
2 Chapter 1 Introduction

programming, you could look at the introductory section of the Mata manual or at the
Mata chapters in Baum’s friendly text An Introduction to Stata Programming (2016).

The examples in this book are statistical and mathematical. Formulas are provided, but
the formulas are of secondary importance. They just provide the examples of something
for us to program.

In this book, I will show you a language aimed at programming statistical and data
management applications that has all the usual features and some unique ones, too.
And I will show you programming techniques that might be new to you.

As I said, being serious is a matter of attitude. New techniques and languages are
continually being developed, and you need to learn them, just as I still learn them. I
have been programming for 45 years as a professional. I have a lot of experience and
knowledge, but I have not stopped learning new techniques. I may be a professional
programmer, but more importantly, I am a serious one.

1.2 What is Mata?

Many Stata users would describe Mata as a matrix language. StataCorp itself markets
Mata that way. Mata would be more accurately described, however, as an across-
platform portable-code compiled programming language that happens to have matrix
capabilities. Just as important as its matrix capabilities are Mata’s structures, classes,
and pointers.

We at StataCorp designed and wrote Mata to be the development language that we
would use. Nowadays, we write most new features of Stata in Mata. Before Mata
existed, we used C. Compared with C, Mata code is easier to write, less error prone,
easier to debug, and easier to maintain.

It is important that Mata is compiled. Being compiled means that programs run fast.
Stata’s other programming language, ado, is interpreted. Interpreted languages are slow
in comparison with compiled languages. Mata code runs 10–40 times faster than ado.

Mata looks a lot like C and C++. In The C Programming Language, Kernighan and
Ritchie (1978) introduced what has become perhaps the most famous first program:

main()

{

printf("hello, world\n") ;

}



1.3 What is covered in this book 3

To convert the program to Mata, we need to add void in front of main():

: void main()

> {

> printf("hello, world\n") ;

> }

: main()

hello, world

Most Mata users would not bother typing the semicolon at the end of printf("hello,
world\n"). Semicolons are optional in Mata. There are other differences between the
languages, too. Those differences are covered in appendix C.

1.3 What is covered in this book

The programs we will write in this book are

Filename Contents

hello.mata First program, function hello()

n choose k.mata Serious but short function, packaged as library
function

lr1.mata Linear regression, ver. 1 (structures)
lr2.mata Linear regression, ver. 2 (structures)

earthdistance.mata An aside concerning classes

linreg1.mata Linear regression take 2, ver. 1 (classes)
linreg2.mata Linear regression take 2, ver. 2 (classes)

spmat1.mata Sparse matrices, ver. 1
spmat2.mata Sparse matrices, ver. 2
spmat3.mata Sparse matrices, ver. 3

The first serious program we will write is n choose k(). It will have just 47 lines
including comments and white space.

We will then work our way to a nearly complete implementation of linear regression,
starting with lr1.mata and ending with linreg2.mata. There will be only 388 lines in
the final code in linreg2.mata! We will use structures for the first two implementations
and use classes after that.

The earthdistance.mata program merely illustrates a point about class programming.

Finally, we will undertake a large project, namely, the implementation of sparse matri-
ces. Sparse matrices are matrices in which most elements are 0. The project will concern
storing the matrices efficiently—there is no reason to store all those 0s—and writing
code to add and multiply them just as if they were regular matrices. File spmat3.mata
will contain 937 lines.




