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Preface

Many data analysts use survey data and understand the general purpose of survey
weights. However, they may not have studied the details of how weights are computed,
nor do they understand the purpose of different steps used in weighting. Survey Weights:
A Step-by-step Guide to Calculation is intended to fill these gaps in understanding.
Throughout the book, we explain the theoretical rationale for why steps are done.
Plus, we include many examples that give analysts tools for actually computing weights
themselves in Stata.

We assume that the reader is familiar with Stata. If not, Kohler and Kreuter (2012)
provide a good introduction.

Finally, we also assume that the reader has some applied sampling experience and
knowledge of “lite” theory. Concepts of with-replacement versus without-replacement
sampling and single- versus multistage designs should be familiar. Sources for sam-
pling theory and associated applications abound, including Valliant, Dever, and Kreuter
(2013), Lohr (2010), and Särndal, Swensson, and Wretman (1992), to name just a few.

Structure of the book

When faced with a new dataset, it is good practice to ask yourself a few questions before
analyzing the data. For example,

• Am I dealing with a sample, or does the dataset contain a whole population?

• If it is a sample, how was it selected?

• What is my goal for the analysis? Am I trying to draw inference to the population?

• Do I need to weight my sample to project it to the population?

• Do I need to weight my data to compensate for the fact that the sample does not
correctly cover the desired population?

Some datasets you encounter might already contain weights, and it is useful to
understand how they were constructed. If you collect data yourself, you might need
to construct weights on your own. In both cases, this book will give useful guidance,
both for the construction and for the use of survey weights. This book can be read
straight through but can also serve as a reference for specific procedures you may need
to understand. You can skip around to particular topics and look at the examples for
useful code.
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We start our book with a general introduction to survey weighting in chapter 1.
Weights are intended to project a sample to some larger population. The steps in weight
calculation can be justified in different ways, depending on whether a probability or
nonprobability sample is used. An overview of the typical steps is given in this chapter,
including a flowchart of the steps.

Chapter 2 covers the initial weighting steps in probability samples. The first step
is to compute base weights calculated as the inverse of selection probabilities. In some
applications, because of inadequate information, it is unclear whether some sample units
are actually eligible for the survey. Adjustments can be made to the known eligible units
to account for those with an unknown status.

Most surveys suffer from some degree of nonresponse. Chapter 3 reviews methods of
nonresponse adjustment. A typical approach is to put sample units into groups (cells)
based on characteristics of the units or estimates of the probabilities that units respond
to the survey. This chapter also covers another option for cell creation—using machine
learning algorithms like CART, random forests, or boosting to classify units.

Chapter 4 covers calibration or adjusting weights so that sample estimates of totals
for a set of variables equal their corresponding population totals. Calibration is an
important step in correcting coverage problems and nonresponse and, in addition, can
also reduce variances.

Chapter 5 discusses options for variance estimation, including exact formulas, lin-
earization, and replication. Using multiple adjustments in weight calculation, as de-
scribed in the previous chapters, does affect the variance of point estimates of descrip-
tive quantities like means and totals. We illustrate how these multiple effects can be
reflected using replication variances.

Not all sets of survey data are selected via probability samples. Even if the initial
sample is probability, an investigator often loses control over which units actually pro-
vide data. This is especially true in the current climate, in which people, businesses,
and institutions are progressively becoming more resistant to cooperating. Chapter 6
describes methods to weight nonprobability samples. The general thinking about esti-
mating propensities of cooperation and using calibration models, covered in chapters 3
and 4, can be adapted to the nonprobability situation.

Chapter 7 covers a few special situations. Normalized weights are scaled so that they
sum to the number of units in the sample—not to an estimate of the population size.
Although we do not recommend them, normalized weights are used in some applications,
particularly in public opinion surveys. Other topics in this chapter include datasets with
multiple weights, two-phase sampling, and weights for composite estimation. Some sur-
vey datasets come with more than one weight for each case, especially when subsamples
of units are selected for different purposes. Two-phase sampling is often used when
more intensive efforts are made to convert nonrespondents for a subsample of cases.
Composite weighting is used to combine different samples from different frames such as
persons with landline telephones and persons with cell phones. This chapter also covers
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whether to use survey weights when fitting models. We describe the issues that need to
be considered and give some analyses that can be done when deciding whether to use
weights in fitting linear and nonlinear models from survey data.

Chapter 8 covers the unexciting but essential procedures needed for quality control
when computing survey weights. An orderly system needs to be laid out in advance to
guide the sequence of weighting steps, to list quality checks that will be made at every
step, and to document the entire process.

Data files and programs for this book

The data and program files used in the examples are available on the Internet. You can
access these files from within Stata or by downloading a zip archive. For either method,
we suggest that you create a new directory and download the materials there.

• If the machine you are using to run Stata is connected to the Internet, you can
download the files from within Stata. To do this, type the following commands in
the Stata Command window:

. net from http://www.stata-press.com/data/svywt/

. net describe svywt

. net install svywt

. net get svywt

Notice that the statements above are prefaced by “.” as in the Stata Results
window. We use this convention throughout the book.

• The files are also stored as a zip archive, which you can download by pointing
your browser to http://www.stata-press.com/data/svywt/svywt.zip.

To extract the file svywt.zip, create a new folder, for example, svywt, copy
svywt.zip into this folder, and unzip the file svywt.zip using any program that
can extract zip archives. Make sure to preserve the subdirectory structure con-
tained in the zip file.

Throughout the book, we assume that your current working directory (folder) is the
directory where you have stored our files. This is important if you want to reproduce
our examples.

Ensure that you do not replace our files with a modified version of the same file;
avoid using the command save, replace while working with our files.



 

 

 

 

 

 

 



1 Overview of weighting

Survey datasets, released to the public through a general- or restricted-use agreement,
usually come with at least one analysis weight for each respondent record in the sam-
ple. (In some applications, more than one weight may be provided for each record for
special purposes discussed in chapter 7.) Analysts interested in calculating population
estimates are told to use the same set of weights for all analyses—means, totals, linear
and nonlinear models, etc. The benefits and drawbacks of a single analysis weight com-
pared with multiple weights for tailored analytic objectives is reviewed in section 1.3.

Analysis weights are designed to

1. account for the probabilities used to select units (in cases where random sampling
is used);

2. adjust in cases where it cannot be determined whether some sample units are
members of the population under study;

3. adjust for eligible units that do not respond to the survey to limit the effects of
nonresponse bias; and

4. incorporate external data to reduce standard errors of estimates and to compensate
when the sample does not correctly cover the desired population.

However, unless you are the developer of the weights, the datasets typically contain the
final analysis weights and not the adjustments for the above conditions.

Survey statisticians usually think of weighting in the context of probability samples,
where units are selected by some random means from a well-defined population. All
four steps above can be applied to probability samples. However, because of the current
popularity of volunteer web panels and other kinds of “found” data, how to weight
nonprobability samples is also worth considering. For those samples, steps 3 and 4 can
be used (see chapter 6).

This chapter gives an overview of the purposes of weighting, underlying theory and
sampling methods, and some problems that are considered when constructing a set of
weights. The information in this chapter forms the basis for our discussion in this book.
Specifically, the last section of this chapter contains an overview of weighting procedures
and serves as an important reference for the remaining chapters.

1



2 Chapter 1 Overview of weighting

1.1 Reasons for weighting

The fundamental reason for using weights when analyzing survey data is to produce
estimates for some larger target population, that is, population inference. Ideally, the
estimates will a) be unbiased or consistent in a sense described later, b) have standard
errors that are as small as is feasible given the sample size and sample design, and
c) correct for deficiencies in how the sample covers the desired population. Depending
on the type of analysis being done, the population may be some well-defined finite
population, like all adults aged 18 years and older in a country. The goal when making
other estimates, like those of parameters in a regression model, may be to represent
some population that, at least conceptually, is broader than any given finite population.

A finite population is a collection of units (also referred to as elements or cases) that
could, in principle, be completely listed so that a census could be conducted to collect
data from each unit. Examples, in addition to the adult population mentioned above,
are elementary schools in a county, hospitals in a state, registered voters in a city, and
retail business establishments in a province.

Defining the units that are members of a finite population (that is, eligible units)
may require some thought, depending on the type of population. Whether a person
is age 18 or older (and eligible to vote in the United States) seems straightforward,
but defining what constitutes a business establishment is more difficult. Often, the
composition of a population can change over time so that a specific time period must be
part of the definition of the population. For example, a finite population of registered
voters might be defined as those persons who are registered as of the date an election
is to be held. The January labor force in a country may be defined as all persons who
are employed or unemployed but seeking a job during the second week of that month.

Target populations and sampling frames

Understanding the distinction between a target population (also referred to as the
universe of all population members or just universe) and a sampling frame is important
when assessing the strengths and weaknesses of a sample. The target population is the
population for which inferences or estimates are desired. The sampling frame is the set
of units from which the sample is selected. Ideally, the sampling frame and the target
population are the same. In that case, we say that the sampling frame completely
covers the target population. However, there are many instances where the two do not
coincide.

Figure 1.1 is a diagram of how the universe U , the sampling frame F , the sample s,
and the complement of the sample within U , sc, might be related. The frame F can omit
some eligible units (undercoverage) and include other ineligible units (overcoverage).
The eligibles in the frame in figure 1.1 are denoted by the intersection of U and F ,
U ∩F , while the ineligibles in the frame are denoted by those not included in U , F −U .
The sample s can include both eligible units in s∩U and ineligible units in s∩ (F − U).
The latter condition occurs if the true eligibility of the units on the frame is unknown
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when the sample is selected. In the figure, the eligible units that are not in the frame
or sample are denoted by U − F . In the ideal situation, the frame completely covers
the population so that F = U . The purpose of weights is to project the eligible sample,
s∩U , to the full universe, U . As is apparent from the figure, this will require eliminating
the ineligible units from the sample (or at least those known to be ineligible) if such
information is not available to remove them initially from the frame. We also hope to
use the sample to represent the units in the universe that were not in the frame, U −F ,
and consequently had no chance of being selected for the sample. One of the functions
of weighting is to attempt to correct for such coverage errors.

Figure 1.1. Illustration of sampling frame with over- and undercoverage of target pop-
ulation

The most straightforward case of a sampling frame is a list of every unit in the
target population. For example, if we want to survey the members of some professional
organization like the Royal Statistical Society (target population), a current membership
list (sampling frame) may be available from which the sample can be selected. However,
if the list was somewhat outdated because it omits people who became members in the
last month, or it still contains some deceased members, the frame would have coverage
errors. Current members not covered by the list cannot be sampled, although they
would be eligible for the study. Past members covered by the list can be sampled,
although they are ineligible for the study.

A complete list of the members of the target population is not always available,
but it may be possible to construct a frame that does cover the whole population. For
example, in household surveys, a list of all households or people who live in them is not
available in many countries. Even if a government agency has such a list, it may not be
accessible to private survey organizations. Standard practice is to compile a frame in
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stages. For example, a sample of geographic areas is selected, perhaps in several stages,
and a list of households is compiled only within the sample areas. When executed
properly, this technique will provide virtually complete coverage. However, in practice,
achieving complete coverage of a household population is difficult or impossible. Even
the Current Population Survey in the United States, which is quite well conducted, had
about 15% undercoverage of persons in 2013 (U.S. Census Bureau 2013).

Types of statistics

Descriptive statistics, like means or totals, are usually thought of as estimates of
the quantities that would be obtained if a census were conducted of a finite population.
For example, if the estimate is for the mean salary and wage income per person in a
particular calendar year, the target for the sample estimate is the mean that would
be obtained if all persons in the finite population were enumerated and the income
collected for each. A population total is another example of a descriptive statistic. The
finite population total itself is ty =

∑
i∈U yi, where U is the set of all N units in the

population. Suppose a sample of n units is selected from the population. An estimated
total often has the form t̂y =

∑
i∈s wiyi, where i denotes a unit, s is the set of n units in

the sample, wi is a weight assigned to unit i, and yi is the value of a data item collected
for unit i. Weights that are appropriate for estimating totals are generally larger than
or equal to 1 because n < N , and the weights need to inflate the sample to the larger
population. In fact, for yi = 1 for all units in the sample,

∑
i∈s wi = N̂ , is an estimate

of the finite population size. Note that we use “hat notation” to signify estimates such
as N̂ , the estimate of the true population size, N .

Survey weights can also be used to estimate more complicated quantities like model
parameters. For example, consider the simple linear regression model yi = α+βxi+ εi,
where α and β are parameters, and the εi’s are errors that are independent under
the model with mean 0 and variance σ2. The survey-weighted estimate of the slope
computed by Stata and other software that handle survey data is

β̂ =

∑
i∈s wi (yi − yw) (xi − xw)∑

i∈s wi(xi − xw)
2 =

∑
i∈s wixiyi −

(∑
i∈s wi

)
xwyw∑

i∈s wix2
i −

(∑
i∈s wi

)
x2
w

with yw =
∑

i∈s wiyi/
∑

i∈s wi and xw defined similarly. As the second expression for β̂
shows, the estimated slope is a combination of several different estimated totals. Thus,
estimated totals are frequently the building blocks for calculating quantities that are
more complicated.

Estimates of model parameters can be interpreted in one of two ways. The first
is the same as for descriptive statistics: β̂ estimates the value that would be obtained
if a census were done and the model fit via ordinary least squares (that is, without
weights) for the full, finite population. The second interpretation is, perhaps, more

subtle: β̂ estimates a model parameter that applies to units beyond those in the fixed,
finite population from which the sample was drawn. For example, suppose a sample of
persons is selected in April 2015, and an analyst regresses personal income on years of
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education. The analyst is probably interested in making a statement about the effect of
education on income not just in April 2015 but also without regard to the month when
the survey happened to have been done. This also raises the question of whether the
survey weights should be used at all in model fitting—a topic we address in more detail
in chapter 7.

1.2 Probability sampling versus nonprobability sampling

Survey samples can be selected in one of two ways. The first is through a defined
probabilistic method that is reproducible and is labeled as probability sampling. The
second is by way of an undefined sampling mechanism that is not exactly reproducible,
known in the survey world most recently as nonprobability sampling. The method that
is used affects how weights are calculated.

Probability sampling means that units are selected from the finite population in
some random manner. Probability sampling has a very specific, technical definition
given in Särndal, Swensson, and Wretman (1992) and other books on sampling theory.
Four conditions must be satisfied for a sample to be a probability sample:

1. The set of all samples that are possible to obtain with the specified sampling
procedure can (in principle) be enumerated.

2. Each possible sample s has a known probability of selection, p(s).

3. Every unit in the target population has a knowable, nonzero probability of selec-
tion.

4. One set of sample units is selected with the probability associated with the set.

If a probability sample is selected, the first step in weighting is to compute an initial
or base weight for each unit, which is the inverse of its selection probability. Base
weights are mentioned in section 1.7 and described further in chapter 2.

Although the requirements above seem to imply that every possible sample would
have to be identified, a probability sample can be selected in a way that does not require
listing all the possibilities. Standard procedures also require only that the probabilities
of selection of individual units be tracked—values of p (s) are unnecessary.

Probability samples are the standard for governmental surveys that publish official
statistics, like the unemployment rate, the inflation rate, and statistics on the health
of a population. If time and budget allow, other surveys like pre-election polls may
also select probability samples. This method of sampling provides one mathematical
basis for making estimates, as discussed in section 1.3. It also adds a degree of face
validity to the results. A survey designer cannot be accused of injecting conscious or
unconscious biases into the selection of units when a random mechanism is used to
decide which units are picked for the sample. Because every element in the population
has a chance of being selected for a sample, the sample covers the entire population. If
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enough information is available on the frame in advance of sampling, a survey designer
can also control the distribution of the sample among various subgroups.

On the other hand, it may be cheaper and quicker, or only feasible, to acquire
sample cases without a defined probability method (that is, by using nonprobability
methods). Characteristics of interest may be time sensitive, and sampling may have
to be done in the field by data collectors. Asking visitors to a website to participate
in a survey voluntarily is one way that is currently being used to collect sample data.
For example, a survey sponsor can inexpensively accumulate a huge number of persons
this way and request that they become part of a panel that will cooperate in future
surveys. One obvious criticism of this approach is that only a selective group of persons
may visit the website used for recruiting. The persons who volunteer may be a poor
cross-section of the population at large; that is, the sample may be subject to severe
coverage error. Of course, this sort of criticism can be levied against any sample where
there is no control or limited control over which sample units actually participate. A
committee of the American Association for Public Opinion Research (AAPOR) conducted
an extensive review of nonprobability samples (Baker et al. 2013b). Elliott and Valliant
(2017) review the theoretical issues with inference from nonprobability samples and some
of the methods that have been proposed for estimation. We investigate weighting for
nonprobability surveys in detail in chapter 6.

Samples often live in some fuzzy netherworld between probability and nonprobabil-
ity. A sample may begin as a probability sample but then suffer from a high rate of
nonresponse. Because the survey designer cannot completely control which units re-
spond, the set of units that ultimately respond may not reflect the intended probability
sample. Nevertheless, starting with a probability sample selected from a high-quality
frame provides some degree of comfort that a sample will have limited coverage errors.

A web panel of persons is a case in point. One approach to forming a web panel
is to select a large telephone sample of households and request the cooperation of all
persons over a certain age. The initial sample may be a probability sample of all
telephone numbers known to be in use, but the resulting panel can suffer from at
least two problems. If any phone numbers are omitted from the sampling frame, an
undercoverage problem may result if the omitted portion differs from those on the
frame. For example, if a frame uses only landline phones, then households with only cell
phones cannot be selected. Telephone surveys also often have poor response rates—30%
or less is common in the United States. If the respondents are not randomly spread
over the initial sample, then there may be nonresponse bias, another source of potential
undercoverage.

As discussed in chapters 3 and 4, weights can be constructed that attempt to adjust
for both coverage and nonresponse error. The success of these adjustments depends on
strong assumptions that are described there.



 

 

 

 

 

 

 



4 Calibration and other uses of auxiliary

data in weighting

Calibration is usually the last step in weighting and is extremely important in many
surveys. Auxiliary data are used to reduce standard errors and to correct coverage prob-
lems introduced through the frame or through nonresponse not corrected with a prior
adjustment. By auxiliary data, we mean information that is available for the entire
frame or target population, either for each individual population unit or in aggregate
form. These may be obtainable because a frame of all units in the population is avail-
able that has the auxiliary data on each unit. Surveys of business establishments or
institutions may have such frames.

The standard application of calibration uses (aggregated) population totals of the
auxiliaries to compute weights. Population totals for some variables may be available
from a source separate from the survey, like a census. In a business survey, the frame
might have the number of employees from an earlier time period for each establishment.
In a household survey, counts of persons in groups defined by age, race, and gender may
be published from a census, from population projections, or from a separate survey(s).
In this chapter, we review several ways to use those data.

Figure 1.1 showed an example of a sample that had both under- and overcoverage. A
common situation in household surveys is that some groups of persons are not covered
as well as others by the sample design. In the United States, for example, estimates
of the numbers of persons from most household surveys are less than counts from the
most recent census, with the undercoverage being especially severe for young black or
Hispanic males (for example, see U.S. Census Bureau [2014, table 2]). By computing
weights that sum to census counts for male blacks and Hispanics, the undercoverage is
corrected, at least, in the sense that estimates of population counts match the census
counts. Details of some of the techniques for doing this are given in sections 4.1 and 4.3.

Inherent in this discussion is the need for the survey and the control total source(s)
to use consistent data collection methods. Both should capture the data in the same
way—identical questions and mode of data collection—from the same inferential pop-
ulation. In practice, researchers may have to decide if the level of consistency is close
enough. If, however, the frame population differs greatly from the inferential population
captured in the control total source(s), then strong assumptions are needed to proceed
with weight calibration.

51
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The estimators we cover in this chapter all have a superpopulation model that sup-
ports them.1 Taking a model-based view of inference as discussed in section 1.3, the
estimators will be approximately or exactly unbiased for an estimated total of y if the
model holds for that y in the population. From a design-based point of view, the es-
timator will be approximately unbiased in repeated sampling and more efficient than
one that does not use the auxiliary data.2 (Note that if the sample is not a probability
sample, as covered in chapter 6, then some type of model-based estimation is the only
option for analysis.) We point out the appropriate model for each technique as we go
along. Model fitting and checking should be an important step in deciding what form
of estimator to use, although practitioners often ignore this step.

4.1 Poststratified estimators

Poststratified and raking estimators are two of the most commonly used calibration
estimators. They are especially popular in household surveys of persons where the
auxiliary variables are indicators for demographic groups. For example, persons may
be classified by age group, gender, and race. Poststratification is implemented within
calibration weighting classes formed by crossing all categories of the qualitative variables
and constructing weights that reproduce the class-specific population counts in the
weighted estimates. Poststratification can also be done using a single variable like age
group. The poststratified estimator of a total is defined as

t̂yPS =

G∑

γ=1

Nγ

(
t̂yγ

/
N̂γ

)
(4.1)

where t̂yγ =
∑

sγ
diyi is the estimated total of y in weighting class (or poststratum)

γ based on the input weights, sγ is the set of responding sample units in poststratum

γ, N̂γ =
∑

sγ
di is the estimated population size of poststratum γ based on the input

weights, Nγ is the population count (also known as a control or control total) for the
poststratum γ, and G is the total number of poststrata. The input weights, di, can be
base weights or weights that have been adjusted for unknown eligibility or nonresponse.
The implied final weight for unit i in poststratum γ is

wi = di
Nγ

N̂γ

(4.2)

where Nγ

/
N̂γ is the poststratification adjustment (factor). With that definition of the

weight, we can write the estimator as t̂yPS =
∑

i∈s wiyi, that is, a weighted sum of the
data values.

1. The term “superpopulation model” means a statistical model that appears to agree with the struc-
ture of the data observed in the finite population.

2. This design-based property is contingent on any nonresponse bias having been corrected using the
methods in chapter 3. Consequently, a more honest term might be “pseudodesign based”, because
which units respond is almost never under the survey designer’s control.
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The weighting classes are called poststrata because they are applied after the sample
is selected and data are collected. This gives flexibility in which variables are used to
define the poststrata because they do not have to be available when the sample is
designed. Consequently, poststratification is a good way to use auxiliaries that you
think are effective predictors of important variables collected in the survey but cannot
be easily used for sample selection or for a nonresponse adjustment. For example, in a
household survey, many countries do not have a frame of persons that includes race and
educational attainment, even though those variables may be correlates of many analysis
variables.

In the model that supports poststratification, each unit in poststratum γ has the
same mean

EM (yi) = µγ

for all units i in group γ. The units in the sample can be independent under the model,
or the model can reflect clustering in the sample (and population) so that elements
within clusters are correlated under the model.

Example 4.1: Poststratification. The example below reads a sample of 2,000 per-
sons selected from the U.S. National Health Interview (NHIS, nhis.large.dta) popula-
tion in PracTools, which has N = 21588 persons and poststratifies it using a 5-category
age-group variable. The full code is in ex.4.1 poststrat.do. The svyset statement
specifies the design weight as wt. Two options are used: poststrata(), which names the
variable that holds the poststratum values (age grp in this case), and postweight(),
which gives the variable that contains the poststratification control totals (poptots).
Each record on the file that is in a given poststratum should have the same value in
the poptots field. As a check, we run a table of the weighted population estimates
for age group. Each estimated count is equal to the control total in each group, plus
their standard errors (SEs) are 0. The estimated SEs are 0 for any control total used in
a calibration adjustment because the algorithm forces the estimates to be the same in
every sample.
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. use http://www.stata-press.com/data/svywt/nhis_sam.dta

. label define age_lab 1 "<18" 2 "18-24" 3 "25-44" 4 "45-64" 5 "65+"

. label values age_grp age_lab

. svyset [pweight=wt], poststrata(age_grp) postweight(poptots)

pweight: wt
VCE: linearized

Poststrata: age_grp
Postweight: poptots

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. svy: tabulate age_grp, count se
(running tabulate on estimation sample)

Number of strata = 1 Number of obs = 2,000
Number of PSUs = 2,000 Population size = 21,588
N. of poststrata = 5 Design df = 1,999

age.grp count se

<18 5991 0
18-24 2014 0
25-44 6124 0
45-64 5011 0

65+ 2448 0

Total 2.2e+04

Key: count = weighted count
se = linearized standard error of weighted count

A shortcoming of the Stata code above is that the poststratified weights in (4.2)
are not saved as a separate variable and, consequently, cannot be stored for later use.
However, using svycal, the code below does compute and save the weights. These
weights will be saved if the data file is saved. The population controls are stored in a
matrix called poptotals. Notice that the matrix contains six positions, with the first
holding the sum of the age group control totals that are in positions 2–6 corresponding
to the five levels of age grp. The first position is the control total for the constant in the
poststratification model, which is the population size. The gen(ps wt) option of svycal
causes the poststratified weights to be saved in ps wt. svycal is a general command
that will be used for more elaborate applications of calibration in later sections.

. matrix poptotals = 21588, 5991, 2014, 6124, 5011, 2448

. matrix colnames poptotals = _cons 1.age_grp 2.age_grp 3.age_grp 4.age_grp
> 5.age_grp

. svycal regress i.age_grp [pw=wt], gen(ps_wt) totals(poptotals)
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The poststratified weights can be used in analysis, for example, to estimate the
proportion of persons who receive Medicaid (a medical assistance program for the poor)
in the United States:

. generate medicaid1 = abs(medicaid - 2)

. svyset [pweight=wt], poststrata(age_grp) postweight(poptots)

. svy: mean medicaid1

(output omitted )

Linearized
Mean Std. Err. [95% Conf. Interval]

medicaid1 .1052065 .0070797 .0913219 .119091

�

Warning. Be wary of specifying the survey design in a way
that does not recognize that poststratification has been used.
For example, if svyset is issued as

svyset [pweight=ps wt]

Stata will use the wrong variance estimation formula. SEs of the
estimated age group population counts will be nonzero because
we do not give ourselves proper “credit” for poststratifying. SEs
may be overestimated for variables for which poststratification
does result in precision gains.

If you are the database constructor and are supplying a file with poststratified weights
to other users, they need to know both definitions of the poststrata and their control
totals to correctly compute SEs. This proviso applies to all other calibrated weights,
including raking and general regression that will be covered later in this chapter.

Recovering control totals from public-use files

Public-use files are often supplied with weights computed via poststratification or an-
other calibration procedure. To correctly compute SEs, Stata needs to be informed that
poststratification was used. This requires knowing both the variable(s) used to define
poststrata and the population (control) totals. As a data user, you may have to rely
on the survey documentation to try to reconstruct both. For example, suppose the
documentation says that poststrata were based on age × gender. A survey-weighted
tabulation of the estimated population counts in the age × gender table will reproduce
the population controls. If the documentation does not clearly list the age categories,
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you may have to contact the organization that provided the database or make an edu-
cated guess as to what they were.

Given your own construction of a poststratum variable and the recovered population
totals, svyset can be specified as in example 4.1. Expending this effort is worthwhile
to get more honest SEs. These better SEs could well be smaller than if you treated the
weights as inverse selection probability weights like in the warning above.

Example 4.2: Recovering poststratification totals. We use the same sample
as in example 4.1 but now use pswt in the dataset as the weight. (The code is in
ex.4.2 recover.poptots.do.) If the poststratified weights, pswt, are treated as inverse
selection probabilities, and the total number of persons who are not covered by any kind
of medical insurance is estimated, we get these results:

. use http://www.stata-press.com/data/svywt/nhis_sam, clear

. label define age_lab 1 "<18" 2 "18-24" 3 "25-44" 4 "45-64" 5 "65+"

. label values age_grp age_lab

. generate notcov1 = abs(notcov - 2)

. svyset [pweight = pswt]

. svy: total notcov1

(output omitted )

Linearized
Total Std. Err. [95% Conf. Interval]

notcov1 4045.863 195.5004 3662.454 4429.273

. svy: total notcov1, over(age_grp)

(output omitted )

_subpop_1: age_grp = <18
_subpop_2: age_grp = 18-24
_subpop_3: age_grp = 25-44
_subpop_4: age_grp = 45-64
_subpop_5: age_grp = 65+

Linearized
Over Total Std. Err. [95% Conf. Interval]

notcov1
_subpop_1 875.2284 102.0084 675.1727 1075.284
_subpop_2 689.9815 112.391 469.5637 910.3993
_subpop_3 1653.662 116.8108 1424.576 1882.747
_subpop_4 775.1823 82.7784 612.8399 937.5248
_subpop_5 51.80952 25.88503 1.044608 102.5744
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Next, suppose that the weights on the file were created by poststratifying by the five
age groups. We can recover the population totals with a tabulation.

. svy: tabulate age_grp, count format(%12.0f)

(output omitted )

age.grp count

<18 5991
18-24 2014
25-44 6124
45-64 5011

65+ 2448

Total 21588

Key: count = weighted count

Then, the poststratification control counts are appended to the dataset with the follow-
ing:

. generate pstot = 5991

. replace pstot = 2014 if age_grp == 2

. replace pstot = 6124 if age_grp == 3

. replace pstot = 5011 if age_grp == 4

. replace pstot = 2448 if age_grp == 5

Retabulating the estimated total of persons not covered by medical insurance and
accounting for the poststratification gives

. svyset [pweight=wt], poststrata(age_grp) postweight(pstot)

. * nocov1 totals overall and by age_grp

. svy: total notcov1

(output omitted )

Linearized
Total Std. Err. [95% Conf. Interval]

notcov1 4100.936 190.2382 3727.847 4474.025

. svy: total notcov1, over(age_grp)

(output omitted )

Linearized
Over Total Std. Err. [95% Conf. Interval]

notcov1
_subpop_1 882.4917 96.73621 692.7757 1072.208
_subpop_2 703 93.26878 520.0842 885.9158
_subpop_3 1671.016 105.6485 1463.822 1878.211
_subpop_4 791.2105 79.24024 635.807 946.614
_subpop_5 53.21739 26.32456 1.590482 104.8443
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Note that we do not have to compute new poststratified weights using svycal as was
done in example 4.1 because wt is already poststratified. The SE on the full population
estimate is reduced by about 2.7% (1− 190.2382/195.5004) when the poststratification
is accounted for. There are also reductions in the SEs of estimated totals for individual
age groups. The reason that SEs are smaller when poststratification is properly credited
is that there are substantial differences among age groups in the proportions not covered
by medical insurance as is evident from the table below. In other words, there is an
association between the poststrata and the variable of interest.

. svy: mean notcov1, over(age_grp)

(output omitted )

Linearized
Over Mean Std. Err. [95% Conf. Interval]

notcov1
_subpop_1 .1473029 .0161469 .1156361 .1789697
_subpop_2 .3490566 .0463102 .2582344 .4398788
_subpop_3 .2728636 .0172515 .2390304 .3066968
_subpop_4 .1578947 .0158133 .1268823 .1889072
_subpop_5 .0217391 .0107535 .0006497 .0428286

Finally, we should note that any reduction in SEs will be most important for esti-
mated totals. Poststratification may not improve the precision of estimated proportions
(or any ratio estimator where weights are included in the numerator and denominator)
much. �

Control totals, however, are not always exactly recoverable from public-use files.
As discussed in Kim, Li, and Valliant (2007) some weighting cells, but not an entire
level of a complicated set of poststrata, may need to be collapsed because of small or
zero sample size. For example, say that poststrata are constructed by gender × race
(Hispanic, non-Hispanic [NH], white, NH black, NH Asian, and NH other). If there are
few respondents in the female NH Asian weighting cell (say, 10) but plenty of NH Asian
males, then the statistician may choose to collapse NH Asian females with NH other
females but leave the category alone for males. The associated documentation may not
include such details. Therefore, we recommend checking the respondent sample size for
the poststrata; if counts are small, then producing population control totals for your
own version of collapsed cells or for a raking estimator (discussed in section 4.2) may
be preferred.

4.2 Raking estimators

Raking is another commonly used method of adjusting weights to control totals. In this
method, marginal population controls can be used for two or more variables. Raking
is often used when several variables are predictive of either coverage or the analysis
variables (or both) but the sample sizes in some cells would be small if all variables
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were fully crossed as they would be for poststratification based on multiple variables.
Another reason to use raking is when control totals are only available at the margins, say,
in a published report but not for the corresponding poststrata. Like poststratification,
raking has an associated linear model. Taking the case of two raking dimensions, the
model mean for unit i in level j of the first variable and level k of the second is

EM (yi) = µ+ αj + βk

where αj and βk are main effects. Even with two dimensions several variables can be
used because a dimension can be a cross-classification. For example, one dimension
might be (age group) × education and the other race × (income group).

Example 4.3: Raking with svycal. The code below (also in ex.4.3 rake.do) uses
svycal to rake to control totals for age group and Hispanic using the same nhis sam

sample as above. The variable hisp is recoded from 4 categories to 3 in hispr be-
cause the sample size in category 4 (non-Hispanic all other race groups) is small. The
gen(rake wt) option saves the weights in a variable called rake wt. The totals()

option lists the control totals in order for the levels of age grp and hispr.

. use http://www.stata-press.com/data/svywt/nhis_sam, clear

. label define age_lab 1 "<18" 2 "18-24" 3 "25-44" 4 "45-64" 5 "65+"

. label values age_grp age_lab

. recode hisp (1=1) (2=2) (3=3) (4=3), generate(hispr)

. svycal rake i.age_grp i.hispr [pw=wt], gen(rake_wt)
> totals(_cons=21588 1.age_grp=5991 2.age_grp=2014 3.age_grp=6124
> 4.age_grp=5011 5.age_grp=2448 1.hispr=5031 2.hispr=12637 3.hispr=3920)

. summarize(rake_wt)

Variable Obs Mean Std. Dev. Min Max

rake_wt 2,000 10.794 2.478362 8.909467 20.06054

�

Using the raked weights to estimate the proportion of persons receiving Medicaid,
we get

. svyset [pweight=wt], rake(i.age_grp i.hispr,
> totals(_cons=21588 1.age_grp=5991 2.age_grp=2014 3.age_grp=6124
> 4.age_grp=5011 5.age_grp=2448 1.hispr=5031 2.hispr=12637 3.hispr=3920))

. generate medicaid1 = abs(medicaid - 2)

. svy: mean medicaid1

(output omitted )

Linearized
Mean Std. Err. [95% Conf. Interval]

medicaid1 .1067731 .0070633 .0929209 .1206254
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which is similar to the estimated mean and SE in poststratification where only age group
was used. Notice that in the svyset statement above, the specification of totals in
svycal includes marginal population counts for both age group and Hispanic.

The rake() option also allows bounds to be set on the relative change of the raked
weights to the input weights. This code sets lower and upper bounds on the ratio of
rake wt/wt using the ll() and ul() options:

. svycal rake i.age_grp i.hispr [pw=wt], gen(rake_wtB) totals(_cons=21588
> 1.age_grp=5991 2.age_grp=2014 3.age_grp=6124 4.age_grp=5011 5.age_grp=2448
> 1.hispr=5031 2.hispr=12637 3.hispr=3920) ll(0.8) ul(1.2)

This option can be used if unbounded raking makes some extremely large adjustments to
the input weights that the analyst feels are untrustworthy. The ll() and ul() options
can also be used in svycal regress discussed below. A key point to remember is that
these options put a bound on the weight adjustments not on the weights themselves.
The formal statement of the constraint that is put on the final weights wi is

L ≤ wi/di ≤ U

where di is the input weight for unit i and L and U are, respectively, the lower and
upper bounds on the weight ratio.

The sizes of L and U will depend in part on the quality of the input weights. L
can be set so that no final weight is less than or equal to 0 or allowed to be less than
1 on the premise that each unit should at least represent itself. U will depend on how
large the adjustments need to be to compensate for nonresponse and noncoverage. A
sample with very low response or poor coverage of the target population will need larger
upward adjustments to the input weights than a sample with high response and near
complete coverage.

Another versatile command for raking is ipfraking (Kolenikov 2014) (install by
typing net install http://www.stata-journal.com/software/sj14-1/st0323). It
has several useful features, including weight trimming and diagnostics. The code below
repeats the example above, in which the NHIS sample is raked to margins for age groups
and Hispanicity. Some preliminary coding is needed in addition to the labeling and
recoding of the hisp variable, which was also done above. The vectors of control totals
must be stored as matrices with three requirements:

1. Each matrix must be a 1 × c row vector, where c is the number of control totals
in the matrix.

2. Each matrix must have column names in Stata estimation results format, that is,
varname: #.

3. Each matrix must have a row name that contains the categorical variable for which
the totals were computed.

Because of requirement 2 above, the command generate one = 1 is issued below.
This creates the variable one, which is also set as the prefix to the column names in the




