000
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Medical expenditures are most highly correlated with the health-status measures phylim,
actlim, and totchr. The regressors are only weakly correlated with each other, aside
from the health-status measures. Note that correlate restricts analysis to the 2,955
observations where data are available for all variables in the variable list. The related
command pwcorr, not demonstrated, with the sig option gives the statistical signifi-
cance of the correlations.

3.4.2 The regress command

The regress command performs OLS regression and yields an analysis-of-variance table,
goodness-of-fit statistics, coefficient estimates, standard errors, ¢ statistics, p-values, and
confidence intervals. The syntax of the command is

regress depvar [z’ndepvars} [zf] [m] [weight] [, optz'ons}

Other Stata estimation commands have similar syntaxes. The output from regress
is similar to that from many linear regression packages.

For independent cross-section data, the standard approach is to use the vce (robust)
option, which gives standard errors that are valid even if model errors are heteroskedas-
tic; see section[3.3.4] In that case, the analysis-of-variance table, based on the assump-
tion of homoskedasticity, is dropped from the output. We obtain

. * OLS regression with heteroskedasticity-robust standard errors
. regress ltotexp suppins phylim actlim totchr age female income, vce(robust)

Linear regression Number of obs = 2955
F(C 7, 2947) = 126.97
Prob > F = 0.0000
R-squared = 0.2289
Root MSE = 1.2023

Robust
ltotexp Coef.  Std. Err. t P>|t| [95% Conf. Intervall
suppins .2556428 .0465982 5.49 0.000 .1642744 .3470112
phylim .3020598 .057705 5.23  0.000 .1889136 .415206
actlim .3560054 .0634066 5.61  0.000 .2316797 .4803311
totchr .3758201 .0187185 20.08 0.000 .3391175 .4125228
age .0038016 .0037028 1.03 0.305 -.0034587 .011062
female -.0843275 .045654 -1.85 0.065 -.1738444 .0051894
income .0025498 .0010468 2.44 0.015 .0004973 .0046023
_cons 6.703737 .2825751 23.72  0.000 6.149673 7.257802

The regressors are jointly statistically significant, because the overall F' statistic of
126.97 has a p-value of 0.000. At the same time, much of the variation is unexplained
with R? = 0.2289. The root MSE statistic reports s, the standard error of the regression,
defined in (3.2). By using a two-sided test at level 0.05, all regressors are individually
statistically significant because p < 0.05, aside from age and female. The strong
statistical insignificance of age may be due to sample restriction to elderly people and
the inclusion of several health-status measures that capture well the health effect of age.
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Statistical significance of coefficients is easily established. More important is the eco-
nomic significance of coefficients, meaning the measured impact of regressors on medical
expenditures. This is straightforward for regression in levels, because we can directly
use the estimated coefficients. But here the regression is in logs. From section [3.3.6] in
the log-linear model, parameters need to be interpreted as semielasticities. For example,
the coefficient on suppins is 0.256. This means that private supplementary insurance
is associated with a 0.256 proportionate rise, or a 25.6% rise, in medical expenditures.
Similarly, large effects are obtained for the health-status measures, whereas health ex-
penditures for women are 8.4% lower than those for men after controlling for other
characteristics. The income coefficient of 0.0025 suggests a very small effect, but this
is misleading. The standard deviation of income is 22, so a 1—-standard deviation in
income leads to a 0.055 proportionate rise, or 5.5% rise, in medical expenditures.

MEs in nonlinear models are discussed in more detail in section[10.6. The preceding
interpretations are based on calculus methods that consider very small changes in the
regressor. For larger changes in the regressor, the finite-difference method is more
appropriate. Then the interpretation in the log-linear model is similar to that for the
exponential conditional mean model; see section [10.6.4] For example, the estimated
effect of going from no supplementary insurance (suppins=0) to having supplementary
insurance (suppins=1) is more precisely a 100 x (e*-2°¢ — 1), or 29.2%, rise.

The regress command provides additional results that are not listed. In particular,
the estimate of the VCE is stored in the matrix e (V). Ways to access this and other
stored results from regression have been given in section [1.6. Various postestimation
commands enable prediction, computation of residuals, hypothesis testing, and model
specification tests. Many of these are illustrated in subsequent sections. Two useful
commands are

. * Display stored results and list available postestimation commands
. ereturn list

(output omitted )
. help regress postestimation

(output omitted )

3.4.3 Hypothesis tests

The test command performs hypothesis tests using the Wald test procedure that uses
the estimated model coefficients and VCE. We present some leading examples here, with
a more extensive discussion deferred to section[12.3. The F statistic version of the Wald
test is used after regress, whereas for many other estimators the chi-squared version
is instead used.

A common test is one of equality of coefficients. For example, consider testing that
having a functional limitation has the same impact on medical expenditures as having
an activity limitation. The test of Hy: Bpnyrin = Bact1in against Hy: Bonyrin 7 Bact1in 18
implemented as





