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dm63 Dialog box window for browsing, editing, and entering observations.

Tony Brady, Imperial College School of Medicine, UK, tbrady @rpms.ac.uk

The facility in Stata 5.0 to program dialog boxes opens up the possibility of using Stata as a powerful and flexible data-entry
system. This has many advantages, not the least eliminating the need to transfer datasets from other databases to Stata, with
all the associated problems of handling dates, value labels, and missing values. It also makes the enormous variety of Stata
commands instantly available to the database manager allowing, for instance, lists of inconsistent or missing data, graphs to spot
outliers, and tabulations for detecting invalid codes to be produced easily.

Programming dialog boxes in Stata 5.0 is a slow and tedious task of trial and error. winshow was written to automate the
production of a dialog box through which observations from the current dataset can be browsed or edited. The same dialog box
can be used to enter new data which is appended to the end of the dataset.

A companion program, winset, provides a user-friendly interface for setting characteristics which are specific to winshow.
These characteristics enable useful data-entry features such as range checks on continuous variables, default values for new
observations and requirements to enter data into certain variables.

Syntax

winshow [varlist] [if exp] [in range] [, maxdisp(#) edit new del strict dateord(string) log(varlist)

call(program_name) caption(text) nonum novar nodesc notype nopreserve ]

winset [varlist] [, list ]

Options

maxdisp(#) specifies the maximum number of variables to be displayed on each page. Values greater than 15 tend to cause
“too many dialog controls” errors. The default is 14.

edit allows the dataset to be modified by changing the values displayed in the edit boxes. By default changes made to the data
are ignored.

new puts an extra button on the dialog which allows the user to append new observations to the end of the dataset.
del puts a delete button on the dialog which deletes the current observation when pressed.

strict prohibits the entry of values which do not have a corresponding label for any variable which has an attached value
label. By default the user is warned but not prevented from entering such values.

dateord(string) determines how entered dates are to be interpreted, dmy by default. Dates can be entered into numeric fields
with a %d format either directly (as elapsed days since 1 Jan 1960) or as strings which can be interpreted as dates. If a
string is entered then the order becomes important to correctly interpret the date. See [U] 30.3.2 The date() function for
details.

log(varlist) requests verbose logging of changes made to the dataset. The values of the variables in varlist are reported for the
observation being changed.

call(program_name) allows the user to enhance the built-in error checking of modified values. The user’s program is passed
a variable list of the modified variables and global macros contain their prospective values.

caption(fext) overrides the default dialog box title with the user’s own.
nonum prevents the variable order from being displayed.
novar prevents the variable name from being displayed.
nodesc prevents the variable label from being displayed.
notype prevents the variable type from being displayed.

nopreserve prevents winshow from issuing a preserve on start-up, with the option to restore the data (if modified) on
closing.

list in winset displays the current winshow settings for varlist in the main results window.

Example

It is easiest to demonstrate winshow by example. Without arguments, winshow puts the user into browse mode, that is,
attempts to edit the data are ignored and new observations cannot be appended. For example,
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. use auto
(1978 Automobile Data)

. winshow

results in the dialog box shown in Figure 1.

[ Showing 74 observations |

Obzervation number: 1 of 74 FPage 1 of 1
1. make, Make and Model [ztr18] [4MC Concard |

2. price, Price [int] 4099

3. mpa, Mileage [mpg] [int]

4. rep7a3, Repair Record 1978 [int]

5. hdroom, Headroom [in.] [foat]

B. trunk, Trunk zpace [cu. ft.] [int]

7. weight, Weight (Ibs.) [int)

2. length, Length [in.] [int] 186

9. turn, Turn Circle [ft] [int]
10. digpl, Dizplacement [z, in.] [int]

— [ =
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fom]
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11. aratio, Gear Ratio [float]

12. foreign, Car bupe [int]

b
=, [:]
!
o
2
1]
“
0

< | < |
Cancel |

Figure 1. Example of the browse mode of winshow

Each variable in the dataset is shown on the left along with its order, label and type. This display can be reduced with the
novar, nonum, nodesc and notype options. On the right, the values from the current observation are shown in edit boxes.
Value labels, if present, are shown to the right of the edit box. In Figure 1 we can see that O in the foreign variable has the
label “Domestic.” Date variables (numeric variables with a %d format) are also shown formatted to the right of the edit box. To
illustrate this, we will create a fictitious date of manufacture variable:

. gen int datemade = 4000 + int(uniform( )*2000)
. format datemade %dd_m_Y
. label var datemade "Date of manufacture"

. winshow, novar notype max(7)

On page 2 (use the More --> button), our new variable is shown in date format; see Figure 2.

[ Showing 74 observations |

Obzervation number: 1 of 74 Page 2 of 2
2. Lenagth [in.]

3. Turn Circle [ft.]

10. Displacement [cu. in.]

11. Gear Ratio [3.5799999237 06054 |

12, Car type El Domestic:

13. Date of manufacture 4273 135ep 11

<--Bau:k| | | £ | > | >|| Mu:ure-->|

Cancel |

Figure 2. A new variable in date format.
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The VCR style buttons towards the bottom of the dialog allow the user to move from one observation to the next, or to the
first or last observation.

Data entry

The edit, new, del, strict, dateord(), 1log(), and call() options allow the user to exploit winshow for data entry
purposes. Attempts to change the data are ignored unless the edit option is specified. Then changes to variables are checked
against value labels, where these exist, and a warning is issued if a value is entered which does not have a corresponding label
(see Figure 3, for example).

Stata 5.0 E3

There iz no label for the value 2 in the foreign wariable.
Prezz OF. to make change anyway, cancel to restore previous value.

Cancel

d

Figure 3. An example of a warning message.

Use of the strict option enforces these checks, preventing users from entering values which do not have a label. Similarly,
range checks can be introduced for continuous variables (including dates of course) by setting the [range] characteristic of the
variable. Dates can be entered into variables with a %d format in almost any recognized syntax and will be converted into elapsed
dates by winshow. By default, dates are assumed to be in dmy order, but this can be changed with the dateord( ) option.

New observations are appended to the end of the dataset only when they have been successfully submitted. This avoids
the creation of multiple blank observations if the user decides to cancel the dialog box while entering a new observation. The
log( ) option requests detailed reporting of any changes made to the dataset, which may be of use to someone supervising a
data-entry clerk, for instance. As an example, suppose the fuel efficiency for the Buick Electra was really 18 mpg, rather than
the current value of 15 mpg. Editing this record with log(make price) as an option would give the following output:

Observation number 5 in the auto data
with the following identifiers:

make: Buick Electra

price: 7827

was edited on 15 Jul 1998 at 14:44.

- replace mpg = 18 in 5

The variable mpg was changed from 15 to 18

Customizing your data-entry system

winshow already uses the value labels on categorical variables to check for possible data-entry mistakes. However, you
can further customize winshow for your own purposes by setting characteristics on variables in your dataset. The characteristics
winshow recognizes are

Characteristic Value Description

default # or string Specifies a default value that the variable is to take when entering a new
observation

len # The length in characters of the edit box used to display values of the

variable. The default length is either the length of the maximum value of
the variable (for numeric) or the space allocated to a string variable (e.g.,
12 for str12)

noedit # A value of 1 prohibits editing of the variable

range # # [strict] The valid range of input values is defined by the two numbers (lower
and upper limit respectively). Optionally strict may be specified which
prohibits entry of values outside the valid range (including missing)

req # A value of 1 means that the variable cannot be left blank (although missing
is allowed)

Characteristics can be set in the usual way with the char command; for example,

. char price[range] 3000 16000

However, the winset command provides an easy way of setting and reviewing the characteristics listed above (see Figure 4).
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= WinShow settings E3 |

Settings for: price [int]

Lenath of edit boy [characters): Mo value labels

defined

Yariable label [30 max):
|F'riu:e |
[ Cannat be edited?

W Must enter?

Yalid range: Drefault;
poo Jofeod | [ |

[ Mewver accept values outside thiz rangs?

¢-Back | Save settings | Help |

Cancel |

Figure 4. An example of reviewing the variable characteristics via winset.

Advanced data-entry control

More advanced customization is available via the call (program_name) option, where program_name is a user-written ado
file which contains extra checks or data-manipulation. For example, you may wish to check that one date is after another date
(such as the date of a follow-up appointment is after the date of entry into the study), or you may wish to calculate a person’s
age from their date of birth.

The program named by the call( ) option is passed a list of the variables which have been modified in the current
observation. Their prospective values are stored in a series of global macros of the form $GWSvv#, where # is an index number
defined by the variable’s order. These can be easily obtained via the [no] characteristic of the variable. The program should
exit with a return code of one if there is a problem with the modified values. This will prevent the changes to the observation
from being submitted, the previous values being restored instead.

To illustrate use of the call( ) option, consider the following program, wsauto.ado, which checks that mpg/displ (the
fuel efficiency per inch) is less than 0.5.

program define wsauto
version 5.0
local varlist "req exist"

* Get the modified variable names into locals 1, 2 etc...

parse "“x°"
parse "“varlist~’", parse(" ")
while "“1°" = "" {
* Only do check if mpg or displ has been modified:
if "M1°" == Ilmpgll I LAE L Ildisplll {

*

Get index number of mpg:
local nl1 : char mpg[no]
Get index number of displ:
local n2 : char displ[no]
if ${GWSvv n1-}/${GWSvv n2°} > 0.5 { * (mpg/displ) > 0.5
#delimit ;
cap window stopbox rusure "The fuel efficiency per cu
inch is above 0.5 which is unusual."
"Are you sure mpg and displ are correct?"
"Press OK to continue anyway.";
#delimit cr

*

if _rc { /* User pressed cancel */
exit 1

}

else { /* User pressed 0K */
exit

}
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}
else {
* (mpg/displ) < 0.5
exit
}
}
mac shift
}

end
This isn’t a particularly useful check, but it illustrates the principle and provides a framework which can be adapted to

your own situation. The result of attempting to modify the mpg of the AMC Concord to an obviously errant value is shown in
Figure 5.

Stata 5.0 ]|

Are pou zure mpg and dizpl are cormect?

@ The fuel efficiency per cu inch iz above 0.5 which iz unusual
Prezs OF. to continue anyway,

Cancel

L

Figure 5. An example of error trapping via advanced data-entry.
Note that winshow makes extensive use of global macros starting with the prefix GWS. On exiting winshow, all global
macros with this prefix are dropped.
Acknowledgments
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dm64 Quantiles of the studentized range distribution

John R. Gleason, Syracuse University, loesljrg@ican.net

The studentized range distribution is fundamental to several statistical techniques, including the Tukey wsd multiple
comparison method. Studentized range quantiles are difficult to calculate and thus many statistics packages do not provide a
command or function for them. Highly accurate algorithms do exist (for instance, that of Copenhaver and Holland 1988), but
they usually require specialized routines and very careful coding. For example, the Copenhaver and Holland (C-H) algorithm
makes iterative use of 12-point Gaussian quadrature and may require quad-precision floating point arithmetic for accuracy in
extreme cases. As a result, methods such as Tukey’s wsd are often still performed using tables of studentized range quantiles.
The studentized range tables found in textbooks are, perhaps without exception, derived from H. L. Harter’s table, published in
Harter (1960) and Harter and Clemm (1959). However, textbooks generally reproduce only a small subset of Harter’s table, and
the original sources may be hard to locate. (My copy of Harter and Clemm (1959) has faded to unreadability in several places
and, more than once, I have found critical pages of our library’s archived journals to be missing.)

To be more precise, let X(;) and X,y be the smallest and largest order statistics in r independent N (p, 02) random
variables. That is, X(1) and X ;) are the minimum and maximum values in a simple random sample of size r from the normal
distribution with mean g and variance 2. The studentized range is a variable of the form

Xy —X
Q () 1)
= 1
S (1)

where v5?/0? is a x?(v) random variable that is independent of X,y — X(1y. The pth quantile, gy (r,v), of the distribution
of Q) satisfies
Pr(Q < gp(r,v)) =p, where 0<p<L

Thus, the area to the right of ¢, (r, v) under the density function of @ is 1 — p.

This insert provides values of ¢, (r, V) in two forms: a large table in electronic format (sturng.pdf) and a Stata command
(gsturng.ado) for rapidly and accurately approximating g,(r,») as needed. sturng.pdf covers the entire range of Harter’s



Stata Technical Bulletin 7

table, though with some thinning at large values of 7, along with the addition of some new values of p. The command gsturng
is nearly as accurate as Harter’s table, and allows for accurate interpolation and extrapolation of quantiles not represented in
sturng.pdf. Readers interested only in the table may ignore all but the following section. The section below on implementing
the gsturng command is intended only for readers interested in the details of gsturng.

A studentized range table

Typically, values of g, (r, v) are required for multiple comparisons of means in analysis of variance. In this setting, v is the
degrees of freedom for an error mean square,  is the number of means, and p is rather near 1, say p = 0.95. Harter’s table provides
values of g, (r, v) for p = 0.90,0.95,0.975,0.99,0.995,0.999, r = 2(1)20(2)40(10)100, and v = 1(1)20, 24, 30, 40, 60, 120, co.
Denote by 7 the subset of Harter’s table where r» = 2(1)20, 30,40(20)100; that is, 7 eliminates 11 large (and hence infrequently
used) values of r. 7 contains 6 X 24 x 26 = 3744 values of qp(r, v), claimed by Harter (1960) to be accurate to the
four significant digits tabled. Now, denote by 7 the table that appends to 7 the values of gg 50(r,v) and qqr5(r,v) for
r = 2(1)20,30,40(20)100, and v = 2(1)20, 24,30, 40, 60, 120, co.

The included file sturng.pdf presents the 4944 quantiles in 7 as an Adobe PDF document viewable by Acrobat Reader,
Version 3.0 or newer. (Visit http://www.adobe.com/prodindex/acrobat/readstep.html to download a free copy of
Acrobat Reader.) The entries in sturng.pdf were computed using a double precision version of the C—H algorithm and then
rounded, as in Harter’s table, to four significant digits. Entries in the subset 7 were then compared with Harter’s table. This
revealed that about 20% of the values in Harter’s table are too large by one unit in the fourth digit, apparently because of slightly
conservative rounding. In those cases, sturng.pdf contains the value from the C-H algorithm. Discrepancies of any other kind
were uncommon, and were resolved by accepting Harter’s tabled value. It may be that sturng.pdf contains the most accurate
table of g,(r,v) currently available.

Approximating studentized range quantiles

The command gsturng computes a fast, accurate approximation to ¢, (r,v). The syntax is
qsturng r v p
where r > 2,v > 1, and 0 < p < 1. So, for example,

. gqsturng 2 2 .9
4.129

displays the approximate 90th quantile at » = 2 and v = 2. gsturng stores its approximation g,(r,v) in global macro S_1, so
that

. di $s.1
4.1294832

displays the computed value of gp.90(2,2).

In this particular instance, 4.1294832 is correct to the number of digits shown, and the value 4.129 is precisely the entry
given in sturng.pdf for this case. Harter’s table, however, reports 4.130; this is an example of the conservative rounding
mentioned above. In general, the value displayed by qsturng is only an approximation to the relevant entry in sturng.pdf, but
it is wrong by more than one fourth-digit unit for fewer than 2% of the entries in sturng.pdf, and the maximum fourth-digit
error is four units. For v > 5, fewer than 1% of the fourth-digit errors exceed 1. Over the 4944 cases in T, the relative error
in approximating g, (r,v), as computed by the C-H algorithm, by gp(r, ) never exceeds 0.00075 and is less than 0.0002 for
92% of the cases.

For values of p, 7, and v not represented in 7+ (i.e., not in sturng.pdf), gsturng provides accurate interpolation routines.
Harter (1960, 1145) notes that linear interpolation in »~! is quite accurate in his table, provided v > 20. The interpolation routine
in gsturng is distinctly better, especially at small v. To illustrate, interpolating between v = 4 and v = 5 for g, (r, 4.5) produces
errors no larger than three units in the fourth digit, over all p and r in 7F. Interpolation in r is also much more accurate than
in Harter’s table, and even extrapolation beyond r» = 100 is quite feasible. For example, extrapolating to r = 200 yields values
4p(200, v) that differ from the output of the C—H algorithm by at most 11 fourth-digit units, over all p and v in T’; these errors
are of the same size as for interpolating for values in the range 40 < r < 100 in Harter’s table, using the interpolation scheme
he recommended. Interpolation in p is the most difficult of the three possibilities, and gsturng resorts to quadratic interpolation
in this case. The result is quite satisfactory, good enough to permit some extrapolation above p = 0.999. In fact, extrapolating
to p = 0.9999 gives approximate quantiles go.gg999(r, V) that are about as accurate as the extrapolations to r = 200: Fourth digit
errors no greater than 13 units, over the range of (r,v) values in Harter’s table. Finally, while extrapolations for p < 1/2 are
permitted, it is recommended that qsturng be used only for 1/2 < p < 1.
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Implementation

gsturng implements a new approximation to g,(r, v), presented in detail by Gleason (1997). The main ideas are that the
distribution of @ in Equation (1) depends strongly on the estimator .S, and that the denominator of a t(v) variable contains a
term formally the same as .S. Quantiles of ¢(v) can be quickly obtained from the invt () function and those quantiles have, in
a sense, already captured the effects of S. The strategy is then to use the readily available and very accurate () quantiles to
simplify the task of estimating g, (r, v/).

Let t,(v) be the p-th quantile of the ¢(v) distribution, and start with the fact that

40 (2,v) = \/Etp/(u) where p' = (1+p)/2
for any 0 < p < 1 and all v > 1. The approximation proceeds by defining the variable

i) = 2

\/itp’ (v)

and then modeling y,(r,v) as 1+ f(p,r,v) where f is a function with f(p,2,v) = 0 for all p and v. This is helpful because
while g,(r,v) and ¢,/ (v) both change rapidly at small v, their ratio y is more stable and thus easier to capture with a simple
formula. Figure 1 illustrates the point by plotting y,,(r, v) and g, (r, v/) against log(r — 1) for the entries in 7 at p = 0.975. The
unmarked traces plot values of y,(r,v), shown on the left axis; the traces marked with the plot symbol o plot the corresponding
values of g,(r,v), shown on the right axis. v assumes the values 1(1)20, 24,30, 40, 60, 120, and oo, reading from top to bottom
within each set of traces. There is much more homogeneity of shape across v in the traces for y than in those for ¢, and so it
is easier to approximate y than gq.

y(r, nu) and q(r,nu) at p = 0.975
I | 1

q(r, nu) / (sqrt(2)*t(nu))
q(r, nu)

2
log(r-1)

Figure 1. yp(r,nu) (left axis) and g, (r,nu) (right axis) versus log(r—1) at p=0.975.

In fact a very simple form suffices for f; namely a quartic function of log(r — 1), the abscissa of Figure 1. For each of
the 206 combinations of p and v in 7, model y = y,(r,v) as

4

y:l-{—Zajlogj(rfl) (2)

j=1
using ordinary least squares estimation, say using the regress or £it command. This leaves a 206 x 4 table A of estimated

coefficients, a;(p,v); A is included as part of the gsturng command. In effect, given values p and v represented in A, gsturng
retrieves the appropriate set of four estimated coefficients from A, and calculates

Yp(r,v) =1+ Zaj (p,v) logj(r —1), andthen gy,(r,v)= \/Etp: (V)Yp(r,v), (3)

with ¢,/ (v) obtained from invt (). At r = 3 only, gsturng adds a small correction to § before computing the second expression
in (3). See Gleason (1997) for details.
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y~2(r, nu) and q(r,nu) at p = 0.975
1 1 1 1

20 A
s [ 150

100

yA2(r, nu)
>
|

q(r, nu)

//// —
/;/ﬁ;;’/’ =
o

Z Z= ®
/,%/// 50

Figure 2. y2(r,nu) (left axis) and g, (r,nu) (right axis) versus v~ " at p=0.975.

Interpolation and extrapolation in r occur transparently when (3) is evaluated; the gentle curvature in Figure 1 implies that
these calculations will be rather accurate. But for (p, v) combinations not represented in A, explicit interpolation or extrapolation
is necessary. The basic strategy is to find interpolation axes on which the relevant pairs of points plot almost as a straight
line, so that linear interpolation will be accurate. Working with yy, (7, ) rather than g, (r, v) again pays large dividends. Harter
recommended interpolating g, (r, v) versus v~1 for values of v not present in his table. gsturng interpolates yz (r,v) against
v~! instead; Figure 2 shows why. Again, the marked traces show values of g,(r,v) at p = 0.975 while the unmarked traces
plot values of yg (r,v). The abscissa is »~1, and within each set of traces the uppermost trace is for r = 100, the lowermost
for » = 2. The traces for y? are much straighter than those for g, and so gsturng provides improved interpolation accuracy,
especially at small values of v.

log( y_p(r, nu)+r/nu ) and log( q_p(r,nu) ) at r=10
1 1 1

2.5 7

log( y_p(r, nu)+r/nu )
-
1
log('q_p(r,nu) )

-4 -3
-1/ (1 + 1.5%invnorm(p') )
Figure 3. In(yp(r,nu)4r/nu) (left axis) and In(g,(r,nu)) (right axis) versus z=—1/(1+1.5z,/) at r=10.

Harter (1960, 1145) cautioned users of his table not to interpolate g, (r,v) against p, justifiably so. Still, with a bit more
effort, accurate interpolation is possible for values of p not in A. gsturng interpolates using u = log(y,(r,v) + r/v) as the
ordinate and = —1/(1 4 1.52,) as the abscissa, where z,s is obtained as invnorm((1+p)/2) for a given value p. Figure 3
demonstrates the reason for this peculiar choice of axes. The unmarked traces plot values of u against « at r = 10; the marked
traces plot log(g, (7, v)), the best choice if using ¢ rather than y. Within each set of traces, the uppermost trace is for v = 1, the
lowermost for v = oo. It is clear that the axes = and u are effective in removing curvature, and will give better interpolation
accuracy than working with g, (r, ) itself. Still, some curvature remains at small 7 and v so qsturng uses quadratic interpolation
of u against x. This allows interpolation with respect to p to be nearly as accurate as that with respect to r or v. For example,
interpolating for p = 0.965 and p = 0.9925 yields approximations g, (r,v) that differ from the result of the C-H algorithm by
at most three units in the fourth significant digit, and only about 1.5% of the errors exceed one unit in the fourth digit.

Finally, the table A contains 206 x 4 coefficients a;(p,v), only a few of which are required in any specific application.
gsturng deals with this issue by dividing A into subsets and loading only the portion(s) required. Specifically, A is recreated
by the subroutines sturngl ... sturng8, each of which can create two matrices containing the a;(p,v) for some particular p
in A; the digit in the subroutine name indexes the value of p. The matrices created by these subroutines have names of the form
StuRngab where a is the digit in the subroutine name, and b is either 0 or 1. But the 16 matrices the subroutines can create
are never used directly. Rather, at invocation, qsturng checks to see whether the matrices it requires are already present in
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Stata’s memory. If not, it issues the commands to create exactly as many matrices as it needs, usually just one. In the canonical
application, performing the Tukey wsd method in an ANOVA setting, a single g, (r, ) is required, for a p represented in A (say,
p = 0.95) and a largish value of v (say, v > 20). In this very common usage, gsturng loads a single 7 x 4 subset of A. In
any case, the submatrices StuRngab are left in memory so that subsequent calls to gsturng tend to be faster than initial ones.
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gr29.1 Correction to labgraph

Jon Faust, Federal Reserve Board, faustj@frb.gov
The labgraph.ado file shipped with STB-45 contained an error in the code, leftover from debugging, which led to an “x
not found” error. This has now been fixed. The labgraph.hlp file has had a typographical error corrected.
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gr32 | Confidence ellipses

Anders Alexandersson, Mississippi State University, andersa@rocketmail.com

Syntax

ellip indepvarl [indepvarZ] [if exp] [in range] [, level(#) generate(newyvar newxvar)
add(oldyvar oldxvar) pool(#) fyvar(fint) fxvar(fimt) graph-options ]

Description

ellip is a program for graphing confidence ellipses. The variables to be displayed on the vertical and horizontal axes, yvar
and xvar respectively, are coefficient estimates of two independent variables, indepvarl and indepvar2, from an immediately
preceding fit. If indepvar2 is not specified, it is the constant.

Options
level(#) specifies the confidence level, in percent, for confidence ellipses. The default is 1evel(95) or as set by set level.

generate (newyvar newxvar) creates 400 observations of yvar and xvar, if necessary by appending observations with missing
values to the original variables.

add (oldyvar oldxvar) adds or overlays an old confidence ellipse to the graph. It may be specified only if generate() is also
specified.

pool(#) displays a confidence ellipse labeled bp using all the data, a confidence ellipse labeled b using a theoretically
unproblematic subset, and the locus and a separate table of # + 1 pooled estimates where the problematic subset is
discounted by fractional iweights at 1/# intervals between 0 and 1; pool() works only if add() and if or in are
specified.

fyvar (fint) specifies a display format, such as %1.0f or %3.2g, for yvar.
fxvar (fint) specifies a display format, such as %1.0f or %3.2g, for xvar.

graph_options are any options allowed with graph, twoway. Defaults are: c(11) s(.) (or c¢(11) s(..) if add() is not
missing) t1(" ") t2(" ") 11(Estimated indepvarl) b2(Estimated indepvar2).
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Remarks

In linear regression, a confidence ellipse is the boundary of an elliptical joint 100(1 — )% confidence region for two
coefficient parameters. The point representing the coefficient estimates is the center of the confidence ellipse. The larger the
confidence level is, the larger the confidence ellipse is. The orientation of the confidence ellipse and the relative lengths of its
axes are determined by the estimated covariance matrix. In order to use the pool (#) option you must have the gphdt programs
from gr20 that appeared in STB-34 installed (Newton and Hardin 1996). If you have installed the parsoptp program from ip22
of STB-40 (Weesie 1997), you can have titles with embedded parentheses. However, then the option names cannot be abbreviated
and ellip is slower.

Examples

The following three examples illustrate increasingly advanced uses of ellip. The examples use the accompanying datasets
figl.dta, fig2.dta, £ig3.dta and produce Figures 1 through 3 below. Also included on the STB diskette is the file figlto3.do
that can be used to produce the figures. The first example illustrates the basic syntax of ellip. Montgomery and Peck (1982,
11-12, 391-392) expected that shear propellant strength linearly depends on the propellant age. Their 95% confidence ellipse
for the estimated age and the estimated constant is simply displayed in Figure 1 by

. quietly fit strength age
. ellip age

-29.4504

Estimated age

-44.8568
T
2510.02

T T T
2745.63

Estimated _cons
Figure 1. Confidence ellipse for Montgomery and Peck example.

The second example illustrates how ellip can produce confidence ellipses with varying confidence levels. Theil (1971,
102) expected that the logarithm of textile consumption per capita in a year is a linear function of the logarithm of real income
per capita in that year and of the logarithm of the relative textile price in the same year. Figure 2 reproduces Theil’s overlaying
graph with 95% and 99% confidence ellipses.

. quietly fit logtext logprice loginc, 1(99)

. ellip logprice loginc, 1(99) g(y99 x99)

. quietly fit logtext logprice loginc

. ellip logprice loginc, g(y95 x95) a(y99 x99)

(Graph on next page)
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-.698529 7

Estimated logprice
1

-.959192
T
.580143

T T T T
1.70622
Estimated loginc

Figure 2. 95% and 99% confidence ellipses for Theil example.

The final example illustrates how ellip facilitates regression analysis of disparate observations as in Bartels (1996). Bartels
proposed a method of discounting a theoretically problematic subset with a fractional importance weight (using a 50% confidence
level), and gave three examples. Unfortunately, it seems that Bartels’ Figure 1 graphs individual confidence intervals, that Table
3 for Figure 2 has wrong estimates and standard errors of the constants, and that Figure 3 has positively correlated coefficients
but a negative tilt. In the lack of other examples, for my Figure 3, I chose to replicate the least complex figure that Bartels
produced; namely his Figure 1 (Bartels, 1996, 924,938), which summarizes his reanalysis of alleged vote fraud in Philadelphia,
Pennsylvania in 1993. The court had overturned the election result based on an analysis of the relationship between the Democratic
margin in votes cast by machine ballot and the Democratic margin in votes cast by absentee ballot in 21 previous elections in
seven Philadelphia Senate districts. Bartels examined the sensitivity of the conclusion by giving less importance weight to other
districts than the 2nd Senate district where the disputed election actually occurred. The pool() option in Figure 3 discounts
the problematic subset with 0.1 or 10% iweight intervals. The format and graph_options and parsoptp are useful for the final
display. The locus curve is slightly different from the original because Bartels used simple iweighted variables rather than Stata’s
more accurate [iweight] method.

. quietly fit absentee machine, 1(50)
. ellip machine, 1(50) g(ybp xbp) 12title((Machine Vote Margin))
. quietly fit absentee machine if subset==1, 1(50)

. ellip machine if subset==1, 1(50) g(yb xb) a(ybp xbp) pool(10) /*
*/ fyvar(%4.3f) fxvar(}3.0f) ylab(0.000,0.005,0.010,0.015,0.020) /*
*/ x1lab(-300,-200,-100,0,100,200,300) yscale(0.000,0.020) /*
*/ xscale(-300,300) ytick(0.001,0.002,0.003,0.004,0.006,0.007, /*
x/ 0.008,0.009,0.011,0.012,0.013,0.014,0.016,0.017,0.018,0.019) /*
*/ xtick(-280,-260,-240,-220,-180,-160,-140,-120,-80,-60,-40,-20, /*
*/ 20,40,60,80,120,140,160,180,220,240,260,280) /*
*/ 1lititle(Estimated Slope) 12title((Machine Vote Margin)) /*
*/ b2title(Estimated Intercept) border

0.020 L

= 4 L
) 0.015: C
Qo 4 L
o= B L
UJE i L
%g 0.010 r
EE . r
RS ] r
wg b r
S 0.005 7 r
0.000 r

rrrrrrrrrrrrrrrrrrrrrrrrrrrrroT
-300 -200 -100 0 100 200 300
Estimated Intercept

Figure 3. The Bartels’ example.
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Methods and Formulas

A confidence ellipse can be expressed in algebraic or parametric form. Press et al. (1992, 698) showed that the singular
value decomposition can solve the algebraic equation of the confidence ellipse directly. However, because matrix svd only
works on small datasets, an algebraic scalar version is better (see, for example, Theil, 1971, 133). To avoid having to solve the
algebra, I instead used the parametric form mentioned in Douglas (1993, 44).
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gr33 Violin plots

Thomas J. Steichen, RIRT, FAX 336-741-1430, steicht@rjrt.com

Syntax
The syntax of violin is

violin yvar varlist [weight] [if exp] [in mnge] [,
{ biweight | cosine | epan | gauss \ parzen | rectangle | triangle }

n(#) width(#) by(byvar) truncat (##

*) round(#) graph_options ]
fweights and aweights are allowed; see help weights.

Description

violin produces violin plots: a graphical box plot—kernel density synergism. The violin plot combines the basic summary
statistics of a box plot with the visual information provided by a local density estimator. The goal is to reveal the distributional
structure in a variable. Much like a traditional box plot, the violin plot displays the median as a short horizontal line, the
first-to-third interquartile range as a narrow shaded box, and the lower-to-upper adjacent value range as a vertical line, but it
does not plot outside values. Instead, it “boxes” the data with mirrored density curves and labels the y-axis at the minimum,
median and maximum observed data values.

violin also lists basic descriptive statistics about the data (i.e., the lower and upper adjacent values, the 25th and 75th
centiles, the minimum, median and maximum of the data, and the sample size) and it provides information about the density
estimation (i.e., the kernel method used, the number of points of estimation, and the resulting scale and width factors). When
by ) is specified, descriptive statistics are displayed for the combined group only. When multiple variables are included in
varlist, statistics are displayed for the last variable only.

violin discards observations on a casewise basis as a function of 1) missing data and 2) the if (or in) specification (i.e.,
it ignores the entire observation). This behavior may lead to unexpected results when multiple variables are in varlist.
Options
biweight, cosine, ..., triangle specify the kernel. By default, epan, the Epanechnikov kernel, is used.

n(#) specifies the number of points at which density estimates will be evaluated. The default is 50.
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width(#) specifies the bandwidth of the kernel (i.e., the width of the density window around each point). If width() is not
specified, then the “optimal” width is used; see [R] kdensity. For multimodal and highly skewed densities, the “optimal”
width is usually too wide and oversmooths the density.

by (byvar) produces separate plots for the groups of observations defined by byvar and displays them in a single graph having
common vertical scale. by () cannot be specified when there is more than one variable in varlist.

truncat (#,#\*) limits the range of the density curve, either to a range specified as (#,#) or to the observed data limits,
specified as (*). Regardless of the actual (#,#) specification, the maximum range of truncation honored is the observed
data limits. The precise truncation points will be the most extreme points within the specified range where the density is
calculated (the points of density calculation depend on n(), width() and the observed data).

round (#) rounds the y-axis numeric labels to the value specified. As a result, the labels and their corresponding tic marks may
not be placed at the true minimum, median, or maximum values, rather they will be at the rounded values. round () has no
effect if ylabel is specified without arguments but is operative if ylabel is not specified or is specified with arguments.
The round () option follows the rules of Stata’s round(x,y) function, with # being the y argument and each label value
being the x argument; see [U] 20.3.5 Special functions.

graph_options are any of the options allowed by graph, twoway except b2title(), which is ignored; see [R] graph. Some
options are preset and, although changeable, usually should not be modified. These include symbol (i) and connect (1) for
specifying the plotting symbol and point connection method for the density curve. In addition, ylabel() is preset to label
only the minimum, median and maximum points. tititle(Violin Plot) is preset but can be changed—except when by ()
is specified; in this instance tititle is used for the variable name or label. When changeable, use of tititle(.) will
result in a blank title. Other preset options, such as pen(2) for specifying the plot pen color, are intended to be freely
changed. A few options, such as the left and right titles, are set (or default to) blank. If specified, they appear beside each
plot in a multi-variable graph. Thus these options are generally appropriate only when a single variable is specified. Lastly,
the saving() option differs slightly from graph’s in that the filename extension is always .gph and must not be specified.

Explanation

Many tools exist in the exploratory data analysis (EDA) toolkit, and Stata provides the capability to use most of them.
However, a quite recent addition—the violin plot—has not yet been implemented in Stata. This insert provides an initial Stata
implementation and paraphrases much of the development published by Hintze and Nelson (1998). These authors report that the
name violin plot was selected because one of the first analyses with the procedure resulted in a graphic with the appearance of
a violin.

At its simplest, the violin combines, in a single plot structure, the data summarization features of the box plot with the
distributional shape-revealing capability of a local density estimator. Figure 1, which places a traditional box plot beside a violin
plot, illustrates their common features using the mpg variable from Stata’s automobile dataset and provides labels identifying the
principal lines used to report these common features.

& Mileage (mpg)

a4 | 41 °

.... Upper Adjacent Value ....

204/ =R\ e

.... Lower Adjacent Value .... 15 JE S

Mileage (mpg)

Figure 1. Common features of the box and violin plots.

In general, a box plot shows four main features about a variable: its center, spread, asymmetry, and outliers. As indicated
in Figure 1, the first three of these features have direct correspondence in the violin plot. Both plots use the median to define
the center, and both use the interquartile range and adjacent points to define the spread and asymmetry. The fourth feature,
outliers (or in EDA jargon, outside points), are not explicitly identified with individual symbols in the violin plot. Instead, if
present, outliers are loosely represented as a slight thickening of the extremes of the mirrored density curves. The density curve
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supplements the traditional summary statistics of the box plot by graphically showing the shape of the distribution.

Hintze and Nelson elucidated the violin plot concept using the simple density trace procedure described in Chambers et al.
(1983). The density trace is an elementary form of a kernel density estimator. Kernel density estimators approximate the density
f(z) from observations on x. The obvious precursor of a kernel density estimator is the histogram. The histogram divides the
data range into nonoverlapping intervals, counts the number of data points that fall into each interval, and graphically depicts
f(z) by plotting side-by-side vertical bars spanning each interval with height proportional to the count (i.e., density) in the
interval.

In true kernel density estimators, the range is still divided into intervals, and estimates of the density are made at the
center of each interval. The key difference is that the intervals are now allowed to overlap. One can think of moving the
interval (or window in kernel density terminology) along the data range with density estimates being gathered for each of the
many consecutive overlapping windows. When plotted, these estimates will appear to be continuous and smooth, and will be
independent of the choice of origin. An additional feature of more complex kernel density estimators is that, rather than merely
counting the observations in each window, a weight is assigned to each observation that depends on its distance from the center
of the window, and it is these weighted values that are summed and gathered. Stata has implemented a number of kernel density
estimators and makes these available to users in the kdensity procedure; see [R] kdensity. These estimators differ only in
that they use different weighting functions, and it is the weighting function itself that is called the kernel. Options biweight,
cosine, ..., triangle can be invoked to specify the kernel in violin, but the default, epan, should be sufficient for most
applications.

The density trace procedure described by Chambers et al. (and used by Hintze and Nelson in their seminal paper) is likely
the simplest of the kernel density estimators: it assigns a weight of 1 to every point in the interval. It should be noted, though,
that it is not one of the estimators provided by Stata’s kdensity procedure. Because the violin program described in this
insert uses Stata’s kdensity procedure to generate the density estimates, it does not provide the Chambers procedure.

Nevertheless, it is generally agreed that the choice of kernel is not as important as the choice of window width (also
called the bandwidth). A small bandwidth (narrow window) will result in a wiggly density curve, while a large bandwidth (wide
window) will result in a very smooth density curve. By default, Stata’s kdensity procedure computes an “optimal” bandwidth
from the data. The user may, instead, choose to specify the bandwidth using option width(). This behavior is emulated in
violin and intervention by the user is available via a similarly named option. It should be noted that the optimal bandwidth
is the width that minimizes the mean integrated square error of Gaussian data when the gaussian kernel is used. It is not
optimal in any global sense and it is believed to oversmooth the density for skewed or multimodal distributions. Specification
of an appropriate bandwidth is critical in obtaining a density curve that properly describes the underlying character of the data.
Oversmoothing of a variable from a small dataset may give the illusion of knowing the shape of the distribution when, in fact,
too little data is available to properly describe it. In contrast, undersmoothing of the data may lead to apparent features in the
density curve that are artifacts of the sample data and that are not present in the underlying distribution. To date, the experience
of this author suggests that the default kernel and bandwidth generally lead to reasonable representations of real data, though I
have tended to lean toward bandwidths that are slightly smaller than optimal for some data.

Examples

The ability of violin to properly describe the salient features of a variable can best be shown by presenting data with
known distributions. Loosely following Hintze and Nelson’s lead, the commands below generate 1,000 observations randomly
drawn from three known distributions, each with approximately equal location and scale characteristics, as measured by the
median and interquartile range.

. clear

. set obs 1000

. gen uniform = 20 * uniform() - 10

. gen normal = invnorm(uniform()) * sqrt(55)

. gen bimodal = invnorm(uniform()) * sqrt(3) - 5 if _n <= 500
. gen bimodall = invnorm(uniform()) * sqrt(3) + 5 if _n > 500

. replace bimodal = bimodall if _n > 500

The first is a uniform distribution on the interval —10 to 10. The second is a normal distribution with mean 0 and variance
55. The third is a bimodal distribution composed of two normal distributions with means —5 and 5 and common variance 3.
When these data are displayed using side-by-side box and violin plots (Figure 2), it is evident that the violin plots display
significantly more information about the distributions than the box plots.
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Box Plot Violin Plot
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Figure 2. Comparison of known distributions.

Both graphs clearly show that the medians and interquartile range are effectively equal, and both show that the normal
distribution has considerably greater range, but the box plots completely fail to distinguish the uniform from the bimodal
distribution. This distinction is clearly shown by the violin plots, and the general shapes of all three distributions are readily
apparent. The commands needed to create these plots (less the full b2title command) are shown below:

. graph uniform normal bimodal, box tititle(Box Plot) yscale(-30,30) b2title(...)

. violin uniform normal bimodal, yscale(-30,30) round(.1) gap(3)

Both commands allow multiple variables to be displayed side-by-side. While the violin command does not limit the
number of variables that can be placed in a single graph, esthetic considerations suggest that no more than three or four variables
should be displayed together. More than this results in very narrow plots with little density curve detail. With a large number
of variables the plots start overwriting each other and become useless.

The example above demonstrates a few of the features of the violin command. First, most of the common options of
graph can be specified with violin. Here we see the use of yscale() and gap() to control the display. violin’s default mode
for a multi-variable varlist is to display each violin using a variable-specific range. The user may, instead, specify the yscale()
option to set a common range to be used for all variables in varlist. When appropriate, this facilitates direct comparison of
related variables. In addition, violin sets the gap for the y-axis tic mark labels to the number of significant digits needed
to fully display the values. Here we use option round() to limit the displayed values to one significant digit and we specify
gap(3) to reduce the amount of space used by the tic mark labels. We note that option tititle() was not specified in this
violin command (although it could have been specified) and this resulted in the default title: Violin Plot. Likewise, because
the ylabel () option was not specified, violin labeled each y-axis with relevant statistics, identifying the minimum, median,
and maximum data values for each variable.

Two other options of violin are demonstrated below in Figure 3, again using the mpg variable from the auto data. First,
violin has a by(byvar) option that, for a single variable, produces separate plots for the subgroups of observations defined
by byvar. These plots will be displayed side-by-side in a single graph having common vertical scale. Note, though, that by ()
cannot be specified when there is more than one variable in varlist.

Mileage (mpg) Mileage (mpg)
41 41
34 34
24.5 24.5 7 q
19 19 7 %’
14 7 14 -
12 7 12
T T T T T T T T T T T T T T T T T T T T
foreign: Domestic foreign: Foreign foreign: Domestic foreign: Foreign

Figure 3. The by() and truncat() options.
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Second, violin has a truncat () option to limit the range of the density curve, either to an interval specified as (#,#)
or to the observed data limits, which can be specified as (*). Regardless of the actual (#,#) specification, the maximum range
truncation honored is never less than the observed data limits, and the precise truncation points will be the most extreme values
within the honored range where the density is actually calculated (the points of density calculation depend on n(), width()
and the observed data). This option is useful in those situations where the underlying distribution has real range constraints
and some observed points are near a range limit (for example, an age distribution where small ages are observed in the data).
Because the first and last windows of the density curve extend beyond the data by half the window width, all such curves have
ranges wider than the data range. Therefore, there will be some situations where the density curve suggests positive probability
in a region where positive probability is impossible (for example, age less than zero). The truncat () option allows the user
to avoid this situation by limiting the range for the density curve.

The graphs in Figure 3 show the results of using the by () and truncat() options. The left panel, which results from
using by (foreign), shows the domestic and foreign subsets of the mpg variable in side-by-side violins plotted on a common
scale. The right panel shows the changes resulting from addition of truncat (15,40). Please note the inappropriate use of the
truncat option in this example (i.e., the request has specified limits, 15 and 40, that if honored would not include all observed
data). The request was automatically changed to reset the truncation range to the actual data range, 12 to 41.

In addition to displaying a graph, violin lists basic descriptive statistics about the data and provides information about
the density estimation. When by () is specified, this report is displayed for the combined group only. When multiple variables
are included in varlist, the report is displayed for the last variable only. Shown below is the command and printed report for the
graph in the right panel of Figure 3.

. violin mpg, by(foreign) truncat(15,40)

Statistics (all groups combined):
Min: 11.483227 Q25: 18 Median: 20 Q75: 25 Max: 43.516773 n: 74

Densities computed using:
Kernel: Epanechnikov N: 50 Ave. Scale: 0.59 Ave. Width: 2.09

Because the by () option is specified, the report is for all groups combined. The report first shows the summary statistics,
displaying the minimum (Min), the 25th centile (Q25), the median (Median), the 75th centile (Q75), the maximum (Max), and
the sample size (n). Had by () not been specified, the report also would have included the lower and upper adjacent values (LAV
and UAV, respectively). Second, the report includes information on the density estimation. This information includes the kernel
method used (Kernel), the number of points of density estimation (N), and the resulting scale (Scale) and width (Width) factors.
Because by () was specified in this example, the reported scale and width values are the averages of the scale and bandwidth
factors used in the subgroup density estimations. The most useful of these reported results is the bandwidth factor, as it is often
appropriate to try a bandwidth smaller than the optimal value.

Notes and acknowledgments

There are a few issues that a user of violin should consider. First, violin calls Stata’s centile command to compute
information needed for the box plot portion of the violin plot and, as noted before, uses a subset of Stata’s kdensity code to
compute the kernel density estimates. The concern is that centile does not respond to a [weight] specification, in contrast to
the kdensity code, which responds to that specification. The implications of this conflict have not been explored, but violin
currently allows a [weight] specification to be passed through to the kdensity code.

A second issue concerns a minor limitation imposed by Stata’s gph clear command. This command, which is used in
violin, exceeds Stata’s release 5 gph format. As a result, neither Stage nor the gphdot or gphpen DOS-based graphics output
programs can process a saved violin-plot graphics file. This limitation does not affect screen display or output using the Graph
Print option of Stata’s File menu. Some question also remains about how this command behaves on Macintosh computers.

Lastly, I wish to thank the many members of Statalist who kindly provided comments on the early drafts of violin. Your
encouragement and thoughtful feedback helped create a better program.

Saved results

violin saves in the S_# macros:

S-1 name of kernel used for density trace S_7 first quartile

52 number of points of density estimation S8 median

S3 bandwidth for density estimation S99 third quartile

sS4 scale factor of density plot s_10 upper adjacent value
S5 minimum S_11 maximum

5.6 lower adjacent value S_12 n

When by () is specified, S_3 and S_4 contain the averages of the bandwidth and scale factors used in the subgroup density
estimations; S_5, S_7, S_8, 5.9, S_11 and S_12 are statistics for the combined group, and S_6 and S_10 are set missing.
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When multiple variables are specified, the saved values contain results for the last variable in varlist.
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Hintze, J. L. and R. D. Nelson. 1998. Violin plots: a box plot—density trace synergism. The American Statistician 52: 181-184.

5g89.2 Correction to the adjust command

Kenneth Higbee, Stata Corporation, khigbee @stata.com

The adjust command (Higbee 1998) has been fixed to allow the setting of covariates to negative numbers. Previously it
would produce an error message if this was attempted.
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sg94 Right, left, and uncensored Poisson regression

Joseph Hilbe, Arizona State University, hilbe@asu.edu
Dean H. Judson, University of Nevada, djudson@unr.edu

Syntax

cenpois performs censored Poisson regression where the types of censoring can be left, right, or uncensored. Its syntax is

cenpois depvar varlist [weight] [if exp] [in mnge] [, level(#) ltolerance(#) irr

iterate(#) censor(cvar) offset(ovar) nolog ]
fweights and aweights are allowed. Issuing cenpois by itself replays the most recent occurrence of the command.

Options
level (#) specifies the level, in percent, for confidence intervals. The default is 1evel(95) or as set by set level.
ltolerance (#)specifies the convergence criterion and defaults to 0.01.

irr reports estimated coefficients transformed to exponential form; standard errors and confidence intervals are adjusted
accordingly.

iterate(#) limits the number of iterations to # This allows you to stop the iterations and view results (with a warning that
the procedure has not converged). The default is 1000 (effectively infinite).

censor (cvar) specifies the variable that indicates censoring. 1 indicates not censored, 0 indicates left censored, and —1 indicates
right censored.

offset (ovar) specifies the offset variable. Remember to log the raw variable prior to using it as an offset.

nolog suppresses display of the iteration log.

Theory

cenpois is an extension of the Poisson regression command to handle censored data. It would be appropriate to use
cenpois when 1) the dependent variable is a nonnegative count, 2) the distribution of counts (conditional on the independent
variables) can be reasonably considered Poisson, and 3) some, but not all, of the cases are censored either above or below.

A typical example of censoring occurs in weeks of unemployment insurance (UI) receipt. UI recipients can receive from
one to 13 weeks of UI coverage, but their coverage terminates at 13 weeks. Thus, the cases are censored to the right at 13
(anyone who would have received Ul coverage for a longer period is terminated at 13), and censored to the left at one (anyone
who would have received Ul coverage for greater than zero but less than one week is not recorded).

If all cases are censored, the equation cannot be estimated.

Poisson regression is one of the class of generalized linear models with
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1. A Poisson distributed dependent variable, Y ~ Poisson(u),

2. A log-link between dependent and independent variables, i.e., Inu = X B.

This program uses Stata’s m1 commands to implement right, left and uncensored data in the Poisson regression framework;
hence the name censored Poisson regression. In this case, we are referring to Type II censored sampling as it is defined in Bain
and Engelhardt (1987, 164—167); the number of observations is considered fixed, but the length of the experiment is a random
variable.

T'he likelihood function, ignoring constants, is
I(p;=0 I(p;i=—1
N T (P ) T; (P )

L(qu):Hf(xiau)l(pi:D Zf(])u) 1- f(]au)

i=1 =0 j=0
where
e NN is the number of cases,

e p; = 1 if the ith observation is not censored, O if left censored, —1 if right censored,

I(p;) is the indicator function, taking the value one when the statement in parentheses is true, otherwise taking the value 0,

f is the probability density function of a Poisson random variable with parameter u,
u = exp(Xf),

1— Zj:o f(7;u) is the probability of observing x; or more events when E(Y) = u,

Z;”:O f(j;u) is the probability of observing z; or fewer events when E(Y) = w.

Example

Censoring can occur in many contexts; the most familiar context is where the experiment ends before an event occurs. We
use Stata’s cancer data to illustrate:

. use /usr/local/stata/cancer,replace
(Patient Survival in Drug Trial)

. tabulate drug, generate(drug)

Drug type |
(1=placebo) | Freq. Percent Cum.
1] 20 41.67 41.67
2 | 14 29.17 70.83
3| 14 29.17 100.00
Total | 48 100.00

We have generated the dummy variable drug for the three types of treatment; namely the values 1, 2, and 3 for placebo, first
drug test, and second drug test, respectively. The variable age is the age of the patient in years at the beginning of the study.
Standard poisson regression does not take into account that some of the cases are censored (that is, the study ended before they
died):

. poisson studytim drug2 drug3 age
Iteration 0: Log Likelihood = -197.98743

Iteration 1: Log Likelihood = -188.7749
Iteration 2: Log Likelihood = -188.69067

Poisson regression Number of obs = 48
Goodness-of-fit chi2(44) = 170.455 Model chi2(3) = 160.016
Prob > chi2 = 0.0000 Prob > chi2 = 0.0000
Log Likelihood = -188.691 Pseudo R2 = 0.2978
studytim | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
drug2 | .5274627  .1017334 5.185 0.000 .3280688 . 7268566
drug3 | .9923626 .091891 10.799 0.000 .8122596 1.172466
age | -.0325103  .0070028 -4.642 0.000 -.0462356 -.018785
_cons | 4.00428  .3931972 10.184 0.000 3.233628 4.774932
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However, in many cases the experiment ended before the patient died. These cases are censored on the right, or died = 0.
Censored poisson regression provides estimates for this type of dataset:

. cenpois studytim drug2 drug3 age,censor(died)
Iteration 0: Log Likelihood = -1610.8409

(unproductive step attempted)

Iteration 1: Log Likelihood = -259.02719
Iteration 2: Log Likelihood = -145.3059
Iteration 3: Log Likelihood = -143.18667
Iteration 4: Log Likelihood = -143.18493

Iteration 5: Log Likelihood = -143.18493

Censored Poisson Estimates Number of obs = 48
Model chi2(3) = 185.77
Prob > chi2 = 0.0000
Log Likelihood = -143.1849300 Pseudo R2 = 0.3935
studytim | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
drug2 | . 7798293 .1127562 6.916 0.000 .55688313 1.000827
drug3 | 1.124823 .0980459 11.472  0.000 .9326566 1.316989
age | -.0452013 .0083118 -5.438 0.000 -.061492 -.0289105
_cons | 4.713316 .4609625 10.225 0.000 3.809846 5.616786
Censored poisson will also generate incidence rate ratios:
. cenpois studytim drug2 drug3 age,censor(died) irr
Iteration 0: Log Likelihood = -1610.8409
(unproductive step attempted)
Iteration 1: Log Likelihood = -259.02719
Iteration 2: Log Likelihood = -145.3059
Iteration 3: Log Likelihood = -143.18667
Iteration 4: Log Likelihood = -143.18493
Iteration 5: Log Likelihood = -143.18493
Censored Poisson Estimates Number of obs = 48
Model chi2(3) = 185.77
Prob > chi2 = 0.0000
Log Likelihood = -143.1849300 Pseudo R2 = 0.3935
studytim | IRR Std. Err. z P>|z]| [95% Conf. Intervall
drug?2 | 2.1811 .2459325 6.916 0.000 1.748628 2.720532
drug3 | 3.079672 .3019492 11.472 0.000 2.5412561 3.732169
age | .9558051 .0079444 -5.438 0.000 .9403605 .9715034

Thus, as expected, patients survive twice as long on the second drug as on the placebo and three times as long on the third.
Also, older patients survive shorter times in each case, as expected.
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sg95 ‘ Geographically weighted regression : A method for exploring spatial nonstationarity

Mark S. Pearce, University of Newcastle upon Tyne, UK, m.s.pearce @ncl.ac.uk

The syntax for the gwr commands is

gwr varlist [if exp] [in range] , east(varname) north(varname) [options]

gwrgrid varlist [if exp] [in range] , east(varname) north(varname) [options]

where east () and north() are required and the allowed options are

test bandwidth(#) sample(#) saving(filename) outfile(filename)

mcsave (filename) replace double nolog iterate(#) reps(#) dots

with the additional option square (#) for gurgrid.
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gwr uses iweights. For this reason, while the default model (i.e., a linear regression model) actually uses regress (for speed),
all other models use the glm command. Where gwr uses glm, many of the options used with glm are also available for gwr,
enabling the user to define the form of model. These glm options are: eform, family, link, [In]offset noconstant, scale,
disp, and init. Not specifying family, link or offset automatically results in the default linear regression model being
used.

Description

The gwr command applies geographically weighted regression to a dataset containing geographical reference points. These
points must be defined in the gwr command using the east() and north() “options.” The gwrgrid command is a slight
variation which fits a grid across the area defined by east () and north(). This method is especially useful for large datasets
where the gwr command can become quite time consuming.

The essence of geographically weighted regression is that it allows different relationships between the dependent and
independent variables to exist at different points, (x,y), in space. For a full discussion of this method see Brunsdon et al. (1996).

The gwr command produces a set of parameter estimates for a regression at each point, ¢, at which there is an observation.
The gwrgrid command produces a set of parameter estimates at each grid square centroid. Any grid square in which there are
no observations is ignored. Using the outfile() and saving() options, these estimates can be explored in more detail, for
example using a geographical information system to map risk estimates across space. In each regression the observations are
weighted by a function related to their distance from the point at which the regression is being carried out. The actual function
used depends upon a bandwidth estimation which is carried out using a cross-validation approach. See, for example, Cleveland
(1979) and Bowman (1984).

The command is designed to test two hypotheses, both using a Monte Carlo simulation where the spatial points are randomly
distributed amongst the data:

1. Does the geographically weighted regression model describe the data significantly better than a global regression model,
the results of which are also shown in the output?

2. Does the set of parameter estimates exhibit significant spatial variation? This compares the standard deviations of the
observed parameter estimates (.S;) with those from the Monte Carlo simulation.

Options

test requests that the first hypothesis be tested, i.e., that the model produced by gwr describes the data significantly better than
a global model. Not testing this hypothesis reduces the need to calibrate the bandwidth for each run of the Monte Carlo
simulation and so reduces the time the command will take to run. The second hypothesis, concerning spatial variation of
the parameter estimates, is always carried out, using either the user-defined bandwidth or the bandwidth estimated from the
observed data. If test is specified and convergence of the bandwidth not achieved during the Monte Carlo simulation, a
note is made in the results of how many times convergence was not achieved. The significance level is adjusted to ignore
those runs where convergence was not achieved.

bandwidth (#) allows the bandwidth to be declared, eliminating the need to calibrate the bandwidth and so saving time.

sample (#) specifies the percentage of observations to be used in the bandwidth calibration process, the default being 100%. If
this option is specified, #% of the observations will be randomly sampled and used in the calibration process. The same
number of observations will be used when recalibrating the bandwidth for the simulation test of the geographically weighted
regression model.

saving(filename) specifies the name of the file to contain the parameter estimates and grid reference for each point at which
the regression is carried out.

outfile(filename) creates a text file filename.raw containing the parameter estimates from each point at which gwr is
calculated. The comma and wide options for outfile() are also allowed. The file is set out as east, north, dep_vars,
constant. outfile () and saving() can be specified simultaneously.

mcsave (filename) requests that the results of the Monte Carlo simulation be saved as filename.dta rather than using a
temporary file. This file will contain the standard errors of the parameter estimates for each run, as well as the simulated
bandwidths if the test option is specified. A simulated bandwidth of —99.99 indicates that the bandwidth calibration failed
to converge.

replace indicates that the filenames specified by saving(), outfile() or mcsave() may be overwritten.

double specifies that the results stored in the file specified by saving(), outfile() or mcsave() are stored as doubles (8-byte
reals). By default they are stored as floats (4-byte reals).
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nolog suppresses the display of the bandwidth calibration process.
iterate(#) specifies the maximum number of iterations allowed in estimating the bandwidth. The default is 50.
reps (#) specifies the number of Monte Carlo simulations to be performed. The default is 1000.

dots requests a dot be placed on the screen at the beginning of each run of the Monte Carlo simulation, showing how far the
simulation has gone.

square (#) is only used with gwrgrid and allows the size of the grid squares to be defined. The default is to set the width of
the grid squares to be half the bandwidth.

Example

This example uses the ward-level 1991 census data for the county of Tyne and Wear in the United Kingdom, and explores the
relationship between the number of cars per 100 household (cars1) and 2 independent variables, the proportion of unemployed
males (out of the total economically active male population) (unemp) and social class (the proportion of households with the
head of the household in social class I) (class). The spatial points are given by the variables east and north, in this case
they are the eastings and northings of the ward centroids in kilometers.

Using this dataset, both hypotheses can be tested, in this example using a Monte Carlo simulation of 1000 repetitions.

. gwr carsl class unemp, east(east) north(north) reps(1000) dots test saving(gwrout) replace nolog

Global Model

Source | SS df MS Number of obs = 120

+ F( 2, 117) = 287.17

Model | 45196.5848 2 22598.2924 Prob > F = 0.0000
Residual | 9207.00732 117 78.6923702 R-squared = 0.8308
t Adj R-squared = 0.8279

Total | 54403.5921 119 457.173043 Root MSE = 8.8709
carsl | Coef. Std. Err. t P>t [95% Conf. Intervall
class | 1.880726 . 3344889 5.623 0.000 1.218289 2.543164
unemp | -1.827983 .1123766 -16.267 0.000 -2.050539 -1.605427
_cons | 88.47704 2.885689 30.661 0.000 82.76208 94.192

Convergence : Bandwidth = 4829.2874

Running Monte Carlo simulation
(output omitted )
Geographically Weighted Regression

Significance Test for Bandwidth

Observed P-Value

4829.2874 0.010

Significance Tests for Non-Stationarity

Variable Si P-Value
Constant 6.0421 0.568
class 1.6079 0.023
unemp 0.1573 0.930

The global model shows that the number of cars per household is significantly related to social class and male unemployment
in the study region. The test of the bandwidth suggests that the geographically weighted regression model is a significantly
better model for these data than the global linear regression model. The significance tests for nonstationarity of the parameter
estimates show that the relationship between the number of cars per household and social class varies significantly over the
study area. Mapping the estimates in the file gwrout.dta in ARC-VIEW gives Figure 1, which suggests that the relationship
between car ownership and social class was stronger in areas not particularly well served by the region’s light railway mass
transit system which has its focus on the city of Newcastle upon Tyne. Mapping the male unemployment parameter suggested
that the relationship was less marked in certain areas, the cause of which wasn’t immediately obvious, thus suggesting an area
of further investigation.
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Tyne and Wear
GWR example
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Figure 1. A map of the values produced by gwr.

Methods and formulas

The basic idea of geographically weighted regression is that a regression model is fitted at each point, ¢, weighting all
observations, 7, by a function of distance from that point. Hence observations sampled near to the observation where the
regression is centered have more influence on the resulting regression parameters at that point than observations further away.
This then produces a set of parameter estimates for a regression at each point in space.

The weighting function used by gwr takes the form
W; = exp(—d; /%)

where d; is the distance from the point ¢ at which the regression model is being fitted, and [ is the bandwidth. This was the
weighting function used by Brunsdon et al. If a different weighting function is desired, the gwr ado-file can easily be altered.

The bandwidth is calibrated by a cross-validation technique which aims to minimize the score

(vi — 92:(8))*

1

n

(2

where y; () is the fitted value of y; using the bandwidth 3 and the weighted regression model centered at the point ¢, with
the observation for point ¢ excluded from the calibration process.

Once the bandwidth calibration process is complete, gwr uses the optimal bandwidth to fit a weighted regression model
at each point, the parameter estimates being output to either a temporary or permanent datafile depending on the options used.
Outputting the parameter estimates to a permanent data file (in Stata and/or text format) allows further investigation, for example
using a geographical information system.

The two hypotheses previously described are tested by a Monte Carlo simulation, although the significance of the gwr
approach as compared to a global regression model is only tested if specifically requested by the test option. Each run of the
Monte Carlo simulation randomly distributes the spatial points across the observations, and the gwr process is repeated. If test
is specified, the simulated bandwidths are compared with that calibrated using the observed data. The second hypothesis is tested
by comparing the standard error of the parameter estimates from the observed data with those from each run of the Monte Carlo
simulation.
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s$g96 Zero-inflated Poisson and negative binomial regression models

Jesper B. Sgrensen, University of Chicago, jesper.sorensen@ gsbpop.uchicago.edu

Background

Perhaps the most popular way to estimate models for count data involves the use of Poisson regression and negative binomial
regression models. This insert describes programs for estimating “zero-inflated” Poisson and negative binomial regression models
(Lambert 1992, Long 1997, Greene 1997). These models can be motivated both empirically, in terms of the failure of the
Poisson and negative binomial models to adequately fit the data, or theoretically, in terms of one’s understanding of the processes
generating the observed counts.

The negative binomial model is typically motivated as a modification of the Poisson regression model that relaxes the
assumption that the variance of the observed random variable is equal to its mean. It is often observed, for example, that
empirical distributions have substantially more zero counts than predicted by the Poisson distribution (see, for example, Long
1997). These “excess zeros” are a source of overdispersion. The negative binomial model takes this overdispersion into account
by allowing the conditional variance to increase, without changing the conditional mean.

Zero-inflated models, by contrast, allow for excess zeros by assuming that zero counts are generated by a process different
from that generating positive counts. Consider, for example, a hypothetical question asking Stata users how often they visit the
Stata web site. For users without internet access, the count will always be zero. For those with internet access, the number
may be positive, but may also be zero. A Poisson or negative binomial model applied to such data incorrectly assumes that all
individuals are at risk of visiting the site.

In the Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) models, the population is assumed to consist
of two groups. A person belongs to group A with probability n and is in group B with probability 1 — 7. People in group A
always have zero counts (in our example, because they do not have internet access). In the second group, counts are generated
either by a Poisson process or a negative binomial process.

The probability 7 can be modeled as n; = F'(z;7y), where z is a set of covariates predicting group membership. F' can be
either the normal or the logistic cumulative distribution function. In the current insert, 7; is modeled using logistic regression.

The ZIP model is
ni + (1 —mn;) exp(—p;) for y; =0
Pr(yi[z) = exp(—p )i
il (1_ni)Llfz>m for g; > 0
Yi:
where = exp(z3) with x a matrix of covariates. It is apparent that zero counts can come about either through membership
in group A (no internet access) or through the Poisson process operating among members of Group B. (Note that exp(—p;) is
the probability of a zero count in the Poisson model.)

Similarly, the ZINB model is

1/
4 (1 =) _r fory; =0
nl (2 1_"_0{/1/ (2
Pr(y;|z;) = Dys +1/a) Y 1/a vi
(1 —m) v - < - ) < pi > for y; > 0
y'T(1/a) \1l/a+ p; 1o+ p;

where p = exp(z3) with x a matrix of covariates. Here, « is a dispersion parameter to be estimated.

These models are fitted using maximum likelihood. For the ZIP model, the maximum likelihood is written as

N
L(ﬁ7 ’Y|y7 X7 Z) = Z Pr(yi|1‘i7 ZZ)
=1
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By substitution, Pr(y;|z;, z;) for the ZIP model is defined as

F(ziv) + [1 — F(ziy)] exp(— exp(z;3)) for y; =0

Pr(y;|x;, z:) = 1= F(z)] exp(— eXP(xzﬁ')) exp(z; )

for y; >0

Likelihoods for the ZINB are constructed by substituting the appropriate elements. Both the ZIP and ZINB are estimated using
Stata’s maximum likelihood routines (m1 method 1f).

Greene (1994) shows that for both the ZIP and the ZINB models, the conditional expected values are given by
E(yilwi, zi) = [0 xmi] + [ps X (1 —m)] = pi — pami
Under the ZIP and ZINB models, the predicted probability of different counts are given by substituting the appropriate predicted

values into the model definitions above.

Syntax

zipois depvar [indepvars] [if exp] [in rcmge] [ » logit(varlist) level(#) trace nolog nobase ]
zinbreg  depvar [indepvars] [if exp] [in range] [ » logit(varlist) level(#) trace nolog nobase ]

zippred  varlist [, { xb | prob } ]

zipois and zinbreg share most features of estimation commands; see [U] 26 Estimation and post-estimation commands.
However, to obtain predictions from the models, use zippred instead of predict.
Options for zipois and zinbreg

logit (varlist) specifies the logit model for predicting membership in the zero-count regime. If varlist is not specified, the same
model is used as for the count model.

level (#) specifies the confidence level, in percent, for confidence intervals. The default is 1evel(95) or as set by set level.

trace requests that coefficients be listed at each iteration so that one can study their convergence.

nolog suppresses printing of the maximum likelihood iteration details.

nobase suppresses estimation of the constant-only baseline model. This is useful if convergence problems are encountered in
estimating the baseline model.

Options for zippred

xb requests the predicted count as defined above. One variable should be specified in varlist. This is the default.

prob requests the predicted probabilities of different counts. The user should specify J + 1 variables to obtain predicted counts
for the integers from O to J. The first variable will contain the predicted probability, for each observation, of a zero count;
the second will contain the probability of a count of one; and so on.

Example: Derogatory credit reports

To illustrate the use of the ZIP and ZINB models, we use data reported in Greene (1997, 470—471). The dependent variable
of interest is the number of major derogatory credit reports recorded in the credit history of a sample of applicants for a credit
card. A major derogatory report is defined as a delinquency of sixty days or more on a credit account. As predictors, we include
reported income, their average monthly credit card expenditures, age, and a dummy variable indicating whether they own their
home. There are 100 cases; these are a sample of a larger dataset. The observed counts look like this:

. tab derog
derog | Freq. Percent Cum.
(O] 82 82.00 82.00
1] 10 10.00 92.00
2 | 3 3.00 95.00
3| 3 3.00 98.00
4 | 1 1.00 99.00
71 1 1.00 100.00
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First, we fit a Poisson model to the data.

. poisson derog income avgexp ownhome age
Iteration 0: Log Likelihood = -127.42374
Iteration 1: Log Likelihood = -89.294613
Iteration 2: Log Likelihood = -81.146847
Iteration 3: Log Likelihood = -79.661957
Iteration 4: Log Likelihood = -79.509777
Iteration 5: Log Likelihood = -79.50668
Poisson regression Number of obs 100
Goodness-of-fit chi2(95) = 115.123 Model chi2(4) = 24.861
Prob > chi2 = 0.0785 Prob > chi2 = 0.0001
Log Likelihood = -79.507 Pseudo R2 = 0.13562
derog | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
income | .2195479 .1026526 2.139 0.032 .0183526 .4207432
avgexp | —.0068032 .0019248 -3.534 0.000 -.01057568 -.0030306
ownhome | .2288366 .3580642 0.639 0.523 -.4729564 .9306296
age | .0094613 .0203021 0.466 0.641 -.0303301 .0492528
_cons | -1.525245 .7214558 -2.114 0.035 -2.939272  -.1112173

We see that income and average expenditures are significant predictors of the number of derogatory reports. However, we
are concerned about the presence of overdispersion, particularly given the large number of zero counts observed. We can compute
the mean predicted probability of a zero count from the Poisson model.

. predict yh

. gen pzero=exp(-exp(yh))

. sum pzero

Variable | Obs Mean Std. Dev. Min Max
pzero | 100 .7267382 .186909 .1445756 .9999979

The average probability of a zero count predicted by the Poisson model is 73%, which does not compare favorably to the
observed 82% zero counts. This suggests overdispersion. We can test for this by estimating a negative binomial model.

. nbreg derog income avgexp ownhome age
(output omitted )

Negative Binomial Regression Number of obs 100
Model chi2(4) = 9.46
Prob > chi2 = 0.0505
Log Likelihood = -67.2326207 Pseudo R2 = 0.0658
derog | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
_lnmean |
income | .238453 .2090309 1.141 0.254 -.1712401 .6481461
avgexp | -.0056734 .0022229 -2.552 0.011 -.0100302 -.0013165
ownhome | .1025945 .5817071 0.176 0.860 -1.037531 1.24272
age | .0151784 .0347696 0.437 0.662 -.0529687 .0833256
_cons | -1.824648 1.239168 -1.472 0.141 -4.253373 .6040775
_lnalpha |
_cons | 1.195215 .4665744 2.562 0.010 .2807457 2.109684
alpha 3.304267 [_lnalpha]_cons = 1ln(alpha)
(LR test against Poisson, chi2(1) = 24.54812 P = 0.0000)

Our suspicion is correct, as the likelihood ratio contrast with the nested Poisson model indicates. There is overdispersion
in the data. However, this overdispersion may be largely due to excess zeros, since the majority of individuals do not enter into
credit delinquency. Instead of the negative binomial model, a more appealing way of modeling this outcome may be to approach
it as a split population outcome using the ZIP model. Here, we use income and the home ownership dummy variable to predict
to which regime a person belongs.

. zipois derog income avgexp
(output omitted )

Iteration 5: Log Likelihood

Iteration 6: Log Likelihood =

ownhome age, logit(income ownhome)

-64.660637
-64.660631
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Iteration 7: Log Likelihood = -64.660631

Zero Inflated Poisson Number of obs = 100
Model chi2(6) = 18.91
Prob > chi2 = 0.0043
Log Likelihood = -64.6606309

derog | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall

poisson |
income | -.071043 .1335774 -0.532 0.595 -.33285 .1907639
avgexp | -.0059627 .0019165 -3.111  0.002 -.009719 -.0022064
ownhome | .4315482 .4336339 0.995 0.320 -.4183585 1.281455
age | -.0004888 .0200497 -0.024 0.981 -.0397854 .0388078
_cons | .859137 .9102744 0.944 0.345 -.9249681 2.643242

logit |
income | -.7318381 .3703119 -1.976 0.048 -1.457636 -.0060401
ownhome | .6870151 .8164723 0.841 0.400 -.9132412 2.287272
_cons | 2.943077 1.152284 2.554 0.011 .6846424 5.201512

The parameters in the logit equation are predictors of the probability that an individual will belong to the zero count regime.
Thus it appears that income lowers the odds that an individual will belong to the zero count regime.

We can use zippred to calculate predicted probabilities of different counts, given the model estimated. We generate
predicted probabilities of each of the integers between 0 and 7, and then use summarize to compute the mean probability for
each count.

. zippred vO-v7, prob
. summarize vO0-v7

Variable | Obs Mean Std. Dev. Min Max
vO | 100 .823347 .1273081 .3069071 .9999872
vi | 100 .0813874 .0558434 .0000128 .3422058
v2 | 100 .0494619 .0425542 1.29e-10 .2185565
v3 | 100 .0263504 .0267785 8.62e-16 .1051895
v4 | 100 .0120506 .0142212 4.33e-21 .0666094
v5 | 100 .0048396 .0067138 1.74e-26 .0337434
v6 | 100 .0017462 .0028507 5.81e-32 .014245
v7 | 100 .0005755 .0010876 0 .0051545

This model appears to do a good job of fitting the data, particularly the zero counts.

We may still be concerned about overdispersion. The ZINB model and the ZIP model are nested, so we can test for
overdispersion using the chi-square contrast between the two models. First we estimate the ZINB model.

. zinb derog income avgexp ownhome age, logit(income ownhome)
(output omitted )

Iteration 37: Log Likelihood = -64.389963

Iteration 38: Log Likelihood = -64.389963

Zero Inflated Negative Binomial Number of obs = 100
Model chi2(6) = 15.14
Prob > chi2 = 0.0192
Log Likelihood = -64.3899627
derog | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
nb |
income | -.0639252  .1506118 -0.424 0.671 -.3591189 .2312686
avgexp | -.0058264 .001965 -2.965 0.003 -.0096778 -.001975
ownhome | .3963029 .5399383 0.734 0.463 —-.6619568 1.454563
age | .0005707  .0253571 0.023 0.982 -.0491283 .0502696
_cons | .6891987  1.173421 0.587  0.557 -1.610664 2.989062
logit |
income | -.7860776  .4395701 -1.788 0.074 -1.647619 .0754639
ownhome | .7126939 .9118111 0.782 0.434 -1.074423 2.499811
_cons | 2.926294 1.302699 2.246 0.025 .373052 5.479537
lnalpha
I

_cons -1.522253  2.040672 -0.746  0.456 -5.521895 2.47739
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As we can see, the log likelihoods for the ZIP and ZINB models are virtually identical in this case. Thus, after taking into
account the split population character of the data, there does not seem to be overdispersion in the data.
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sg97 Formatting regression output for published tables

John Luke Gallup, Harvard University, jgallup@hiid.harvard.edu

I have always wanted my statistical package to turn my regressions into neat tables suitable for publication: ¢ statistics or
standard errors under coefficients, asterisks for significance levels, variable descriptions, and R-squared at the bottom. Stata does
not, so I have worked it out for myself. This command saves time when I need it most—when I have left out a regressor the
night before the paper is due, and must update all the regression results.

The outreg command described in this insert takes output from any estimation command in Stata and formats it as in
journal articles. One of the most useful features of outreg is that successive estimation results, possibly with different variables,
can be automatically appended with the variable coefficients lined up properly. Multivariate regression commands like sureg,
mvreg, and reg3 are formatted equation-by-equation, and can be appended. There are plenty of options, such as a choice between
t statistics or standard errors, the number of decimals displayed for the coefficients, and the choice of excluding the number of
observations or explanatory notes at the bottom of the table. By default, the output file uses the variable labels rather than the
eight character (or fewer) variable names, so the presentation tables are in intelligible English if appropriate variable labels have
been assigned.

outreg creates a text (ASCII) file with columns separated with tab characters. If you print out the text itself, it is not pretty,
but this file format can be converted automatically to a table in word processors and spreadsheets like Microsoft Word and Excel.
The sequence in Microsoft Word 97 is simple. First, open or insert the file created by outreg. Then select the estimation output
text that is in columns (not the notes at the bottom of the table), and choose the “table” and “convert text to table” items in the
menus. With some adjustment of the column widths, fonts, etc. the final table is ready. In Excel 97, one simply opens the file
created by outreg and follows the default choices in the Text Import Wizard. Other software should be similar.

Syntax
The command outreg writes formatted regression output to a text file. It may be used after any estimation command.

outreg [varlist] using filename [ , se nolabel bdec(#) tdec(#) noparen noaster nocons

nonobs noni nor2 adjr2 nonotes comma append replace ]

Description

outreg formats regression output as it is presented in most documents: ¢ statistics or standard errors in parentheses under
each coefficient, asterisks indicating coefficients statistically different from zero, and summary statistics like R-squared at the
bottom. The formatted output is written to a tab- or comma-separated ASCII file, which can then be loaded into word processing
or spreadsheet programs to be converted to a table.

outreg works after any Stata estimation command. In addition to coefficient estimates, it will report number of observations,
true R-squareds, the number of groups in panel estimation, and indicate whether robust heteroscedasticity-consistent errors or ¢
statistics are being reported.

If filename is specified without an extension, .out is assumed. Several regressions with differing independent variables can
be combined into a single table with the append option.

If a varlist is specified, only the regression coefficients corresponding to the variables in varlist will be included in the
table, except that the intercept coefficient is included unless the nocons option is chosen.
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Options
se specifies that standard errors rather than ¢ statistics are reported.

nolabel specifies that variable names rather than variable labels (where they exist) be used to identify coefficients. Note that
this differs from the nolabel option in many other Stata commands.

bdec (#) specifies the number of decimal places reported for coefficient estimates. It also specifies the decimal places reported
for standard errors if se is chosen. The default value for bdec is 3.

tdec (#) specifies the number of decimal places reported for ¢ statistics. It also specifies the decimal places reported for R-squared
or adjusted R-squared. The default value for tdec is 2.

noparen specifies that no parentheses be placed around ¢ statistics or standard errors.
noaster specifies that no asterisks denoting 1% and 5% confidence intervals be reported.
nocons specifies that the intercept (constant) coefficient estimate not be reported.
nonobs specifies that the number of observations in the regression not be reported.

noni specifies that the number of groups in a panel data regression not be reported (e.g., the number of groups specified by the
i() variable in xtreg).

nor2 specifies that no R-squared (or adjusted R-squared) be reported. This option is only meaningful when Stata calculates a
true R-squared.

adjr2 specifies that the adjusted R-squared be reported rather than the unadjusted R-squared.
nonotes specifies that notes explaining the ¢ statistics (or standard errors) and asterisks not be included.
comma specifies that the ASCII file output be separated by commas rather than by tabs.

append specifies that new estimation output be appended to an existing output file. The notes at the bottom of the table explaining
the ¢ statistics or standard errors and asterisks are appropriate for the first estimation in the output file. If subsequently
appended estimation results use different options (such as noaster, or change the estimations’ robust option), the notes
will not be appropriate for all the columns.

replace specifies that it is okay to replace filename if it already exists.

Examples
We illustrate outreg using simulated data:

. set obs 100

. gen u = invnorm(uniform())

. gen x1 = _n

. gen x2 = 1/x1

. gen x3 = 0.01%x172

. gen x4 = 1/x3

. geny = x1 - 4%x2 + 3*%x3 - 2*x4 + u

. label var x1 "First x"
. label var x2 "Second x"
. label var x3 "Third x"
. label var x4 "Fourth x"
. label var y "Output"

. regress y x1-x4
(output omitted )
. outreg using modell

This produces the default format for the results of regress in the file modell.out. Next,
. outreg x1-x3 using modell, se bdec(4) tdec(3) nocons nonotes replace
This restricts the reported output to coefficients for x1, x2, and x3, with no constant reported, displayed with 4 digits to the

right of the decimal point. Standard errors rather than ¢ statistics are reported in parentheses below the coefficients, with 3 digits
to the right of the decimal point. Explanatory notes at the bottom of the table are omitted.

Finally, we do
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. regress y x1-x2

(output omitted )
. outreg using modll_3, nolabel replace
. regress y x1-x3

(output omitted )
. outreg using modll_3, nolabel append
. regress y x1-x2 x4

(output omitted )
. outreg using modll_3, nolabel append

. type modll_3.out

which gives

(¢D) (2) (3)
y y y
x1 4.585 2.543 4.556
(72.08) ** (14.14) ** (58.28) **
x2 480.112 410.828 448.646
(30.56) ** (34.91)** (8.82) x*
x3 1.888
(11.66) **
x4 0.342
(0.65)
Constant -97.793 -54.978 -95.236
(24.38) ** (12.23)** (16.94) **
Number of observations 100 100 100
R-squared 0.98 0.99 0.98

Absolute value of t-statistics in parentheses

* significant at 5, level; *x significant at 1% level

sg98 Poisson regression with a random effect

David Clayton, MRC Biostatistical Unit, Cambridge, david.clayton@mrc-bsu.cam.ac.uk

In its simplest use, this program duplicates the function of nbreg and fits the negative binomial regression model for
overdispersed count data. The response for subject ¢ is an event count, d;, which has greater variance than that predicted by the
Poisson model. A natural way to generate such a model is to assume that, conditional on random subject effects, u;, a Poisson
regression model holds for the rates \; (where E(d;) = A;y;, y; being known rate denominators). Formally, with covariate
vectors &;,

[d;|u;] ~ Poisson(A;y;)

log \; = «7 5 + u;
Xi = fiexpai 3
where f; = exp(u;) are multiplicative subject effects, sometimes called “frailties.”

Fitting such a model by maximum likelihood requires the further specification of the distribution of frailties in the population
of subjects. Several models give tractable likelihoods (Hougaard 1984), but the most widely used model assumes f; to be drawn
from a Gamma distribution. Since the regression model will usually include a _cons term, the frailty distribution is constrained
to have unit mean, but has unknown variance, x. These assumptions define the negative binomial regression model (as fitted
by nbreg). A convenient method of fitting is a Gauss—Seidel scheme in which we alternate between maximizing the likelihood
with respect to 3 for given k, and maximizing with respect to x for given 3. This behavior of the program is selected by

. rpoisson depvar indepvars, e(denomvar) method(ml)

Note that the estimation of [ in the negative binomial case is one instance of a generalized linear model (see [R] glm), and
we use the iteratively reweighted least squares algorithm of Nelder and Wedderburn (1972).

In practice, this model may be criticized as depending on a distributional assumption for frailties which is difficult to
check in practice. The estimates of 3 remain consistent and efficient for any distribution of frailties; they are then maximum
quasi-likelihood estimates (Wedderburn 1974). However, the estimates of their standard errors are only consistent if the estimate of
K consistently estimates the frailty variance. This will not be the case for maximum likelihood estimates if the frailty distribution
is not a Gamma distribution. This can easily be seen from the fact that, if the f; were directly observed, the maximum likelihood
estimate of x under the Gamma assumption would involve a contrast between arithmetic and geometric means, and the expected
value of this is only equal to the variance in the case of the Gamma distribution. An alternative approach, which yields consistent
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estimates of the frailty variance for any frailty distribution, is to maximize a pseudo-likelihood (Carroll and Ruppert 1982) with
respect to k. The pseudo-likelihood is obtained by assuming the residuals, r; = d; — p; (where p; = E(d;) = y; exp a:iTﬂ), to
be Gaussian with zero mean and variance f1; + 2. This behavior of the program is obtained by

. rpoisson depvar indepvars, e(denomvar) method(ps)
This is the recommended (and default) method for fitting «.

In certain cases, we might wish to constrain « to take a fixed value. For example, if we wish to carry out a likelihood-ratio
test for some regression coefficients, we drop some variables from the model, refit, and compare the log likelihoods. But we
would not wish & to increase in trying to “explain” the effects of the omitted covariates. The use of the program with fixed
frailty variance is

. rpoisson depvar indepvars, e(denomvar) fvar(value) method(£i)
The default frailty variance is its fitted value in the previous fit.

For clustered data, (dij,yij,ij;4=1,...,N,j =1,...,n;), where i represents clusters and j represents records within
clusters, the model may be extended such that all records within the same cluster share the same frailty. Formally, the extended
model is defined by

[dlj|uz] ~ POiSSOl’l()\ijyij)
log A\i; = xz;ﬁ + u;
Xij = fiexpa;f

together with a model for the distribution of frailties over clusters. With a Gamma frailty distribution, maximum likelihood
estimation of (3 involves solution of a set of estimating equations of the same general form as the generalized estimating
equations of Liang and Zeger (1986). The same estimating equations deliver maximum quasi-likelihood estimates when the
frailty distribution takes some other form (details are given by Clayton 1994). As before, the frailty variance may be estimated
by maximum likelihood under the Gamma assumption or by pseudo-likelihood, treating the residuals r;; = d;; — p;; as Gaussian
with )
Var(dij) = pij + ki
Cov(dsj, dir) = Kpbijpik
(As before, p;; represent the “fitted values,” y;; exp xz; ). This use of the program is obtained by
. rpoisson depvar indepvars, e(denomvar) cluster(clustid) ...

where clustid is a variable containing cluster identifiers; all records sharing the same value for clustid are assumed to share
the same frailty. (More than one variable may be specified here, in which case records must share the same value for all these
variables in order to share the same frailty.)

An important use of rpoisson is in longitudinal studies of event counts within subjects. In such circumstances, the
covariances between counts in different periods may not be as predicted by the simple random effects model. Specifically,
covariances between counts in two periods which are close together in time may be greater than if the two periods are widely
spaced. To allow for the possibility of misspecification of the variances and/or covariances, “robust” (Huber—White) estimates
of the variance—covariance matrix of the estimate of § may optionally be computed.

The program can also be used to fit exponential (or piecewise-exponential) survival time models with random frailty
(Clayton 1988, Clayton 1994) However, in this case the pseudo-likelihood method for estimating £ may not be applicable, and
the maximum likelihood method should be used.

Syntax
rpoisson |varlist | [if exp| [in range] [, method( { ml | pe | ps | £i } ) fvar(#)

cluster(varlist) robust exposure(varname) level(#) nolog irr ]

Weights are not permitted. If the program is invoked with no arguments, the results of the previous fit are “replayed.” This is
usually done in conjunction with irr or robust options.

Options

method (ml|pe|ps|fi) chooses the estimation method for the frailty variance. Only the first two characters of the selection
is significant: m1 chooses maximum likelihood, pe chooses posterior expectation method, ps chooses maximum pseudo-
likelihood, and fi specifies that this parameter should remain at a fixed value. ps is the default.
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fvar (#) allows a value to be supplied for the frailty variance, either as a starting value when difficulties are encountered with
convergence, or when the frailty variance is to be held at a fixed value for carrying out likelihood ratio tests (see above).

cluster (varlist) indicates that records are clustered, and that records within clusters should share the same frailty. One or more
variables must be specified and these should uniquely identify clusters.

robust indicates that the Huber—White “information sandwich” should be used to calculate variances and covariances of the
regression coefficients, in addition to the model-based estimates. This can be invoked when “replaying” the results of a
previous fit. Once robust has been used, the robust standard errors will remain in force for all subsequent replays and for
carrying out Wald tests using testparm.

The remaining options behave in the same way as for the poisson command. If no exposure option is specified, the rate
denominators y;; are treated as 1.0.

Example

The following example is an analysis of the data on counts of epileptic seizures in a clinical trial and are provided in full
by Thall and Vail (1990). Subjects are in two treatment groups (31 receiving active treatment and 28 receiving placebo) and
each subject is observed over four periods post-treatment. A baseline count of seizures in a pre-treatment run-in period is also
available.

The variables used are as follows:

id subject identifier

trt treatment (1 = Active, 0 = Placebo)
period period following treatment (1 — 4)
d seizure count

lbase log of pre—treatment seizure count

In the analysis below, frailties are shared by all four records for each subject, and fixed effects are fitted for treatment,
period, and the log of the pre-treatment seizure count. This last variable is a subject-level covariate; without it the estimate of
K is much larger.

. xi:rpoisson d trt i.period lbase, cluster(id) method(ps) robust
i.period Iperio_1-4 (naturally coded; Iperio_1 omitted)

Poisson regression with frailty
frailty variance estimation: maximum pseudolikelihood

Cycle 1; Estimation of fixed effects
Iteration 1; deviance = 1181.940
Iteration 2; deviance = 991.137
Iteration 3; deviance = 972.112
Iteration 4; deviance = 972.031
Iteration 5; deviance = 972.031

Cycle 1; Estimation of frailty variance

Iteration 1; frailty variance = 0.257
Iteration 2; frailty variance = 0.349
Iteration 3; frailty variance = 0.358
Iteration 4; frailty variance = 0.358
Cycle 2; Estimation of fixed effects
Iteration 1; deviance = 444.723

Iteration 2; deviance = 440.860
Iteration 3; deviance = 440.646
Iteration 4; deviance = 440.640
Iteration 5; deviance = 440.640

Cycle 2; Estimation of frailty variance
Iteration 1; frailty variance = 0.309
Iteration 2; frailty variance = 0.309

Cycle 3; Estimation of fixed effects
Iteration 1; deviance = 447.106
Iteration 2; deviance = 447.106

Cycle 3; Estimation of frailty variance
Iteration 1; frailty variance = 0.309

Number of observations = 236

Frailty varies by id (59 clusters)
Estimated frailty variance = 0.3094
Deviance = 447.106 ( 230 df)
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d | Coef. Std. Err. z P>|z| [95% Conf. Intervall

trt | -.2812423 .1568355 -1.793 0.073 -.5886342 .0261496
Iperio_2 | -.0685871 .0637958 -1.075 0.282 -.1936245 .0564503
Iperio_3 | -.0625204 .0636959 -0.982 0.326 -.1873621 .0623213
Iperio_4 | -.2029882 .0661261 -3.070 0.002 -.332593 -.0733834
lbase | 1.02347 .1058225 9.672 0.000 .8160619 1.230879
_cons | .184813 .2245542 0.823 0.410 -.2553051 .624931

Estimates with robust standard errors:

d | Coef. Std. Err. z P>|z| [95% Conf. Intervall

trt | -.2812423 .1535621 -1.831 0.067 -.5822184 .0197339
Iperio_2 | -.0685871 .1131875 -0.606 0.545 -.2904305 .1532563
Iperio_3 | -.0625204 .1628448 -0.384 0.701 -.3816903 .2566496
Iperio_4 | -.2029882 .1023568 -1.983 0.047 -.4036039 -.0023725
lbase | 1.02347 .1144658 8.941 0.000 .7991214 1.247819
_cons | .184813 .2342376 0.789 0.430 -.2742843 .6439102

For the coefficient of interest (trt), the robust standard error differs little from the model-based standard error. With a
sample as small as this, the model-based standard error is more reliable and the robust estimate is best regarded as a diagnostic
for model misspecification.

A known problem

When using method (ml), Newton’s method is used for maximizing the likelihood with respect to x, without any check
that the likelihood is increased at each step. Occasionally, the algorithm steps too far and fails to converge. More careful coding
could detect this and reduce the step length in such circumstances. However, the problem occurs infrequently, and a simple
remedy is to use the fvar option to provide a better starting point for the iteration.
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sts13 Time series regression for counts allowing for autocorrelation

Aurelio Tobias, Institut Municipal d’Investigacio Medica (IMIM), Spain, atobias@imim.es
Michael J. Campbell, University of Sheffield, m.j.campbell @sheffield.ac.uk

Introduction

Usually an epidemiological time series dataset consisting of counts is better modeled by a log-linear model using a Poisson
distribution than linear regression. For models of the short-term effects of air pollution on health, the dependent variable (daily
mortality) is a nonnegative count, and so a Poisson regression is used. This model assumes In E(Y;) = 8X; where X; is the
matrix of predictor variables on day ¢ with regression coefficients 3, Y; is the number of deaths on day ¢, and E denotes the
expected value operator. Time series data usually contain autocorrelation between observations. The presence of autocorrelation
is often an indication of incomplete or inadequate model specification since the principal reason for autocorrelation of the deaths
is that they are conditional on autocorrelated predictor variables. If the model were correct, the residual autocorrelation should
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be minimal since we assume we are not dealing with an infectious disease and that one death does not cause another. Thus
residual autocorrelation may imply confounding of air pollution associations due to unmeasured or mismodeled variables.

The APHEA Model

A main objective of the APHEA project (Katsouyanni et al. 1995, Schwartz et al. 1996) was to develop and standardize a
methodology for the detection of short-term effects of air pollution on health using epidemiological time series. The solution
proposed in the APHEA project was to include a specification of the autocorrelation in the model, and from this, the standard
Poisson regression needs to be modified. Following Schwartz et al., Poisson regression with autocorrelated residuals was used. In
this model the Y; are assumed to be overdispersed Poisson E(Y;) = exp(d>_ 8X:—-) = us, with Var(Y;) = au,. The covariance
of Y; is assumed to be of the form aAY/2RAY/2, where A is a diagonal matrix with A;; = E(Y}), « is a scalar to account for
overdispersion, and R is a symmetric autocorrelation matrix generated by an autoregressive model. In practice, autocorrelation
is modeled by turning autocorrelated residuals into the model as predictor variables. Suppose an autocorrelation of lag 7 was
observed in the residuals, in which ;. was the fitted value for one iteration of the fitting process. Then ry_» =Y; , — i~
is included as a predictor variable in the next iteration. In contrast, Zeger (1988) uses an approach in which the autocorrelations
are removed using an autoregressive filter. The Schwartz model is less explicit in the model description and the removal of serial
correlation is empirical.

Marginal or conditional models

A number of authors have distinguished Marginal and Conditional models (Fitzmaurice 1998). For a marginal model
E(Y:) = f(Xy, X¢—1, ..., X—r) where the X,’s are external time-varying covariates. This is in contrast to a conditional model
in which E(Y;) = f(X¢, Xe—1,.. ., Xt—r,Yiz1,...,Yi—y), 7 > 0,0 > 1, and the past values of the dependent variable are
included as new predictor variables. It has been argued that marginal models are rather artificial, and give unlikely correlation
structures. However, they are useful for modeling mean rates in populations. On the other hand, conditional models are useful for
modeling changes in individuals but are poor at determining relationships between the Y and X variables because the parameters
are not readily interpretable (Stanek et al. 1989).

Although both the Zeger and Schwartz models are ostensibly marginal models, the method of fitting the Schwartz model
means that a residual r;_, = Y;_, — ps—, is included as a predictor variable, and so implicitly a lagged value of the Y
variable is included as a predictor. Even the Zeger model filters the X variables by autoregressive parameters derived from the
Y variables, and so neither model is purely marginal. However, the size of the residuals is such that they are unlikely to cause
problems of bias.

Syntax

The code in arpois fits a log-linear model allowing for autocorrelation and overdispersion using iterative weighted least
squares (IWLS). The command is based on Schwartz’s auto.sas macro for the SAS system used in the APHEA project. arpois
uses Stata’s n1 command to fit the log-linear model by IWLS, getting the initial values from a previous standard Poisson regression.
Note that the nonlinear function is stored in another Stata program called nlaphea.

The syntax for the arpois command is as follows:

arpois varlist [weight] [if exp] [in range] [, ar (#) delete prev]
aweights, fweights, iweights, and pweights are allowed.

Options
ar (#) specifies the number of autoregressive terms to be included in the model. A non-autoregressive model is fit by default.

delete drops the working dependent variable, named _z, and the autoregressive terms, named _rhol, _rho2, and so on. By
default these variables are stored in the dataset, because without them predicted values can not be computed, if they are
requested using the nlpred command.

prev shows the previous, standard, Poisson model which neither allows for autocorrelation nor for overdispersion.

Example

As an example we reanalyzed the relationship between total mortality and nitrogen dioxide (NO2), in Barcelona, Spain, for
the period 1986-1988 (Sunyer et al. 1996).

. use sunyer96

. describe
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Contains data from sunyer96.dta

obs: 1,096
vars: 17 25 Sep 1998 13:54
size: 78,912 (92.3% of memory free)
1. date float %9.0g date yy/mm/dd
2. death float %9.0g total mortality
3. ltrend float %9.0g Linear trend
4, ltrend2 float %9.0g Quadratic trend
5. year87 float %9.0g dummy for year 1987
6. year88 float %9.0g dummy for year 1988
7. sinl float %9.0g Sine term order 1
8. cosl float %9.0g Cosine term order 1
9. sin2 float %9.0g Sine term order 2
10. cos2 float %9.0g Cosine term order 2
11. sin3 float %9.0g Sine term order 3
12. cos3 float %9.0g Cosine term order 3
13. weekend float %9.0g dummy for weekend days
14. temp float %9.0g temperature 24h average
15. temp2 float %9.0g temperature”2
16. influ float %9.0g influenza epidemics
17. no2 float %9.0g no2 24h average

Sorted by: date

We first fit a standard Poisson model adjusted by trend, year, sinusoidal terms, weekdays, temperature, and influenza
epidemics.

. poisson death ltrend ltrend2 year87 year88 sinl cosl sin2 cos2 sin3 cos3
> weekend temp temp2 influ no2

Iteration 0: Log Likelihood = -3868.6406
Iteration 1: Log Likelihood = -3850.8906

Poisson regression Number of obs = 1096
Goodness-of-fit chi2(1080) = 1531.188 Model chi2(15) = 589.500
Prob > chi2 = 0.0000 Prob > chi2 = 0.0000
Log Likelihood = -3850.891 Pseudo R2 = 0.0711
death | Coef. Std. Err. z P>|z| [95% Conf. Intervall
ltrend | -.0007054 .0001252 -5.634 0.000 -.0009508 -.00046
ltrend2 | 3.76e-07 7.76e-08 4.849 0.000 2.24e-07 5.28e-07
year87 | .1315048 .0390977 3.363 0.001 .0548748 .2081348
year88 | .2626887 .0744463 3.529  0.000 .1167767 .4086008
sinl | .0159753 .0169886 0.940 0.347 -.0173218 .0492724
cosl | .1103722 .0130309 8.470 0.000 .084832 .1359124
sin2 | -.0013212 .0107732 -0.123 0.902 -.0224364 .0197939
cos2 | .0243337 .0070674 3.443 0.001 .0104818 .0381855
sin3 | -.0155174 .0076217 -2.036 0.042 -.0304556 -.0005792
cos3 | .0171352 .0065377 2.621  0.009 .0043215 .0299489
weekend | -.0180327 .0101981 -1.768 0.077 -.0380206 .0019552
temp | -.0114618 .0038899 -2.947 0.003 -.0190858 -.0038377
temp2 | .0005208 .0001559 3.341 0.001 .0002153 .0008263
influ | .0805044 .0173967 4.628 0.000 .0464076 .1146012
no2 | .0006437 .0002317 2.778 0.005 .0001896 .0010977
_cons | 3.898009 .0346435 112.518 0.000 3.830109 3.965909

We obtained the Pearson residuals to check for autocorrelation, using the acplot command written by N. J. Cox available
from http://ideas.uqam.ca/ideas/data/Softwares/bocbocodeS320302.html and included on the diskette with this
STB insert. As we can see from Figure 1, there is a residual autocorrelation of order four.

. predict lpred

. gen pred=exp(lpred)

. gen resid=(death-pred)/sqrt (pred)

. acplot resid, spike se lags(6) xlabel(0,1,2,3,4,5,6)
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Figure 1. Autocorrelation plot of Pearson residuals from the previous standard Poisson model.

Lag

Autocorrelations of resid

The next step is to fit a Poisson regression model allowing for fourth-order autocorrelation and overdispersion, using the

arpois command.

. generate weekday = “weekend

. arpois death ltrend ltrend2 year87 year88 sinl cosl sin2 cos2 sin3
> weekday temp temp2 influ no2, ar(4)

(sum of wgt is 49268.137)

cos3

Iteration 0: residual SS = 33.862
Iteration 1: residual SS = 33.51188
Source | SS df MS Number of obs = 1092
+ F( 19, 1072) = 22.57
Model | 13.4079132 19 .705679645 Prob > F = 0.0000
Residual | 33.5118806 1072 .031261083 R-squared = 0.2858
+ Adj R-squared = 0.2731
Total | 46.9197939 1091 .043006227 Root MSE .176808
Res. dev. = -699.136
(aphea)
_z | Coef. Std. Err. t P>t [95% Conf. Intervall
X0 | 3.880196 .042628 91.025 0.000 3.796553 3.96384
X1 | -.0006823 .0001551 -4.399 0.000 -.0009866 -.000378
X2 | 3.69e-07 9.37e-08 3.941 0.000 1.85e-07 5.53e-07
X3 | .1245167 .0475332 2.620 0.009 .0312481 .2177853
X4 | .2519833 .0901474 2.795 0.005 .0750979 .4288687
X5 | .0168415 .0203381 0.828 0.408 -.0230656 .0567486
X6 | .1084906 .0155081 6.996 0.000 .0780609 .1389202
X7 | .0004821 .0128359 0.038 0.970 -.0247042 .0256685
X8 | .0233345 .0084154 2.773 0.006 .0068221 .039847
X9 | -.0151304 .0091108 -1.661 0.097 -.0330075 .0027466
X10 | .0166063 .0077786 2.135 0.033 .0013434 .0318693
X11 | .0186632 .0121826 1.532 0.126 -.0052412 .0425677
X12 | -.0119054 .0046277 -2.573 0.010 -.0209858 -.002825
X13 | .0005252 .0001853 2.834 0.005 .0001615 .0008888
X14 | .0782194 .0208612 3.750 0.000 .0372861 .1191527
X15 | .0006635 .0002761 2.403 0.016 .0001218 .0012052
R1 | .0273345 .0306481 0.892 0.373 -.0328025 .0874715
R2 | .0707834 .0304327 2.326 0.020 .0110689 .1304979
R3 | .0578235 .0304567 1.899 0.058 -.001938 .1175851
R4 | .0232551 .03056 0.761 0.447 -.036709 .0832193

Parameter X0 taken as constant term in model &
(SE’s, P values, CI“s, and correlations are asymptotic approximations)

ANOVA table

We again obtain the Pearson residuals to check for autocorrelation, but note that we need to use nlpred instead of predict
to get the predicted values. From Figure 2, we can see that autocorrelation has been removed.

. nlpred lpred2

. gen pred2=exp(lpred2)

. gen resid2=(death-pred2)/sqrt(pred2)
. acplot resid2, spike se lags(6) xlabel(0,1,2,3,4,5,6)
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Figure 2. Autocorrelation plot of the Pearson residuals from the Poisson autoregressive model.

Comparing results

We compared results from our arpois command to those obtained with Schwartz’s SAS macro, for a set of air pollutants;
NO2, black smoke, and sulphur dioxide (SO2). The results are as follows:

Non-autoregressive model Order 4 autoregressive model
arpois Schwartz’s SAS arpois Schwartz’s SAS
Pollutant J6] SE I6] SE I6] SE I6] SE
NO» 6.437 2.761 6.437 2.761 6.635 2.761 6.898 2.757
Black smoke 7.351 2.716 7.351 2.716 7.148 2.727 7.107 2.726
SO2 —0.851 2.393 —0.851 2.393 —1.437 2.454 —1.371 2.442

When a non-autoregressive model is fit, the arpois command in Stata and the SAS macro give the same result, but
when an autoregressive model (for example fourth order) is fit, we found slight differences in the estimates. We have two
possible explanations for these minor differences. First, they could come from the degrees of freedom of the models. As we
said previously, arpois is based on the n1 command to fit a log-linear model by IWLS, while Schwartz’s SAS macro uses the
NLIN procedure. For NO2, the nl1 command uses 19 degrees of freedom instead of 20 used by NLIN. In the same way, the nl
command has 1,072 residual degrees of freedom, while NLIN has 1076. This difference of 4 degrees of freedom is due to the
inclusion of lagged autoregressive terms in the model. When we lag a variable, the first row becomes a missing value, when
we do another lag, the first two rows become missing, and so on. In this case the n1 command does not consider the first four
observations because they are missing, but it seems that NLIN includes them for the analysis. Second, the auto SAS macro gets
the residual values in each iteration of NLIN, while this doesn’t seem to happen using the n1 command in arpois. However,
this problem needs to be studied further.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an announcements ip instruction on programming
cc communications & letters 0s operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions

ar graphics tt teaching

in instruction zz not elsewhere classified
Statistical Categories:

sbe biostatistics & epidemiology ssa survival analysis

sed exploratory data analysis ssi simulation & random numbers
sg general statistics s8S social science & psychometrics
smv multivariate analysis sts time-series, econometrics

snp nonparametric methods svy survey sampling

sqc quality control sxd experimental design

sqv analysis of qualitative variables szz not elsewhere classified

srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TgX so submissions using
TEX (or IATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TgX and
your insert contains a significant amount of mathematics, please FAX (409-845-3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: Metrika Consulting
Systems Consultants Address: Mosstorpsvagen 48
Address: P.O. Box 1169 183 30 Taby Stockholm

17100 Nazerath-Ellit Sweden
Israel

Phone: +972 (0)6 6100101 Phone: +46-708-163128

Fax: +972 (0)6 6554254 Fax: +46-8-7924747
Email: assc@netvision.net.il Email: sales@metrika.se

Countries served:

Israel

Countries served:

Sweden, Baltic States, Denmark,

Finland, Iceland, Norway

Company: Dittrich & Partner Consulting Company: Ritme Informatique
Address: Prinzenstrasse 2 Address: 34, boulevard Haussmann
D-42697 Solingen 75009 Paris

Germany France
Phone: +49 2 12 / 33 90 - 200 Phone: +33 (0)1 42 46 00 42
Fax: +49 2 12/ 33 90 - 295 Fax: +33 (0)1 42 46 00 33
Email: sales@dpc.de Email: info@ritme.com
URL: http://www.dpc.de URL: http://www.ritme.com

Countries served:

Germany, Austria, Italy

Countries served:

France, Belgium,
Luxembourg

Company: IEM Company: Scientific Solutions S.A.
Address: P.O. Box 2222 Address: Avenue du General Guisan, 5
PRIMROSE 1416 CH-1009 Pully/Lausanne
South Africa Switzerland
Phone: 27-11-8286169 Phone: 41 (0)21 711 15 20
Fax: 27-11-8221377 Fax: 41 (0)21 711 15 21
Email: iem@hot.co.za Email: info@scientific-solutions.ch

Countries served:

South Africa, Botswana, Lesotho,
Namibia, Mozambique, Swaziland,
Zimbabwe

Countries served:

Switzerland

Company: MercoStat Consultores Company: Smit Consult
Address: 9 de junio 1389 Address: Doormanstraat 19
CP 11400 MONTEVIDEO 5151 GM Drunen
Uruguay Netherlands

Phone: 598-2-613-7905 Phone: +31 416-378 125

Fax: Same +31 416-378 385
Email: mercost@adinet.com.uy Email: J.A.C.M.Smit@smitcon.nl
URL: http://www.smitconsult.nl

Countries served:

Uruguay, Argentina, Brazil,
Paraguay

Countries served:

(List continued on next page)

Netherlands
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International Stata Distributors
(Continued from previous page)
Company: Survey Design & Analysis Company: Unidost A.S.
Services P/L Address: Rihtim Cad. Polat Han D:38
Address: 249 Eramosa Road West Kadikoy
Moorooduc VIC 3933 81320 ISTANBUL
Australia Turkey
Phone: +61 (0)3 5978 8329 Phone: +90 (216) 414 19 58
Fax: +61 (0)3 5978 8623 Fax: +90 (216) 336 89 23
Email: sales @survey-design.com.au Email: info@unidost.com
URL: http://survey-design.com.au URL: http://abone.turk.net/unidost

Countries served:

Company:
Address:

Phone:

Fax:

Email:

URL:

Countries served:

Company:
Address:

Phone:

Fax:

Email:

Countries served:

Company:
Address:

Phone:

Fax:

Telemével:
Email:

Countries served:

Australia, New Zealand

Timberlake Consultants

47 Hartfield Crescent

West Wickham

Kent BR4 9DW

United Kingdom

+44 (0)181 462 0495

+44 (0)181 462 0493

info @timberlake.co.uk
http://www.timberlake.co.uk
United Kingdom, Eire

Timberlake Consulting S.L.
Calle Monte Carmelo 36, Bajo
41011 Sevilla

Spain

+34 (9) 5 428 4094

+34 (9) 5 428 4094
timberlake @zoom.es

Spain

Timberlake Consultores, Lda.

Praceta Rail Brandao, n° 1, 1° E

2720 Alfragide

Portugal

+351 (0)1 471 73 47

+351 (0)1 471 73 47

+351 (0)931 6272 55
timberlake.co@mail.telepac.pt
Portugal

Countries served:

Turkey

For the most up-to-date list
of Stata distributors, visit
http://www.stata.com



