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statab1 Exact McNemar test added to mcc and mcci commands

The mcc and mcci commands in [R] epitab now calculate and report the exact McNemar statistic significance probability
for all 2 X 2 tables. The exact test is obtained from the binomial distribution with 7 = 1/2 and conditioning on the sum of the
two off-diagonal cells. See, for example, Agresti (1992).

Syntax and output

The commands’ syntax has not changed; the output has been modified. This is demonstrated using the immediate test
example that appears in [R] epitab.

. mcci 8 8 38

Controls
Cases |  Exposed Unexposed | Total
Exposed | 8 8 | 16
Unexposed | 3 8 | 11
Total | 11 16 | 27
McNemar “s chi2(1) = 2.27 Pr>chi2 = 0.1317
Exact McNemar significance probability = 0.2266
Proportion with factor
Cases .5925926
Controls .4074074 [95% conf. intervall
difference .1851852 -.0822542 .4526246
ratio 1.454545 .891101 2.374257
rel. diff. .3125 -.0243688 .6493688
odds ratio 2.666667 .6400699 15.60439 (exact)

The output is the same as before, except, that the new test “Exact McNemar significance probability” now prints below the
McNemar’s x? tests.

The result from the exact test is saved in the S_24 macro.

References

Agresti A. 1992. A survey of exact inferences for contingency tables. Statistical Sciences 7: 131-177.

dm53 Detection and deletion of duplicate observations

Thomas J. Steichen, RJIRT, FAX 910-741-1430, steicht@rjrt.com
Nicholas J. Cox, University of Durham, UK, FAX (011)-44-91-374 2456, n.j.cox@durham.ac.uk

Syntax

dups [varlist] [, drop expand(varname) key(varlist2) unique Eerse]

Description

dups provides information about unique and duplicate observations in the data file and, optionally, drops all duplicate
observations.

varlist is an optional variable list that determines which observations are duplicates: observations must match exactly on
all variables in the list to be duplicates. If no varlist is given, then all variables in the data file are used to determine duplicates.

Options

drop causes duplicate observations to be dropped from the data file. drop must be spelled out completely. drop creates an
expand variable to allow dropped data to be recreated. The default expand variable name is _expand. If _expand exists,
an error message is reported and no data are dropped. The expand variable will contain the number of duplicate copies of
the observations in the original data file. A subsequent expand command will completely resurrect the original data only if
varlist was not specified in the dups command (or, equivalently, if varlist contains all variables in the data file), or if the
unspecified variables are constant within the subgroups formed by the specified variables. The data can be partially, but not
fully, resurrected if a limited varlist was used—unique information from the variables not in varlist cannot be recovered.
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expand (varname) specifies a varname to be used as the expand variable in place of the default name, _expand. (This option
has no effect unless option drop is also included.) If drop is included and the specified varname exists, an error message
is given and no data are dropped.

key (varlist2) causes the value of the variables in varlist2 to be added to the output displayed for each group. varlist2 should
be the same as, or a subset of, varlist. If varlist2 is assigned value * then varlist2 will be set the same as varlist.

unique causes the default display and option key () to list information for unique observations also.

terse limits the default display output. When specified, only the number of duplicate groups, total observations, number of
observations in duplicates, and number of unique observations are shown. Without terse, dups will number the duplicate
groups and provide the observation count in each group, and will do the same for unique observations, if any, when unique
is specified. Specifying terse cancels both key() and unique.

Remarks

Data files generated from multiple sources, by accretion over time, or by merging of smaller data files occasionally have
duplicate observations that need to be identified and eliminated. Other data files are expected to have only unique observations
defined by all or a subset of the variables in the file. The existence of duplicates on the defining variables usually indicates data
entry errors that require detection and correction. Alternatively, some data files are expected to have multiple observations on
key variables in the file. In these files, the existence of one or more unique observations would indicate the data entry errors
that require detection and correction.

dups, which is implemented in this insert, provides a simple method to detect and report information about unique and
duplicate observations in the data file and, if needed, to drop duplicate observations.

Examples
Using the auto.dta dataset, dups provides the following output:

. dups
group by: make price mpg rep78 hdroom trunk weight length turn displ gratio for
> eign

groups formed: 0O

In this example dups defaulted to the full variable list in auto.dta because varlist was not supplied. As expected, no
duplicates were found and no duplicate groups were formed.

. dups foreign, key(*) unique
group by: foreign
groups formed: 2

groups of duplicate observations:
pt_group pt_count foreign
1 22  Foreign
2 52 Domestic

no unique observations found

In this example dups is asked to define duplicates based on variable foreign. Option key (*) specifies that dups should
include, as an identifier in the listing of duplicate groups, the value of foreign (i.e., the only variable specified in varlist). (*
tells dups to use varlist as the value of varlist2.) Option unique requests dups to report on unique observations—but none
were found.

. replace make = "Chev. Impala" in 16
. dups make, key(*)

group by: make

groups formed: 1

groups of duplicate observations:
pt_group pt_count make
1 2 Chev. Impala

In this example we first modify auto.dta to create a partially duplicated observation, then run dups on variable make. As
expected, one group of duplicates is found. The same analysis is shown below with option terse specified.

. dups make, key(*) terse
group by: make
groups formed: 1

total observations: 74
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in duplicates 2
in unique 72

Since detection and reporting of duplicates is the default mode of dups, no observations were dropped from the data file
in any of the preceding examples. The user must actively specify option drop to change the data file, and like other destructive
options in Stata, drop must be fully spelled out. In this final example we return to the original auto.dta file and select option
drop.

. dups foreign, key(*) unique drop
group by: foreign
groups formed: 2

groups of duplicate observations:
pt_group pt_count foreign
1 22  Foreign
2 52 Domestic

no unique observations found
(72 observations deleted)

observations remaining: 2

For this example, dups provided the usual report but appended notes, (72 observations deleted), that indicates that
72 (of the 74) observations in the data file were deleted and that, as expected, only two observations remain, observations
remaining: 2. Because the varlist in this example (i.e., foreign) is not the complete varlist, it will be impossible to fully
recover the original data file. (Command expand _expand will recreate a file with 22 ‘Foreign’ and 52 ‘Domestic’ observations,
but all ‘Foreign’ observations will be identical, as will all ‘Domestic’ observations.)

gri6.2 Corrections to condraw.ado

J. Patrick Gray, University of Wisconsin-Milwaukee, jpgray @csd.uwm.edu
Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Nicholas Cox discovered that the condraw.ado program published in STB-23 as grl6 does not plot convex hulls correctly
when multiple rightmost or leftmost points exit. The problem does not affect the calculation of the hulls done by conhull.ado.
The condraw . ado program has been updated to correct the problem. This update should be copied over the original condraw.ado
file. An updated condraw.hlp file is also included.

The chplot.ado program written by Nick Cox (STB-36, gri6.1) calls condraw.ado and needed a minor modification to
work with the updated program. The modified chplot.ado should be copied over the original chplot.ado file. The minor
changes in chplot.ado do not require a new chplot.hlp file.

gr27 An adaptive variable span running line smoother

Peter Sasieni, Imperial Cancer Research Fund, London, p.sasieni @icrf.icnet.uk

Syntax

autosmoo yvar [xvar] [weight] [if exp] [in range] [, kmin(#) kmax (#)

repeat (#) gen(newvar) genk(kvar) logit nograph gmph_options]
aweights are allowed; see [U] 18.1.6 weight.

Description

autosmoo smooths yvar on xvar. It is designed to be completely automatic, but some options are permitted. The smooth is a
running line fit with a variable span. The span is chosen at each point by cross validation on the mean squared error of prediction.
The span at each point is smoothed to produce the variable span used to smooth the data. A graph of yvar together with its
smooth is plotted against xvar, unless suppressed. If xvar is not provided, yvar is smoothed against the ordered observations.

Options

kmin (#) is the minimum number of symmetric nearest neighbors on each side of an observation that are used in smoothing.
The default is chosen by a complicated formula. It is at least 2 and generally no more than the integer part of kmax divided
by 250. The default value is slightly larger in the presence of multiple ties in the xvar.
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kmax (#) is the maximum number of symmetric nearest neighbors on each side of an observation that are used in smoothing.
The default is 2 x N*/%, but no more than N /2, where N is the total number of observations.

repeat (#) specifies the number of times the data are to be smoothed using the selected number of symmetric nearest neighbors.
The default is 1. Use of repeat does not affect the value of kvar selected by autosmoo.

gen(newvar) creates newvar containing the smoothed values of yvar. Note that this will be on a logit scale if logit is used.

genk (kvar) creates kvar containing the number of nearest neighbors on either side of each observation used in the final smooth.
This can be plugged back into running—see sed9.1 in this issue.

logit transforms the smooth and plots the y-axis on a logit scale. 0—1 observations are automatically jittered in the vertical
scale and are plotted outside the range of the smoothed curve. It is not necessary that yvar be 0 or 1 provided it takes
values in [0, 1].

nograph suppresses displaying the graph.

graph_options are any of the options allowed with graph, twoway; see [R] graph twoway.

Examples

The first example (see Figure 1) uses the motorcycle crash data (Silverman 1985) provided as a Stata dataset by Salgado-
Ugarte, Shimizu, and Taniuchi (1996). Notice how the smooth fit follows the first bend reasonably well and is not excessively
variable at longer time values.

. label var time "Time (ms)"
. label var accel "Acceleration (g)"
. local options "yline(0) ylab(0,-50,-100,-150,50) xlab"

. autosmoo accel time, “options~

The option repeat(2) used in Figure 2 smooths out the slight jaggedness in the first fit, but does slightly less well at the
first bend.

. autosmoo accel time, “options’ repeat(2) t1("Repeat = 2")

Repeat = 2

50
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_100 4 -100 o
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Figure 1. Smoothing the motorcycle data. Figure 2. Smoothing the motorcycle data using the repeat option.

The second example uses simulated data suggested by Friedman (1984) as a difficult test for a variable span smoother. We
have used 200 observations, but you might try using as few as 20 or as many as 20,000 (the latter will probably take between
3 seconds and 4 minutes depending on the speed of the computer).

. set obs 200

. gen x = uniform()

. gen yO = sin(2%3.14159%(1-x)"2)

. gen y = yO + x*invnorm(uniform())
. autosmoo y x, genk(kl) gen(f1l)

. graph f1 yO x , c(11) s(ii) sort
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1

2.28217 ° 1.04903

-2.69443 ° -.994683
00071 ‘ ‘ ‘ 993173 00071 ‘ ‘ ‘ 993173
X X
Figure 3. Smoothing the simulated data. Figure 4. Plotting the smoothed values and the smooth function.

Finally, in Figure 5 we plot both the variable number of symmetric nearest neighbors and the true underlying function (on
different scales) against x, which is done by

. graph k1 yO x, s(ii) c(11l) sort rescale

96 .999676

6 [~ -.994683
T T T T T
00071 993173
X

Figure 5. The underlying signal and the number of nearest neighbors used by autosmoo plotted against x.

Note how the number of neighbors increases from 6 (for small values of x) to 96 (for large values of x) corresponding to the
increasing variance of the “noise” which is proportional to x-squared. The theoretical optimal number of nearest neighbors also
depends on the curvature of the signal (y0). It is also of interest to look at how the selected span varies over simulations. This
can be done with the following program:

program define simsmoo
local j 1
while “j <="1" {
replace y=yO+x*invnorm(uniform())
autosmoo y x ,genk(_k j“) nogr

local j = ~j~ +1
end

followed by

. egen kmean=rmean(_k*)

. graph kmean x

Methods and Formulas

Friedman (1984) proposed a variable span smoother that was computable in order N operations. The program autosmoo
is similar, but not identical to Friedman’s proposal (often called “supersmoother”). The basic idea is to smooth the data using a
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few different spans and to compute the cross validated mean squared error (MSE) of prediction at each point for each span. The
span with the smallest MSE is identified at each point. These spans are then smoothed and the result is used as the “selected
span.” The selected span is used to obtain the final smooth. autosmoo differs from “supersmoother” in several details.

References
Friedman, J. H. 1984. A variable span smoother. Technical report LCSS5, Department of Statistics, Stanford University.

Salgado-Ugarte, 1. H., M. Shimizu, and T. Taniuchi. 1996. snp10: Nonparametric regression: Kernel, WARP and k-NN estimators. Stata Technical
Bulletin 30: 15-30. Reprinted in Stata Technical Bulletin Reprints vol. 5, pp. 197-218.

Sasieni, P. 1995. sed9: Symmetric nearest neighbor linear smoothers. Stata Technical Bulletin 24: 10—14. Reprinted in Stata Technical Bulletin Reprints
vol. 4, pp. 97-101.

Silverman, B. W. 1985. Some aspects of the spline smoothing approach to nonparametric regression curve fitting (with discussion). Journal of the
Royal Statistical Society, Series B 47: 1-52.

ip23 Expansion and display of if expressions

Thomas J. Steichen, RIRT, FAX 910-741-1430, steicht@rjrt.com

Syntax

ifexp [if exp] [, novarlabel novallabel nounabbrev nospace

color({ blue |white |green |yellow |red}) |

Description

ifexp expands the tokens in an if expression and displays the fully-expanded expression. exp contains the expression to
be expanded and is required (as is the if before it). By default, the following are done:

e variable names are expanded to variable labels (if they exist),
e numerical values are expanded to value labels (if they exist),
e variable names are unabbreviated (if displayed), and
e a space is placed between tokens.
Although ifexp is intended primarily for use by ado-file programmers, it can be invoked directly to interactively display an
expanded if expression.
Options
novarlabel suppresses replacement of variable names by variable labels.
novallabel suppresses replacement of numerical values by value labels.
nounabbrev suppresses unabbreviation of variable names.
nospace suppresses insertion of a space between tokens in the output string.
color () specifies the display color for the expanded expression. Blue is the default color when this option is not specified or
is misspecified.
Remarks

if expressions that appear optionally as part of a Stata command can become quite cryptic and uninformative after a very
short elapsed time. For example, the following expression appeared in an analysis I did a few months ago: if exposl==1 &
expos8==0. I have, at best, only a vague recollection of the meaning of the variable names, exposel and expose8, and I have
no idea of the meaning of the numeric values, 1 and 0. In this instance, though, I had enough foresight to define variable and
value labels—thus I could go back and determine the subset of data that the command acted upon. Nonetheless, it would have
been much easier if the printout had provided an informative text string such as:

if Any Home Exposure? == Yes & Any Work Exposure? == No
to go along with the command line expression. Then there would be no question about the subset of data used in that analysis.

ifexp, which is implemented in this insert, provides a tool to generate this information. ifexp allows ado-file programmers
to automatically display the expanded text of an if expression. It can also be invoked directly by users who wish to examine
or document an expanded if expression. Although Stata’s style is generally quite terse (ignoring variable and value labels in
many instances), display of this output has proven to be surprisingly useful to this author.
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Non-Programming examples

Interactive, non-programming use of ifexp is straightforward. For the above example, the interactive command and its
result would be the following:

. ifexp if exposl==1 & expos8==0
if Any Home Exposure? == Yes & Any Work Exposure? == No
If the user prefers to display the string in white with numeric values, the command and results are
. ifexp if exposl==1 & expos8==0, noval color(w)

if Any Home Exposure? == 1 & Any Work Exposure? == 0

ifexp will correctly process arbitrarily long if expressions, wrapping the displayed output at natural breaks between
elements, and will process all of the standard delimiters and operators (except quotation marks—a limitation of Stata’s parser).
Here is an example of a long expression which is wrapped when displayed:

. ifexp if (exposl==1 | expos8==1) & hfal2 == 1 & hsagei >= 18 & hsagei <= 65

if ( Any Home Exposure?”== Yes | Any Work Exposure?”== Yes ) &
> Marital Status == MwSpous & Age at Interview (years) >= 18 &
> Age at Interview (years) <= 65

ifexp calls on Stata’s parser to determine if a legal if expression is present on the command line; therefore the expression
must follow all standard rules for if expressions.
Programming examples

Programming use of ifexp is also straightforward. In programs, the if expression is stored in local macro *if °. Therefore
the programmer need insert only the following line into the program at an appropriate spot (I prefer to put it after any preliminary
error-check code and before the start of the procedure’s output):

if "Nifcm 1= nw {1fexp "\if’"}
If options are desired, the options precede the closing bracket:

if "Nifon 1= {ifexp "~if ", noval color(w)}

Technical note

Local macro “if - in the calling program must contain the if prefix or the programmer must provide a work-around.
Without the if prefix, ifexp will not detect the if expression and an error will occur. Therefore, the calling program

1. must not use the noprefix descriptor when declaring the if local macro (prefix is the default), or
2. must manually insert the if in the call to ifexp.
Below is an example of method 2 (with the required, manually inserted if shown underlined):

if "Sifcm 1= nn {1fexp£ "\if’"}

Technical note

The inability of the Stata ado-file parser to process quote marks does not directly limit the programming usage of ifexp.
This seemingly inconsistent assertion is true because the calling program itself will fail when attempting to parse an if expression
that contains quote marks. Since this failure occurs during initialization of the calling program, no subsequent call to ifexp will
occur; therefore, usage of ifexp imposes no new limitations on the calling program.

ip24 Timing portions of a program

Frederic Zimmerman, Stanford University, zimmer@leland.Stanford.edu
Programmers frequently want to know how long portions of a program last. This insert automates the procedure of timing
a piece of code or an entire program. elapse allows you to name the portion of code you’re timing if desired, and also stores
the result so that logical operations may be performed on it. elapse is accurate over midnight, but not over several days.
Syntax
elapse start_time name_of-operation

where start_time is a previously defined macro equal to the global system macro S_TIME at some earlier point, and name_of_operation
is a string.
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elapse displays a string with the result. It also creates a global S_elap, which is a numerical macro of the form hhmmss,
where hh is the number of hours, mm the number of minutes, and ss the number of seconds.

Examples
local st = "$S_TIME"

elapse "“st”" "Bob“s your uncle"

- Bob“s your uncle took 1 minute, 11 seconds.

local oper "Maximum likelihood estimation"

elapse "“st”" "“oper”"

— Maximum likelihood estimation took 7 minutes, 15 seconds.
elapse ‘st~

- Elapsed time was 1 hour, 10 minutes, 32 seconds.

quietly elapse “st”

if $S_elap > 4500 {

mat xx = startxx

}

sbe19 Tests for publication bias in meta-analysis

Thomas J. Steichen, RJIRT, FAX 910-741-1430, steicht@rjrt.com

Syntax

The syntax of metabias is

metabias{theta {se_theta|var_theta} |exp(theta) llul [cl|} [if exp| [in range]
[, by (by_var) graph({hegg | egger}) level(#) {var|ci} graph,options]

where the syntax construct {a | b| ...} means choose one and only one of {a,b,...}.

Description

metabias performs the Begg and Mazumdar (1994) adjusted rank correlation test for publication bias and performs the
Egger et al. (1997) regression asymmetry test for publication bias. As options, it provides a funnel graph of the data or the
regression asymmetry plot.

The Begg adjusted rank correlation test is a direct statistical analogue of the visual funnel graph. Note that both the test
and the funnel graph have low power for detecting publication bias. The Begg and Mazumdar procedure tests for publication
bias by determining if there is a significant correlation between the effect estimates and their variances. metabias carries out
this test by, first, standardizing the effect estimates to stabilize the variances and, second, performing an adjusted rank correlation
test based on Kendall’s 7.

The Egger et al. regression asymmetry test and the regression asymmetry plot tend to suggest the presence of publication
bias more frequently than the Begg approach. The Egger test detects funnel plot asymmetry by determining whether the intercept
deviates significantly from zero in a regression of standardized effect estimates against their precision.

The user provides the effect estimate, theta, to metabias as a log risk ratio, log odds ratio, or other direct measure of effect.
Along with theta, the user supplies a measure of theta’s variability (i.e., its standard error, se_theta, or its variance, var_theta).
Alternatively, the user may provide the exponentiated form, exp(theta), (i.e., a risk ratio or odds ratio) and its confidence interval,
(1, ul).

The funnel graph plots theta versus se_theta. Guide lines to assist in visualizing the funnel are plotted at the variance-
weighted (fixed effects) meta-analytic effect estimate and at pseudo confidence interval limits about that effect estimate (i.e., at
theta + z X se_theta, where z is the standard normal variate for the confidence level specified by option level()). Asymmetry
on the right of the graph (where studies with high standard error are plotted) may give evidence of publication bias.

The regression asymmetry graph plots the standardized effect estimates, theta/se_theta, versus precision, 1/se_theta, along
with the variance-weighted regression line and the confidence interval about the intercept. Failure of this confidence interval to
include zero indicates asymmetry in the funnel plot and may give evidence of publication bias. Guide lines at x = 0 and y = 0
are plotted to assist in visually determining if zero is in the confidence interval.

metabias will perform stratified versions of both the Begg and Mazumdar test and the Egger regression asymmetry test
when option by (by_var) is specified. Variable by var indicates the categorical variable that defines the strata. The procedure
reports results for each strata and for the stratified tests. The graphs, if selected, plot only the combined unstratified data.
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Options
by (by_var) requests that the stratified tests be carried out with strata defined by by_var.

graph (begg) requests the Begg funnel graph showing the data, the fixed-effects (variance-weighted) meta-analytic effect, and
the pseudo confidence interval limits about the meta-analytic effect.

graph (egger) requests the Egger regression asymmetry plot showing the standardized effect estimates versus precision, the
variance-weighted regression line, and the confidence interval about the intercept.

level() sets the confidence level, in percent, for the pseudo confidence intervals; the default is 95%.

var indicates that var_theta was supplied on the command line instead of se_theta. Option ci should not be specified when
option var is specified.

ci indicates that exp(theta) and its confidence interval, (//, ul), were supplied on the command line instead of theta and se_theta.
Option var should not be specified when option ci is specified.

graph_options are those allowed with graph, twoway. For graph(begg), the default graph_options include connect (111.),
symbol (iiio), and pen(3552) for displaying the meta-analytic effect, the pseudo confidence interval limits (two lines),
and the data points, respectively. For graph(egger), the default graph_options include connect(.11), symbol(oid),
and pen(233) for displaying the data points, regression line, and the confidence interval about the intercept, respectively.
Setting t2title(.) blanks out the default t2title.

Input variables
The effect estimates (and a measure of their variability) can be provided to metabias in any of three ways:

1. The effect estimate and its corresponding standard error (the default method):
. metabias theta se_theta ...

2. the effect estimate and its corresponding variance (note that option var must be specified):
. metabias theta var_theta, var ...

3. the risk (or odds) ratio and its confidence interval (note that option ci must be specified):
. metabias exp(theta) Il ul, ci ...

where exp(theta) is the risk (or odds) ratio, I/ is the lower limit and u/ is the upper limit of the risk ratio’s confidence
interval.

When input method 3) is used, ¢/ is an optional input variable that contains the confidence level of the confidence interval
defined by I/ and ul:

. metabias exp(theta) Il ul cl, ci ...

If ¢l is not provided, metabias assumes that each confidence interval is at the 95% confidence level. ¢l allows the user to
provide the confidence level, by study, when the confidence intervals are not at the default level or are not all at the same level.
Values of ¢l can be provided with or without a decimal point. For example, 90 and .90 are equivalent and may be mixed (e.g.,
90, .95, 80, .90 etc.).

Explanation

Meta-analysis has become a popular technique for numerically synthesizing information from published studies. One of the
many concerns that must be addressed when performing a meta-analysis is whether selective publication of studies could lead
to bias in the meta-analytic conclusions. In particular, if the probability of publication depends on the results of the study—for
example, if reporting large or statistically significant findings increase the chance of publication—then the possibility of bias
exists.

An initial approach used to assess the likelihood of publication bias was the funnel graph (Light and Pillemer 1984). The
funnel graph plotted the outcome measure (effect size) of the component studies against the sample size (a measure of variability).
The approach assumed that all studies in the analysis were estimating the same effect, therefore the estimated effects should be
distributed about the unknown true effect level and their spread should be proportional to their variances. This suggested that,
when plotted, small studies should be widely spread about the average effect and the spread should narrow as sample sizes
increase. If the graph suggested a lack of symmetry about the average effect, especially if small, negative studies were absent,
then publication bias was assumed to exist.

Evaluation of a funnel graph was a very subjective process, with bias—or lack of bias—being in the eye of the beholder.
Begg and Mazumdar (1994) noted this and observed that the presence of publication bias induced a skewness in the plot
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and a correlation between the effect sizes and their variances. They proposed that a formal test for publication bias, which is
implemented in this insert, could be constructed by examining this correlation. The proposed test evaluates the significance of
the Kendall’s rank correlation between the standardized effect sizes and their variances.

Recently, Egger et al. (1997) proposed an alternative, regression-based test for detecting skewness in the funnel plot and, by
extension, for detecting publication bias in the data. This numerical measure of funnel plot asymmetry also constitutes a formal
test for publication bias and is implemented in this insert. The proposed test evaluates whether the intercept deviates significantly
from zero in a regression of standardized effect estimates against their precision. The test is motivated by the observation that,
under assumptions of a nonzero underlying effect and a lack of publication bias, 1) small studies would have both a near-zero
precision (since precision is predominantly a function of sample size) and a near-zero standardized effect (because of division
by a correspondingly large standard error), while 2) large studies would have both a large precision and a large standardized
effect (because of division by a small standard error). Therefore the standardized effects would scatter about a regression line
(approximately) through the origin that has a slope which estimates both the size and direction of the underlying effect. Under
conditions of publication bias and asymmetry in the funnel plot, the sub-sample of small studies will differ systematically from
the sub-sample of larger studies and the regression line will fail to go through the origin. The size of the intercept provides a
measure of asymmetry—the larger the deviation from zero the greater the asymmetry. The direction of the intercept provides
information on the form of the bias—a positive intercept indicates that the effect estimated from the smaller studies is greater
than the effect estimated from the larger studies. Conversely, a negative intercept indicates that the effect estimated from the
smaller studies is less than the effect estimated from the larger studies.

Begg’s test

This section paraphrases the mathematical development and discussion in the Begg and Mazumdar paper (the paper also
includes a detailed examination of the operating characteristics of this test and examples based on medical data).

Let (¢;,v;), i = 1,...,k, be the estimated effect sizes and sample variances from k studies in a meta-analysis. To construct
the adjusted rank correlation test, calculate the standardized effect sizes
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Correlate the standardized effect sizes, ¢;, with the sample variances, v;, using Kendall’s rank correlation procedure and
examine the p value. A significant correlation is interpreted as providing strong evidence of publication bias.

In their examples, Begg and Mazumdar use the normalized Kendall rank correlation test statistic for data that have no ties,
z=(P—Q)/[k(k—1)(2k+5)/18]*/2, where P is the number of pairs of studies ranked in the same order with respect to t*
and v and () is the number of pairs ranked in the opposite order. This statistic does not apply a continuity correction. The authors
remark that the denominator should be modified if there are tied observations in either ¢; or v; but, instead, apparently break
ties in their sample data by adding a small constant. The metabias procedure implemented in this insert invokes a modification
of Stata’s ktau procedure to calculate the correct statistic, whether ties exist or not, and presents the z and p values with and
without the continuity correction.

Begg and Mazumdar report that the principal determinant of the power of this test is the number of component studies in
the meta-analysis (as opposed to the sample sizes of the individual studies). Additionally, the power will increase with a wider
range in variance (sample size) and with a smaller underlying effect size. The authors state that the test is fairly powerful for
a meta-analysis of 75 component studies, only moderately powerful for one of 25 component studies, and weak when there
are few component studies. They advise that “the test must be interpreted with caution in small meta-analyses. In particular,
[publication] bias cannot be ruled out if the test is not significant.”
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A stratified test can also be constructed. Let P, — Q; be the numerator of the unstratified test statistic for the [th subgroup
and d; be the square of the corresponding denominator (i.e., the variance of P, — (Q;). The stratified test statistic, without
continuity correction, is defined as

LB -Q)

()

The metabias procedure implemented in this insert calculates the correct stratified statistic, whether ties exist or not, and
presents the zs and pg values with and without the continuity correction.

Zs =

Begg and Mazumdar assume that the sampling distribution of ¢ is normal, i.e., t ~ N(0,v;), where 0 is the common effect
size to be estimated and the v; are the variances, which depend on the sample sizes of the individual component studies. They
argue that the normality assumption is reasonable because ¢ is “invariably a summary estimate of some parameter, and as such
will possess an asymptotic normal distribution in most circumstances.” The subsequent asymptotic-normality assumption for zg
inherently follows from this argument.

Egger’s test

This section paraphrases the method development and discussion in the Egger et al. paper. (The paper also provides an
empirical evaluation, based on only eight examples from the medical literature, of the ability of the regression asymmetry test
to correctly predict whether a meta-analysis of smaller studies will be concordant with the results of a subsequent large trial.)

Let (t;,v;), @ = 1,...,k, be the estimated effect sizes and sample variances from k studies in a meta-analysis. Define
the standardized effect size as t} = t;/v;'/?, the precision as s~ * = 1/v;'/2, and the weight as w; = 1/v;. (In this form of
standardization, t* is a standard normal deviate and is designated as such in the Egger paper.) Fit t* to s~! using standard
weighted linear regression with weights w and linear equation: t* = o+ (3s~1. A significant deviation from zero of the estimated
intercept, @, is interpreted as providing evidence of asymmetry in the funnel plot and of publication bias in the sampled data.

Egger et al. fit both weighted and unweighted regression lines and select the results of the analysis yielding the intercept
with the larger deviation from zero. This insert implements only the weighted analysis.

Egger et al. do not provide a formal analysis of coverage (i.e., nominal significance level) or power for this test, though
they do provide a number of assertions about power. First, they state that “[i]n contrast to the overall test of heterogeneity, the
test for funnel plot asymmetry assesses a specific type of heterogeneity and provides a more powerful test in this situation.”
Second, they state that “[i]n some situations. .. power is gained by weighting the analysis.” Lastly, in a comparison to the Begg
and Mazumdar test, they state that “the linear regression approach may be more powerful than the rank correlation test.” Egger
et al. note, though, that “any analysis of heterogeneity depends on the number of trials included in a meta-analysis, which is
generally small, and this limits the statistical power of the test.”

Although the paper provides no formal analysis in support of these assertions, an empirical evaluation based on eight
examples from the medical literature is reported. This evaluation assessed the ability of the regression asymmetry test to correctly
predict whether a meta-analysis of smaller studies will be concordant with the results of a subsequent large trial. For these eight
examples, the test detected bias in 3 of 4 cases where a meta-analysis disagreed with a subsequent large trial and indicated
no bias in all 4 cases where the meta-analysis agreed with the subsequent large trial. In contrast, the Begg and Mazumdar test
was significant for only 1 of the 4 discordant cases (but like Egger’s test, for none of the concordant cases). Nonetheless, eight
example cases are too few to be statistically convincing and the test remains unvalidated. Further, the lack of coverage analysis
leaves open the question of false-positive claims of asymmetry and publication bias. Interestingly, if the Egger’s publication bias
test is too liberal (a concern that the author of this insert holds), that translates into conservativeness at the meta-analysis level
since the bias test will suggest too frequently that caution is needed in interpreting the results of the meta-analysis.

An approximate stratified test can be constructed using logic similar to that of Begg and Mazumdar (although Egger et
al. did not do so). Let a; be the intercept from the regression equation for the Ith subgroup and v} be the variance of a;. The
stratified test statistic is defined as

2 al/vfl !
(Ziv/er) /

and is assumed to be distributed asymptotically normal. In this form, the stratified estimate is simply the variance-weighted,
fixed effect meta-analysis of the intercepts. This stratified test is implemented in this insert.

Zg —
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Examples

Begg and Mazumdar illustrated their method with examples from the literature. The first example examined the association
between Chlamydia trachomatis and oral contraceptive use derived from 29 case-control studies (Cottingham and Hunter 1992).

metabias is invoked as follows:

. metabias logor varlogor, var graph(egger)

Option var is used because the data were provided as log-odds ratios and variances and this avoids the, admittedly, small
step of generating the standard errors. The optional Egger graph is also requested. metabias provides the following analysis:

Tests for Publication Bias

Begg’s Test
adj. Kendall’s Score (P-Q) = 85
Std. Dev. of Score = 53.30 (corrected for ties)
Number of Studies = 29
z = 1.59
Pr > |z] = 0.111
z = 1.58 (continuity corrected)
Pr > |z| = 0.115 (continuity corrected)
Egger’s Test
Std_Eff | Coef.  Std. Err. t P>|t] [95% Conf. Intervall
slope | .5107122 .0266415 19.170 0.000 .4560484 .565376
bias | .8016095 .2961195 2.707 0.012 .1940226 1.409196

The non-continuity-corrected test statistic, z = 1.59 (p = 0.111), differs substantially from that reported by Begg and
Mazumdar, z = 1.76 (p = 0.08). It differs for two reasons: first, the metabias procedure corrected the standard deviation of
Kendall’s score for ties; and second, Begg and Mazumdar apparently carried out their calculation on data that differs slightly
from the data they report in their appendix.

The difference in data is apparent when comparing the funnel graph in the published paper to that generated by metabias. The
published graph suggests that the observation at (logor, varlogor) = (0.41,0.162) incorrectly overlays observation (0.41,0.083);
that it, it was incorrectly entered as (0.41, 0.083). Recalculation of the test statistic with ties broken, and with the data modified
to match the published graph, yields the published results.

Begg and Mazumdar report that their p of 0.08 is “strongly suggestive of publication bias.” Correction of the data and
calculation of the test statistic to account for the ties, as shown above, weakens this conclusion. Application of the continuity
correction further weakens the conclusion. Nonetheless, with only 29 component studies, the test is expected to have only
moderate power at best, and the existence of publication bias cannot be ruled out.

In contrast, the Egger’s bias coefficient, bias = 0.802 (P > |t| = 0.012), strongly indicates the presence of asymmetry and
publication bias. Further, the sign of the coefficient (positive) suggests that small studies overestimate the effect (or, alternatively,
that negative and/or nonsignificant small studies are not included in the Cottingham and Hunter dataset). The slope coefficient,
0.511, which is an estimate of theta (that in a weak sense might be considered to be adjusted for the effects of publication bias),
is smaller than the effects estimated from meta-analysis of these data using either fixed-effects (theta = 0.655) or random-effects
(theta = 0.716). These differences in effect estimates are consistent with those expected when small, negative studies are excluded.

The Egger plot (Figure 1), requested via the graph(egger) option, graphically shows this test and points out that the
analysis is dominated by one large, very precise study. The plot also shows that the data near the origin are systematically
elevated.

The Begg funnel graph of the data (Figure 2), which could have been selected with the graph(begg) option, provides
additional support for this interpretation.

(Figures on next page.)



standardized effect

10 1

14 Stata Technical Bulletin STB-41

Begg's funnel plot with pseudo 95% confidence limits
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Most of the data points in the Begg plot fall above the meta-analytic effect estimate and there is a visible void in the
lower right of the funnel, that is, in the region of low effect and high variance. This is the region where studies most likely to
be subject to publication bias would appear. It is notable, though, that since the meta-analytic effect estimate and most of the
individual component effect estimates are substantially above zero, the effect of publication bias, if any, would be to inflate the
estimate rather than to lead to an incorrect conclusion about the existence of an effect.

Begg and Mazumdar’s third example called for the use of the stratified test. These data examined the association between
chlorination by-products in drinking water and cancer occurrence, with studies stratified by the site of the cancer (Morris et
al. 1992). metabias is invoked as follows:

. metabias effect variance, var by(site)
Use of option by(site) informs metabias that the stratified tests are to be carried out and that variable site is to be

used to define the strata. Results are provided in table format, presenting the statistics for each strata and then for the overall
stratified tests:

Tests for Publication Bias

| | Begg”s Begg”s cont. corr. | Egger’s

site | n | score s.d. z P z p | Dbias P
Bladder | 7| 7 6.658 1.05 0.293 0.90 0.368 | 0.07 0.928
Brain | 2 | 1 1.000 1.00 0.317 0.00 1.000 | 4.71 .
Breast | 4 | 2 2.944 0.68 0.497 0.34 0.734 | 4.13 0.002
Colon | 71 -1 6.658 -0.15 0.881 0.00 1.000 | 4.36 0.003
ColoRect | 8 | 0 8.083 0.00 1.000 -0.12 1.000 | 5.33 0.273
Esophagu | 5 | 4 4.082 0.98 0.327 0.73 0.462 | 1.85 0.456
Kidney | 4 | 2 2.944 0.68 0.497 0.34 0.734 | 2.31 0.426
Liver | 4 | 2 2.944 0.68 0.497 0.34 0.734 | -0.78 0.727
Lung | 5 | 6 4.082 1.47 0.142 1.22  0.221 | 1.06 0.324
Pancreas | 6 | 5 5.323 0.94 0.348 0.75 0.452 | 1.55 0.001
Rectum | 6 | 1 5.323 0.19 0.851 0.00 1.000 | 4.39 0.103
Stomach | 6 | 5 5.323 0.94 0.348 0.75 0.452 | 2.02 0.042
overall | 64 | 34 17.301 1.97 0.049 1.91 0.056 | 2.51 0.000

The Begg and Mazumdar results provide no evidence of publication bias in any of the small site-specific strata, yet the
stratified test statistic, zs = 1.97 (p = 0.049) provides strong evidence that publication bias exists in the chlorinated drinking
water and cancer literature. (These results also differ slightly from those published by Begg and Mazumdar in that the published
score for the Pancreas strata is 6, leading to an overall score of 35 and slightly different test statistics for this strata and the
overall statistic. Results for all other strata agree.) Again, the Egger test provides a stronger indication of the possible presence
of publication bias in this literature. Four site-specific strata (Breast, Colon, Pancreas and Stomach) reach statistical significance
and the p value for the overall test is more significant than that of Begg’s test, 0.000 versus 0.049. All but one of the individual
bias coefficients are positive, as is the overall bias coefficient, suggesting that the small studies in this Morris et al. dataset are
overestimating the effect (or that the negative and/or nonsignificant small studies are not included).



Stata Technical Bulletin 15

Saved Results

metabias saves

S-1 number of studies S_5 Begg’s p value, continuity corrected
5.2 Begg’s score 5.6 Egger’s bias coefficient

S3 s.d. of Begg’s score S_7 Egger’s p value

sS4 Begg’s p value 5.8 overall effect (log scale)
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sbe20 Assessing heterogeneity in meta-analysis: the Galbraith plot

Aurelio Tobias, Institut Municipal d’Investigacio Medica (IMIM), Spain, atobias@imim.es

Graphical methods are frequently used in meta-analysis to complement the statistical analysis of clinical and epidemiological
data. If the number of studies evaluated in a meta-analysis is small the assessment of heterogeneity is complicated. A range
of tests to assess heterogeneity are available (Fleiss 1981), but they tend to have low power against the alternative (Laird and
Mosteller 1990). Moreover, it is difficult to have a visual impression of the amount of heterogeneity from common meta-analysis
diagrams (Gladen and Rogan 1983, Galbraith 1988). Hence, graphical methods are particularly important to check and to explore
potential sources of heterogeneity.

The command galbr performs the Galbraith plot (Galbraith 1988), which has been more recommended (Thompson 1993)
than other graphical methods to investigate heterogeneity in meta-analysis. This command can be useful to complement the
results and graphical displays produced by the meta command (Sharp and Sterne 1997).

The Galbraith plot

Following the notation by Sharp and Sterne, let us assume that él is the estimated treatment effect 6; in a trial ¢, and v; the
variance of the estimated treatment effect. Then, for each trial ¢ the z statistic éi /+/Vi is plotted against the reciprocal standard
error 1/,/v;. Different log rate ratios, log odds ratios or log hazard ratios are therefore represented on the diagram by straight
lines to the origin for different gradients. In particular, it could be verified that the (unweighted) regression line constrained
through the origin has a slope equal to the overall log odds ratio in a fixed effects meta-analysis. Heterogeneity may be assessed
by the contribution of each trial 7 to the overall @) statistic (DerSimonian and Laird 1986) for heterogeneity. This investigation
can also be performed visually from a Galbraith plot. The position of each trial on the horizontal axis gives an indication of the
weight allocated in the meta-analysis. The vertical axis gives the contribution of each trial to the () statistic, that is, to say the
distance between each trial point and the regression line is equal to qiz, where q? = wi(éi — é)z and Q@ =) ql-z. Points outside
the confidence bounds (positioned 2 units above and below the regression line) are these trials which have a major contribution
to heterogeneity. In the absence of heterogeneity we could expect all points within the confidence limits. The Galbraith plot
can also be used to investigate possible sources of heterogeneity by labeling the points in the graph by different covariates,
for example type of trial, duration of treatment, or drug differences. We should note that this is a post-hoc investigation and
interpretation should be made with caution (Thompson 1993).

Syntax

As for the command meta, the command galbr works on a dataset containing the estimate effect, theta, and its standard
error, setheta, for each trial. The syntax is as follows:

galbr theta setheta [if exp] [in range] [ , id(labelvar) graph_options]

Options

id (labelvar) supplies a variable which is used to label the studies. If the data contains a labeled numeric variable, it can also
be used.
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graph_options are any of the options allowed with graph, twoway; see [R] graph twoway.

yline (0) is useful to check the direction and intensity of the overall effect estimated in a fixed effects meta-analysis by
the slope of the (unweighted) regression line constrained through the origin.

Although allowed, ylabel(), yscale(), xscale() and, symbol() are not suggested.

Example

We illustrate the use of galbr with data from seven placebo-controlled studies on the effect of aspirin in preventing death
after myocardial infarction. Fleiss (1993) published an overview of these data, and I will focus on the assessment of heterogeneity.

. use fleiss

. describe
Contains data from fleiss.dta
obs: 7
vars: 7
size: 231
1. study byte 78.0g study identity number
2. studyid str8  48s study identity label
3. rr float %8.4f odds ratio
4. logrr float %8.4f log odds ratio
5. logse float %8.4f standard error log odds ratio
6. wf float %8.2f fixed effects weights
7. wr float %8.2f random effects weights

. list, noobs

study studyid rr logrr logse wf wr
1 MCR-1 1.3894 0.3289 0.1972 25.71 20.58
2 CDP 1.4701 0.3853 0.2029 24.29 16.66
3 MRC-2 1.2451 0.2192 0.1432 48.77 33.11
4 GASP 1.2497 0.2229 0.2545 15.44 13.43
5 PARIS 1.25837 0.2261 0.1876 28.41 22.28
6 AMIS 0.8826  -0.1249 0.0981 103.91 51.77
7 ISIS-2 1.1176 0.1112 0.0388 664.26 89.28

Heterogeneity was tested using the meta command, without any statistical evidence of its presence (QQ = 9.968, df = 6,
p = 0.126). However, this test has been criticized due to its lack of sensitivity to detect heterogeneity (Spector and Thompson
1991). For this reason, Fleiss recommends to use a large significance level «, say 0.10 to 0.20, rather the usual 0.05. The output
of the Galbraith plot presents strong visual evidence of heterogeneity between the studies. There is a clear influence of the
largest study, ISIS-2, becoming the major weight contributor to the overall fixed-effects estimate. The second largest study, AMIS,
becomes the major contributor to the heterogeneity. The other five studies are strikingly homogeneous.

. galbr logrr logse, id(studyid)
See Figure 1 below.

When the analysis without ISIS-2 and AMIS studies was performed, there was strong evidence of absence of heterogeneity
(Q = 0.627, df = 4, p = 0.960), also confirmed by the Galbraith plot. Hence, a random effects model should be more
appropriate, reducing the influence of the ISIS-2 study and the amount of heterogeneity produced by the AMIS study.

. galbr logrr logse if study!=6 & study!=7, id(studyid)

See Figure 2 below.

(Figures on next page.)
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Figure 1. The Galbraith plot for the seven studies evaluated. Figure 2. The Galbraith plot, excluding ISIS-2 and AMIS studies.

Individual or frequency records

As in the meta command, galbr works on data contained in frequency records, one for each study or trial. If we have
primary data, that is individual records, we must combine into frequency records using the collapse and byvar Stata commands.
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sed9.1 Pointwise confidence intervals for running

Peter Sasieni, Imperial Cancer Research Fund, UK, p.sasieni @icrf.icnet.uk
Patrick Royston, Imperial College School of Medicine, UK, proyston@rpms.ac.uk

running is a symmetric nearest neighbor linear smoother that was introduced in STB-24 (Sasieni 1995). The new version
of running provides a substantial improvement over the old. The syntax is unchanged except where new options are available.
The new version offers the following additional features.

1. Analytic weights are allowed. The weights do not affect the “windows” i.e., the observations considered to be “nearest
neighbors.” Rather it is assumed that the variance of yvar is inversely proportional to the weights. Frequency weights would
require a new algorithm to select the “neighbors” and are therefore not allowed. Observations with zero, negative or missing
weights are treated as missing.

2. Standard errors and confidence bands can be calculated and added to the graph for simple smoothers. When the fit is
by locally weighted least squares, it is easy to estimate the standard errors of the fitted values. The program uses a local
estimate of the variance of an observation with unit weight.

3. Twicing is permitted. Thus one may smooth the residuals from the initial fit and add the two smooths to give the final fit.
The same smoother must be used for both the raw data and the residuals.
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4. The maximum span for a running line smoother has been increased from 1 to 2. A span of 2 yields the usual straight line
(weighted) least squares fit.

We have also taken the opportunity to correct a few minor bugs and to refine the Stata code. The new program has been
extensively tested on small and large datasets with and without weights. Care has been taken so that running will work even
when there are tied values in xvar and between 1 and N — 1 neighbors on each side of the fitted data point.

Syntax
running yvar [xvar] [weight] [if exp] [in mnge] [, knn (string) span (#)
mean repeat(#) double twice ci gen(newvar) gense(sevar)
genb(bvar) logit nograph graph,options]
Description

running smooths yvar on xvar. By default, the smoothed version is a running line: a running mean is also available. A
graph of yvar together with its smooth is plotted against xvar, unless suppressed. If xvar is not provided, then yvar is smoothed
against the ordered observations.

Options

knn (string) specifies the number of nearest neighbors on each side to be used. The argument of knn can either be an integer or
the name of an integer value variable. knn is stored in $S_1. The greater the value, the greater the smoothing. You may
not specify both span and knn. The formula for calculating the default value of knn is not the same as was used in the
previous version of running.

span(#) specifies the span or proportion of the data to be used in the symmetric nearest neighbors. If span is specified knn is
defined to be (N * span — 1)/2, where N is the number of observations. You may not specify both span and knn. span
must be be in the range (0,2]. (It must be less than 1 when using mean.) Span 2 corresponds to fitting a straight line.
span() is stored in $S_2.

mean specifies running-mean least-squares smoothing; default is running-line.

repeat (#) specifies the number of times the data is to be smoothed. The default is 1. Increasing repeat increases the time
taken to calculate the smooth, but should improve the result.

double doubles the value of repeat. If repeat is not specified, double is equivalent to repeat(2).

twice carries out Tukey’s “twicing” procedure whereby residuals from the original fit are smoothed and added back to the fit to
obtain the final smooth (“smoothing the rough” or “reroughing” in Tukey’s terminology). The result is somewhat rougher
than would have been obtained without the application of twicing, but may be a better fit to the data.

ci produces a pointwise confidence interval for the smoothed values of yvar. The width is determined by the current value of
the macro $S_level. Not available with twice, repeat, or logit.

gen(newvar) creates newvar containing the smoothed values of yvar. Note that this will be on a logit scale if logit is used.

gense (sevar) creates sevar containing the pointwise standard error of smoothed values of yvar. Not available with twice,
repeat or logit.

genb (bvar) creates bvar containing the local slope estimates. They constitute a local estimate of the derivative of the smoothed
values of yvar with respect to xvar. Not available with mean, twice, or logit.

logit transforms the smooth and plots the y-axis on a logit scale. 0—1 observations are automatically jittered in the vertical
scale and are plotted outside the range of the smoothed curve. It is not necessary that yvar is 0—1 provided it takes values
in [0,1].

nograph suppresses displaying the graph.

graph_options are any of the options allowed with graph, twoway; see [R] graph twoway.

Examples
The following examples use Stata’s automobile dataset.

. running foreign mpg [aw=price], ylab xlab span(2) ci gen(fitl) gense(sel)
. running foreign mpg, ylab(-4,-2,0,2) xlab logit yline(0) r(3)
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Note that the fitted values and standard errors of prediction with a span of two are the same as those obtained by fit.

. fit foreign mpg [aw=price]
. predict fit2

. predict se2, stdp

. gen fitd=fitl-fit2

. gen sed=sel-se2

. sum fitd sed

Methods and Formulas

The default value of knn is defined to be N°®/2 where IV is the number of nonmissing observations. The span of the
smooth is defined as (2 * knn + 1)/N. The number of neighbors on each side of the observation used on each pass of the
smoother is int(knn/+/7 +0.5) where 7 is the value of repeat and int is the function yielding the integer part of its argument.
Thus the actual span is r * int{ (NN * span — 1)/(24/r) + 0.5} /N.

Standard errors are calculated based on the local weighted least squares fit. Confidence intervals take account of sampling
error, but not bias. Thus, the smaller the span, the wider will be the confidence interval. The error variance is calculated locally.
Thus running uses the weighted mean residual sum of squares for the neighbors of the observation. The nominal coverage of
the confidence interval is determined by the value of the global macro $S_level.

Further examples

Figure 1 illustrates the use of the logit option with data that are binomial outcomes with sample sizes of between 1 and
5. The binomial sample sizes are used as weights.

. set obs 400

. gen N=min(1+int ((invnorm(uniform()))"2),5)

. gen x=uniform()+uniform()

. gen p=1/(1+exp(-3*sin(3*x)-4*(x-1)))

. gen y= uniform()<p

. for 1-4, lty(num) : replace y = y+ (uniform()<p) if N>@
. replace y = y/N

. running y x [aw=N] ,logit gen(1lfit)

SEBIBET ¢ e D ARMRNEIETIS, T SN 0t e 2

5paa55 | @ ¢ BERRITT P Jeo SANLIBRNLEWUNS. o,
T

T T

T T
.003345 1.97641

X
Running line smoother
Figure 1. Smoothing binomial outcomes.
The fit is actually much better than it appears in Figure 1 as can be seen in Figure 2. Note that the use of the jitter
option overides the weighted symbol size of graph.
. running y x [aw=N] ,logit jit(2)

. gen lp=log(p/(1-p))
. graph 1fit 1lp x, s(oi) c(.1l) sort
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4.80142 oo
°

Smooth fit
I

-4.80142 | =
T
.003345

T T T T
1.97641
X

Figure 2. Comparison of the fit to the logit function from which the data were generated.

If the logit option is not used, the fitted probabilities are not constrained to be in the interval [0, 1] (Figure 3).

. running y x , ylab(0,.5,1) xlab y1i(0,1)

T T T
5 1 1.5

o
-

X
Running line smoother
Figure 3. Binomial data smoothed without using the logit option.

Figure 4 illustrates how the confidence intervals may be misleading due to bias.

. running p x , ci

993849

-.136178 -
T
.003345

T T T T
1.97641

X
Running line smoother

Figure 4. Illustrating possible bias.

In Figure 5 (see below) the effect of twicing is to reduce the bias.
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. running p x , twi ti"(Running line with twicing")

By reducing the span and using repeat(2), we are able to fit the curve almost exactly (Figure 6).

. running p x , twi rep(2) knn(12)

1.00553 967667
a 4 a 4
a
4

-.154888 | -.000804

T T T T T T T T T T

003345 1.97641 .003345 1.97641

X X
Running line with twicing Running line smoother
Figure 5. Reducing bias by twicing. Figure 6. Bias can be greatly reduced by using a smaller span.

Figures 7-10 show the effect of the number of nearest neighbors on the confidence intervals. The default value of knn
(60.3 in this case) is too big for such noiseless data and the smoother performs poorly, particularly where the signal has a turning
point (Figure 7).

. gen xg=round(x,.1)

. running p xg, ci ylab ti(default span)

default span

T T T

o
o

xg
Running line smoother
Figure 7. Using the default span.

running will not produce confidence intervals when knn=1. When knn is 2, the fit is excellent to this noiseless data, but
the confidence interval is very wide (Figure 8).

. running p xg, knn(2) ci ylab t1(knn=2)

(Figure 8 on next page.)
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knn=2

T T T

o
o

xg
Running line smoother
Figure 8. Wide confidence intervals when knn is too small (knn=2).

The situation with knn=3 is already greatly improved (Figure 9).

. running p xg, knn(3) ci ylab t1(knn=3)

knn=3

T T T

o
o

xg
Running line smoother
Figure 9. Confidence intervals are still too wide (knn—=3)

The choice of knn=20 seems about right for this example (Figure 10).

. running p xg, knn(20) ci ylab t1(knn=20)

T T T T T
Xg
Running line smoother

Figure 10. A good choice of knn (20).
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sg44.1 Correction to random number generators

Joseph Hilbe, Arizona State University, atjmh@asuvm.inre.asu.edu
Walter Linde-Zwirble, Health Outcomes Technologies, walter122@aol.com

It has been called to my attention that the rndpoi.ado program that Walter Linde-Zwirble and I wrote for STB-28 does not
work from mean values such as 100. I discovered that the largest allowable value for the mean was 83. The reason is the value
of the exponentiated negative mean. In order to eliminate the problem one must include a set type double into the program.
The program has been so amended.

Also, Guy van Melle provided code to reduce computation time by nearly 50%. The problem was in my use of egen.
Using count is much better. I have made the necessary accommodations to the program.

Since rndpoix.ado, a program to allow synthetic Poisson modeling, is based on rndpoi.ado, I have made necessary
changes to it as well. Included are revised rndpoi.ado and rndpoix.ado programs that incorporate the above enhancements.
My thanks, of course, go to Professor van Melle and to another who discovered the mean limitation (I'm embarrassed that I
don’t recall his name—and apologize).

sg53.2 Stata-like commands for complementary log-log regression

Joseph Hilbe, Arizona State University, atjmh@asuvm.inre.asu.edu

A maximum-likelihood complementary log-log regression program was published in the July 1996 STB-32 (Hilbe 1996).
The main program, called cloglog.ado, includes a variety of options including a host of residual statistics. Moreover, both
ungrouped and grouped data situations can be modeled from within the same program. However, the old cloglog program was
written somewhat outside the standard Stata style for ML routines. I have prepared a new version of cloglog to more exactly
correspond with Stata’s internal logit and probit commands. cloglog in general has the same options as logit and probit,
including robust, score, and cluster. In addition, cloglog has an ancillary program called bcloglog, which models grouped
data in a manner similar to that of blogit and bprobit.

The stepwise command, sw, can be used for cloglog when StataCorp makes the additional setting from within the sw
command. It is an easy task, but I chose not to change StataCorp’s own program. Perhaps it will be amended when this program
is published.

Reference
Hilbe, J. 1996. sg53: Maximum-likelihood complementary log-log regression. Stata Technical Bulletin 32: 19-20.

sg75 Geometric means and confidence intervals

John Carlin, University of Melbourne and Royal Children’s Hospital, Australia, j.carlin@medicine.unimelb.edu.au
Suzanna Vidmar, University of Melbourne and Royal Children’s Hospital, Australia
Carlos Ramalheira, Coimbra University Hospital, Portugal, cramal@cygnus.ci.uc.pt

The geometric mean is a natural summary statistic for a log-normal distribution, since it is the back-transform or anti-log
of the mean of the log-transformed values, which (by definition) have a symmetric normal distribution. More generally, many
right-skewed distributions are approximately log-normal and are better summarized by the geometric mean than by the mean,
since estimates of the latter may be strongly influenced by a small number of outlying values. Several textbooks point out that
the geometric mean is usually close to the median in distributions with this sort of skewness (e.g. Altman 1991, Armitage and
Berry 1994). A helpful review of the important role of log transformations in analyzing biological data is provided by Healy
(1993).

Stata’s ci command provides confidence intervals for estimated means and proportions and the means command extends
summarize to give geometric and harmonic means, but it does not provide any inferential statistics. The new command offered
here, gmci, provides geometric means with confidence intervals in a very similar format to ci. The command is an improved
version of a couple of simple prototypes offered on Statalist by William Gould and Nick Cox.
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Syntax
gmci varlist [if exp] [in range] [, level (#) add(#) gnly]

Options
level (#) sets the desired confidence interval level to # When specified, # must be an integer from 10 to 99. The default is to
use the value in the global macro S_level (set at 95 when Stata starts up).

add (#) adds the value # to all values of varlist before the geometric mean and confidence interval are calculated. This is
sometimes useful when analyzing variables with nonpositive values.

only has no effect unless the add option is used. When both options are specified, the add option will only be applied to
variables that have nonpositive values.

Example

The dataset eg_gmci.dta contains the titres of 3 different antibodies from 188 babies after a primary course of immunization.
Various graphical inspections (in particular gnorm) reveal that all three antibody levels have strongly skewed distributions that
are made approximately symmetric, if not exactly normal, by log transformation. The geometric mean and confidence interval
for abl may be obtained simply:

. gmci abl
Variable | Obs Geometric Mean [95% Conf. Intervall
abl | 188 14.57392 12.73919 16.67289

The same method fails for ab2 because there are two zero values:
. gmci ab*
Nonpositive values encountered in variable ab2.

Minimum value of ab2 is 0.0, minimum positive value of ab2 is 1.9
r(411);

This may be overcome with the add option:

. gmci ab*, add(1)

Variable | Obs Geometric Mean [95% Conf. Intervall
abl | 188 16.01538 14.14699 18.13052 *
ab2 | 188 46.62022 38.43774 56.54456 *
ab3 | 188 16.15642 13.36500 19.53086 *

(*) 1 was added to the variable(s) prior to calculating the results

Finally, the only option may be used to restrict the adding of 1 to the variables that do not have all positive values:

. gmci abx, a(l) o

Variable | Obs Geometric Mean [95% Conf. Intervall
abl | 188 14.57392 12.73919 16.67289
ab2 | 188 46.62022 38.43774 56.54456 *
ab3 | 188 13.54571 10.84699 16.91586

(*) 1 was added to the variable(s) prior to calculating the results

Remark

Although the device of adding a constant to all values in order to remove zeros or even negative values, before taking logs,
appears to be widely used, it should be approached with caution. In particular, it is often recommended to add 1 (which means
that the minimum log value becomes 0, if the raw data have minimum 0), but this is appropriate only if the original scale of
measurement is such that most values are greater than 1. It is not appropriate to add a “very small” value (such as 0.1, 0.001),
because this is likely to create outliers relative to the variation in the remaining values, since the definition of “very small” is
always relative (it is a long way from any positive value to 0 on a log scale since the log of 0 can be regarded as negative
infinity). Minimal distortion seems to result if a value of about one half of the minimum positive value in the data is added.
Even then, however, the interpretation may be somewhat awkward, since the resulting geometric mean is a summary of the
shifted distribution, not the original. Finally, if there are a large number of zeros, no transformation will achieve a symmetric
distribution, so the use of a geometric mean as a summary may not be very helpful.
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ssal10.1 Update to analysis of follow—up studies with Stata 5.0

David Clayton, MRC Biostatistical Research Unit, Cambridge, david.clayton@mrc-bsu.cam.ac.uk
Michael Hills, London School of Hygiene and Tropical Medicine (retired), mhills@regress.demon.co.uk

All routines in ssal0 have been updated to version 2.0 in which a number of small bugs have been fixed.

Reference
Clayton, David and Michael Hills. 1997. ssalO: Analysis of follow—up studies with Stata 5.0. Stata Technical Bulletin 40: 27-39.

ssali Survival analysis with time-varying covariates

Jeroen Weesie, Utrecht University, Netherlands, weesie @weesie.fsw.ruu.nl

One of the most demanding tasks in the analysis of survival time data involves data management in constructing time-varying
covariates. In an undergraduate course on “event-history modeling” for the social sciences that I teach using Stata, a large fraction
of the time and inspiration of students evaporates in perspiration over trying to understand a relatively long series of arcane,
intimidating Stata statements in expand, by, and the system identifiers n and _N. In a desperate attempt to become more
popular with my students, and, more seriously, to redirect the student’s attention to the more substantial and statistical issues
(and, of course, to reduce data manipulation errors in my own research), I wrote a series of new commands (programs) that I
hope will facilitate survival analysis with time-varying covariates. With these new programs, performing survival analyses with
time-varying covariates will resemble much more closely how one uses other software for survival time analyses. These new
programs employ the facilities of the new st package for survival time data that was introduced in Stata 5.0. In this insert I
describe my collection of new st programs, with a series of examples. My description presupposes that the reader is already
familiar with the st package and is familiar with survival time modeling. In particular, if you haven’t read the section of the
Reference Manual on stset, you should probably read it before reading on here.

Let me start with some more or less formal descriptions of the five new programs. After these descriptions, we illustrate
the commands with numerous examples. All these commands are for use with survival time data. Thus, you must have stset
your data before using the commands.

Time-varying covariates: Discrete transitions

We first discuss 4 new commands that are especially useful for a more or less “declarative” way to construct transition-type
time-varying covariates.

stegen [type] newvar [if exp] [in range], at (exp-t) [from(exp—O) to(exp-1)

censor noshow preserve]
strepl oldvar [if exp] [in range], at(exp-1) { from(exp-0) | to(exp-1) }
[censor noshow preserve]
stsplit[type] newvar [if exp| [in range], { at(uumlist | exp-list) | every(# | exp)}
|expr noshow preserve]
sttvc [type] newvar = v(0) t(1) v(1) ... t(k) v(k) [if exp] [in rcmge]
[

, zero(exp-t) noshow Breserve]

Description

stegen generates a new time-varying covariate that changes at time exp-t from value exp-0 to value exp-I1. stegen performs
episode-spitting if necessary.

strepl modifies an existing time-varying covariate so that is takes value exp-0 for t>exp-t or exp-1 for t<exp-t. strepl
performs episode-spitting if necessary.
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stsplit splits the time axis at time points nq,ns,...,ny specified by a numlist into k + 1 intervals [0,n1 ], (n1,na],. ..,
creating an indicator variable that has value ¢ on the ith interval. stsplit can be used to create a “person-period file.”

sttvc generates a time-varying covariate that is v(0) for ¢ < ¢(1), is v(1) for t(1) < ¢t < ¢(2),..., is v(k — 1) for

t(k—1) <t <t(k), and is v(k) for t > t(k). The list v(0) t(1)...¢(k) v(k) consists of an odd number of expressions,

separated by blanks. Moreover, it is enforced that the transition times ¢(j) are strictly increasing, or that ¢(j) ==. implies

that ¢(j') ==. for 7' > j.

These commands can of course be invoked more than once in a job, in any combination, to create and manipulate one or
more time-varying covariates. Episode splitting will always be performed transparently. If necessary, these commands generate
a case identification variable, entry times, and a failure/censor indicator. See help for stset for details on these variables; and
help for st_aux for details on the names.

Options for stegen and strepl

at (exp-1) is not optional; it specifies the time, expressed as the elapsed time since time 0, at which the TVC changes from exp-0
to exp-1. The time should be nonmissing.

from(exp-0) specifies the value of the TVC before the change (transition). In stegen, from defaults to 0. In strepl one should
specify either from() or to ().

to(exp-1) specifies the value of the TVC after the change (transition). In stegen, to defaults to 1. In strepl one should
specify either from() or to().

censor specifies that missing values of the at-expression indicate censoring, e.g., the event did not happen during (#(0),¢(1) ),
and “thus” the TVC should be set to the from-value (stegen) or left unchanged (strepl).
Options for stsplit

at (numlist | exp-list) specifies the time points, expressed as the elapsed time since time 0, at which the episodes have to be
split. See help numlist. For example, at (5 20) performs episode splitting at times 5 and 20. Either at () or every()
must be specified.

every (# | exp) specifies that episodes are generated at multiples of a (positive) constant # or of an expression that may vary
between cases.

expr specifies that at () should be interpreted as an expression-list rather than as a numeric list.

Options for sttvc

zero(exp) specifies the zero-point for the transition times ¢(j). The expression should evaluate to nonmissing.

Time-varying covariates in Cox regression

To facilitate analyses with the Cox regression model with covariates that vary “continuously” in time, we include the
command stcoxtvc:

stcoxtvc varlist [if exp] [in mnge] [, eps (real 1E-6) strata(varnames) noshow Breserve]

Description

stcoxtvc creates the risk-pool expanded data in st-format, so that time-varying covariates can be generated in terms of
the survival time variable. These time-varying covariates may change at discrete time or “continuously.” Note that stcoxtvc is
suitable only for semi-parametric Cox-regression, not for the fully parametric models stereg and stweib.

stcoxtvc may require huge amounts of memory. Invoking stcoxtvc with the list of variables that you will use as
time-constant covariates, or in the construction of time-varying covariates helps to reduce memory requirements. If you want to
invoke stcox only on a selection of cases (with if or in phrases) specify these phrases already here. Similarly, if you want to
use stratification with stcox, stcoxtve will require less memory if these variables are known already here.

Options

eps (#) specifies a typically small number so that a case that is in the risk set at time ¢ is represented in the expanded data by
an “infinitesimal” episode (¢ — eps, t]. Infinitesimal episodes rather than n death-on-arrival-episodes are required in Stata
because of the particular order in which Stata orders failures, censors, and entries that occur “at” some time ¢. eps should
be set to a number that is small compared to the measurement unit of time. eps defaults to 1E — 6.

strata(varnames) specifies up to five strata variables. In stcox, observations with equal values of the variables are assumed
to be in the same stratum. Stratified estimates (equal coefficients across strata but baseline hazard unique to each stratum)
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are then estimated. strata are used in risk-pool expansion so that records are replicated only at all times at which failures
occur within the stratum, and so memory requirements are reduced when strata are specified. Performing a stratified analysis
with stcox on stcoxtvc expanded data that do not account for the strata wastes memory but produces otherwise correct
results.

General options
All five commands discussed above support the following options.

show and noshow change whether the other st commands are to display the identities of the key st variables at the top of their
output.

preserve specifies that the data are preserved before data manipulation, so that the data will be restored in original form after
pressing the break key.

These programs expand and may substantially modify the data in memory. As a consequence, you can’t undo the modifications
to the data. Before using the programs you should thus save your data. Beware that the programs do not obey the Stata convention
that destructive programs should be invoked on modified data with the option clear to protect a user from (unintentional)
destruction of data. Survival analysis with time-covariates is not for the faint-hearted anyway.

These programs support multi-record and recurrent event data, data with late entry, with gaps, etc. The programs automatically
manipulate the entry times (t0), exit times (t), failure/censor indicator (died), and the case identifier (id). If these variables
have not already been set by stset, the programs will generate these variables automatically with the following names and
values. If a case identifier was not specified, one is created with values _n, and named id, caseid,... whichever did not yet
occur in the data. If an entry time variable was not specified, one is created with value 0, meaning no late entry, and named tO,
etime, or st_t0, whichever was available as the name for a new variable. Finally, if a censor variable was not specified, one
named died, failure, or st_d is created with value 1, meaning that all cases died.

Example 1

The exponential regression model (without time-covariates) assumes that the hazard rate h is constant in time t,

logh(t,z;) = Bo + xl{li)ﬂl +.o.F xl{uc)ﬂk

where the 3 are the regression coefficients to be estimated. Note that the exponential model fits into the class of proportional
hazards models with constant baseline hazard 3y. Here it is assumed that the baseline hazard is piecewise constant on a predefined
set of time intervals. For ease of presentation we consider the case of two time intervals [0,7"), and [T, 00 ). Then the model
reads

g + xf{u)ﬂl +...+ x'{lk),@k, fort<T

log h(t,z;) = , ,
(041 +‘T{1i)181+"‘+‘r{1k)5k7 fOI'tZT

This model can be estimated in Stata in a somewhat different parameterization (deviation contrast) by conceiving of the
model as one with k time-constant covariates, and one time-varying dummy covariate. This involves some data manipulation.
Consider a simple example with three cases, no late entry, and no recurrent data:

t died X

10 0 x1
8 1 x2
4 1 x3

With episode splitting at time 7" = 5, this has to be turned into a new data structure with a case identifier (id), an entry-time
variable (t0), and a time-varying covariate Late:

d 0 Late X

0 x1
1 x1
0 x2
1 x2
0

d
0
0 0
0
1
1 x3

WNN R R
oo wod
W00 U1 Ol et

This can be achieved with the following commands:
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. gen id = _n

. expand if t > 5

. sort id

. by id: replace died = 0 if _n<_N
. by id: replace t =5 if _n<_N

. by id: gen t0 = 0 if _n<_N

. by id: replace t0O = 5 if _N==2

. by id: gen Late = _N==2

(create case identifier)

(episode splitting if survival time longer than 5)
(by requires sort)

(newly created first episodes are censored)
(newly created first episodes end at time 5)
(entry in first episodes at time 0)

(entry in second episode at time 5)
(time-varying dummy)

While the logic of these commands is fairly simple, it is a lot of work, it requires relatively intricate understanding of
Stata syntax, and it is easy to make mistakes. With the new command stegen it becomes very simple to manipulate data in

constructing a time-varying dummy.

. stegen Late, at(5)

stegen has created id and tO, has performed episode splitting for the required cases, and has adopted tO, t, and died
appropriately. We illustrate the command on a subset of the cancer data distributed with Stata.

. use cancer

(Patient Survival in Drug Trial)

. gen S = _N

. recode S 1 14 25 45 46 =1 x =0

. list stu died drug age if S, nodisplay

studytim died drug age

1. 1 1 1 61
14. 11 1 1 55
25. 10 0 2 49
45. 33 1 3 60
46. 34 0 3 62

stset provides the setup for the st package.

. stset studytim died,

data set name: cancer.dta
id: -
entry time: —-
exit time: studytim
failure/censor: died

(meaning each record a unique subject)
(meaning all entered at time 0)

For a comparison below, we estimate the standard exponential regression model.

. stereg drug age, nolog

failure time: studytim
failure/censor: died

Exponential regression -- entry time 0

log relative hazard form

No. of subjects = 48 Log likelihood = -48.837598

No. of failures = 31 chi2(2) = 25.01

Time at risk = 744 Prob > chi2 = 0.0000

studytim | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
drug | .3625496 .0883076 -4.165 0.000 .2249247 .5843833
age | 1.081641 .0347794 2.441 0.015 1.015578 1.152001

We will now estimate a piecewise constant exponential regression model with episode splitting at the median survival time.
This can be estimated nonparametrically with the standard st command stsum.

. stsum

failure time: studytim
failure/censor: died

| incidence no. of  |-——-—- Survival time —----—-—
| time at risk rate subjects 25% 50% 75%
total | 744 .0416667 48 8 17 33
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Thus, the median survival time is 17. As before, we create a time-varying dummy Late.

. stegen Late, at(17)
number of episode splits : 18
st key variables were created

data set name: d:cancer.dta
id: id defined to _n
entry time: tO defined to 0, meaning all entered at time O
exit time: studytim
failure/censor: died

stegen reported that in 18 cases episodes had to be split. In 18 cases survival time exceeded 17. In addition, stegen
reports that new key variables t0 and id were created. Let us look in more detail at the selected “interesting cases.”

. list id tO stu died drug age Late if S, nodisplay noobs
id t0 studytim died drug age Late

2 0 1 1 1 61 0
19 0 10 0 2 49 0
22 0 11 1 1 55 0
45 0 17 0 3 60 0
45 17 33 1 3 60 1
46 0 17 0 3 62 0
46 17 34 0 3 62 1

We see that episodes were split for cases 45 and 46; they survived after time 17.

For comparison, we can estimate an exponential regression model on the expanded data, but without the time-varying
covariate Late.

. stereg drug age, nolog

failure time: studytim
entry time: tO
failure/censor: died
id: id
Exponential regression -- entry time t0
log relative hazard form

No. of subjects = 48 Log likelihood = -58.518083
No. of failures = 31 chi2(2) = 25.01
Time at risk = 744 Prob > chi2 = 0.0000
studytim | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
drug | .3625496 .0883076 -4.165 0.000 .2249247 .5843833
age | 1.081641 .0347794 2.441 0.015 1.015578 1.152001

We see that the stereg output for the unexpanded and expanded data are identical. This should be, since the expanded data
organization is just a less economical way for describing the same information. The careful reader may have noticed that the
“Log likelihood” values are not the same. This is due to the fact that, as explained in Stata Reference Manual, vol. 3 (p. 355),
Stata does not display the true log likelihood.

We can now estimate the piecewise constant exponential regression model.

. stereg drug age Late, nolog noshow

Exponential regression -- entry time tO
log relative hazard form

No. of subjects = 48 Log likelihood = -55.983059
No. of failures = 31 chi2(3) = 30.08
Time at risk = 744 Prob > chi2 = 0.0000
studytim | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
drug | .295467 .0767466 -4.694 0.000 .1775874 .4915932
age | 1.095681 .0372252 2.690 0.007 1.025097 1.171125

Late | 2.994563  1.358982 2.417 0.016 1.230387 7.288238
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We see that Late is very significant: the death after time 17 is about three times higher than before time 17. Thus, we can
reject the exponential regression model that assumes time-constancy.

To me, a piecewise constant model is not very attractive because its baseline function is so discrete. Does it make sense to
assume that death rate just before 17 may be totally different than right after 17?7 Thus, we may, in this case, actually prefer a
Weibull model to test the time constancy assumption. However, the Weibull model

log h(t,z(t)) = blogt + LP

assumes that the baseline hazard is monotone, i.e., increasing or decreasing. In many situations it may be more reasonable to
assume that survival is inverse-U shaped. This cannot be tested with the Weibull specification. (We may of course inspect the
Kaplan—Meier estimate of the survival rates, adjusted for the covariates, for a visual test.) Currently, Stata does not estimate
survival models with non-monotone hazard rates such as the log-normal and log-logistic models. However, with the piecewise
constant model with more than 2 episodes, a fairly crude test can be made.

Continuing the example with the cancer data, we note that the 25th percentile of survival is at time 8. We construct a
further time-varying dummy Early that is 1 at times [0, 8), and O otherwise. The default behavior of stegen is to construct
time-varying dummies that are 1 after some time point. Using the options from() and to() this can be modified.

. stegen Early, at(8) from(1) to(0)

number of episode splits : 32

We see that in 32 cases, survival lasted at least till time 8. Let us look at the “interesting special cases.”

. list id tO stu died drug age Late Early if S, nodisplay noobs
id t0 studytim died drug age Late Early

2 0 1 1 1 61 0 1
19 0 8 0 2 49 0 1
19 8 10 0 2 49 0 0
22 0 8 0 1 55 0 1
22 8 11 1 1 55 0 0
45 0 8 0 3 60 0 1
45 8 17 0 3 60 0 0
45 17 33 1 3 60 1 0
46 0 8 0 3 62 0 1
46 8 17 0 3 62 0 0
46 17 34 0 3 62 1 0

We can now estimate a piecewise constant exponential regression model, with two time-varying dummies, Early (time <
8) and Late (time>17). Thus, 8<time<17 is the reference category.

. stereg drug age Early Late , nolog noshow

Exponential regression -- entry time tO
log relative hazard form

No. of subjects = 48 Log likelihood = -64.920965
No. of failures = 31 chi2(4) = 31.11
Time at risk = 744 Prob > chi2 = 0.0000
studytim | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
drug | .2832666 .0742996 -4.809 0.000 .169406 .4736545

age | 1.10172 .0380458 2.805 0.005 1.029619 1.178869
Early | .6365223 .2784854 -1.033 0.302 .2700248 1.500457
Late | 2.31135 1.165007 1.662 0.096 .8606529 6.207308

We see that the multiplicative effect on the hazard rate of Early is below 1 and of Late larger than 1. Thus, the three-period
discretization of the baseline hazard supports the claim that death rates increase with survival time.

With many time points it becomes laborious and error prone to issue many stegen commands to construct the time-varying
dummies. The command stsplit provides a simpler and faster alternative.

. use cancer, clear
(Patient Survival in Drug Trial)
. stset studytim died, noshow
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stsplit takes as an argument at (), a numeric list of values at which episodes have to be split. Thus at (8 17) invokes
episode splitting at 8 and 17. stsplit created a time-varying variable that identifies the respective episodes. In the example,
tve takes value 1 on the episode [0,8), 2 on the interval [8,17), and 3 on [17,.).

Actually, stsplit can also be called with the option every (#) for episode splitting at regular intervals. Below, we will
discuss how this can be used for person-period analyses.

. stsplit Epi, at(8 17)

number of episodes generated : 50
. tab Epi, gen(e)
Epi | Freq. Percent Cum.
1] 48 48.98 48.98
2 | 32 32.65 81.63
3| 18 18.37 100.00
Total | 98 100.00

We conclude that there are 48 patients who survived after time 8, and 32 who survived after time 3. We used the gen()
option of the tab command to generate time-varying dummies. (Of course, we could also have used the prefix command xi:).
Again, we inspect our “interesting cases.”

. list id tO stu died drug age Epi el e2 e3 if S, nodisplay noobs

id

1
14
14
25
25
45
45
45
46
46
46

Finally, we estimate an exponential regression model with a piecewise-constant baseline model.

t0
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. stereg drug age e2 e3, nolog noshow
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el e2
1 0
1 0
0 1
1 0
0 1
1 0
0 1
0 0
1 0
0 1
0 0

e3

o
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Exponential regression -- entry time tO
log relative hazard form
No. of subjects = 48 Log likelihood = -64.920965
No. of failures = 31 chi2(4) = 31.11
Time at risk = 744 Prob > chi2 = 0.0000
studytim | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
drug | .2832666 .0742996 -4.809 0.000 .169406 .4736545
age | 1.10172 .0380458 2.805 0.005 1.029619 1.178869
e2 | 1.571037 .6873457 1.033 0.302 .6664637 3.703363
e3 | 3.631216 1.801366 2.600 0.009 1.373377 9.600955

Example 2

We now illustrate the commands for the construction of time-varying covariates in an example in which the transition
times for a covariate varies between subjects. The example is based on the Coleman—Hoffer research project “High school and
Beyond;” the data are copied from Yamaguchi (1991). We want to test whether marital status affects school drop outs. These

are the variables:

caseid
time
died
sex
grades
parttime
lag

mrg

stm

Observation id
Time till school drop-out (number of months since entry)
Censoring (0) vs drop-out (1)
gender, O=males, 1=females
high-school grades 1=high 5=low
part-time student l=yes, O=no
time lag high-school graduation — entry in college (in months)
time of marriage; 99=never (number of months since jan 1980)
time of entry college (number of months since 1980)
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. stset time died, id(caseid) noshow

note: making entry-time variable tO
(within caseid, tO will be O for the 1st observation and the
lagged value of exit time time thereafter)

We check how many people married before entering school?

. count if mrg<stm
4

and how many people married during school

. count if mrg>=stm & mrg<=stmt+time
10

Now create the time-varying covariate married, with the associated data manipulation. Note that mrg — stm provides the
time-of-marriage relative to entry at college. For students who never married, mrg = 99.
. stegen married if mrg~=99, at(mrg-stm) from(0) to(1)

number of episode splits : 10

Alternatively, we could have recoded the missing value code 99 to Stata’s missing value code “.”. Invoking stegen with
the option censor would then imply that the transition has not yet occurred.

. replace mrg = . if mrg==99

. stegen married, at(mrg-stm) from(0) to(1l) censor

Let us verify the number of episodes in which a student is married. This should equal the number of students who married
before college, and those who married during college.

. tab married

married | Freq. Percent Cum.
01 261 94.91 94.91
1] 14 5.09 100.00

Total | 275 100.00

We can now fit a survival time model.

. stcox married sex grades parttime lag, nolog

Cox regression -- entry time tO
No. of subjects = 265 Log likelihood = -546.62949
No. of failures = 107 chi2(5) = 40.81
Time at risk = 8086.1 Prob > chi2 = 0.0000

time |

died | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
married | 3.859737 1.64504 3.169 0.002 1.67406 8.899064
sex | 1.295683 .2588462 1.297 0.195 .8758891 1.916674
grades | 1.398652 .1241915 3.779  0.000 1.175245 1.664528
parttime | 3.493112 .9206143 4.746 0.000 2.083902 5.855282
lag | .9925116 .0073259 -1.018 0.309 .9782565 1.006974

We conclude that married students have a 4 times higher rate of drop out than non-married students. One may wonder
whether the effects of marriage for men and women are the same. This can be easily tested via an interaction effect between
the time-constant variable sex and the time-varying variable married. Note that we can now use the normal Stata command
generate.

. gen msex = sex * married

. stcox married sex grades parttime lag msex, nolog

Cox regression -- entry time tO
No. of subjects = 265 Log likelihood = -546.62631
No. of failures = 107 chi2(6) = 40.81

Time at risk = 8086.1 Prob > chi2 = 0.0000
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time |
died | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
married | 3.679398 2.731387 1.755 0.079 .8587974 15.76387
sex | 1.290915 .2646478 1.246 0.213 .863763 1.929304
grades | 1.397946 .1244145 3.764 0.000 1.174181 1.664354
parttime | 3.504788 .9348628 4,702 0.000 2.077846 5.911671
lag | .9924686 .0073433 -1.022 0.307 .9781799 1.006966
msex | 1.075106 .9792943 0.080 0.937 .1803463 6.409073

Example 3

Many survival time data are very discrete. For instance, in research on labor market mobility, career changes are often only
recorded in units of a month, reflecting both the institutional organization of the labor market (labor contracts usually expire by
the end of the month) and “crude” measurement (“interval-censoring” to use the technical term) of careers in interviews. Discrete
time methods are thus fairly popular, especially among sociologists. In this approach, we analyze the conditional probability ;¢
of “death” in a period, conditional on being “alive” at the beginning of the period. This conditional probability 7;; is modeled
in some binary response model using covariates that depend only on time (compare the baseline hazard in proportional hazards
models) and covariates that depend on personal characteristics (and possibly time; these are of course time-varying covariates).

The discrete time approach requires the creation of a so-called “person-period” file in which a person (case) is described
via as many records as the number of periods that he was at risk until failure or censoring. Such a file can easily be created
with the stsplit command with the option every (#), where every () specifies the degree of coarseness of the required time
discretization. This will be illustrated now with our subset of the cancer data.

. stset studytim died
. gen S = _n
. recode S 1 14 25 45 46 =1 x =0

For comparison with the discrete-time version below, we estimate the continuous time models that assume that the hazard
rate is time-constant (“exponential regression”) or is additive in log(waiting time) (“Weibull regression”).

. stereg age drug, nolog noshow

Exponential regression -- entry time 0
log relative hazard form

No. of subjects = 48 Log likelihood = -48.837598
No. of failures = 31 chi2(2) = 25.01
Time at risk = 744 Prob > chi2 = 0.0000
studytim | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
age | 1.081641 .0347794 2.441 0.015 1.015578 1.152001
drug | .3625496 .0883076 -4.165 0.000 .2249247 .5843833
. stweib age drug, nolog noshow
Weibull regression —— entry time O
log relative hazard form
No. of subjects = 48 Log likelihood = -42.662839
No. of failures = 31 chi2(2) = 35.92
Time at risk = 744 Prob > chi2 = 0.0000
studytim | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
age | 1.117297 .0391618 3.164 0.002 1.043119 1.196751
drug | .2583268 .0681501 -5.131  0.000 .154032 .4332393
In p | .5639891 .1404668 4.015 0.000 .2886792 .8392989
p | 1.75767 1.334664 2.314744
1/p | .568935 .4320133 . 7492525

Note that in these data, the survival time is an integer variable with measurement unit equal to 1 month. We can create a
person-period file with periods of 1 original unit as

. stsplit Period, every(1)

number of episodes generated : 696
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The variable period numbers periods consecutively. We want to stress that stsplit returns st-data that are equivalent to
the original data, but much less economical in terms of memory requirements. This becomes clear from the following selected
list of cases:

. sort id Period
. by id: list Period tO studytim died age drug, noobs, if S

-> id= 1
Period t0 studytim died age drug
1 0 1 1 61 1
=-> id= 14
Period t0 studytim died age drug
1 0 1 0 55 1
2 1 2 0 55 1
3 2 3 0 55 1
4 3 4 0 55 1
5 4 5 0 55 1
6 5 6 0 55 1
7 6 7 0 55 1
8 7 8 0 55 1
9 8 9 0 55 1
10 9 10 0 55 1
11 10 11 1 55 1
=-> id= 25
Period t0 studytim died age drug
1 0 1 0 49 2
2 1 2 0 49 2
3 2 3 0 49 2
4 3 4 0 49 2
5 4 5 0 49 2
6 5 6 0 49 2
7 6 7 0 49 2
8 7 8 0 49 2
9 8 9 0 49 2
10 9 10 0 49 2
(output omitted )

Consider case id == 14 with entry time 0 and survival until time (month) 11 at which she died of cancer. This history is
represented by 11 cases associated with survival months. All but the first period (month) have late entry, and all but the last
period are censored. Case id == 14 has a survival time of 10 periods (months) and all periods are censored. Note that in the
expanded data, the variables age and drug are time-constant.

We can estimate exponential regression models to these data. Invoking stereg simply reproduces the output shown above,
but takes more time because of the non-economical representation in person-period data. We can also use the data to estimate
a discrete time analog of an exponential regression model. In this model, the failure/censor variable becomes the dependent
variable, while the survival time variable itself need not be directly included. Here, we use the logistic model.

. logistic died age drug

Logit Estimates Number of obs = 744
chi2(2) = 26.37

Prob > chi2 = 0.0000

Log Likelihood = -115.67875 Pseudo R2 = 0.1023
died | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall

age | 1.088742 .0369092 2.508 0.012 1.018752 1.16354

drug | .3412381 .0861308 -4.260 0.000 .2080695 .5596371

The odds ratios of the variables in the discrete time model are indeed very similar to the hazard ratios of the variables
in the continuous time model. Also, the standard errors are comparable. You may actually prefer robust standard errors. It can
be shown that you have to specify the variant with clustering on the case identifier (id) to obtain the correct results for the
robust/sandwich estimator.

. logistic died age drug, cluster(id)
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Logit Estimates

Log Likelihood = -115.67875

Number of obs = 744
chi2(2) = 29.24
Prob > chi2 = 0.0000
Pseudo R2 = 0.1023

(standard errors adjusted for clustering on id)

| Robust
died | 0Odds Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
age | 1.088742 .0235287 3.934 0.000 1.043589 1.135848
drug | .3412381 .0761123 -4.820 0.000 .2203937 .5283428

While in most applications scholars use the binary regression model with the logit-link, the complementary log-log link
(in Stata: cloglog or glm ..., fam(bin) link(c)) is actually more appropriate if the time-discreteness is due to crude
measurement of a continuous survival time that follows a proportional hazards model (Collett 1994). Generally, however, the

results will be close.

. glm died age drug, fam(bin) link(c) eform nolog

Residual df = 741 No. of obs = 744
Pearson X2 = 759.0694 Deviance = 231.2681
Dispersion = 1.024385 Dispersion = .3121027
Bernoulli distribution, cloglog link
died | ExpB  Std. Err. z P>|z]| [95% Conf. Intervall
age | 1.085625 .0349721 2.550 0.011 1.0192 1.156379
drug | .3503073 .0856836 -4.288 0.000 .2168948 .5657822

The Weibull regression assumes that the hazard rate h(t) takes the form

or

h(t) = ptP~Lexp(«'B8) t>0

logit m(t) = logn(t) ~logh(t) =logp+ (p — 1) logt + 2’8

We can thus estimate a discrete time analog to the Weibull regression model by incorporating a covariate log(time). Since
log(0) is not well defined here, we arbitrarily define log(0) = 0.

. gen Ilntime = cond(t0>0,1n(t0),0)
. logistic died age drug lntime, nolog

Logit Estimates Number of obs = 744
chi2(3) = 35.60

Prob > chi2 = 0.0000

Log Likelihood = -111.06296 Pseudo R2 = 0.1381
died | Odds Ratio  Std. Err. z P>|z]| [95% Conf. Intervall

age | 1.121709  .0413951 3.112  0.002 1.043441 1.205848
drug | .2447847 .068893 -5.001 0.000 .1410001 .4249611
Intime | 2.137748  .5785327 2.807 0.005 1.257761 3.633413

The effects of age and drug are roughly the same for the continuous and discrete-time version. But what about the shape
parameter p? Above, we have seen that the maximum-likelihood estimator of p is 1.758. According to the output of logistic,

we have exp(p — 1) = 2.134, or p = 1.786 which is again close to the maximum-likelihood estimator.

It is also possible to estimate discrete time analogs to survival time models that are currently not supported by Stata.
An example is the Gompertz/Bailey regression model that assumes that the (log)-probability of failure depends linearly on the

survival time. The discrete-time variant of this model can be estimated by simply including the tO-variable in the model.

. logistic died age drug tO
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Logit Estimates Number of obs = 744
chi2(3) = 37.84

Prob > chi2 = 0.0000

Log Likelihood = -109.94389 Pseudo R2 = 0.1468
died | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall

age | 1.125063 .0421818 3.143 0.002 1.045353 1.210851
drug | .2085663 .0646071 -5.060 0.000 .11365 .3827531

t0 | 1.097513 .0299863 3.406 0.001 1.040286 1.157887

Finally, Efron has suggested discrete time methods with a flexible model for the pure time dependency as an alternative to
Cox regression. This can be accomplished with a linear spline.

. mkspline spt5 5 spt10 10 spt20 20 sptover2 = t0O
. logistic died age drug spt*

Logit Estimates Number of obs = 744
chi2(6) = 38.13

Prob > chi2 = 0.0000

Log Likelihood = -109.79985 Pseudo R2 = 0.1479
died | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall

age | 1.126712 .0425537 3.159 0.002 1.04632 1.21328
drug | .2083371 .0656665 -4.977 0.000 .1123243 .38642
spt5 | 1.203756 .2143015 1.042 0.298 .8491831 1.706379
spt10 | 1.034258 .1539526 0.226 0.821 . 7725472 1.384628
spt20 | 1.107736 .0889251 1.275 0.202 .9464653 1.296485
sptover2 | 1.094208 .0929205 1.060 0.289 .9264363 1.292362

According to the estimated model, we have little reason to assume that the (logit-) conditional probability of failure depends
nonlinearly on survival time. The disadvantage of linear splines is, of course, that the knots have to be specified exogenously.
Fractional polynomials provide an alternative flexible specification of the baseline that do not suffer the same disadvantage.

. fracpoly logistic died tO age drug
-> gen tO_1 = x72

-> gen t0_2 = x73

where: x = (t0+1)/10

Logit Estimates Number of obs = 744

chi2(4) = 37.91

Prob > chi2 = 0.0000

Log Likelihood = -109.91189 Pseudo R2 = 0.1471

died | Odds Ratio  Std. Err. z P>|z]| [95% Conf. Intervall

t0_1 | 2.059963 .7031101 2.117 0.034 1.055179 4.021546

t0_2 | .8628029 .0936377 -1.360 0.174 .697482 1.067309

age | 1.123725 .0421692 3.108 0.002 1.044041 1.209491

drug | .2104672 .0655291 -5.005 0.000 .1143305 .387442
Deviance: 219.824. Best powers of tO among 44 models fit: 2 3.

With fracplot the pure time effect can be assessed graphically. According to this plot, the discrete hazard is approximately
S-shaped in survival time.

So far, we have included age as a time-constant variable in the analyses. However, age is clearly time-dependent—some
of the pure time effects that we saw before, but thus is interpretable in terms of changing age. A time-varying covariate Dage
is easily constructed. We have to be aware that age is in years, while the survival time studytim is measured in months.

. gen Dage = age + t0/12
Again, we can estimate a discrete analog to exponential regression.

. logistic died Dage drug
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Logit Estimates Number of obs = 744
chi2(2) = 28.16

Prob > chi2 = 0.0000

Log Likelihood = -114.78687 Pseudo R2 = 0.1092
died | 0dds Ratio Std. Err. z P>|z]| [95% Conf. Intervall
Dage | 1.103106 .038183 2.835 0.005 1.030751 1.18054
drug | .3274351 .083553 -4.375 0.000 .1985731 .5399208

One can construct other time-varying covariates in terms of t0. Since the cancer data does not provide any meaningful
data here, we leave this point to the reader.

In this discussion, we have chosen to consider discrete time in units of one month. This is clearly somewhat arbitrary. Why
not choose smaller or larger periods? One can specify a shorter period length, e.g., of days, as

. stsplit X, every(12/365)

It can be shown mathematically that with decreasing episode length, the estimates of, for instance, the discrete time Weibull
model converge to the estimates of the continuous time model. In practice, we often have to move in the other direction: larger
periods. The reason is that person-period files may consume a fair amount of memory if the dataset comprises many cases, or
the observation times are quite large. The stsplit command can also be used to create a person-period file in which a period
lasts a quarter (3 months).

. use cancer, clear
. stset studytim died
. stsplit Period, every(3)

number of episodes generated : 218

We show again some interesting cases in the expanded format.

. sort id Period
. by id: list Period tO studytim died age drug if S, noobs

-> id= 1
Period t0 studytim died age drug
1 0 1 1 61 1
-> id= 14
Period t0 studytim died age drug
1 0 3 0 55 1
2 3 6 0 55 1
3 6 9 0 55 1
4 9 11 1 55 1
-> id= 45
Period t0 studytim died age drug
1 0 3 0 60 3
2 3 6 0 60 3
3 6 9 0 60 3
4 9 12 0 60 3
5 12 15 0 60 3
6 15 18 0 60 3
7 18 21 0 60 3
8 21 24 0 60 3
9 24 27 0 60 3
10 27 30 0 60 3
11 30 33 1 60 3
-> id= 46
Period t0 studytim died age drug
1 0 3 0 62 3
2 3 6 0 62 3
3 6 9 0 62 3
4 9 12 0 62 3
5 12 15 0 62 3
6 15 18 0 62 3
7 18 21 0 62 3
8 21 24 0 62 3
9 24 27 0 62 3
10 27 30 0 62 3
11 30 33 0 62 3
12 33 34 0 62 3
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While in the expanded format generated by every (1), the variable Period and studytim were identical, this is no longer
the case with expansion using a different period length. Now tO and studytim are still measured in the original time scale
(months), while Period has scale “quarter.”

We can still easily estimate a discrete analog to Gompertz regression.

. logistic died age drug tO, nolog

Logit Estimates Number of obs = 266
chi2(3) = 36.78

Prob > chi2 = 0.0000

Log Likelihood = -77.365507 Pseudo R2 = 0.1920
died | Odds Ratio  Std. Err. z P>|z]| [95% Conf. Intervall

age | 1.124787 .045369 2.915 0.004 1.039289 1.217318
drug | .1881332 .0654217 -4.804 0.000 .0951629 .3719318

t0 | 1.100035 .0329813 3.180 0.001 1.037256 1.166614

Comparing the output of the discrete Gompertz models with data in months or time-aggregated to quarters, we see that the
differences are very small indeed. In my experience, this is generally the case.

Example 4: Continuously varying covariates in Cox regression

We will now discuss how to estimate Cox regression models with continuously varying covariates. We want to stress that
the method outlined below is not applicable to parametric survival time models. It is important to recall a theoretical property
of the estimation method of Cox regression: the partial-likelihood inference method used to estimate the Cox model depends on
survival data only via the composition of the risk pools at the failure times, i.e., at the times at which at least one of the subjects
in the sample failed (died). Thus, in partial-likelihood estimation of a Cox regression model, covariates are only “evaluated” at
the failure times; it does not matter what happened with covariates between failure times. It follows that “continuously varying
covariates” in Cox regression are essentially covariates that change at failure times. Note, again, that these time points depend
on the sample, and are not defined exogenously. In particular, and somewhat oddly, these time points involve what happened to
other subjects, and do not depend on characteristics of the subjects themselves. Moreover, inference is not affected if a subject
“disappears” from observations between failure times, as if a subject is only at risk during an infinitesimal period at the failure
times.

How can these theoretical properties of partial-likelihood inference be put to use for Cox regression analyses with time-
varying covariates? The command st_rpool (Gould 1997) does the more tricky part of expanding a subject to all event times
at which a subject was at risk. st_rpool modifies the failure/censor indicator (“died”), and returns a variable that numbers
the risk pools sequentially in time. Unfortunately, st_rpool-modified data are designed to be suitable for use by clogit for
an “exact” treatment of ties (see stcoxe) and are no longer in an appropriate st-format: st_rpool does not modify the entry
times tO and the failure times t. The new command stcoxtvc is a fairly simple shell around st_rpool that forms the risk
pools, but leaves the data intact in st-format. Before one starts creating time-varying covariates, one simply invokes stcoxtvec.
Time-varying covariates can now be constructed in terms of the time variable t, i.e., the name of the survival time variable.
Readers familiar with the survival modules of other statistical programs will be used to defining time-varying covariates in terms
of a “system variable,” labeled TIME (BMDP), t_ (Statistica), T_ (SPSS), (time) (LIMDEP), TIME (TDA), etc. For instance, in some
demographic analysis, you want to include a time-varying covariate “marital status” based on a variable tmarried, where time
is already defined relative to time at risk. After invoking stcoxtvc, this is achieved by simply

. gen mstatus = t > tmarried

By this simple application of stcoxtvc (or, really, st_rpool), Stata users now can define time varying covariates using the
name of the failure time variable! The only real distinctions with other programs are operational: stcoxtvc (st_rpool) may
require a huge amount of memory. Thus, users should only keep the cases that are used, and drop all variables that will not be
used as time-constant covariates, or are used to construct the time-varying covariates. If you invoke stcoxtvc with a varlist, it
will keep only the selected variables, along with the variables that are used by the st package (the entry and survival times, etc.)
On the other hand, if stcoxtvc (st_rpool) can form the risk pools, Stata is really very much faster than these other programs.

As a first illustration, we consider again the data on school drop-out. In Example 2 we saw that being married increases the
drop-out rate four-fold. We want to study whether the duration of marriage affects the drop-out rate even further. After loading
the data and declaring the key variables with stset, we prepare for Cox regression with time-varying covariates via risk-pool
expansion.

. stcoxtvc

number of episodes increased from 265 to 6707
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To define the time-varying dummy variables married, we simply have to compare the (calendar) time at an episode with
the calendar time of marriage.

. gen married = cond(mrg~=99, time+stm > mrg, 0)

Recall that in the risk-pool expanded data format, the dependent variable (here: time) has become dynamic. We can now
refit the Cox regression model shown above.

. stcox married sex grades parttime lag, nolog

Cox regression -- entry time tO
No. of subjects = 265 Log likelihood = -546.62949
No. of failures = 107 chi2(5) = 40.81
Time at risk = .006707 Prob > chi2 = 0.0000

time |

died | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
married |  3.859737 1.64504 3.169 0.002 1.67406 8.899064
sex | 1.295683  .2588462 1.297 0.195 .8758891 1.916674
grades | 1.398652  .1241915 3.779  0.000 1.175245 1.664528
parttime | 3.493112 .9206143 4.746 0.000 2.083902 5.855282
lag | .9925116  .0073259 -1.018 0.309 .9782565 1.006974

Apart from the “time at risk” nothing has changed—as it should be. The “time at risk” has become so small because
in the risk-pool expanded format, subjects are only at risk during the very small periods at which one of the subjects failed
(dropped-out). To assess the effects of duration of marriage, a continuously varying covariate is created.

. gen dur = max(timet+stm-mrg,0)

. stcox married dur sex grades parttime lag, nolog

Cox regression -- entry time tO
No. of subjects = 265 Log likelihood =  -546.4297
No. of failures = 107 chi2(6) = 41.21
Time at risk = .006707 Prob > chi2 = 0.0000
time |
died | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
married | 2.784656 1.923157 1.483 0.138 .7192982 10.78038
dur | 1.03517 .0543132 0.659 0.510 .9340087 1.147288
sex | 1.288459 .257883 1.266 0.205 .8703702 1.90738
grades | 1.406567 .1257351 3.816 0.000 1.180512 1.67591
parttime | 3.508604 .9250074 4.761 0.000 2.092781 5.882269
lag | .9921429 .007358 -1.064 0.287 .9778258 1.00667

We find no evidence that duration of marriage affects drop-out, though we have to be careful with this conclusion since
being married and the duration of marriage are relatively highly correlated in these data.

In a second illustration, we tackle the problem discussed by Bill Gould in the statistics part of the Frequently Asked
Questions on Stata’s internet site (www.stata.com). Gould explains how an interaction effect between dynamic time and a
time-constant covariate can be estimated via a person-period file—the method that we discussed above—and he illustrates this
method in an analysis of the treatment of cancer replicating Collett (1994).

logh(t) = a(t) + .136 x age — .532 % treatment + .003 % (treatment — 1) x (¢ —470)

With stcoxtvc, this becomes much easier.

. describe
Contains data
obs: 26
vars: 5
size: 624 (100.0% of memory free)
1. patient float %9.0g
2. time float %9.0g survival time (days)
3. dead float %9.0g dead
4. treat float %9.0g 1=single 2=combined
5. age float %9.0g age




40 Stata Technical Bulletin STB-41

. stset time dead

id: - (meaning each record a unique subject)
entry time: -- (meaning all entered at time 0)
exit time: time
failure/censor: dead

stcoxtvc is invoked to transform the data into the risk-pool format that is so suitable for Cox regressions with time-varying
covariates.

. stcoxtve
st key variables were created

id: id defined to _n: each record a unique subject

entry time: tO defined to O, meaning all entered at time O
exit time: time

failure/censor: dead

number of episodes increased from 26 to 230

Note that stcoxtvc has defined an id-variable and an entry-time variable. stcoxtvc reports that it added 230 — 26 = 204
cases. The size of the risk-pool data format (230) which compares quite favorably to the size of the person-period file (with
time-unit 1): This file contained over 15000 observations.

We can now construct an interaction effect between the time-constant treatment variable and the dynamic waiting time
variable (here time).

. gen ctime = (treat-1)*(time - 470)

That is all the data manipulation required. And now we can estimate the Cox regression model:

. stcox age treat ctime, nohr nolog

failure time: time
entry time: tO
failure/censor: dead
id: id
Cox regression —-- entry time tO
No. of subjects = 26 Log likelihood = -26.819386
No. of failures = 12 chi2(3) = 16.33
Time at risk = .00023 Prob > chi2 = 0.0010
time |
dead | Coef. Std. Err. z P>|z| [95% Conf. Intervall
age | .136387 .0463484 2.943 0.003 .0455457 .2272282
treat | -.5319678 .7687557 -0.692 0.489 -2.038701 .9747657
ctime | .0034117 .00513 0.665 0.506 -.0066429 .0134663

These results are identical to those reported by Collett (1994) and Gould (1997). (The reader who has consulted Gould’s
answer on FAQ may have noticed that Gould stresses that his method is only approximately right. Although Gould is right
that Stata can only deal with covariates that change at discrete time points rather than continuously, this does not matter in
Cox-regression in which continuously varying covariates are indistinguishable from covariates that change at properly defined
time points.).

A third illustration of Cox regression with continuously varying covariates is a specification test for the proportional hazards
model.

log h(tlx(t)) = a(t) + Bz(t)

Note that this model implies that [ is time-constant. If x(¢) is itself time-constant, the “proportional” hazard model implies
that the hazard rates of different subjects are proportional, i.e., do not depend on time,

exp(Bz1)
exp(fz2)

h(t,z1) _ exp(a(t) + Bx1) _
h(t,z2)  exp(a(t) + Bz2)
which is independent of time. Of course, if the covariates are themselves time-dependent, the term proportional doesn’t make

much sense anymore. A well-known method to test the assumption that (3 is itself time-constant is to embed 3 in a time-varying
model, and test the hypothesis that 3 is time-constant. In continuous time, we could consider the linear model
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log h(t) = a(t) + (8 + 7vt)a(t) = a(t) + Bx(t) + ~(tx(t))

and test that there is no (linear) trend in (3, i.e., v = 0. For the cancer data this procedure looks like this:

. stset studytim died, noshow

data set name: cancer.dta
id: - (meaning each record a unique subject)
entry time: -- (meaning all entered at time 0)
exit time: studytim
failure/censor: died

. stcox age drug, nolog

Cox regression —-- entry time 0O
No. of subjects = 48 Log likelihood = -81.765061
No. of failures = 31 chi2(2) = 36.29
Time at risk = 744 Prob > chi2 = 0.0000
studytim |
died | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
age | 1.116351 .0403379 3.046 0.002 1.040025 1.198279
drug | .2153648 .0676904 -4.885 0.000 .1163154 .3987605

We store the results using lrtest.
. 1lrtest, saving(0)
We go on by first invoking stcoxtvc to bring the data into a suitable format, and then creating the interaction effects of

the covariates and the survival time variable. Please be aware that forming these interaction effects on the unexpanded data and
computing the test using the unexpanded data is quite wrong.

. stcoxtvc, noshow
number of episodes increased from 48 to 573

. gen tdrug = studytim * drug
. gen tage = studytim * age

Next we estimate the Cox regression model with the covariates and their interactions with time.

. stcox age drug tdrug tage, nolog

Cox regression —— entry time tO
No. of subjects = 48 Log likelihood = -81.739763
No. of failures = 31 chi2(4) = 36.34
Time at risk = .000573 Prob > chi2 = 0.0000
studytim |
died | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
age | 1.128015  .0675927 2.010 0.044 1.00302 1.268588
drug | .2043147 .131922 -2.460 0.014 .0576362 . 7242754
tdrug | 1.004434 .041842 0.106 0.915 .9256836 1.089884
tage | .9990086 .0045143 -0.220 0.826 .9901999 1.007896

. 1lrtest, saving(1)

. * Wald test for proportional hazard assumption
. testparm tdrug tage

(1) tdrug = 0.0
(2) tage = 0.0

chi2( 2) = 0.05
Prob > chi2 = 0.9747

. * partial-likelihood ratio test for proportional hazard assumption

. lrtest, model(0) using(1)

Warning: observations differ: 573 vs. 48

Cox: likelihood-ratio test chi2(2) = 0.05
Prob > chi2 0.9750
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We tested the assumption that v = 0, i.e., there is no time-linear trend in § with a Wald test and with a (partial-)likelihood
ratio test. (The warning of lrtest that the number of observations differ can be disregarded; 1rtest doesn’t understand the
difference between the number of records in a dataset and the number of observations.) These tests are asymptotically equivalent
under v = 0; I know of no studies comparing the power of these tests against meaningful alternatives. In this case, both
specification tests do not reject the proportional hazards model.

A fourth and final illustration of Cox regression with time-varying covariates may be of some interest because of a conceptual
failure that we will make. We want to re-analyze the cancer data discussed before. One of the explanatory variables for surviving
some cancer treatment is age. This is clearly a covariate that is varying continuously in time. So let us analyze survival with
“dynamic” age.

. use cancer
(Patient Survival in Drug Trial)
stset studytim died

data set name: cancer.dta
id:  -- (meaning each record a unique subject)
entry time: -- (meaning all entered at time 0)
exit time: studytim
failure/censor: died

. stcox age drug, nolog

failure time: studytim
failure/censor: died

Cox regression -- entry time 0
No. of subjects = 48 Log likelihood = -81.765061
No. of failures = 31 chi2(2) = 36.29
Time at risk = 744 Prob > chi2 = 0.0000
studytim |
died | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
age | 1.116351 .0403379 3.046 0.002 1.040025 1.198279
drug | .2153648 .0676904 -4.885 0.000 .1163154 .3987605
We prepare for the creation of (continuously) time-varying covariates.
. stcoxtvc
st key variables were created
data set name: cancer.dta
id: id defined to _n
entry time: tO defined to 0, meaning all entered at time 0

exit time: studytim
failure/censor: died

number of episodes created: 525

Note that stcoxtvc automatically created id and t0, and that 525 records were added.

Note that the variable studytim measures time in months. We will create tvage as time-varying age (in years).

. gen tvage = age + studytim/12
. stcox tvage drug, nolog

failure time: studytim
entry time: tO
failure/censor: died

id: id
Cox regression -- entry time tO
No. of subjects = 48 Log likelihood = -81.76506
No. of failures = 31 chi2(2) = 36.29
Time at risk = .000573 Prob > chi2 = 0.0000
studytim |
died | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
tvage | 1.116351 .0403379 3.046 0.002 1.040025 1.198279
drug | .2153648  .0676904 -4.885 0.000 .1163154 .3987605
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Compare the output of Cox regressions with age-at-time-zero and time-varying-age respectively. There are no differences
in the effects (hazard ratios) of age and tvage! How can this be? The proportional hazards model with time-varying age can
be written as

log h(t) = a(t) + by [age + t/12] + by[drug]
= (a(t) + b1t/12) + b1[age] + bo[drug]
=a'(t) + +bi[age] + ba[drug]

Cox’s semi-parametric regression model seeks to make inferences about the regression coefficients b without making
assumption about the baseline hazard. Since the (partial) likelihood does not depend on the baseline hazards a(t) and a’(t),
inference on the regression coefficients is not affected! More generally, effects of covariates that change over time in the same
way for all cases (within each stratum) are indistinguishable from time-invariant covariates when analyzed with a Cox regression
model.

Dependencies

The commands in this insert use commands previously written by Weesie (1997a, 1997b) and Gould (1997). These previously
written commands are included on the STB-41 disk.

Programming remarks

1. The Stata parser does not correctly match on parentheses in options. Thus, normal Stata programs (e.g., hilite,...) do
not allow expressions that include parentheses in options. For the construction of time-varying covariates, this is often an
awkward limitation. We use parsoptp to provide “real” expressions in the options at (), from(), to() and every() of
the commands stegen, strepl, and stsplit. If parsoptp is not installed, the st-commands still (should) work, but of
course you cannot invoke them with expressions with embedded parentheses.

2. By a similar stroke, the command sttvc needs to parse the input line into the expression lists, optional if and in phrases,
and options. Expressions may of course contain commas. Thus, one cannot simply decide that all text after the first comma
is the options part; rather, one has to search for the first comma that is not embedded within parentheses.

3. Originally, I had written these commands with extensive use of expand, sort, and by constructs. In this format, the
programs were tested in teaching as well. Gould’s code st_rpool used a different approach that depends heavily on the
predictable order of records after expansion, and thereby avoids costly sorting. In a number of tests, I learned that my code
was sometimes somewhat faster than Gould’s type of coding, but never by more than 50%; on the other hand, Gould’s
coding sometimes was over 300% faster than my code, especially in risk-pool expansion st_rpool for large datasets with
relatively few ties. I thus decided to switch to Gould’s type of coding. The disadvantage is that [ made these changes rather
quickly, and the new programs are not as well tested as they should be. But, be merry, if something goes wrong, at least
you don’t have to wait so long to notice it.
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sxd1 Random allocation of treatments in blocks

Philip Ryan, University of Adelaide, Australia, pryan@medicine.adelaide.edu.au

The command ralloc assists in the design of randomized controlled clinical trials (RCT). ralloc produces a data file
whose observations are randomly chosen treatment allocations in blocks of varying sizes.
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ralloc addresses 4 (of the many) objectives of the design of a RCT:
1. Random allocation of treatments to subjects. Each block represents a random permutation of the treatments specified.

2. Avoiding unnecessary imbalance in the number of subjects allocated to each treatment. Allocation within blocks of reasonable
size achieves this. In the case of a trial with k treatments, even in the event of unexpected termination of the trial, the
imbalance will be at most 1/k times the size of the largest block used.

3. Maintenance of blinding by concealing the pattern of the blocks. A sequence of block sizes is chosen at random (from 3
to 7 different sizes, with equal or unequal probabilities, may be specified). Such a scheme makes “breaking the blind” by
working out the block pattern extremely difficult.

4. Ensuring that a record is kept of the randomization protocol. Good practice dictates that the randomization schema for a
RCT should be able to be reproduced. Ideally, the user will save a log file when running ralloc, but ralloc also saves
information relating to the trial design in notes attached to the data file itself. ralloc uses program fragments borrowed
from Stata’s notes.ado and note.ado to write a record of the options specified (seed, number of subjects requested
etc) and certain other useful information (number of blocks used, number of subjects randomized) as notes into the data
file. It does this by copying the options into global macros that can be used by xmknote.ado (a subprogram called by
notes.ado). (The clue that this is possible—that is, saving other than just straight text as a note—comes from the fact
that one can time-and-date stamp a note by specifying the TS option.)

Syntax

ralloc Blockldvar BlockSizevar Treatmentvar [, seed(#) nsubj(#) ntreat(2|3]|4)
ratio(1]2[3) osize(3[4|5/6|7) equal init(#) saving(filename)|

Description
ralloc requires specification of 3 variables that will appear in the dataset that the command creates and saves:
Blockldvar is the variable identifying each block.
BlockSizevar stores the block size.
Treatmentvar stores the randomly allocated treatment; these are 1, 2, 3, 4 labeled as “A” “B” “C” and “D” respectively.

In addition, ralloc creates a fourth variable, named Order, which stores the original random allocation sequence. This
variable may later be used with Stata’s sort command to recover the sequence should this ever be disturbed.

Note that ralloc issues a clear command immediately after it is invoked, so data in memory will be lost.

Options
seed (#) specifies the random number seed. If unspecified, the default is 123456789.

nsubj (#) specifies the total number of subjects requiring a random treatment allocation. If unspecified, the default is 100.
ralloc may yield a number greater than nsubj if this is required to complete the final block.

ntreat (2|3|4) specifies the number of treatment arms in the trial. Currently, ralloc supports 2, 3 or 4 arms. If unspecified,
the default is 2.

ratio(1]2|3) specifies the ratio of treatment allocations to the arms of the trial. If unspecified, the default is 1:1 (:1(:1)).
Currently, ratio(2) and ratio(3) may only be specified when ntreat (2) is chosen. These yield a 1:2 and 1:3 allocation,
respectively.

osize(3]4|5|6|7) specifies the number of different size blocks. For example, if 3 treatment arms are chosen, then osize(5)
will yield possible block sizes of 3, 6, 9, 12, and 15. The default value is 5. Note that it is quite possible not to realize
some block sizes if the number of subjects requested (nsubj) is low.

equal specifies that block sizes will be allocated in equal proportions. In the example given under the osize option, each block
would appear on roughly 20% of occasions. This may not be desirable: too many small blocks may allow breaking the
blind; too many large blocks may compromise balance of treatments in the event of premature closure. The default choice is
to allocate treatments in proportion to elements of Pascal’s triangle. In the above example, if equal were not specified, or,
equivalently, noequal appeared, allocation of block sizes would be in the ratio of 1:4:6:4:1. That is, the relative frequency
of small and large block sizes is down-weighted. See the init option below for another way to limit the number of small
blocks, albeit at the cost of increasing the number of large blocks. The number and proportions of the different block sizes
is shown on-screen as a table at the end of the program.
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init (#) specifies the initiating value of the sequence defining the block sizes. When not specified the default is the number
of treatments given by ntreat, except when a ratio > 1 has been specified for a 2 treatment trial, when the default
initiating value of the block size is 2 4+ (ratio — 1). When specified, init (#) must be an integer multiple of ntreat or
(2 + (ratio — l)) The default may also be specified by init (0). For example, in a 3 treatment trial, init (9) would,
if the default osize(5) is chosen, yield block sizes of 9, 12, 15, 18 and 21. If init were unspecified, the block sizes
would be 3, 6, 9, 12 and 15. Currently, ralloc does not provide a choice of the increments in block sizes.

saving( filename) saves the results to a Stata .dta file. This “option” is not optional.

Examples

. ralloc block size treat, seed(675) sav(mytrial)

allocates treatments A and B at random in a ratio of 1:1 in blocks of sizes 2 4 6 8 and 10 to 100 subjects. Block sizes are
allocated unequally in the ratio 1:4:6:4:1 (Pascal’s triangle). seed is set at 675. Sequence is saved to the file mytrial.dta in
the variable treat.

. list in 1/12,noobs
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. ralloc bn bs Rx, nsubj(920) nt(2) osiz(4) ra(3) init(8) eq sav(mys)

allocates treatments A and B at random in ratio of 1:3 in blocks of sizes 8 12 16 and 20 to 920 subjects using Stata’s default
seed of 123456789. Roughly 25% of blocks will be of each size. Data are saved to mys.dta.

. ralloc blknum blksiz Rx, ns(4984) osiz(4) ntreat(4) sav(mys)

allocates treatments A B C and D at random in ratio of 1:1:1:1 in blocks of sizes 4 8 12 and 16 to 4984 subjects using the
default seed. Block sizes are roughly in ratio of 1:3:3:1.

For this last example, the following table will appear on-screen:

Frequency of block sizes:

block size | Freq. Percent Cum.
4 | 62 12.50 12.50
8 | 183 36.90 49.40
12 | 185 37.30 86.69
16 | 66 13.31 100.00
Total | 496 100.00

Ideally, this would be captured in the user’s log file. Otherwise, the table could subsequently be reproduced from the saved file
by issuing the following commands:

. sort blknum

. by blknum: keep if _n==

. display in b "Frequency of block sizes:"
. tab blksiz

Do not save this reduced file over the original!
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ralloc saves the allocation sequence into mys.dta, and, at its conclusion, reads this data file back into memory. If memory
has not been disturbed, then the command:

. tab blksiz Rx

produces a table showing the frequency of treatment allocations:

| treatment
block size | A B C D | Total
4 | 62 62 62 62 | 248
8 | 366 366 366 366 | 1464
12 | 555 555 5565 555 | 2220
16 | 264 264 264 264 | 1056
Total | 1247 1247 1247 1247 | 4988

Note that 4988 subjects were allocated (compared with 4984 requested). The dataset would show that the 4984th subject
was the fourth in a block of size 8. This final block’s allocation was completed to yield 4988 allocations.

If the notes command were issued, we would see

o
o

O WO NO®U B WN -

Randomisation schema created on 2 Sep 1997 23:40 using ralloc.ado v1.1.2
Seed used = 123456789

There were 4 treatments defined

The treatments were allocated in the ratio 1:1:1:1

There were 496 blocks of 4 different sizes generated

The minimum block size is 4 maximum is 16

Block sizes were allocated proportional to elements of Pascal’s triangle
There were 4984 allocations requested

There were 4988 allocations provided to maintain integrity of final block
The original order of allocation is stored in the variable ‘Order”

e

7 Random walk tutorial

Albert Verbeek, Utrecht University, Netherlands
Jeroen Weesie, Utrecht University, Netherlands, weesie @weesie.fsw.ruu.nl

The tutorial randwalk displays some interesting random walks in 1 and 2 dimensions. In particular, the tutorial demonstrates
that while Gaussian (normal) and Cauchy distributions are in many respects quite similar (e.g., both distributions are symmetric
and bell-shaped; many observations are required to distinguish them), there is a distinct qualitative difference between Gaussian
and Cauchy random walks.

To run the tutorial, you have to move (or copy) the file randwalk.tut into your Stata directory, where the other tutorial
files (files with extension *.tut) are also placed. Note that it is probably not the same directory where your ado files are located.
You can then issue the command

. tutorial randwalk

and read the explanations on the screen.

A first draft of the random walk tutorial was written in Stata version 1 by Albert Verbeek, professor of mathematical
sociology at Utrecht University, shortly before he died. According to Verbeek’s documentation, the tutorial was based on Huber’s
ISP random walk demo. I recently relocated this tutorial file, and made the modifications to the coding to make it fit into Stata’s
tutorial system.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an  announcements ip  instruction on programming
cc  communications & letters os  operating system, hardware, &
dm  data management interprogram communication
dt datasets gs questions and suggestions

gr  graphics tt teaching

in instruction zz  not elsewhere classified
Statistical Categories:

sbe biostatistics & epidemiology ssa survival analysis

sed exploratory data analysis ssi simulation & random numbers
sg  general statistics sss  social science & psychometrics
smv multivariate analysis sts  time-series, econometrics

snp  nonparametric methods svy survey sampling

sqc  quality control sxd experimental design

sqv  analysis of qualitative variables szz not elsewhere classified

srd  robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TgX so submissions using
TEX (or I&TEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TgX and
your insert contains a significant amount of mathematics, please FAX (409-845-3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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