
STATA May 1995

TECHNICAL STB-25

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

Sean Becketti Francis X. Diebold, University of Pennsylvania
Stata Technical Bulletin Joanne M. Garrett, University of North Carolina
8 Wakeman Road Marcello Pagano, Harvard School of Public Health
South Salem, New York 10590 James L. Powell, UC Berkeley and Princeton University
914-533-2278 J. Patrick Royston, Royal Postgraduate Medical School
914-533-2902 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c
 by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an54. STB-19–STB-24 available in bound format 2
dm28. Calculate nice numbers for labeling or drawing grid lines 2
dm29. Create TEX tables from data 3
dm30. Comparing observations within a data file 7

sg26.3. Fractional polynomial utilities 9
sg32.1. Variance inflation factors and variance-decomposition proportions: Correction 13

sg35. Robust tests for the equality of variances 13
sg36. Tabulating the counts of multiple categorical variables 15
sg37. Orthogonal polynomials 17
sg38. Generating quantiles 19
sg39. Independent percentages in tables 20
snp8. Robust scatterplot smoothing: enhancements to Stata’s ksm 23
sts10. Prais–Winsten regression 26

zz5. Cumulative index for STB-19–STB-24 29

2 Stata Technical Bulletin STB-25

an54 STB-19—STB-24 available in bound format

Sean Becketti, Stata Technical Bulletin, stb@stata.com, FAX 914-533-2902

The fourth year of the Stata Technical Bulletin (issues 19–24) has been reprinted in a 242+ page bound book called The Stata
Technical Bulletin Reprints, Volume 4. The volume of reprints is available from StataCorp for $25–$20 for STB subscribers—plus
shipping. Authors of inserts in STB-19–STB-24 will automatically receive the book at no charge and need not order.

This book of reprints includes everything that appeared in issues 19–24 of the STB. As a consequence, you do not need
to purchase the reprints if you saved your STBs. However, many subscribers find the reprints useful since they are bound in a
volume that matches the Stata manuals in size and appearance. Our primary reason for reprinting the STB, though, is to make it
easier and cheaper for new users to obtain back issues. For those not purchasing the reprints, note that zz5 in this issue provides
a cumulative index for the fourth year of the original STBs.

dm28 Calculate nice numbers for labeling or drawing grid lines

James W. Hardin, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

nicenum computes lists of “nice” numbers (multiples of 2, 5, and 10) that can be used as the arguments to the xlab, ylab,
xline, and yline options of the graph command. The syntax of nicenum is

nicenum macroname = arglist [, number(#)]

The arglist can contain variables, scalars, and numeric constants. nicenum computes a list of nice numbers that cover the range
of values specified by the arglist and stores that list, separated by commas, in macroname. The number() option specifies a
desired number of values in the list of nice numbers. nicenum regards that number as a suggestion rather than a constraint; the
program will alter the number as needed to produce a list of numbers that is acceptably nice.

Remarks

The axis-labeling options to the graph command automatically choose nice numbers if you do not specify values. For
instance, if you type the commands

. use auto

. graph mpg price, xlabel ylabel

where auto is the automobile data supplied with Stata, the x-axis of the graph will be labeled with the values 0, 5,000, 10,000,
and 15,000 and the y-axis will be labeled with the values 10, 20, 30, and 40.

nicenum calculate similar lists of numbers. In addition, by adding values to the arglist, you can force the list of numbers
to include specified values. This feature is particularly useful in do-files and Stata programs, when you want to ensure that a
sequence of graphs uses the same scale and labels.

Example
. use auto

(1978 Automobile Data)

. summarize price

Variable | Obs Mean Std. Dev. Min Max

---------+---

price | 74 6165.257 2949.496 3291 15906

. nicenum prlab = price

. display "$prlab"

0,5000,10000,15000,20000

. by foreign: summarize price

-> foreign=Domestic

Variable | Obs Mean Std. Dev. Min Max

---------+---

price | 52 6072.423 3097.104 3291 15906

-> foreign= Foreign

Variable | Obs Mean Std. Dev. Min Max

---------+---

price | 22 6384.682 2621.915 3748 12990

Stata Technical Bulletin 3

. nicenum forlab = price if foreign

. display "$forlab"

2000,4000,6000,8000,10000,12000,14000

. nicenum forlab = price if foreign, number(3)

. display "$forlab"

0,5000,10000,15000

. nicenum forlab = price 20000 if foreign

. display "$forlab"

0,5000,10000,15000,20000

dm29 Create TEX tables from data

James W. Hardin, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

The syntax of textab is

textab varlist
�
if exp

� �
in range

� �
, vlines(string) sep(string) tabskip(string) font(string)

bstrs(string) estrs(string) missing(string) align(string) format(string) nocenter
�

textab generates TEX code to format a table containing the values of the variables in the varlist. This code can be used in a
plain TEX or LATEX document.

Options

vlines(string) is used to specify the types and positions of vertical rules in the table. In a table with k columns, there are k+1
possible positions for vertical rules: on the left-hand side of the table, between the first and second columns, between the
second and third columns, : : : , between the k � 1 and k columns, and on the right-hand side of the table. The argument
of the option is a comma-separated string with k + 1 entries. Each entry is a single letter where s denotes a single line, b
denotes a bold line, d denotes a double line, and n denotes no line. The default is that all k + 1 entries are equal to n.

sep(string) is used to specify the types of horizontal lines to be drawn in the table. The argument of the option is a comma-
separated string with three entries that specify the line at the top of the table, the line beneath the column headers, and the
line below the table, respectively. Each entry is a single letter where s denotes a single line, b denotes a bold line, and n

denotes no line. The default is to not draw any horizontal lines.

tabskip(string) is used to specify the space between each column of information. There are k + 1 tabskips in a table: the
amount of space to skip before starting the table, the amount of space to place between each column of information, and
the amount of space to the right of the last column. The default is to skip 0pt to the left of the table and then to have
10pt of space between each column. The argument to this option is a comma-separated list of numbers that indicate the
skips in terms of printer’s points.

font(string) is used to specify fonts for each column of information. This is a comma-separated list of arguments that will
be placed directly into the halign template so it is up to you to specify the entire font (e.g., \rm). The default is to not
specify any fonts.

bstrs(string) is used to specify a string that should appear in every entry in a column at the beginning of the entry. This is
a comma-separated list and will be placed in curly braces in the halign template outside of any font that you may have
specified. You may specify a font directly in this argument if you wish. There are k entries in this list. Should you want
to include a space before or after one of these entries, then enclose the entire string in curly braces.

estrs(string) is used to specify a string that should appear in every entry in a column at the end of the entry. This is a
comma-separated list and will be placed in curly braces in the halign template outside of any font that you may have
specified. You may specify a font directly in this argument if you wish. There are k entries in this list. Should you want
to include a space before or after one of these entries, then enclose the entire string in curly braces.

4 Stata Technical Bulletin STB-25

missing(string) is a comma-separated list specifying a string to be placed into the table for any missing value that is encountered
when creating the table. There are k entries in this list. The default is not to make any substitution.

align(string) is used to specify the horizontal alignment of each of the columns. This is a comma-separated list of k entries.
Each entry is a single letter where l denotes a flush-left alignment, c denotes a centered alignment, and r denotes a
flush-right alignment. The default is to center all columns.

format(string) is used to format strings or numbers before they are placed into the table. This is a comma-separated list of
Stata format codes (e.g., %6.3f) for each of the k entries. The default is to use the values as they would be formatted by
list.

nocenter specifies that the generated table should not contain TEX code to center the table horizontally. The default is to create
a table that is centered.

Note: Stata does not handle the backslash character when the command line is parsed. If you need to pass an argument that
includes one or more characters that require the backslash (such as positioning a ‘$’ character), then you will have to directly
edit the resulting TEX code yourself as there is no way for the command to access that character in any kind of passed string.

Description

If you use the TEX typesetting program to create documents, then you understand the difficulty of creating tables. The code
and examples that come with the TEXbook are not very enlightening and most people agree that creating tables is a very difficult
task. However, this need not be so. There are a few general and easy-to-remember rules to follow when creating a TEX table.
The textab program knows these rules and creates tables that can be imported directly into a document with little or no further
editing. The only editing that may be necessary is to escape characters that are special to TEX (see the previous note) or to add
more headers or footers to the table. In the following section, I present the basic algorithm for designing a table in TEX and
show how that algorithm is used in textab creates tables. All the tables in this article were created using the textab program.

This article will not attempt to explain every single aspect of creating tables in TEX. However, each table created by textab

contains numerous comments. The output to the screen is also color coded to make seeing it much easier for those with color
monitors. Each of the k columns and each row is clearly marked with a comment as are the struts and headers. Each strut is
further commented to point out which of the 4 types of struts is being used. I go into further detail on struts in the following
section. Finally, I include comments in the halign template section to clearly mark the separators and each of the k variables
included in the table. Included in the comment for each of the variables is the alignment being used. The color coding is such
that comments appear in green (row markers are in blue to more easily find them), and table values are in white. All TEX code
appears on the screen in yellow.

Tables in TEX

Tables are created in TEX using the halign command. This command creates a template for the justification, font, size,
and spacing of each column in the table. This template should define the following items:

Column Purpose

Strut Sets the height for the current row
Outside Vbar Left-hand vertical rule
Value 1 First column of table values
Vbar Vertical rule between table values
Value 2 Second column in table values
Vbar Vertical rule between table values
� � � � � �
Value k Last column of table values
Outside Vbar Right-hand vertical rule

The above table was produced by reading the string values into Stata from a file and issuing the command:

. textab Column Purpose, sep(s,s,s) vlines(s,s,s) align(l,l)

Stata Technical Bulletin 5

This shows that the halign template should define 2k + 2 items to typeset k columns of information. It should also be noted
that this description of a table applies regardless of whether you actually want the vertical rules to be drawn. If you do not
specify vertical rules, then these widths will be 0 and will take up no space in the final table. The first column is the strut and
serves a special purpose in the table. The strut is a vertical rule of width 0, which makes it is invisible and prevents it from
taking up any width in the table. Its purpose is to define the height of the current row. The textab command will adjust these
heights depending on whether there are nearby horizontal rules in the table. It also defines the strut in terms of the baseline so
that it will work regardless of the current font or magnification that you are using in your document. There are only 3 horizontal
rules that textab will draw for you. One is above the entire table, the next is below the column headers, and the last is below
the entire table. This leads to a need for 4 different struts. A normal strut is one in which there is no horizontal rule either
above or below the current row. There may also be a row which has a horizontal rule above it, but not one below it. There may
be a row with a horizontal rule below it, but not above it. Finally, there may be a row which has a horizontal rule both above
and below it. Each of these types of struts appear in the preceding table. The column headers have a horizontal rule above and
below. The first row of the table has a horizontal rule above. The last row of the table has a horizontal rule below, and all other
rows do not have neighboring horizontal rules.

The final point of consideration is the amount of space between each column of information in the table. TEX provides the
tabskip command to allow you to specify this space in the halign template. There are k + 1 tabskips to be specified to the
textab command which are then placed into the halign template. The first tabskip is the one that specifies how far from
the left margin to skip before starting the table. If you are going to center the table, then you can specify this as zero (which
is the default). The remaining tabskip values are split evenly on either side of the vrule columns. Should you want uneven
tabskip spacing, you will have to edit the table that textab generates. You will also have to edit the resulting table if you
would like a more descriptive column header than is possible from the eight characters allowed in the variable name.

Examples

In order to demonstrate all of the options of the textab command, I will use the same small data set for all of the following
examples. This contrived data set has both numeric and string variables and will be used to make tables that have no value other
than demonstrating various properties of the textab command.

. list

Name Test1 Rank Value

1. John 89.992 3 A

2. Bill 71.023 5 C

3. Mary . 2 A

4. Janet 80.923 4 B

5. William 94.556 1 A

Here are some sample tables and the commands that created them.

Name Test1

John 89.992
Bill 71.023

Mary absent
Janet 80.923

William 94.556

Name Test1 Value
John 89.992 A
Bill 71.023 C

Mary absent A
Janet 80.923 B

William 94.556 A

Name Test1 Value

John 89.992 A
Bill 71.023 C
Mary absent A
Janet 80.923 B
William 94.556 A

. textab Name Test1, missing(,\it absent) sep(s,s,s) nocenter

. textab Name Test1 Value, missing(,\it absent) vlines(s,d,s,s) nocenter

. textab Name Test1 Value, miss(,\it absent) sep(s,b,s) vlin(s,d,s,s) nocen al(l,c,c) font(,,\bf)

Name R�Rank

John R�3
Bill R�5

Mary R�2
Janet R�4

William R�1

Name Average Rank Value

John 89.99 3 A
Bill 71.02 5 C

Mary 92.28 2 A
Janet 80.92 4 B

William 94.56 1 A

6 Stata Technical Bulletin STB-25

. textab Name Rank, sep(s,b,s) vlines(s,d,s) bstr(,$\cal R-$) tabskip(0,20,40) nocenter

. generate Average = Test1

. replace Average = 92.28 in 3

. textab Name Average Rank Value,sep(s,s,s) vlines(s,s,s,s,s) format(,%5.2f,,) nocenter

Finally, here is an example that illustrates the need for the 4 struts illustrated earlier in the text. If I typeset the last table again
but set all struts to the usual value, I obtain

Name Average Rank Value
John 89.99 3 A
Bill 71.02 5 C

Mary 92.28 2 A
Janet 80.92 4 B

William 94.56 1 A

Below, I present the TEX code that was generated by the textab command for the “correct” version of this table. The
“incorrect” table was created by changing the strut(A), strut (B), and strut(AB) lines to be the same as the strut line
(which is the default behavior in TEX, but not in textab.)

% BEGINNING OF TEXTAB TABLE

\vboxf
\tabskip=0pt% Tab0

\halignf
#\tabskip=0pt&% strut with width=0pt for vertical bars if they exist

#\tabskip=5pt&% (Sep)

f\hfilgff#ggf\hfilg\tabskip=5pt&% (C) Var 1

#\tabskip=5pt&% (Sep)

f\hfilgff#ggf\hfilg\tabskip=5pt&% (C) Var 2

#\tabskip=5pt&% (Sep)

f\hfilgff#ggf\hfilg\tabskip=5pt&% (C) Var 3

#\tabskip=5pt&% (Sep)

f\hfilgff#ggf\hfilg\tabskip=5pt&% (C) Var 4

#\tabskip=0pt\cr% (Sep)

%

% End of halign directive and beginning of column headers

%

\noalignf\hruleg
\vrule height 1.1\baselineskip depth 0.7\baselineskip width0pt&% strut (AB)

f\vruleg&Name&%
f\vruleg&Average&%
f\vruleg&Rank&%
f\vruleg&Value&%
f\vruleg\cr%

%

% End of headers and beginning of table values

%

\noalignf\hruleg
\vrule height 1.1\baselineskip depth 0.3\baselineskip width0pt&% strut (A)

f\vruleg&John&% Column 1

f\vruleg&89.99&% Column 2

f\vruleg&3&% Column 3

f\vruleg&A&% Column 4

f\vruleg\cr% Row 1

\vrule height 0.7\baselineskip depth 0.3\baselineskip width0pt&% strut

f\vruleg&Bill&% Column 1

f\vruleg&71.02&% Column 2

f\vruleg&5&% Column 3

f\vruleg&C&% Column 4

f\vruleg\cr% Row 2

\vrule height 0.7\baselineskip depth 0.3\baselineskip width0pt&% strut

f\vruleg&Mary&% Column 1

Stata Technical Bulletin 7

f\vruleg&92.28&% Column 2

f\vruleg&2&% Column 3

f\vruleg&A&% Column 4

f\vruleg\cr% Row 3

\vrule height 0.7\baselineskip depth 0.3\baselineskip width0pt&% strut

f\vruleg&Janet&% Column 1

f\vruleg&80.92&% Column 2

f\vruleg&4&% Column 3

f\vruleg&B&% Column 4

f\vruleg\cr% Row 4

\vrule height 0.7\baselineskip depth 0.7\baselineskip width0pt&% strut (B)

f\vruleg&William&% Column 1

f\vruleg&94.56&% Column 2

f\vruleg&1&% Column 3

f\vruleg&A&% Column 4

f\vruleg\cr% Row 5

\noalignf\hruleg
gg% End of textab produced table

% END OF TEXTAB TABLE

References
Knuth, D. E. 1986. The TEXbook. Reading, MA: Addison–Wesley.

von Bechtolsheim, S. 1993. TEX in Practice Volume IV: Output Routines, Tables. New York: Springer-Verlag.

dm30 Comparing observations within a data file

Richard Goldstein, Qualitas, Inc., EMAIL richgold@netcom.com

Stata includes commands for comparing a pair of variables within a file ([5d] compare) and for comparing a list of variables
across two files ([5d] cf), but there is no easy way to compare two observations within a data set. Yet, especially when obtaining
data from others, this is necessary to ensure against duplicate observations in the data set. I have written compobs to perform
this task. The syntax of compobs is

compobs varlist if n==# [, list(varlist) number(#)]

compobs expects that the data will be sorted in some way that eases the search for such duplicates (e.g., sorted by some
external identifying number such as Social Security number). As a consequence, compobs examines adjacent observations by
default. The observations to examine are specified by the if clause, which is required. Replace the ‘#’ with the number of the
second observation of the pair to be compared. For example, to compare the values of all variables across observations 7 and
8, type

. compobs _all if _n==8

The output is presented in two parts: (1) the values of the variables that differ across observations are displayed; and (2)
the number of variables with differences is displayed. The list option allows you to attach identifiers to each difference. The
number() option allows you to compare the observation selected with the if clause to any other observation, not just the
preceding observation. Just specify the desired observation number in this option. The observation number must, of course, be
an integer.

Example

To demonstrate compobs, I use the familiar automobile data. First, I compare the values of several of the variables across
the first two observations:

. use auto

(1978 Automobile Data)

. compobs price mpg rep78 hdroom weight if _n==2

price

1. 4099

2. 4749

8 Stata Technical Bulletin STB-25

mpg

1. 22

2. 17

hdroom

1. 2.5

2. 3.0

weight

1. 2930

2. 3350

Number of Differences = 4

Note that compobs did not display the variable rep78 because the values were identical across observations.

. list rep78 in 1/2

rep78

1. 3

2. 3

Now I use the list() option to display the make of each car along with the differences.

. compobs price mpg rep78 hdroom weight if _n==2, list(make)

price make

1. 4099 AMC Concord

2. 4749 AMC Pacer

mpg make

1. 22 AMC Concord

2. 17 AMC Pacer

hdroom make

1. 2.5 AMC Concord

2. 3.0 AMC Pacer

weight make

1. 2930 AMC Concord

2. 3350 AMC Pacer

Number of Differences = 4

Finally, I compare the values of all the variables in the second and the sixth observations.

. compobs _all if _n==2, number(6)

make

2. AMC Pacer

6. Buick LeSabre

price

2. 4749

6. 5788

mpg

2. 17

6. 18

hdroom

2. 3.0

6. 4.0

trunk

2. 11

6. 21

weight

2. 3350

6. 3670

length

2. 173

6. 218

turn

2. 40

6. 43

displ

2. 258

6. 231

gratio

2. 2.53

6. 2.73

Number of Differences = 10

Stata Technical Bulletin 9

sg26.3 Fractional polynomial utilities

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-181-740-3119

In this insert, I describe three utilities designed to enhance the fp (fractional polynomial) software of Royston and Altman
(1994a,b). They are called fpshow, fpplot and fpderiv. The STB-25 diskette includes them and the most recent version of
the suite of FP programs. See sg26 for an explanation of fractional polynomials and their uses.

fpshow

The syntax for fpshow is

fpshow [, model(#) best info monotonic devdiff(#)]

fpshow gives extra information on the regression models that fp has (unless fp’s log option has been used) silently fitted to
your data. This includes a comparison of the deviance of the best-fitting model with that of each of the other candidates fitted
and an indication, where possible, if each model function is monotonic in X , the argument of the fractional polynomial.

Options

model(#) displays the results from model number # and makes that model the current one. fp numbers the models it fits from
1 to N , where N depends on the degrees of freedom specified in df() and on the number of powers in powers() (see
help fp). If fpshow is subsequently typed without options, results from model # will be displayed again. Also, fpgraph,
fpplot and other FP utilities will ‘see’ this model as the current one, so you can investigate it further. However, typing fp

without a list of variables will always display results and comparisons from the best-fitting model (which is not necessarily
the current one).

best displays results from the best-fitting model and makes that model the current one.

info gives the following information about each model fitted: its number (from 1 to N); the powers used in the fractional
polynomial; whether the curve is monotonic (strictly increasing or decreasing over the entire range of X); the deviance;
and the increase in deviance over the best-fitting model. Monotonicity cannot easily be determined from the model formula
for models with degree m greater than 2 (which can occur if the fixpowers() option is used with fp); it is shown as
‘--’ in these cases.

monotonic displays only models known to be monotonic. Note that some models with degree> 2 are monotonic; these won’t
be indicated as such. See the comment in the info option.

devdiff(#) displays results only for the worst-fitting models, that is, those whose deviance is at least # greater than that of
the best-fitting model. If # is negative, devdiff() displays only the best-fitting models, those whose deviance is no more
than minus # greater than that of the best-fitting model. A sensible value of # is 4 (or �4).

Example

As an example I shall use a data set, igg.dta, that contains data on IgG (immunoglobulin-G), a protein important in the
human immune response. This file was originally supplied on the STB-21 diskette and is reproduced on the STB-25 diskette.

. use igg

. describe

Contains data from \a\c38\igg.dta

Obs: 298 (max= 2278)

Vars: 3 (max= 99)

Width: 12 (max= 200)

1. igg float %9.0g IgG (g/l)

2. age float %9.0g Age (years)

3. y float %9.0g Square root of IgG

Sorted by:

10 Stata Technical Bulletin STB-25

These data were recorded on 298 children between 6 months and 6 years old. Here I shall model the mean of y, the square
root of IgG, as a function of age. The square-root transformation approximately normalizes the distribution of IgG and stabilizes
its variance. For physiological reasons, IgG is expected to increase monotonically with age, so we will probably reject models
which don’t have this feature. First we fit FP models of degree m = 2:

. fp y age

MODELS, POWERS (p), DEVIANCES (D) and GAINS (G) for Y = y, X = age.

(*) Base model Linear Quadratic Cubic BoxTid df(2) df(4)

p -- 1 1, 2 1, 2, 3 1, 1 0 -2, 2

D 427.539 337.561 333.884 327.687 331.294 327.436 319.448

G 0.000 3.677 9.874 6.267 10.125 18.113

Curve (-2,2) has a positive slope and no maximum or minimum for X>0.

(*) Base model = [none] (298 obs.)

. fpshow, info

Model # Powers Monotonic? Deviance Dev.diff.

1 -2 Yes 346.990 27.542

2 -2,-2 No 334.921 15.472

3 -2,-1 No 330.324 10.875

4 -2,-.5 Yes 327.648 8.199

(output omitted)

A total of 44 models were fitted—only the first four are shown above. We shall look at the fit of the best model later. First
we use fpshow to inspect the models that are closest in deviance to the best one, then those that are monotonic:

. fpshow, devdiff(-4)

Model # Powers Monotonic? Deviance Dev.diff.

6 -2,.5 Yes 322.747 3.298

7 -2,1 Yes 321.025 1.577

8 -2,2 Yes 319.448 0.000 * +

9 -2,3 Yes 319.844 0.396

16 -1,2 Yes 321.714 2.266

17 -1,3 Yes 320.964 1.515

24 -.5,3 Yes 323.341 3.892

Current model (+); model with lowest deviance (*).

. fpshow, mono

Model # Powers Monotonic? Deviance Dev.diff.

1 -2 Yes 346.990 27.542

4 -2,-.5 Yes 327.648 8.199

5 -2,0 Yes 325.025 5.577

6 -2,.5 Yes 322.747 3.298

7 -2,1 Yes 321.025 1.577

8 -2,2 Yes 319.448 0.000 * +

(output omitted)

In fact, most of the models with m = 2 are monotonic, including (for example) model 7, which has powers (�2; 1) and
which is linear in X for large X . We make model 7 the current one:

. fpshow, model(7)

Model number 7

Source | SS df MS Number of obs = 298

---------+------------------------------ F(2, 295) = 63.37

Model | 22.0143273 2 11.0071636 Prob > F = 0.0000

Residual | 51.2380196 295 .173688202 R-squared = 0.3005

---------+------------------------------ Adj R-squared = 0.2958

Total | 73.2523469 297 .246640898 Root MSE = .41676

--

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

X_1 | -.1274086 .0310547 -4.103 0.000 -.1885254 -.0662917

X_2 | .1000895 .0193134 5.182 0.000 .0620799 .138099

_cons | 2.048706 .0721687 28.388 0.000 1.906676 2.190737

--

Deviance = 321.025. Fractional power(s) used: -2,1.

Curve (-2,1) has a positive slope and no maximum or minimum for X>0.

Stata Technical Bulletin 11

We could now use fpgraph or fpplot (see below) to plot the fit of model 7 and compare it with that of the best model
(model 8)—the fits are about equally good. To return to the best model, we would type fpshow, best or fpshow, model(8).

fpplot

fpplot supplements fpgraph (already provided by Royston and Altman 1994), providing a smooth plot of the fitted FP

function or of an arbitrary FP function over a specified range of X values. The syntax for fpplot is

fpplot [, from(#) to(#) obs(#) generate(xvar yhat) nograph scale graph options]

or

fpplot [, from(#) to(#) obs(#) generate(xvar yhat) nograph scale powers(powlist)

coeffs(coefflist) constant(#) expx(#) graph options]

Options

from(#) and to(#) define the lower and upper limits of X , respectively. If an FP model has recently been estimated, from()
and to() are taken by default as the minimum and maximum of the X-values; otherwise, each # must be supplied.

obs(#) is the number of equally spaced values of X to be used; # must be between 2 and 500. Default: 100.

powers() is the set of fractional powers for the FP function. In the first form of fpplot, the program will determine the powers
from the current value of the macro $S E pwrs, so you need not specify them; in the second form, you must supply them
in powlist.

coeffs() is the set of coefficients (multipliers). The fitted function is of the form

bY = �0 + �1H1(X) + �2H2(X) : : :

where the H’s are functions of X defined by the fractional powers. In the first form of fpplot, the coefficients and constant
are provided by Stata’s b[] functions, so you need not specify them. In the second form, you must supply the coefficients
in coefflist and the constant (if required) in constant().

constant(#) is the constant term (see coeffs() above).

expx(#) transforms X to exp(�# �X) before calculating the FP function. In the first form of fpplot, # is taken from the
macro $S E xpx so you need not specify it. Note that the untransformed values of X are always used in the plot, even
when the exponential transformation has been applied.

generate() adds two new variables to the data: xvar, containing the values of X , and yhat, containing the values of the
calculated FP function. If obs() exceeds the original number of observations, the dataset is enlarged accordingly.

scale linearly transforms Y to the range [0; 1]. This can be useful if several plots are to be superimposed.

nograph suppresses the plot.

graph options refers to any of the options of the graph, twoway command.

Example

Having fitted a FP with powers (�2; 2) to the IgG data, we can use the command

fpplot, from(0.5) to(10)

to plot the fit between 6 months and 10 years (the original range was 0.5–6 years). The result is shown as Figure 1.

12 Stata Technical Bulletin STB-25

Locally monotonic on interval X = [.5, 10]

F
ra

c.
 p

o
ly

.
fu

n
ct

io
n

 (
-2

,2
)

Age (years)
.5 10

1.56809

3.67173

Figure 1: Fractional polynomial function fitted to IgG data

The coefficients of X�2, X2 and the constant for this fit were –0.1562, 0.0148 and 2.189, respectively. We could have
used the alternative syntax and typed

fpplot, from(0.5) to(10) powers(-2 2) coeffs(-0.1562 0.0148) constant(2.189)

to achieve the same result. fpplot reports that the function is locally monotonic on the specified interval. In fact, we know
from before that it is globally monotonic.

fpderiv

fpderiv calculates derivatives of FP functions, either the one most recently fitted or an arbitrary one. The syntax is

fpderiv deriv var [, powers(powlist) coeffs(coeff list) next curvature dcurvature]

fpderiv calculates the (analytic) first derivative of the FP function associated with the most recently fitted FP model and places
the result into a new variable, deriv var. All derivatives of FPs are in fact themselves FPs with powers differing from those of the
original function. Higher derivatives may be obtained by repeated use of the next option. fpderiv also calculates a measure
of the curvature of the function and the derivative of this measure (see curvature and dcurvature options).

Options

powers() defines the powers of the FP function. The default powlist is that used with the most recent FP model (and stored in
$S E pwrs).

coeffs() defines the regression coefficients of the FP model. The default coeff list is that estimated with the most recent FP

model, and stored in Stata’s b[] functions. Note that your own coeff list must be a 1 by m matrix, that is, a row vector
of length m, where m is the degree of the FP function. For direct input, this simply amounts to a list of numbers separated
by space(s). Note that coeff list does not include the constant term b[cons], as this plays no part in calculating the
derivative.

next finds the next higher derivative. For example, if you just calculated the first derivative by using fpderiv without options,
fpderiv d2, next would put the second derivative into d2 and then fpderiv d3, next would put the third derivative
into d3. next is equivalent to powers($S 2) coeffs($S 4) (see Saved Results below).

curvature calculates the scaled curvature of the fitted FP function. This is defined as the ratio

d2Y
dX2

K
�
1 +

�
1

K
dY
dX

�2� 3
2

where K = (Ymax � Ymin)=(Xmax �Xmin) is the ratio of the range of fitted Y to the range of X and ensures that the
curvature is meaningful (independent of the scales of X and Y).

dcurvature is the first derivative of the curvature with respect to X .

Stata Technical Bulletin 13

Saved Results

fpderiv saves in the $S # macros as follows.

$S 1 degree of FP function comprising first derivative
$S 2 powers of FP function comprising first derivative
$S 3 powers of original (input) FP function
$S 4 coefficients of the derivative of the FP function

Note that S 4 is a matrix with 1 row and $S 1 columns.

References
Royston, P. and D. G. Altman. 1994a. sg26: Using fractional polynomials to model curved regression relationships. Stata Technical Bulletin 21: 11–23.

——. 1994b. sg26.1: Fractional polynomials: correction. Stata Technical Bulletin 22: 11.

sg32.1 Variance inflation factors and variance-decomposition proportions: Correction

James W. Hardin, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

I have discovered an error in the parsing routines for the vif and colldiag programs. This error occurs when the list of
independent variable names exceeds 80 characters. I have fixed the error, and corrected versions of these programs are available
on the STB-25 distribution diskette. If you have used these commands, and you had more than 80 characters worth of independent
variable names, you should redo the analysis with the new files.

sg35 Robust tests for the equality of variances

Mario A. Cleves, Arkansas Foundation for Medical Care, FAX 501-785-3460

Both the traditional F test for the homogeneity of variances and Bartlett’s generalization of this test to K samples are
very sensitive to the assumption that the data are drawn from an underlying Gaussian distribution. Levene (1960) proposed a
test statistic for equality of variance that was found to be robust under non-normality. Subsequently Brown and Forsythe (1974)
proposed alternative formulations of Levene’s test statistic using more robust estimators of central tendency in place of the mean.
These reformulations were demonstrated to be more robust than Levene’s test when dealing with skewed populations.

This insert presents robvar, a program that calculates Levene’s original statistic along with two reformulations by Brown
and Forsythe to provide robust tests for the equality of variances. The syntax for the robvar command is

robvar varname [if exp] [in range] , by(groupvar)

The program displays Levene’s statistic (W0) and two statistics proposed by Brown and Forsythe that replace the mean in
Levene’s formula with alternative location estimators. The first alternative (W50) replaces the mean with the median. The second
alternative replaces the mean with the 10 percent trimmed mean (W10).

Example

You wish to test whether the standard deviation of the length of stay for patients hospitalized for a given medical procedure
differs by sex. Your data consists of observations of the length of stay for 1778 patients, 884 males and 894 females.

. describe

Contains data from C:\STATA\ROBVAR.DTA

Obs: 1778 (max= 19723)

Vars: 2 (max= 99)

Width: 8 (max= 200)

1. lgthstay float %9.0g LENGTH OF STAY

2. sex float %9.0g 0:MALE 1:FEMALE

Sorted by:

14 Stata Technical Bulletin STB-25

Stata’s sdtest reports the classical test for the equality of variances.

. sdtest lgthstay, by(sex)

Variable | Obs Mean Std. Dev.

---------+---------------------------------

0 | 884 9.087443 9.788475

1 | 894 8.800671 9.108148

---------+---------------------------------

combined | 1778 . 9.452518

Ho: sd(x) = sd(y) (two-sided test)

F(883,893) = 1.15

2*(Pr > F) = 0.0319

This test indicates that the null hypothesis that the estimated standard deviations are equal can be rejected at the 5 percent
level (p = .0319). However, the robust tests reported by robvar do not support the rejection of the null hypothesis.

. robvar lgthstay, by(sex)

0:MALE| Summary of LENGTH OF STAY

1:FEMALE| Mean Std. Dev. Freq.

------------+------------------------------------

0 | 9.0874434 9.7884747 884

1 | 8.800671 9.1081478 894

------------+------------------------------------

Total | 8.9432508 9.4509466 1778

W0= .5548802 df(1, 1776) Pr > F = .45642903

W50= .42704469 df(1, 1776) Pr > F = .51352721

W10= .44566503 df(1, 1776) Pr > F = .50448751

The difference between the results of the classical and the robust tests can be traced to the non-normal distribution of the
length of stays. Figures 1 and 2 reveal the extent of the skewness of this distribution by sex.

Male

F
ra

c
ti

o
n

Length of stay in days
0 50 100

0

.2

.4

.6

.8

Female

F
ra

c
ti

o
n

Length of stay in days
0 50 100

0

.2

.4

.6

.8

Figure 1 Figure 2

Methods and Formulas

Let Xij be the jth observation of X for the ith group. Let Zij = jXij �Xij where Xi is the mean of X in the ith group.
Levene’s test statistic is

W0 =

P
i ni(Zi � Z)2=(g � 1)P

i

P
j(Zij � Zi)2=

P
i(ni � 1)

where ni is the number of observations in group i and g is the number of groups. W50 is obtained by replacing Xi with the
ith group median of Xij , while W10 is obtained by replacing Xi with the 10 percent trimmed mean for group i.

Stata Technical Bulletin 15

References
Levene, H. 1960. Robust tests for equality of variances. In Contributions to Probability and Statistics ed. I. Olkin, 278–292. Palo Alto, CA: Stanford

University Press.

Brown, M. B. and A. B. Forsythe. 1974. Robust test for the equality of variances. Journal of the American Statistical Association 69: 364–367.

sg36 Tabulating the counts of multiple categorical variables

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429

This insert describes tabw. For each variable in a list, tabw tabulates the number of times it takes on the values 0,1,: : :,9,
the number of times it is missing, and the number of times it is equal to some other value. The variables are listed one after the
other, so that if there are K (non-string) variables in the list, tabw will produce a K�12 table. String variables do not cause
an error message, but are listed separately below the table. The syntax of tabw is

tabw varlist [if exp] [in range]

tabw is best understood through examples.

Example 1
. describe

Contains data

Obs:123456 (max=145022)

Vars: 9 (max= 11)

Width: 16 (max= 24)

1. sc byte %8.0g Social class

2. case byte %8.0g case

3. eight byte %8.0g

4. name str2 %9s

5. real float %9.0g

6. month byte %8.0g month

7. make str4 %9s

8. sc_dad byte %8.0g Father's S.C.

9. freq byte %8.0g

Sorted by:

Note: Data has changed since last save

. tabw _all in 1/1000

Variable| 0 1 2 3 4 5 6 7 8 9 **** .

--------+--

sc | 0 196 199 194 195 196 0 0 0 0 0 20

case | 616 384 0 0 0 0 0 0 0 0 0 0

eight | 772 0 0 0 0 0 0 0 196 0 0 32

real | 0 0 0 0 0 0 0 0 0 0 914 86

month | 0 83 84 84 84 84 83 83 83 83 249 0

sc_dad | 0 143 337 335 148 18 0 0 0 0 0 19

freq | 737 174 49 23 13 2 2 0 0 0 0 0

String variable(s): - name, make

Note that due to formatting limitations the maximum number in any column is 99999 (9999 for the column labelled ****).
The current version of tabw replaces the actual count by the maximum number that can be displayed whenever the actual count
exceeds the maximum. A warning is displayed whenever there is the possibility that this has happened.

Example 2
. tabw case month freq in 1/10000

WARNING: 9999 in the column labelled **** means at least 9999 "other"

observations.

Variable| 0 1 2 3 4 5 6 7 8 9 **** .

--------+--

case | 5990 4010 0 0 0 0 0 0 0 0 0 0

month | 0 833 834 834 834 834 833 833 833 833 2499 0

freq | 7421 1619 603 221 78 39 13 3 2 1 0 0

16 Stata Technical Bulletin STB-25

Example 3
. tabw name case sc sc_dad

WARNING: 9999 in the column labelled **** means at least 9999 "other"

observations, similarly 99999 in any other column means

at least 99999 such observations.

Variable| 0 1 2 3 4 5 6 7 8 9 **** .

--------+--

case |74087 49369 0 0 0 0 0 0 0 0 0 0

sc | 0 24431 24417 24431 24425 24453 0 0 0 0 0 1299

sc_dad | 0 16951 42181 42163 16763 2580 0 0 0 0 2 2816

String variable(s): - name

Note that tabw can be quite slow particularly in large data sets. Using in instead of if will make it run faster when only
a selection of the data set is to be tabulated.

Example 4

Finally, here is an example you can replicate using the automobile data supplied with Stata. This example may answer
some of your questions about the treatment of floating-point numbers.

. use auto

(1978 Automobile Data)

. tabw foreign hdroom make rep78

Variable| 0 1 2 3 4 5 6 7 8 9 **** .

--------+--

foreign | 52 22 0 0 0 0 0 0 0 0 0 0

hdroom | 0 0 13 13 10 1 0 0 0 0 37 0

rep78 | 0 2 8 30 18 11 0 0 0 0 0 5

String variable(s):- make

. tabulate rep78

Repair|

Record 1978| Freq. Percent Cum.

------------+-----------------------------------

1 | 2 2.90 2.90

2 | 8 11.59 14.49

3 | 30 43.48 57.97

4 | 18 26.09 84.06

5 | 11 15.94 100.00

------------+-----------------------------------

Total | 69 100.00

. tabulate hdroom

Headroom|

(in.)| Freq. Percent Cum.

------------+-----------------------------------

1.5 | 4 5.41 5.41

2.0 | 13 17.57 22.97

2.5 | 14 18.92 41.89

3.0 | 13 17.57 59.46

3.5 | 15 20.27 79.73

4.0 | 10 13.51 93.24

4.5 | 4 5.41 98.65

5.0 | 1 1.35 100.00

------------+-----------------------------------

Total | 74 100.00

Possible extensions to tabw

At the moment there are no options. Possible options include

(i) a values(#,: : :,#) option to specify the list of numbers to be included in the table.

(ii) nomissing to exclude the column counting missing values.

(iii) noother to exclude the column counting “other” values.

(iv) format(#,: : :,#) where the numbers are the integer width of the columns for each of the values counted (including “other”
and “missing”). The default is currently (5,5,5,5,5,5,5,5,5,5,4,5). If just one number was provided the same width would be
used for all values.

(v) percent to give the percentage of observations equal to each value, instead of the count.

Stata Technical Bulletin 17

(vi) round(#) to specify the amount of rounding accepted in testing to see if the value is approximately equal to the column
heading. Thus the program would “count if 7�# � var & var < 7+#” to see how many values are approximately equal
to 7. The default value is 0. For example, using round(.5) would count the number of values in the interval [6.5,7.5).

(vii) recode(#,: : :,#) works like Stata’s recode function except no new variable is generated. The recoded values are tabulated.

sg37 Orthogonal polynomials

William M. Sribney, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

orthpoly computes orthogonal polynomials for a variable varname. The syntax of orthpoly is

orthpoly varname
�
weight

� �
if exp

� �
in range

�
, f generate(varlist) poly(matname) g�

degree(#)
�

Options

Note: Either one of generate() or poly() or both must be specified.

degree(#) specifies the highest degree polynomial to include. Orthogonal polynomials of degree 1, 2, : : : , d = # are computed.
Default is d = 1.

generate(varlist) creates d new variables (of type double) containing orthogonal polynomials of degree 1, 2, : : : , d evaluated at
varname. The varlist must either contain exactly d new variable names or be abbreviated using the styles newvar1-newvar d
or newvar*. For both styles of abbreviation, new variables newvar1, newvar2, : : : , newvar d are generated.

poly(matname) creates a (d+ 1)� (d+ 1) matrix called matname containing the coefficients of the orthogonal polynomials.
The orthogonal polynomial of degree i � d is

matname[i, d+ 1] + matname[i, 1]*varname + matname[i, 2]*varname^2
+ � � � + matname[i, i]*varname^i

Note that the coefficients corresponding to the constant term are placed in the last column of the matrix. (The rationale for
this arrangement is shown in the example below.)

Remarks

When fitting polynomial terms in a regression, orthogonal polynomials are often recommended for two reasons. The first
is numerical accuracy. The natural polynomials 1, x, x2, x3, : : : are highly collinear, and including several terms in a model
would create problems for an unsophisticated regression routine. Stata’s regress command, however, can face a large amount
of collinearity and still produce accurate results. Stata users are likely to find orthogonal polynomials useful for the second
reason: ease of interpreting results. When orthogonal polynomials are used, X0

X is diagonal, partial sums of squares become
the same as sequential sums of squares, and significance tests are orthogonal.

Examples

Illustrations of syntax:

. orthpoly weight, deg(4) generate(pw1 pw2 pw3 pw4)

. orthpoly weight, deg(4) generate(pw1-pw4)

. orthpoly weight, deg(4) generate(pw*)

. orthpoly weight, deg(4) poly(P)

. orthpoly weight, deg(4) gen(pw1-pw4) poly(P)

Suppose we wish to fit the model

mpg = �0 + �1 weight+ �2 weight
2 + �3 weight

3 + �4 weight
4 + �

We will first compute the regression with natural polynomials, and then do it with orthogonal polynomials.

18 Stata Technical Bulletin STB-25

. use auto

(1978 Automobile Data)

. gen double w1 = weight

. gen double w2 = w1*w1

. gen double w3 = w2*w1

. gen double w4 = w3*w1

. regress mpg w1-w4

Source | SS df MS Number of obs = 74

---------+------------------------------ F(4, 69) = 36.06

Model | 1652.73666 4 413.184164 Prob > F = 0.0000

Residual | 790.722803 69 11.4597508 R-squared = 0.6764

---------+------------------------------ Adj R-squared = 0.6576

Total | 2443.45946 73 33.4720474 Root MSE = 3.3852

--

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

w1 | .0289302 .1161939 0.249 0.804 -.2028704 .2607307

w2 | -.0000229 .0000566 -0.404 0.687 -.0001359 .0000901

w3 | 5.74e-09 1.19e-08 0.482 0.631 -1.80e-08 2.95e-08

w4 | -4.86e-13 9.14e-13 -0.532 0.596 -2.31e-12 1.34e-12

_cons | 23.94421 86.60667 0.276 0.783 -148.8314 196.7198

--

. orthpoly weight, generate(pw*) deg(4)

. regress mpg pw1-pw4

Source | SS df MS Number of obs = 74

---------+------------------------------ F(4, 69) = 36.06

Model | 1652.73666 4 413.184164 Prob > F = 0.0000

Residual | 790.722803 69 11.4597508 R-squared = 0.6764

---------+------------------------------ Adj R-squared = 0.6576

Total | 2443.45946 73 33.4720474 Root MSE = 3.3852

--

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

pw1 | -4.638252 .3935245 -11.786 0.000 -5.423312 -3.853192

pw2 | .8263545 .3935245 2.100 0.039 .0412947 1.611414

pw3 | -.3068616 .3935245 -0.780 0.438 -1.091921 .4781982

pw4 | -.209457 .3935245 -0.532 0.596 -.9945168 .5756027

_cons | 21.2973 .3935245 54.119 0.000 20.51224 22.08236

--

. orthpoly weight, poly(P) deg(4)

. matrix bp = get(_b)

. matrix b = bp*P

. matrix list b

b[1,5]

deg1 deg2 deg3 deg4 _cons

y1 .02893016 -.00002291 5.745e-09 -4.862e-13 23.944212

Compare the P -values of the terms in the natural-polynomial regression to those in the orthogonal-polynomial regression.
With orthogonal polynomials, it is easy to see that the cubic and quartic terms are nonsignificant and that the constant, linear,
and quadratic terms each have P < 0.05.

The example also illustrates how the matrix P obtained with the poly() option can be used to transform coefficients for
orthogonal polynomials to coefficients for natural polynomials. The row vector bp contains the coefficients from the orthogonal-
polynomial regression; matrix b = bp*P transforms them to coefficients of natural polynomials. These are, as they should be,
the same as the coefficients from the natural-polynomial regression.

Methods and Formulas

orthpoly uses the Christoffel–Darboux recurrence formula. They are normalized so that X0

DX = NI, where D =
diag(w1; w2; : : : ; wn) with w1, w2, : : : , wn the weights (all 1 if weights not specified) and N =

Pn

i=1 wi. (If the weights are
aweights, they are first normalized to sum to the number of observations.)

Reference
Abramowitz, M. and I. A. Stegun, eds. 1968. Handbook of Mathematical Functions, 7th printing. Washington, D.C.: National Bureau of Standards.

Stata Technical Bulletin 19

sg38 Generating quantiles

William M. Sribney, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

The syntax of mkquant is

mkquant varname
�
weight

� �
if exp

� �
in range

�
, genq(newvar1)

�
genp(newvar2) number(#)

�
aweights and fweights are allowed.

mkquant computes the p th quantiles of varname for p = i=n with i = 0, 1, : : : , n. The p = 0 quantile is defined as
the minimum of varname and the p = 1 quantile as the maximum. (The p th quantile is, of course, identical to the 100 p th
percentile.)

Options

genq(newvar1) is not optional. The generated quantiles are stored in the new variable newvar1. If varname is of type double,
then so is newvar1; otherwise, newvar1 is a float.

genp(newvar2), if specified, generates the corresponding empirical probabilities p = i=n for i = 0, 1, : : : , n and stores them
in the new variable newvar2 (of type float).

number(#) specifies the number of quantiles n = #. Default is n = 100.

Remarks

The Stata commands centile and egen (with the pctile function) will calculate any specified percentile. But computing
and storing a large number of percentiles with these commands is somewhat cumbersome. Furthermore, neither of these commands
allow weights.

mkquant will quickly compute a large number of quantiles and place them in a new variable sequentially; i.e., the p = i=n

quantile is stored in observation i + 1. This storage scheme allows one to compute quantiles (with the same n) for additional
variables and to have these quantiles match up with those already calculated. The quantiles can then be directly compared.

Example
. mkquant x1, genq(q1) genp(p) n(20)

. mkquant x2, genq(q2) n(20)

. list p q1 q2 in 1/21

p q1 q2

1. 0 5 2

2. .05 15 14

3. .1 16 16

4. .15 17 17

5. .2 18 19

6. .25 19 20

7. .3 19 20.5

8. .35 20 21

9. .4 20 22

10. .45 21 23

11. .5 22 24

12. .55 22 24

13. .6 23 25

14. .65 23 26

15. .7 24 26

16. .75 24 27

17. .8 25 28

18. .85 26 30

19. .9 27 31

20. .95 29 33

21. 1 38 42

20 Stata Technical Bulletin STB-25

Methods and Formulas

Let the values of x sorted in ascending order be x1, x2, : : : , xN , with corresponding weights w1, w2, : : : , wN (all equal
to 1 if weights not specified). Let

Wi =

Pi

j=1 wjPN

j=1 wj

Then the p th quantile of x for 0 < p < 1 is

q(p) =

�
xi if Wi�1 < p < Wi

(xi + xi+1)=2 if p = Wi

We define q(0) = x1 and q(1) = xN .

sg39 Independent percentages in tables

Benjamin Miller, Department of Psychology, Simmons College, EMAIL bmiller@vmsvax.simmons.edu

Stata provides options for computing percentages in tables by row, by column, or by cell. But, for answering certain kinds
of questions, these options can be awkward.

Consider a survey of college and university faculty that contains variables that identify the gender of the faculty member
surveyed, whether they are tenured, the geographical region of their institution, and whether the institution is public or private.
We can easily find, for example, the percentage of tenured faculty at public institutions who are women.

. use tenure

. tabulate private gender if tenure, row

| Gender

Pub/Priv| female male | Total

-----------+----------------------+----------

public | 35 152 | 187

| 18.72 81.28 | 100.00

-----------+----------------------+----------

private | 63 210 | 273

| 23.08 76.92 | 100.00

-----------+----------------------+----------

Total| 98 362 | 460

| 21.30 78.70 | 100.00

As the tabulate command shows, 35 (19 percent) of the 187 tenured, public institution faculty in these data are women.

Similarly, we can find the percentage of tenured women who are at public institutions.

. tabulate private gender if tenure, column

| Gender

Pub/Priv| female male | Total

-----------+----------------------+----------

public | 35 152 | 187

| 35.71 41.99 | 40.65

-----------+----------------------+----------

private | 63 210 | 273

| 64.29 58.01 | 59.35

-----------+----------------------+----------

Total| 98 362 | 460

| 100.00 100.00 | 100.00

The same 35 women now constitute 36 percent of the 98 female faculty members in the survey.

If we want to know what percentage of women are tenured at both public and private institutions, we can type

. sort private

Stata Technical Bulletin 21

. by private: tabulate gender tenure, row

-> private= public

| Is tenured?

Gender| no yes | Total

-----------+----------------------+----------

female | 70 35 | 105

| 66.67 33.33 | 100.00

-----------+----------------------+----------

male | 52 152 | 204

| 25.49 74.51 | 100.00

-----------+----------------------+----------

Total| 122 187 | 309

| 39.48 60.52 | 100.00

-> private= private

| Is tenured?

Gender| no yes | Total

-----------+----------------------+----------

female | 94 63 | 157

| 59.87 40.13 | 100.00

-----------+----------------------+----------

male | 72 210 | 282

| 25.53 74.47 | 100.00

-----------+----------------------+----------

Total| 166 273 | 439

| 37.81 62.19 | 100.00

In this sample, 40 percent of the female faculty at private institutions are tenured compared to 33 percent of the female faculty
at public institutions.

This method is satisfactory, but not ideal. One problem is that the percentages in one column add no information to those
in the other column, creating unnecessary bulk. This problem can be avoided by directly computing the percentage of cases in
each cell who are tenured. I have created iptab for this purpose:

. iptab private gender tenure if tenure

Means and Frequencies of __000004

| Gender

Pub/Priv| female male Total

-----------+----------------------+----------

public | 33.3 74.5 | 66.8

| 35 152 | 187

-----------+----------------------+----------

private | 40.1 74.5 | 66.5

| 63 210 | 273

-----------+----------------------+----------

Total | 37.7 74.5 | 66.6

| 98 362 | 460

Now the percentages are all independent of one another. (The mysterious title of this table will be clear in a moment.)

The other problem with the by variable: tabulate method is that the amount of output can be cumbersome when the
by-variable takes many values. For example, we might examine the gender/tenure relation by geographical region:

. iptab region gender tenure if tenure

Means and Frequencies of __00000D

| Gender

Region| female male Total

-----------+----------------------+----------

N-East | 37.0 75.6 | 66.6

| 30 99 | 129

-----------+----------------------+----------

S-East | 44.4 72.2 | 65.2

| 28 83 | 111

-----------+----------------------+----------

Midwest | 35.4 77.7 | 69.8

| 23 101 | 124

-----------+----------------------+----------

22 Stata Technical Bulletin STB-25

Mountain | 31.3 57.9 | 49.6

| 5 11 | 16

-----------+----------------------+----------

S-West | 25.0 78.6 | 72.8

| 4 33 | 37

-----------+----------------------+----------

W-Coast | 38.1 71.4 | 65.2

| 8 35 | 43

-----------+----------------------+----------

Total | 38.1 74.7 | 66.9

| 98 362 | 460

iptab produces a single table that allows immediate comparison by row and by column. The alternative to iptab (by region:

tabulate) would produce six two-by-two tables.

Two additional conveniences provided by iptab have to do with

(i) categorical dependent variables with more than two values or continuous variables where we are interested in a particular
value or range; and

(ii) missing values in the dependent variable.

Here is an example that illustrates both conveniences.

We administered a two-item questionnaire to a sample of men and women, asking them to rate each item on a scale of 1
(low) to 5 (high). Some respondents did not rate both items, so there are missing values on rating. To assess gender differences
in responses to the questionnaire, we might ask what percentage of each gender gave a given item a high rating (say, 4 or 5).
We can do this with the “by:” method as follows:

. use ratings, clear

. *

. * dichotomize the dependent variable

. *

. generate ratehigh=rating > 3

. replace ratehigh=. if rating==.

(43 real changes made, 43 to missing)

. sort item

. by item: tabulate gender ratehigh, row

-> item= item 1

gender of| ratehigh

respondent| 0 1 | Total

-----------+----------------------+----------

female | 74 184 | 258

| 28.68 71.32 | 100.00

-----------+----------------------+----------

male | 187 287 | 474

| 39.45 60.55 | 100.00

-----------+----------------------+----------

Total| 261 471 | 732

| 35.66 64.34 | 100.00

-> item= item 2

gender of| ratehigh

respondent| 0 1 | Total

-----------+----------------------+----------

female | 37 221 | 258

| 14.34 85.66 | 100.00

-----------+----------------------+----------

male | 76 399 | 475

| 16.00 84.00 | 100.00

-----------+----------------------+----------

Total| 113 620 | 733

| 15.42 84.58 | 100.00

Alternatively, we can use iptab, which allows us to select the dependent variable value(s) of interest without creating a
temporary variable (ratehigh) and which removes missing values automatically.

Stata Technical Bulletin 23

. iptab item gender rating if rating>3

Means and Frequencies of __00000M

items to be| gender of respondent

rated| female male Total

-----------+----------------------+----------

item 1 | 71.3 60.5 | 64.8

| 184 287 | 471

-----------+----------------------+----------

item 2 | 85.7 84.0 | 84.6

| 221 399 | 620

-----------+----------------------+----------

Total | 79.1 74.2 | 76.0

| 405 686 | 1091

iptab’s internal operations are inelegant but effective. The numerator of the proportion in each cell is the number of
observations that have the target values of rating, in this case 4 or 5. This can be calculated as follows:

. generate target = rating>3 & rating~=.

. egen numer = sum(target), by(item gender)

The denominator is the number of observations in each cell with nonmissing values on all relevant variables.

. generate nonmiss = (item~=. & gender~=. & rating~=.)

. egen denom = sum(nonmiss), by(item gender)

Now the percentages are computed and displayed.

. generate percent=(numer/denom)*100

(14 missing values generated)

. format percent %4.1f

. tabulate item gender if target, sum(percent) nostandard

Means and Frequencies of percent

items to be| gender of respondent

rated| female male Total

-----------+----------------------+----------

item 1 | 71.3 60.5 | 64.8

| 184 287 | 471

-----------+----------------------+----------

item 2 | 85.7 84.0 | 84.6

| 221 399 | 620

-----------+----------------------+----------

Total | 79.1 74.2 | 76.0

| 405 686 | 1091

The inelegance of the solution lies in the redundant computation and storage that this method entails. The numerator and
denominator for a given cell are recorded in each target observation for that combination of item and group; once would be
enough. By the same token, the percent is computed and stored redundantly. However, this approach allows the use of tabulate,
summarize() to construct and display the table. Because summarize is in fact finding the means of sets of identical values,
there is no point in displaying the standard deviations, all of which are zero.

The cell frequencies are, in fact, the numbers of target observations. The marginal percentages are weighted means of the
cell percentages. The tables’ mysterious titles reflect the fact that iptab puts the percentages (and everything else) in temporary
macros; in any case the percentages are not really the means of anything.

Syntax
iptab row var column var dep var if target exp [, nofreq wrap]

The target exp in the if clause is of the form dep var == x, dep var < x, etc. Note that the if clause is required. The
order of the row and column variables does not matter—switching item and group in the example simply transposes the rows
and columns.

snp8 Robust scatterplot smoothing: enhancements to Stata’s ksm

Isaı́as Hazarmabeth Salgado-Ugarte and Makoto Shimizu, University of Tokyo,
Fac. of Agriculture, Dept. of Fisheries, Japan FAX (011)-81-3-3812-0529, EMAIL isalgado@tansei.cc.u-tokyo.ac.jp

Stata’s ksm calculates weighted and unweighted scatterplot smooths. Given data on a pair of variables, xi and yi, where
the index i is defined such that i < i

0) xi � xi0 , ksm calculates smoothed values byi that are conditioned on values of x

24 Stata Technical Bulletin STB-25

close to xi. This is roughly equivalent to drawing a scatterplot of yi versus xi, passing a smooth curve through the points, and
recording the y-values of the curve for each value of xi. This procedure is motivated by the assumption that

yi = f(xi) + �i

where f() is an unspecified smooth function and � is a random disturbance from an unknown distribution.

ksm is a valuable tool both for exploratory data analysis and for use in nonparametric and semiparametric estimation
techniques. However, as implemented, ksm presents two limitations. First, the algorithm used by ksm uses fewer (xi; yi) pairs
to estimate the endpoints of the smooth than are used in the body of the smooth. This feature makes ksm more “local” in the
endpoints and, thus, more likely to be influenced by one or two discrepant values in the vicinity of the endpoints. Second, the
lowess option of ksm does not implement the robustness weights recommended by Cleveland (1979) in his initial presentation
of the lowess scatterplot smoother.

This insert offers two enhancements to ksm that overcome these limitations. The first enhancement is adjksm, a modified
version of ksm that holds the bandwidth of the smoother constant across the range of x-values. The second enhancement consists
of two programs that calculate a lowess smooth using Cleveland’s robust weights. lorobwei calculates the weights recommended
by Cleveland, while roblowes uses these weights to compute the lowess smooth.

Holding bandwidth constant across the x-axis

As implemented, the bandwidth of ksm is not constant across the domain of x values. In particular, fewer points are used
to calculate the smooth at the endpoints than in the middle of the domain. For instance, the table below displays the number of
points included when a smooth is calculated for a data set with ten observations.

number of
n observations
1 3
2 4
3 5
4 5
5 5
6 5
7 5
8 5
9 4

10 3

ksm calculates the smoothed values in observations three through eight based on half the sample. The smoothed values in
observations two and nine are based on 40 percent of the sample, and the smoothed endpoints are based on only 30 percent of
the sample. As a consequence, the endpoints of the smooth are likely to track the behavior of the actual y-values more closely
than the endpoint smooth values from Cleveland’s (1979) algorithm.

We have modified ksm to hold the bandwidth constant across the domain of x. Our modified program is called adjksm.
Other than this modification, adjksm shares all the characteristics of the original ksm.

Using Cleveland’s robustness weights

An important component of the locally weighted scatterplot smoother (lowess) proposed by Cleveland is a set of robustness
weights that protects the iterative smoothing process from the influence of discrepant y-values. These weights are not implemented
in ksm, even when the lowess option is specified.

We have made a separate set of adjustments to ksm to implement Cleveland’s robustness weights. We regard these adjustments
as a temporary expedient, until such time as Stata implements Cleveland’s robust weights in ksm.

Our programs calculate each iteration of Cleveland’s version of lowess in two steps. The first step, calculating the robust
weights, is performed by our program lorobwei, which is a mnemonic for locally robust weights. The syntax for lorobwei is

lorobwei y yksm

where y is the y-variable in the scatterplot smooth and yksm is the smooth calculated by adjksm. In other words, yksm is an
input to the lorobwei procedure.

Stata Technical Bulletin 25

lorobwei generates a new variable named robwei containing robust weights calculated from the bisquare function, that
is, Tukey’s biweight function as described in Mosteller and Tukey (1977), Cleveland (1979), Chambers et al. (1983) or Goodall
(1983, 1990). The values in robwei are used in the second step by the program roblowes which estimates the lowess smooth.
The syntax of roblowess is

roblowes y xvar bwidth

where bwidth is a number between 0 and 1 that specifies the desired bandwidth as a fraction of the sample. roblowes generates
a new variable, lowerob, that contains the lowess smooth.

The lowess smooth is calculated by iterating over these two steps. Note that the variable robwei must be dropped before
each call to the program lorobwei, and the variable lowerob must be dropped before each call to the program roblowes.

Example

This example is adapted from the original description of lowess in Cleveland. The example uses the well-known abrasion
loss data (called the “Rubber specimen data” in Chambers et al.).

We begin by comparing the performance of Stata’s ksm to our adjksm in smoothing abrasion loss against tensile strength.

. use dta\rubber

. ksm alr tsr, gen(oldksm) bwidth(.5) nograph

. adjksm alr tsr, gen(newksm) bwidth(.5) nograph

. label variable oldksm "Stata's ksm"

. label variable newksm "New ksm"

. graph oldksm newksm alr tsr, c(ll.) s(pdO) title(Abrasion loss data)

(graph appears, see Figure 1)

The sensitivity of Stata’s smooth to endpoint values is clear in this figure.

Now we compare Stata’s version of lowess to the full Cleveland procedure using robust weights. We perform two iterations
of the lowess procedure.

. ksm alr tsr, gen(oldlow) lowess bwidth(.5) nograph

. label variable oldlow "Stata's lowess"

. adjksm alr tsr, gen(low0) lowess bwidth(.5) nograph

*

* Iteration 1

*

. lorobwei alr low0

. roblowes alr tsr .5

. rename lowerob low1

. rename robwei wei1

*

* Iteration 2

*

. lorobwei alr low1

. roblowes alr tsr .5

. rename lowerob newlow

. label variable newlow "New lowess"

. graph oldlow newlow alr tsr, c(ll.) s(pdO) title(Abrasion loss data)

(graph appears, see Figure 2)

This example illustrates the importance of the robustness weights: the outlier in the lower left does not disturb Cleveland’s
lowess smooth.

We have tested our programs on some additional data sets: the “Hamster Hibernation Data” (hiber.dta), the “Graph Areas”
(grafarea.dta), and the “Made-up data” (madeup.dta) from Chambers et al. (1983); and the “Tadpoles Data” (tadpole.dta)
from Travis (1983) and reanalyzed in Trexler and Travis (1993). We have included these data sets on the distribution diskette,
and we encourage readers to experiment with them. If you do, you will note that the robustness weights have a more significant
impact on the smooth when the number of observations is small and when there are y-outliers near the end points of the x-values.

26 Stata Technical Bulletin STB-25

References
Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical Methods for Data Analysis Belmont, CA: Wadsworth.

Cleveland, W. S. 1979. Robust locally-weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829–836.

Goodall, C. 1983. M-estimators of location: an outline of the theory. In Understanding Robust and Exploratory Data Analysis ed. D. C. Hoaglin, F.
Mosteller, and J. W. Tukey, 339–403. New York: John Wiley & Sons.

——. 1990. A survey of smoothing techniques. In Modern Methods of Data Analysis ed. J. Fox and J. S. Long, 126–176. Newbury Park, CA: Sage
Publications.

Mosteller, F. and J. W. Tukey. 1977. Data Analysis and Regression Reading, MA: Addison–Wesley.

Travis, J. 1983. Variation in growth and survival of Hyla gratiosa larvae in experimental enclosures. Copeia 1983: 232–237.

Trexler, J. C. and J. Travis. 1993. Nontraditional regression analyses. Ecology 74: 1629–1637.

Figures

Abrasion loss data
tsr

 Stata's ksm New ksm
 alr

-45.5403 57.1919

-86.1543

111.49

Abrasion loss data
tsr

 Stata's lowess New lowess
 alr

-45.5403 57.1919

-86.1543

111.49

Figure 1 Figure 2

sts10 Prais–Winsten regression

James W. Hardin, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

The syntax of prais is

prais depvar
�
varlist

� �
in range

� �
, level(#) nolog iterate(#) tol(#)

�
prais shares the features of all estimation commands; see [4] estimate, but note that to use predict, you must first type gen

iter=1.

Description

prais estimates a linear regression of depvar on varlist that is corrected for serially correlated residuals using the Prais–
Winsten (1954) estimator. This estimator improves on the Cochrane–Orcutt (1949) method in that the first observation is preserved
in the estimation routine.

Options

level(#) specifies the significance level for confidence intervals of the coefficients; see [4] estimate.

nolog suppresses the iteration log.

iterate(#) specifies the maximum number of iterations and defaults to 100, a number close enough to infinity to be nonbinding.
You should never have to specify this option.

Stata Technical Bulletin 27

tol(#) specifies the minimum change in the estimated autocorrelation parameter between iterations before convergence can be
declared and defaults to 0.001.

Remarks

The most common autocorrelated error process assumed for the vector u is the first order autoregressive process. Under
this assumption, the linear regression model may be written

yt = x
0B + ut

where the errors satisfy
ut = � ut�1 + et

and the et are independent and identically distributed as N(0; �2). The covariance matrix 	 of the error term e may then be
written as

	 =
1

1� �2

0
BB@

1 � �
2 � � � �

T�1

� 1 � � � � �
T�2

...
...

...
. . .

...
�
T�1

�
T�2

�
T�3 � � � 1

1
CCA

The inverse of the covariance matrix may then be written as

	�1 =

0
BBBBBB@

p
1� �2 0 0 � � � 0 0
�� 1 0 � � � 0 0
0 �� 1 � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � 1 0
0 0 0 � � � �� 1

1
CCCCCCA

where we use the inverse to define the matrix P such that P 0

P = 	�1.

The Prais–Winsten estimator is a generalized least squares (GLS) estimator. The Prais–Winsten method (as described in
Judge et al. 1985) is derived from the AR(1) model for the error term described above. Where the Cochrane–Orcutt method uses
a lag definition and loses the first observation in the iterative method, the Prais–Winsten method preserves that first observation.
In small samples, this can be a significant advantage.

Example

You wish to estimate a time-series model of usr on idle but are concerned that the residuals may be serially correlated:

. corc usr idle, nolog

(Cochrane-Orcutt regression)

Source | SS df MS Number of obs = 29

---------+------------------------------ F(1, 27) = 6.51

Model | 40.2374309 1 40.2374309 Prob > F = 0.0167

Residual | 166.898634 27 6.18143089 R-squared = 0.1943

---------+------------------------------ Adj R-squared = 0.1644

Total | 207.136065 28 7.3977166 Root MSE = 2.4862

--

usr | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

idle | -.1256177 .0492357 -2.551 0.017 -.2266411 -.0245944

_iter | 14.56028 4.27173 3.409 0.002 5.795409 23.32514

--

rho | 0.5705 0.1541 3.702 0.001 0.2549 0.8861

--

The estimated model is
usrt = �.1256idlet + 14.56 + ut and ut = .5705ut�1 + et

Comparing this to the Prais–Winsten method we see that

28 Stata Technical Bulletin STB-25

. prais usr idle, nolog

(Prais-Winsten regression)

Source | SS df MS Number of obs = 30

---------+------------------------------ F(1, 28) = 4.31

Model | 27.0976894 1 27.0976894 Prob > F = 0.0471

Residual | 175.842266 28 6.28008092 R-squared = 0.1335

---------+------------------------------ Adj R-squared = 0.1026

Total | 202.939955 29 6.99792949 Root MSE = 2.506

--

usr | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

idle | -.0761436 .0366564 -2.077 0.047 -.1512309 -.0010564

_iter | 10.61985 3.485955 3.046 0.005 3.4792 17.76051

--

rho | 0.6460 0.1424 4.535 0.000 0.3543 0.9378

--

where the Prais–Winsten estimated model is

usrt = �.0761idlet + 10.62 + ut and ut = .6460ut�1 + et

A comparison of the predicted regression line for the Cochrane–Orcutt, Prais–Winsten, and classic OLS for this data looks
like

idle
60 70 80 90 100

0

5

10

15

Prais-Winsten

Cochrane-Orcutt

Linear regression

Figure 1

Results

The prais command stores the command name in S E cmd and the name of the dependent variable in S E depv. In
addition, prais saves in the macro S 1 the estimate of rho and in S 2 its standard error.

Methods and Formulas

Consider the command ‘prais y x z’. The 0-th iteration is obtained by estimating a, b, and c from the regression:

yt = axt + bzt + c+ ut

The auxiliary regression
ut = rut�1 + et

is then estimated to obtain an estimate of the correlation in the residuals. Next we estimate equation (1) for t = 2; : : : ; n

yt � ryt�1 = a(xt � rxt�1) + b(zt � rzt�1) + c(1� r) + vt (1)

and equation (10) for t = 1p
1� r2y1 = a(

p
1� r2x1) + b(

p
1� r2z1) + c

p
1� r2 +

p
1� r2v1 (10)

Stata Technical Bulletin 29

Thus, the difference between the Cochrane–Orcutt and the Prais–Winsten methods are that the latter uses equation (10) in addition
to equation (1), while the former uses only equation (1) and necessarily decreases the sample size by one.

Equations (1) and (10) are then used to obtain estimates of a, b, and c, and take these estimates to produce

by = axt + bzt + c

r is estimated from
yt � byt = r(yt�1 � byt�1) + ut (2)

We then re-estimate equation (1) using the new estimate of r, and continue to iterate between (1) and (2) until r converges.

Convergence is declared after iterate() iterations or when the absolute difference in the estimated correlation between
two iterations is less than tol(). Sargan (1964) has shown that this process will always converge.

All reported statistics are based on the r-transformed variables.

References

Cochrane, D. and G. H. Orcutt. 1949. Application of least-squares regression to relationships containing autocorrelated error terms. Journal of the
American Statistical Association 44: 32–61.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T. C. Lee. 1985. The Theory and Practice of Econometrics. 2d ed. New York: John
Wiley & Sons.

Prais, S. J. and C. B. Winsten. 1954. Trend Estimators and Serial Correlation. Cowles Commission Discussion Paper No. 383 , Chicago.

Sargan, J. D. 1964. Wages and prices in the United Kingdom: a study in econometric methodology. In Econometric Analysis for National Economic
Planning, ed. P. E. Hart, G. Mills, J. K. Whitaker, 25–64. London: Butterworths.

zz5 Cumulative index for STB-19–STB-24

[an] Announcements

STB-19 2 an42 STB-13–STB-18 available in bound format S. Becketti

STB-19 2 an43 New address for STB office S. Becketti

STB-19 3 an44 StataQuest: Stata for teaching S. Loll

STB-20 2 an44.1 StataQuest disk enclosed (really) P. Branton

STB-19 4 an45 Stata and Stage now available for DEC Alpha T. McGuire

STB-20 2 an46 Stata and Stage now available for IBM PowerPC T. McGuire

STB-21 2 an47 New associate editors S. Becketti

STB-21 3 an48 Updated CPS labor extracts available D. Feenberg

STB-21 4 an49 Stata listserver available D. Wormuth

STB-22 2 an50 Submission guidelines S. Becketti

STB-23 2 an51 Call for suggestions S. Becketti

STB-23 2 an52 Stata 4.0 released P. Branton

STB-23 2 an53 Implications of Stata 4.0 for the STB S. Becketti

[crc] CRC-Provided Support Materials

STB-20 2 crc36 Clarification on analytic weights with linear regression
STB-23 3 crc37 Commonly asked questions about Stata for Windows
STB-23 4 crc38 Installing Stata for Windows under OS/2 Warp

[dm] Data Management

STB-19 4 dm17 Conversions for international date formats P. Ryan

STB-19 5 dm18 Adding trailing moving averages to the egen command S. Becketti

STB-20 3 dm19 Merging raw data and dictionary files J. Nash

STB-20 6 dm20 Date functions A. Riley

STB-22 3 dm21 Bringing large data sets into memory R. Farmer

STB-22 5 dm22 Sorting in descending order D. Mabb

STB-22 6 dm23 Saving a subset of the current data set D. Mabb

STB-23 8 dm24 Producing formatted tables in Stata W. Rogers

STB-24 2 dm25 Recoding in steps S. Becketti

STB-24 4 dm26 Labeling graphs with date formats A. Riley

STB-24 5 dm27 An improved collapse, with weights W. Gould

30 Stata Technical Bulletin STB-25

[dt] Data Sets

STB-22 6 dt2 Reading public use microdata samples into Stata C. Sigmund & D. Judson

[gr] Graphics

STB-19 8 gr14 dotplot: Comparative scatterplots P. Sasieni & P. Royston

STB-19 11 gr15 Incorporating Stata graphs in TEX documents using an HP printer S. Becketti

STB-23 11 gr16 Convex hull programs J. Gray & T. McGuire

STB-24 8 gr17 Switching graphics windows in Unix P. Sasieni

[ip] Instruction on Programming

STB-20 8 ip6 Storing variables in vectors and matrices K. Heinecke

STB-20 10 ip6.1 Data and matrices W. Gould

STB-24 9 ip6.2 Storing matrices as variables W. Sribney

STB-23 16 ip7 A utility for debugging Stata programs T. Schmidt

[os] Operating System, etc.

STB-19 14 os12 Windowed interfaces for Stata W. Gould

STB-19 15 os13 Using awk and fgrep for selective extraction from Stata log files N. Cox

STB-20 10 os14 A program to format raw data files P. Swagel

STB-23 5 os15 The impact of the Pentium FDIV bug on Stata users W. Gould

[sbe] Biostatistics and Epidemiology

STB-21 5 sbe11 Direct Standardization T. McGuire

[sed] Exploratory Data Analysis

STB-21 10 sed8 Finding significant gaps in univariate distributions R. Goldstein

STB-24 10 sed9 Symmetric nearest neighbor linear smoothers P. Sasieni

[sg] General Statistics

STB-24 14 sg21.1 Equivalency testing: Correction R. Goldstein

STB-19 17 sg22.3 Generalized linear models: revision of glm. Rejoinder P. Royston

STB-20 12 sg25 Interaction expansion W. Gould

STB-21 11 sg26 Using fractional polynomials to model curved regression relationships
P. Royston & D. Altman

STB-22 11 sg26.1 Fractional polynomials: Correction P. Royston & D. Altman

STB-24 14 sg26.2 Calculating and graphing fractional polynomials S. Becketti

STB-22 12 sg27 The overlapping coefficient and an “improved” rank-sum statistic R. Goldstein

STB-22 15 sg28 Multiple comparisons of categories after regression-like methods W. Rogers

STB-23 18 sg29 Tabulation of observed/expected ratios and confidence intervals P. Sasieni

STB-23 20 sg30 Measures of inequality in Stata E. Whitehouse

STB-23 23 sg31 Measures of diversity: absolute and relative R. Goldstein

STB-24 17 sg32 Variance inflation factors and variance-decomposition proportions J. Hardin

STB-24 22 sg33 Calculation of adjusted means and adjusted proportions J. Garrett

STB-24 25 sg34 Jackknife estimation W. Gould

[snp] Nonparametric methods

STB-22 19 snp7 Natural cubic splines P. Sasieni

STB-24 29 snp7.1 Natural cubic splines: Correction P. Sasieni

[sqv] Analysis of Qualitative Variables

STB-19 17 sqv9 Probit coefficients as changes in probabilities W. Gould

STB-23 26 sqv10 Expanded multinomial comparisons W. Rogers

Stata Technical Bulletin 31

[ssa] Survival Analysis

STB-19 22 ssa3 Adjusted survival curves W. Rogers

STB-19 23 ssa4 Ex post tests and diagnostics for a proportional hazards model W. Rogers

STB-19 28 ssa5 Note on time intervals in time-varying Cox regression W. Rogers

STB-22 22 ssa6 Utilities for survival analysis with time-varying regressors P. Bocquier

[ssi] Simulation and Random Numbers

STB-19 28 ssi5.3 Correction to Ridders’ method T. McGuire

STB-24 29 ssi5.4 Correction to error term in Ridders’ method A. Riley

STB-20 18 ssi6 Routines to speed Monte Carlo experiments W. Gould

STB-20 22 ssi6.1 Simplified Monte Carlo simulations W. Gould

STB-21 24 ssi6.2 Faster and easier bootstrap estimation W. Gould

[sss] Social Science and Psychometrics

STB-22 29 sss1.1 Updated U.S. marginal income tax rate function T. Schmidt

[sts] Time Series and Econometrics

STB-19 28 sts7.2 A library of time series programs for Stata (Update) S. Becketti

STB-20 25 sts7.3 A library of time series programs for Stata (Update) S. Becketti

STB-22 29 sts7.4 A library of time series programs for Stata (Update) S. Becketti

STB-23 28 sts7.5 A library of time series programs for Stata (Update) S. Becketti

STB-24 30 sts7.6 A library of time series programs for Stata (Update) S. Becketti

STB-20 26 sts8 Hansen’s test for parameter instability K. Heinecke & C. Morris

STB-21 33 sts9 Johansen’s test for cointegration K. Heinecke & C. Morris

[zz] Not elsewhere classified

STB-19 30 zz3.3 Computerized index for the STB (Update) W. Gould

STB-20 32 zz3.4 Computerized index for the STB (Update) W. Gould

STB-21 40 zz3.5 Computerized index for the STB (Update) W. Gould

STB-22 31 zz3.6 Computerized index for the STB (Update) W. Gould

STB-23 29 zz3.7 Computerized index for the STB replaced in Stata 4.0 W. Gould

STB-19 31 zz4 Cumulative index for STB-13–STB-18

32 Stata Technical Bulletin STB-25

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Dittrich & Partner Consulting Company: Oasis Systems BV
Address: Prinzenstrasse 2 Address: Lekstraat 4

D-42697 Solingen 3433 ZB Nieuwegein
Germany The Netherlands

Phone: +49 212-3390 99 Phone: +31 3402 66336
Fax: +49 212-3390 90 Fax: +31 3402 65844

Countries served: Austria, Germany Countries served: The Netherlands

Company: Howching Company: Ritme Informatique
Address: 11th Fl. 356 Fu-Shin N. Road Address: 34 boulevard Haussmann

Taipei, Taiwan, R.O.C. 75009 Paris, France
Phone: +886-2-505-0525 Phone: +33 1 42 46 00 42

Fax: +886-2-503-1680 Fax: +33 1 42 46 00 33
Countries served: Taiwan Countries served: Belgium, France,

Luxembourg, Switzerland

Company: Metrika Consulting Company: Timberlake Consultants
Address: Ruddammsvagen 21 Address: 47 Hartfield Crescent

11421 Stockholm West Wickham
Sweden Kent BR4 9DW, U.K

Phone: +46-708-163128 Phone: +44 181 462 0495
Fax: +46-8-6122383 Fax: +44 181 462 0493

Countries served: Baltic States, Denmark, Finland, Countries served: Eire, Portugal, U.K.
Iceland, Norway, Sweden

