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gr34.1 Drawing Venn diagrams

Jens M. Lauritsen, County of Fyn, Denmark, jm.lauritsen@dadlnet.dk

venndiag produces a so-called Venn diagram based on variables in a dataset.

The Venn diagram routine has been expanded such that thickness of lines and pen choice can be changed. See Lauritsen
(1999) for further explanations.

Syntax

venndiag varlist
�
if exp

� �
in range

� �
, label(str) show(str) missing gen(varnames)

list(variables) print saving(filename) c1(#) c2(#) c3(#) c4(#) noframe

nograph nolabel t1title(str) t2title(str) t3title(str) r1title(str)

r2title(str) r3title(str) r4title(str) r5title(str) r6title(str) pen(#) thick(#)
�

where the varlist must contain from 2–4 numerical variables and if generating a variable, that variable must not exist. Only the
new options are shown below. See updated help file for further information.

Added options

pen(#) indicates which pens to use in the graph, e.g., pen(123). The first one is for text, the second for rectangles, and the
third for the frame. The default is pen(123).

thick(#) indicates the thickness of pens on printing (for Windows 95). The default is thick(995). To obtain a thicker frame,
reverse the order of the numbers, i.e., thick(559). Note the link to pen(); for example, pen(456) must be followed by
thick(111995) to make pen 4 and 5 thickness 9 and pen 6 thickness 5. The first three 1’s are not used in this case. (The
pen number is defined by it’s position in thick().)

Historical note—extension to STB-47

Another article by John Venn (1834–1923) has been located, such that the earliest publication by him on the subject most
likely was 1880. See reference list.

Acknowledgment

Thanks to Ph. D. M. D. Charlotte G. Mörtz for testing and comments and to N. Cox for hinting at whom J. Venn was.

References
Lauritsen, J. 1999. gr34: Drawing Venn diagrams. Stata Technical Bulletin 47: 3–8.

Ruskey, F. 1997. A survey of Venn diagrams. The Electronic Journal of Combinatorics 4: DS#5. (available at: http://sue.csc.uvic.ca/~cos/

venn/)

Venn, J. 1880. On the diagrammatic and mechanical representation of propositions and reasonings. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 9: 1–18.

—–. 1881. Symbolic Logic. London: Macmillan.

gr35 Diagnostic plots for assessing Singh–Maddala and Dagum distributions fitted by MLE

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Syntax

psm varname
�
if exp

� �
in range

� �
, grid graph options

�
qsm varname

�
if exp

� �
in range

� �
, grid graph options

�
pdagum varname

�
if exp

� �
in range

� �
, grid graph options

�
qdagum varname

�
if exp

� �
in range

� �
, grid graph options

�
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Options

grid adds grid lines at the 0.25, 0.50, 0.75 quantiles and also, in the case of qsm and qdagum, at the 0.05, 0.10, 0.90, and 0.95
quantiles.

graph options are any of the options allowed with graph, twoway; see help for graph.

Description

psm produces a probability plot for varname compared with a three-parameter Singh–Maddala distribution. qsm plots the
quantiles of varname against the quantiles of a three-parameter Singh–Maddala distribution. The parameters a, b and q are taken
from global macros S a, S b, and S q, which is where smfit puts maximum likelihood estimates of them.

pdagum produces a probability plot for varname compared with a three-parameter Dagum distribution. qdagum plots the
quantiles of varname against the quantiles of a three-parameter Dagum distribution. The parameters b, d and h are taken from
S b, S d, and S h, which is where dagumfit puts maximum likelihood estimates of them.

smfit and dagumfit are discussed in Jenkins (1999b).

Example

The illustrative example uses the same income distribution data as described in Jenkins (1999a). The income variable is
eybhc with fweight variable wgt.

Singh–Maddala and Dagum distributions were first fitted using smfit and dagumfit (as in Jenkins 1999a), except that
grossing-up weights were neglected this time since the plotting programs do not handle them. The results are as follows:

. smfit eybhc if eybhc >0

(output omitted )

. qsm eybhc if eybhc>0, saving(qsm1.gph,replace)

. psm eybhc if eybhc>0, saving(psm1.gph,replace)

. dagumfit eybhc

(output omitted )

. qdagum eybhc if eybhc>0, saving(qdagum1.gph,replace)

. pdagum eybhc if eybhc>0, saving(pdagum1.gph,replace)

. graph using psm1 pdagum1 qsm1 qdagum1
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Figure 1. Output from qsm Figure 2. Output from psm
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Figure 3. Output from pdagum Figure 4. Output from qdagum

The plots confirm the conclusions of satisfactory goodness of fit based on other methods which were reported in the insert
on fitting Singh–Maddala and Dagum distributions (Jenkins 1999b).

References
Jenkins, S. P. 1999a. sg104: Analysis of income distributions. Stata Technical Bulletin 48: 4–18.

——. 1999b. sg106: Fitting Singh–Maddala and Dagum distributions by maximum likelihood. Stata Technical Bulletin 48: 19–25.

sg104 Analysis of income distributions

Stephen P. Jenkins, University of Essex, UK, stephenj@essex.ac.uk

This insert provides a number of programs for summarizing distributions, and income distributions in particular.

� sumdist estimates quantiles, quantile group shares, Lorenz and generalized Lorenz ordinates.

� xfrac provides a tabulation using categories defined by fractions of a cut-off value (e.g., mean or median).

� ineqdeco estimates a selection of inequality indices (including Gini, Generalized Entropy, Atkinson indices) with optional
decompositions by population subgroup into within- and between-group inequality components. ineqdec0 is a cut-down
version of this program.

� geivars provides estimates of selected Generalized Entropy inequality indices and their asymptotic sampling variances.

� ineqfac provides inequality decomposition by factor components.

� povdeco estimates three common poverty indices (the headcount ratio, averaged normalized poverty gap, and average
squared normalized poverty gap), with optional decompositions by population subgroup.

These programs supplement various other numerical and graphical tools already in Stata for analyzing income distributions.

The programs are illustrated using income distribution data for 1991 derived by Goodman and Webb (1994) from the UK

Family Expenditure Survey using the same definitions as the UK official income distribution statistics (see e.g., Department of Social
Security, 1993). The data are available from the Data Archive at the University of Essex (http://archive.essex.ac.uk).
The file used here comprises observations on 6,468 families (single persons or married couples, plus any children). A household
may contain more than one family. Define the following variables:

� ybhc is the post-tax post-transfer money income of the household to which the family belongs, in pounds per week in 1991
prices.

� eybhc is needs-adjusted post-tax post-transfer household income, i.e., ybhc divided by an equivalence scale to account for
differences in household size and composition. The scale used is the semi-official McClements one.

� wgt is an fweight used to “gross up” the estimates to represent all persons in the UK private household population.

� tenure is the housing tenure of the household in which the family lives (4 groups: social housing renter, other renter or
rent-free, owned with a mortgage, owned outright).
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sumdist: distribution summary statistics, by quantile group

sumdist estimates distributional summary statistics commonly used by income distribution analysts, complementing those
available via pctile, xtile, and summarize, detail. In fact much of sumdist is a “wrapper” for xtile, combined with
tabdisp to display the results of by-group calculations.

For variable x and distribution function F (x), the statistics provided are

(1) quantiles k = 1; 2; : : : ;m� 1, for m =# quantile groups;

(2) the quantiles expressed as a percentage of median(x);

(3) the quantile group share of x in total x (group income share, %);

(4) the cumulative quantile group shares of total x (with cumulation in ascending order of x), i.e., the Lorenz ordinates L(p)
at each pk = F (xk) for quantile points xk; and

(5) the generalized Lorenz ordinates at each pk = F (xk), i.e., GL(pk) = mean(x) � L(pk).

Syntax

sumdist varname
�
weight

� �
if exp

� �
in range

� �
, ngps(#) qgp(gpname)

�
fweights and aweights are allowed.

Options

ngps(#) specifies the number of quantile groups. Valid values are integers in the range (0; 100 ]. The default is 10.

qgp(gpname) creates a new categorical variable, gpname, containing categories summarizing quantile group membership, with
the number of categories equal to m.

Example

We shall follow a conventional approach and examine the distribution of income amongst all persons in the population,
assuming that each person receives the needs-adjusted income of the household to which s/he belongs. Thus we focus on the
distribution of the variable eybhc weighted by wgt.

A summarize, detail shows some standard features of income distributions, namely significant dispersion combined with
skewness: the mean is well above the median, and there is a long upper tail. (A more sophisticated analysis might consider the
sensitivity of conclusions to differing treatments of the “outlier” largest income.)

. summarize eybhc [fw=wgt], de

Equiv. net income BHC

-------------------------------------------------------------

Percentiles Smallest

1% 29.04 -123.9898

5% 78.43056 -72.37004

10% 92.24828 -42.89144 Obs 55851705

25% 127.3008 -42.70588 Sum of Wgt. 55851705

50% 194.4472 Mean 233.0179

Largest Std. Dev. 199.0178

75% 287.2739 1846.438

90% 402.212 2013.499 Variance 39608.08

95% 503.1029 3024.663 Skewness 14.35982

99% 818.264 7740.044 Kurtosis 480.917

Observe the presence of negative and zero incomes in the data. It is up to the user to decide how to handle these. In
general there may be arguments for or against exclusion of them, which vary with circumstances. By default sumdist retains
these values, but they can be excluded using the if option. An example of default output is as follows:
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. sumdist eybhc [fw=wgt]

Warning: eybhc has 20 values < 0. Used in calculations

Distributional summary statistics, 10 quantile groups

----------+----------------------------------------------------------------

Quantile |

group | Quantile % of median Share, % L(p), % GL(p)

----------+----------------------------------------------------------------

1 | 92.25 47.44 2.94 2.94 6.85

2 | 115.77 59.54 4.47 7.41 17.26

3 | 141.27 72.65 5.49 12.90 30.05

4 | 167.22 86.00 6.61 19.50 45.44

5 | 194.45 100.00 7.76 27.26 63.53

6 | 225.38 115.91 9.04 36.30 84.59

7 | 263.34 135.43 10.44 46.75 108.93

8 | 315.39 162.20 12.38 59.13 137.78

9 | 402.21 206.85 15.20 74.33 173.20

10 | 25.67 100.00 233.02

----------+----------------------------------------------------------------

Share = quantile group share of total eybhc;

L(p)=cumulative group share; GL(p)=L(p)*mean(eybhc)

We now have estimates of the nine deciles (p10; p20; p30; : : : ; p90) splitting the population into tenths ordered by income
(decile groups): look at the Quantile column. The next column shows that p10 is about 47% of the median income (= p50).
We can also see from the Share column that the poorest tenth of the UK population in 1991 received less than 3% of total
income whereas the richest tenth received more than 25% of total income.

The L(p) column shows cumulative quantile group income shares, in other words, Lorenz ordinates. Lorenz curves are
graphs connecting a plot of these points against cumulative population shares, and are often used for inequality summaries
and inequality “dominance” comparisons (see e.g., Cowell 1995, Lambert 1993). The GL(p) column shows the values of L(p)
multiplied by mean income. The generalized Lorenz curve is the Lorenz curve scaled up at each point by mean income, and is
often used for “welfare” dominance comparisons (Cowell 1995, Lambert 1993). sumdist is designed to provide a numerical
summary of these distributional features, rather than provide the data elements for drawing (generalized) Lorenz curve graphs.
After all, if one has unit record data (as here), one might as well draw the graphs using all the data; see Jenkins and Van Kerm
(1999).

If instead we had typed

. sumdist eybhc [fw=wgt], n(5) qgp(quintgp)

the program would have provided the four quartiles (p20; p40; p60; p80) splitting the population into fifths ordered by income,
quintile group income shares etc., and created a new variable quintgp recording quintile group membership.

xfrac: tabulation using categories defined by fractions of a cut-off value

xfrac provides a specialized tabulation (a “wrapper” for tabulate). Each valid observation is first partitioned by varname
into one of a set of 20 mutually-exclusive categories, the boundaries of which are defined by “hard-wired” fractions of a
user-specified cut-off value (in the same units as varname), with fractions ranging from 0.1 through to 3.0. This classification is
then tabulated and, optionally, can be retained as a new variable.

An example may clarify. Let varname be a measure of income and the cut-off be mean income. xfrac shows the proportion
of observations with varname value less than 10% of mean income, between 10% and 20% of mean income, between 20%
and 30% of mean income, and so on (20 categories). Cumulative proportions are also shown. The hard-wired fractions of the
cut-off were chosen to match those used in the presentation of the UK official low income statistics (see, e.g., Department of
Social Security, 1993). Motivated users could easily modify the xfrac code and change the choices if desired.

In effect xfrac provides a discrete representation of the distribution function for varname.

Syntax

xfrac varname
�
weight

� �
if exp

� �
in range

�
, cutoff(#)

�
gp(gpname)

�
fweights and aweights are allowed.

The user must specify a value for the cut-off value in the same units as varname using cutoff(#).
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Options

gp(gpname) creates a new categorical variable, gpname, containing categories summarizing group membership.

Example

To produce output mimicking the UK official low income statistics, we use the mean income as the cut-off value input into
xfrac:

. summarize eybhc [fw=wgt]

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

eybhc | 5.6e+07 233.0179 199.0178 -123.9898 7740.044

. local mean = _result(3)

.

. xfrac eybhc [fw=wgt], cut(`mean') gp(fracgp)

Warning: eybhc has 20 values < 0. Used in calculations

Proportions of the sample in subgroups defined

by values of eybhc between specified fractions

of a cut-off value = 233.01790

Fractions of|

cut-off | Freq. Percent Cum.

------------+-----------------------------------

<.1 | 455152 0.81 0.81

.1-.2 | 482238 0.86 1.68

.2-.3 | 912526 1.63 3.31

.3-.4 | 3983433 7.13 10.44

.4-.5 | 5502971 9.85 20.30

.5-.6 | 5186597 9.29 29.58

.6-.7 | 4935514 8.84 38.42

.7-.8 | 4777040 8.55 46.97

.8-.9 | 4341904 7.77 54.75

.9-1.0 | 4364218 7.81 62.56

1.0-1.1 | 3234833 5.79 68.35

1.1-1.2 | 2678779 4.80 73.15

1.2-1.3 | 2655524 4.75 77.90

1.3-1.4 | 2095389 3.75 81.66

1.4-1.5 | 1683166 3.01 84.67

1.5-1.75 | 3149798 5.64 90.31

1.75-2.0 | 1848821 3.31 93.62

2.0-2.5 | 1902059 3.41 97.02

2.5-3.0 | 721933 1.29 98.32

>=3.0 | 939810 1.68 100.00

------------+-----------------------------------

Total | 55851705 100.00

There is no official poverty line in Britain, but half of the average income is used by many commentators as such a threshold.
The xfrac output shows that about one fifth of the UK population in 1991 had incomes below one half of contemporary mean
income (and 62.6% had incomes below the mean). But observe too that 38% of the population have incomes between 40%
and 60% of mean income. Thus relatively small changes in the threshold defining the poverty line can have a large impact on
estimates of the proportion who are “poor”.

The command above also created a new variable summarizing income group membership. If we were now to type

. table fracgp tenure [fw=wgt], row col

we could compare the shape of the income distribution across housing tenure groups.

ineqdeco, ineqdec0: inequality indices, with decompositions by population subgroup

ineqdeco and ineqdec0 estimate a range of inequality and related indices commonly used by economists, plus decom-
positions of a subset of these indices by population subgroup into within- and between-group inequality components. Inequality
decompositions by subgroup are useful for providing inequality profiles at a point in time, and for analyzing secular trends using
shift-share analysis. Unit record (micro level) data are required. For a non-technical introduction to the topic, see Jenkins (1991).
Standard textbook treatments are provided by Cowell (1995) and Lambert (1993).

Inequality indices estimated by ineqdeco are: members of the single parameter Generalized Entropy class GE(a) for
a = �1; 0; 1; 2; the Atkinson class A(e) for e = 0.5; 1; 2; the Gini coefficient, and percentile ratios such as p90=p10 and
p75=p25. Also presented are related summary statistics such as subgroup means and population shares. Optionally presented are
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indices related to the Atkinson inequality indices, namely equally-distributed-equivalent income Yede(e), social welfare indices
W (e), and the Sen welfare index; see below for details.

Calculations for ineqdeco exclude zero and negative income values since not all the indices are defined in such cases.
ineqdec0 is a stripped-down version of ineqdeco for situations when users wish to include zero and negative incomes in
calculations, but estimates are provided for the Gini and GE(2) indices only in this case. Some programs for inequality indices
have been provided in an earlier STB: see inequal and rspread in STB-23 (Whitehouse 1995, Goldstein 1995). These provide
estimates for additional inequality indices. But weights cannot be used in all the programs and none of them provides full
decompositions by population subgroup or estimates welfare indices.

The inequality indices differ in their sensitivities to differences in different parts of the distribution. The more positive a
is, the more sensitive GE(a) is to income differences at the top of the distribution; the more negative a is the more sensitive
it is to differences at the bottom of the distribution. GE(0) is the mean logarithmic deviation, GE(1) is the Theil index, and
GE(2) is half the square of the coefficient of variation. The more positive e > 0 (the inequality aversion parameter) is, the more
sensitive A(e) is to income differences at the bottom of the distribution. It is readily confirmed that for each member of the
Atkinson class e = e0, there is a corresponding ordinally-equivalent member of the Generalized Entropy class with a = 1� e0.
The Gini coefficient is most sensitive to income differences about the middle (more precisely, the mode).

ineqdeco has been designed not to estimate indices which are more “top-sensitive” or “bottom-sensitive” than those
provided because experience shows that these can be very sensitive to the presence of just one or two very large or small income
outliers.

A more detailed description is as follows. Consider a population of persons (or families or households, etc.,), i = 1; : : : ; n,
with income yi, and weight wi. Let fi = wi=N , where N =

Pn
i=1 wi. When the data are unweighted, wi = 1 and N = n.

Arithmetic mean income is m. Suppose there is an exhaustive partition of the population into mutually exclusive subgroups
k = 1; : : : ;K.

The Generalized Entropy class of inequality indices is given by

GE(a) =
1

a(1� a)

�� nX
i=1

fi(yi=m)a
�
� 1

�
; a 6= 0; a 6= 1

GE(1) =
nX
i=1

fi(yi=m) log(yi=m)

GE(0) =
nX
i=1

fi log(m=yi)

Each GE(a) index can be additively decomposed as

GE(a) = GEW (a) + GEB(a)

where GEW (a) is within-group inequality and GEB(a) is between-group inequality; see Shorrocks (1984),

GEW (a) =
KX
k=1

V
1�a
k S

a
kGEk(a)

where Vk = Nk=N is the number of persons in subgroup k divided by the total number of persons (subgroup population share),
and Sk is the share of total income held by k’s members (subgroup income share).

GEk(a), inequality for subgroup k, is calculated as if the subgroup were a separate population, and GEB(a) is derived
assuming every person within a given subgroup k received k’s mean income, mk.

Define the equally-distributed-equivalent income

Yede(e) =

� nX
i=1

fi(yi)
1�e

�1=1�e
; e > 0; e 6= 1



Stata Technical Bulletin 9

Yede(1) =
nX
i=1

fi log(yi)

The Atkinson indices (Atkinson 1970) are defined by

A(e) = 1�
�
Yede(e)=m

�
These indices are decomposable but not additively decomposable (Blackorby, Donaldson, and Auersperg 1981):

A(e) = AW (a) +AB(a)�
�
AW (a)

�
:
�
AB(a)

�
where

AW (a) = 1�
KX
k=1

VkYede;k=m

and

AB(a) = 1�

�
YedePK

k=1 VkYede;k=m

�
Social welfare indices (Jenkins 1997) are defined by

We =
1

1� e

�
Yede(e)

�1�e
; e 6= 0; e 6= 1

W1 = log
�
Yede(1)

�
Each of these indices is an increasing function of a generalized mean of order (1� e). All the welfare indices are additively

decomposable:

W (e) =
KX
k=1

VkWk(e)

The Gini coefficient is given by

G = 1 + (1=N)�

�
2

mN2

� nX
i=1

(N � i+ 1)yi

where persons are ranked in ascending order of yi.

The Gini coefficient (and the percentile ratios) are not properly decomposable by subgroup into within- and between-group
inequality components.

Sen’s (1976) welfare index is given by

S = m(1�G)

Syntax

ineqdeco varname
�
weight

� �
if exp

� �
in range

� �
, bygroup(groupvar) w summ

�
fweights and aweights are allowed.
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Options

bygroup(groupvar) requests inequality decompositions by population subgroup, with subgroup membership summarized by
groupvar.

w requests calculation of equally-distributed-equivalent incomes and welfare indices in addition to the inequality index calculations.

summ requests presentation of summary, detail output for varname.

Saved results

S 9010, S 7525 Percentile ratios p90/p10, p75/p25
S im1, S i0, S i1, S i2 GE(a), for a =�1, 0, 1, 2
S ahalf, S i1, S a2 A(e), for e = 0.5, 1, 2

Example

Standard output from ineqdeco with only the welfare index option chosen is as follows.

. ineqdeco eybhc [fw=wgt], w

Warning: eybhc has 20 values < 0. Not used in calculations

Percentile ratios for distribution of eybhc: all valid obs.

------------------------------------------------------------

p90/p10 p90/p50 p10/p50 p75/p25 p75/p50 p25/p50

------------------------------------------------------------

4.336 2.063 0.476 2.249 1.474 0.655

Generalized Entropy indices GE(a), where a = income difference

sensitivity parameter, and Gini coefficient

----------+-----------------------------------------------------------

All obs | GE(-1) GE(0) GE(1) GE(2) Gini

----------+-----------------------------------------------------------

| 3.66972 0.19386 0.20530 0.36167 0.33263

----------+-----------------------------------------------------------

Atkinson indices, A(e), where e > 0 is the inequality aversion parameter

----------+-----------------------------------

All obs | A(0.5) A(1) A(2)

----------+-----------------------------------

| 0.09294 0.17622 0.88009

----------+-----------------------------------

Equally-distributed-equivalent incomes, Yede(e)

----------+-----------------------------------

All obs | Yede(0.5) Yede(1) Yede(2)

----------+-----------------------------------

| 212.04836 192.57941 28.03261

----------+-----------------------------------

Social welfare indices, W(e), and Sen's welfare index

----------+-----------------------------------------------------------

All obs | W(0.5) W(1) W(2) mean*(1-Gini)

----------+-----------------------------------------------------------

| 29.12376 5.26051 -0.03567 156.01453

----------+-----------------------------------------------------------

We can examine differences in inequality by tenure group using the command

. ineqdeco eybhc [fw=wgt], by(tenure)

Warning: eybhc has 20 values < 0. Not used in calculations

Percentile ratios for distribution of eybhc: all valid obs.

------------------------------------------------------------

p90/p10 p90/p50 p10/p50 p75/p25 p75/p50 p25/p50

------------------------------------------------------------

4.336 2.063 0.476 2.249 1.474 0.655

Generalized Entropy indices GE(a), where a = income difference

sensitivity parameter, and Gini coefficient

----------+-----------------------------------------------------------

All obs | GE(-1) GE(0) GE(1) GE(2) Gini

----------+-----------------------------------------------------------

| 3.66972 0.19386 0.20530 0.36167 0.33263

----------+-----------------------------------------------------------
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Atkinson indices, A(e), where e > 0 is the inequality aversion parameter

----------+-----------------------------------

All obs | A(0.5) A(1) A(2)

----------+-----------------------------------

| 0.09294 0.17622 0.88009

----------+-----------------------------------

Subgroup summary statistics, for each subgroup k = 1,...,K:

----------+-----------------------------------------------------------------

Tenure of |

HH | Pop. share Mean Rel.mean Income share log(mean)

----------+-----------------------------------------------------------------

Social r | 0.22858 139.71280 0.59763 0.13661 4.93959

Other re | 0.07177 215.92972 0.92366 0.06629 5.37495

Owned:mo | 0.50177 279.24060 1.19448 0.59935 5.63207

Owned:ou | 0.19789 233.61986 0.99933 0.19775 5.45370

----------+-----------------------------------------------------------------

Subgroup indices: GE_k(a) and Gini_k

----------+-----------------------------------------------------------

Tenure of |

HH | GE(-1) GE(0) GE(1) GE(2) Gini

----------+-----------------------------------------------------------

Social r | 0.13500 0.09188 0.09317 0.11616 0.22864

Other re | 0.25743 0.18018 0.17526 0.21131 0.32182

Owned:mo | 8.32796 0.16025 0.15448 0.19913 0.29406

Owned:ou | 0.30608 0.22835 0.29114 0.85230 0.35977

----------+-----------------------------------------------------------

Within-group inequality, GE_W(a)

----------+-----------------------------------------------

All obs | GE(-1) GE(0) GE(1) GE(2)

----------+-----------------------------------------------

| 3.63059 0.15953 0.17450 0.33342

----------+-----------------------------------------------

Between-group inequality, GE_B(a):

----------+-----------------------------------------------

All obs | GE(-1) GE(0) GE(1) GE(2)

----------+-----------------------------------------------

| 0.03913 0.03433 0.03079 0.02820

----------+-----------------------------------------------

Subgroup Atkinson indices, A_k(e)

----------+-----------------------------------

Tenure of |

HH | A(0.5) A(1) A(2)

----------+-----------------------------------

Social r | 0.04454 0.08779 0.21260

Other re | 0.08447 0.16488 0.33987

Owned:mo | 0.07387 0.14807 0.94336

Owned:ou | 0.11666 0.20415 0.37971

----------+-----------------------------------

Within-group inequality, A_W(e)

----------+-----------------------------------

All obs | A(0.5) A(1) A(2)

----------+-----------------------------------

| 0.07903 0.15204 0.69207

----------+-----------------------------------

Between-group inequality, A_B(e)

----------+-----------------------------------

All obs | A(0.5) A(1) A(2)

----------+-----------------------------------

| 0.01511 0.02852 0.61059

----------+-----------------------------------

Almost 70% of the population are in households owning their own house, and this group is clearly much better off than
those in rented accommodations. Average income among owner households with a mortgage is about 20% the population average
income, in contrast with average income among social renters which is some 40% below the population average. Average income
is lower among owners-outright than among owners with a mortgage, most likely because the former group includes a much
higher proportion of older retired people.

According to most of the indices, inequality is greatest for the owned-outright group compared to the others (especially
for the more top-sensitive indices such as GE(2)) and it is lowest for the social-renting group. The former result is most likely
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related to factors such as age, retirement and differential pensions. The latter result is not surprising since, by design, the social
housing sector is mainly for “low income” people. Observe that inequality within tenure groups accounts for very much more
of total inequality than inequality between tenure groups does.

Repeated application of these decomposition methods to data for several years can be used to account for trends over time in
income inequality; see Jenkins (1995) who used subgroup partitions defined by labor market status, age, household composition,
etc. to study trends during the 1970s and 1980s. In essence one examines whether trends in overall inequality are more closely
related to changes in subgroup inequalities, subgroup mean incomes, or subgroup population shares.

geivars: Generalized Entropy inequality indices, with sampling variances

geivars estimates members of the Generalized Entropy class GE(a) for a = �1; 0; 1; 2, see above for definitions, together
with their asymptotic sampling variances. Unit record (micro level) data are required.

The formulas for the sampling variances are taken directly from Cowell (1989). His formulas were derived assuming that
the income receiving units (households) are treated as a random sample from a bivariate distribution of income and a household
weight variable (e.g., household size). It is the assumptions about, and treatment of, weights which causes complexities of
estimation of sampling variances. (The issues overlap with, but are not the same as, those addressed by Stata’s svy programs.)

We require estimates of income inequality among all persons in the household population. In effect there is a random sample
of households with “self weighting” by household size, where the weights are similar to Stata’s fweights. Thus the variance
formulas do not also adjust for the effects of complex survey design features (stratification and clustering), formulas for this case
are rather complicated and the subject of current research. These problems do not arise, of course, if the data are unweighted.

Derivation of the formulas for the asymptotic variances use the result that the GE(a) indices can be written as functions
of sample moments. For further details, see Cowell (1989).

geivars output includes the estimates of the four indices, and three sets of variance estimates for each index, corresponding
to different informational assumptions. V0 is the variance in the case where both mean income and household size are known.
V1(= V0+�1) is the variance in the case where the former is not known, and V2(= V1+�2) is the variance in the case where
both are unknown and estimated from the sample. (�1 and �2 are contributions to the sampling variance arising from relaxing
the informational assumptions: see Cowell 1989.) In each case the asymptotic t ratio = GE(a)=

p
[V (a)] and associated p value

are also reported.

Syntax

geivars varname
�
weight

� �
if exp

� �
in range

�
fweights are allowed.

Example

The specialist nature of the variance formulas led me to construct a slightly different version of the 1991 UK dataset in
order to match the assumptions. I use the same household income variable eybhc, but the data are now organized by household
rather than family (the household is the sampling unit in the original survey). The grossing-up weights have been neglected in
order to focus on the self-weighting aspect. As a result, the inequality estimates are not comparable with those shown earlier.

In this example, it turns out that the sampling variances of all four inequality indices are all quite small, regardless of which
informational assumption is made. These need not be the case in general, especially if the calculations are done for subgroups
with relatively few members.

. geivars eybhc [fw=number]

Warning: eybhc has 17 values = 0. Not used in calculations

Generalized entropy inequality measures, GE(a), with asym. s.e.s

-----------------------------------------------------------------

a | -1 0 1 2

-----------------------------------------------------------------

GE(a) | 2.83066 0.18896 0.19095 0.25465

Var0 | 6.51258 0.00156 0.00655 0.00066

s.e.0 | 2.55198 0.03949 0.08094 0.02562

asym. t | 1.10920 4.78552 2.35920 9.93927

P > |t| | 0.26739 0.00000 0.01835 0.00000

delta1 | -0.00176 -0.00050 -0.00645 -0.00043

Var1 | 6.51082 0.00106 0.00010 0.00023

s.e.1 | 2.55163 0.03253 0.01011 0.01506
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asym. t | 1.10935 5.80936 18.88962 16.90382

P > |t| | 0.26733 0.00000 0.00000 0.00000

delta2 | -0.00179 -0.00102 -0.00006 -0.00004

Var2 | 6.50902 0.00003 0.00004 0.00019

s.e.2 | 2.55128 0.00587 0.00664 0.01385

asym. t | 1.10951 32.16550 28.77771 18.38758

P > |t| | 0.26726 0.00000 0.00000 0.00000

ineqfac: inequality decomposition by factor components

ineqfac provides an exact decomposition of the inequality of total income into inequality contributions from each of the
factor components of total income. More specifically, given

facvars = ffactor 1 factor 2 : : : factor Fg

define the variable totvar such that for each observation in the dataset,

totvar =
FX
f=1

factor f

Shorrocks (1982a) proved that there was a unique ‘decomposition rule’ for which inequality in totvar across observations
could be expressed as the sum of inequality contributions from each of the factor components, and which also satisfied some
other basic axioms.

The decomposition rule is the “proportionate contribution of factor f to total inequality”, sf :

sf = �f�(factor f)=�(totvar)

where �f is the correlation between factor f and totvar, and �(:) is the standard deviation. Equivalently, sf is the slope
coefficient from the regression of factor f on totvar. Observe that for each observation,

FX
f=1

sf = 1

Factor components with a positive value for sf make a disequalizing contribution to inequality in total income; factor
components with negative sf values make an equalizing contribution.

Shorrocks (1982a) shows that choice of the decomposition rule is an issue independent of that concerning which index is
used to summarize inequality. However there happens to be a nice link with the case in which inequality is measured using the
coefficient of variation, for one can also rewrite sf as

sf = �f [m(factor f)=m(totvar)][CV(factor f)CV(totvar)]

or

sf = �f [m(factor f)=m(totvar)][I2(factor f)=I2(totvar)]:5

where m is the mean, and CV is the coefficient of variation, and I2 is half the squared coefficient of variation, or equivalently,
GE(2) as defined earlier.

Thus total inequality can be written in terms of the factor correlations with total income, the factor shares in total income
(= m(factor f)=m(totvar)), and the factor inequalities (summarized using either CV or I2).

ineqfac reports the estimates for each factor component of: sf , Sf = sf :CV(totvar), m(factor f)=m(totvar),
CV(factor f), and CV(factor f)=CV(totvar), plus, optionally, the correlations, means and standard deviations of the factor
components and totvar. Optionally, inequality is summarized using I2 rather than CV.

ineqfac was designed as a tool for income distribution analysis in the case where the current sample contains observations
on income components for each of a set of income receiving units (e.g., families, households, persons). In this case, facvars
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might include labor income, income from investments and pensions, cash transfers, and so on. See Shorrocks (1982b) and Jenkins
(1995) for examples. ineqfac may also be applied to summarize and compare the riskiness of portfolios of wealth holdings:
s f has exactly the same form as the “beta coefficient” used in financial analysis.

Syntax

ineqfac facvars
�
weight

� �
if exp

� �
in range

� �
, stats total(totvar) i2

�
fweights and aweights are allowed.

Options

stats provides the means, standard deviations, and correlations of the factor components and totvar.

total(totvar) creates a new variable, totvar, equal to the sum of the factor components for each observation.

i2 summarizes inequality using I2 = GE(2) rather than CV .

Example

Let us consider how inequality in household money income, ybhc, is related to the income sources which comprise it.
I distinguish five factor components: labour, employment and self-employment earnings; invst, income from investments,
savings, and private pensions; socsecb, cash social assistance and social insurance benefits; other, other income; and deducts,
income taxes and social insurance contributions.

In general, each of the factor components may have negative or zero values. Examples of valid negative values are found
most commonly for deducts; we assume that taxes are treated as negative income. (If values of variables such as tax payments
are recorded as positive in the data, it is the responsibility of the user to create a suitably signed variable prior to using ineqfac.)
Examples of zero values might occur for, say, labour, in observations where no one in the household does paid work, or for
socsecb, if no one in the household receives any social security benefits.

. ineqfac labour invst socsecb other deducts [fw=wgt], stats total(total)

Factor | 100*s_f S_f 100*m_f/m CV_f CV_f/CV(Total)

---------+-----------------------------------------------------------------

labour | 77.0372 0.6515 76.0261 1.0414 1.2314

invst | 27.8958 0.2359 10.2059 4.3230 5.1116

socsecb | -5.4941 -0.0465 15.3310 1.1401 1.3481

other | 1.0902 0.0092 2.1276 5.5795 6.5973

deducts | -0.5292 -0.0045 -3.6907 0.5312 0.6280

---------+-----------------------------------------------------------------

Total | 100.0000 0.8457 100.0000 0.8457 1.0000

---------------------------------------------------------------------------

Note: The proportionate contribution of factor f to inequality of Total,

s_f = rho_f*sd(f)/sd(Total). S_f = s_f*CV(Total).

m_f = mean(f). sd(f) = std.dev. of f. CV_f = sd(f)/m_f.

Means, s.d.s and correlations for factors and total income

(sum of wgt is 5.5852e+007)

(obs=6468)

Variable | Mean Std. Dev. Min Max

----------+----------------------------------------------------

labour | 220.3662 229.4935 -223.1994 2754.562

invst | 29.58227 127.8837 -97.52 6747.25

socsecb | 44.43792 50.6651 0 335.534

other | 6.167069 34.40908 -151.0626 878.31

deducts | -10.69765 5.68206 -45.04 0

Total | 289.8558 245.1361 -123.9898 7740.044

| labour invst socsecb other deducts Total

--------+------------------------------------------------------

labour| 1.0000

invst| 0.0120 1.0000

socsecb| -0.5111 0.0179 1.0000

other| -0.0518 -0.0129 -0.0373 1.0000

deducts| -0.2868 -0.0031 0.0826 0.0111 1.0000

Total| 0.8229 0.5347 -0.2658 0.0777 -0.2283 1.0000
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Unsurprisingly, labor earnings are by far the largest component of household income packages, comprising just over
three-quarters of total household money income. The next largest components are social security benefits (15% of total income)
and investment income (10%). Inequalities in investment income and other income are huge relative to that of the other factor
components (see the last two columns). However, inequality contributions tend to be more closely related to factor shares than
to factor inequalities or correlations.

According to the Shorrocks decomposition rule, labor earnings has the largest proportionate inequality contribution of all
the components, some 77% of total inequality. The second largest proportionate contribution is from investment income, 28%.
Observe that taxes and cash transfers have an equalizing effect on total inequality, though relatively small ones.

povdeco: Poverty indices, with decomposition by subgroup

povdeco estimates three poverty indices from the Foster, Greer and Thorbecke (1984) class, FGT(�), plus related statistics
(such as mean income among the poor). FGT(0) is the headcount ratio (the proportion poor); FGT(1) is the average normalized
poverty gap; FGT(2) is the average squared normalized poverty gap. The larger � is, the greater the degree of poverty aversion
(sensitivity to large poverty gaps). Optionally provided are decompositions of these indices by population subgroup. Poverty
decompositions by subgroup are useful for providing poverty ‘profiles’ at a point in time, and for analyzing secular trends in
poverty using shift-share analysis. Unit record (‘micro’ level) data are required.

A more detailed description is as follows. Consider a population of income-receiving units (persons, households or families,
and so on), i = 1; : : : ; n, with income yi, and weight wi. Let fi = wi=N , where N =

Pn
i=1 wi . When the data are unweighted,

wi = 1 and N = n.

The poverty line is z, and the poverty gap for person i is max(0; z � yi). Suppose there is an exhaustive partition of the
population into mutually-exclusive subgroups k = 1; : : : ;K.

The FGT class of poverty indices is given by

FGT(�) =
nX
i=1

F1

�
(z � yi)=z

��
Ii

where Ii = 1 if yi < z and Ii = 0 otherwise.

Each FGT(a) index can be additively decomposed as

FGT(�) =
KX
k=1

vkFGTk(�)

where vk = Nk=N is the number of persons in subgroup k divided by the total number of persons (subgroup population share),
and FGTk(�), poverty for subgroup k, is calculated as if each subgroup were a separate population.

When subgroup decompositions are requested, povdeco also displays, for each k, the following additional subgroup summary
statistics: subgroup poverty share, Sk = vkFGTk(�)=FGT(�), and subgroup poverty risk, Rk = FGTk(�)=FGT(�) = Sk=vk.

Typically one’s data are in one of two forms. In the first form, the money incomes for each income-receiving unit i, xi,
are equivalized using an equivalence scale factor, mi, so that yi = xi=mi, and the poverty line is a single (common) value,
in the same units as equivalized income, z. This is the case discussed in the description. In the second form, incomes are not
equivalized, but there are different poverty lines depending on (for example) household type. Suppose the line for unit i is zi.
Observe that if zi = z:mi, FGT poverty index calculations based on fyi; zg give exactly the same answers as calculations based
on fxi; zig, i = 1; : : : ; n. For the first form, use pline(#) to specify the single common poverty line, while for the second
form, use varpl(zvar) to specify the poverty lines.

Syntax

povdeco varname
�
weight

� �
if exp

� �
in range

�
,

�
pline(#) j varpl(zvar)

	 �
bygroup(groupvar)

�
fweights and aweights are allowed.

The user must supply the poverty line value(s), either as a single number # in pline(#), or provide the variable name
containing the values as zvar in varpl(zvar).
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Options

bygroup(groupvar) requests poverty decompositions by population subgroup, with subgroup membership summarized by
groupvar.

Saved results

S FGT0 FGT(0), defined above
S FGT1 FGT(1), defined above
S FGT2 FGT(2), defined above

Example

Let consider first the case in which there is a common poverty line, taken for illustration to be equal to half average
needs-adjusted income, and decompose poverty by tenure subgroups.

. local z = .5*`mean'

. povdeco eybhc [fw=wgt], pl(`z') by(tenure)

Warning: eybhc has 20 values < 0. Used in calculations

Total number of observations = 6468

Weighted total no. of observations = 55851705

Number of observations poor = 1327

Weighted no. of obs poor = 11336320

Mean of eybhc amongst the poor = 86.711

Mean of poverty gaps (poverty line - eybhc) amongst the poor = 29.798

Foster-Greer-Thorbecke poverty indices, FGT(a)

----------+-----------------------------------

All obs | a=0 a=1 a=2

----------+-----------------------------------

| 0.20297 0.05191 0.02387

----------+-----------------------------------

FGT(0): headcount ratio (proportion poor)

FGT(1): average normalised poverty gap

FGT(2): average squared normalised poverty gap

Decompositions by subgroup

--------------------------

Summary statistics for subgroup k = 1,...,K

----------+-----------------------------------------------------------

Tenure of |

HH | Pop. share Mean Mean|poor Mean gap|poor

----------+-----------------------------------------------------------

Social r | 0.22852 139.30740 93.30663 23.20227

Other re | 0.07194 214.48389 80.45238 36.05652

Owned:mo | 0.50169 278.40619 74.83694 41.67195

Owned:ou | 0.19785 232.90508 84.24892 32.25999

----------+-----------------------------------------------------------

Subgroup FGT index estimates, FGT(a)

----------+-----------------------------------

Tenure of |

HH | a=0 a=1 a=2

----------+-----------------------------------

Social r | 0.45587 0.09078 0.03180

Other re | 0.22032 0.06818 0.03938

Owned:mo | 0.08128 0.02907 0.01686

Owned:ou | 0.21313 0.05901 0.02686

----------+-----------------------------------

Subgroup poverty 'share', S_k = v_k.FGT_k(a)/FGT(a)

----------+-----------------------------------

Tenure of |

HH | a=0 a=1 a=2

----------+-----------------------------------

Social r | 0.51326 0.39964 0.30439

Other re | 0.07809 0.09449 0.11868

Owned:mo | 0.20090 0.28095 0.35433

Owned:ou | 0.20776 0.22492 0.22260

----------+-----------------------------------



Stata Technical Bulletin 17

Subgroup poverty 'risk' = FGT_k(a)/FGT(a) = S_k/v_k

----------+-----------------------------------

Tenure of |

HH | a=0 a=1 a=2

----------+-----------------------------------

Social r | 2.24596 1.74880 1.33198

Other re | 1.08549 1.31345 1.64976

Owned:mo | 0.40045 0.56001 0.70628

Owned:ou | 1.05007 1.13681 1.12510

----------+-----------------------------------

The overall proportion of the population poor is 20.3% (as shown also by the xfrac output), the average normalized
poverty gap is 0.052, and the average squared normalized gap, 0.024. The decomposition shows that subgroup poverty status
is associated with average income, whichever index is used. For example, the group with the lowest average income, social
renters, also have the highest poverty rate. And those with the highest average income, owners with a mortgage, also have the
lowest poverty rate. Interestingly, however, average income among poor owners with a mortgage is lower than average income
among poor social renters, 74 pounds per week compared with 93 (and hence their poverty gaps are larger). This helps explain
why it is that although social renters’ poverty share is about one half according to the headcount ratio, FGT(0), it is rather
smaller when one moves to the measures sensitive to how poor people are (their poverty risks are also smaller). When one uses
the poverty gap measures, the poverty share and poverty risk of owners with a mortgage becomes markedly larger.

To illustrate use of the alternative poverty line specification, let us now work with money income ybhc (rather than eybhc

which is needs-adjusted), and suppose that the household type-specific poverty line is given by the former poverty line multiplied
by the household equivalence scale rate (hes bhc). To get results exactly the same as shown above, one would simply type the
following:

. ge plinevar = `z'*hes_bhc

. povdeco ybhc [fw=wgt], varpl(plinevar) by(tenure)

Concluding remarks

The aim of this insert has been to make preparation of many common income distribution summary statistics a matter of
routine. These numerical summaries should usually be accompanied by graphical ones and it is hoped that glcurve, Jenkins
and Van Kerm (1999), should help with these.

The most notable omission from the program calculations presented here is systematic derivation of sampling variances for
key statistics (apart from those in geivars). This reflects the state of the income distribution literature; the required formulas
either do not yet exist or have only recently been developed. The treatment of different kinds of weights, and the interaction
of ‘self-weighting’ features with survey design aspects, raises several complicated issues in this context which have yet to be
resolved.

Nonetheless, it must also be said that conclusions drawn are likely to be at least as sensitive to other factors as to
sampling ones. For example, there are important consequences of choosing different equivalence scales, definitions of income
and income-receiving unit, and different treatments of rogue outliers and zero and negative incomes. Luckily, Stata is already
well-suited for examining these data issues.
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sg105 Creation of bivariate random lognormal variables

Stephen P. Jenkins, University of Essex, UK, stephenj@essex.ac.uk

Description

mkbilogn is a program for the creation of bivariate random normal variables. More precisely it creates random variables, X1

and X2, drawn from a bivariate lognormal distribution defined as follows. X1 and X2 are such that, as n!1; x1 = log(X1)
and x2 = log(X2) are bivariate normal distributed with means m1, and m2, standard deviations s1, and s2, and correlation r.
The parameters of the distribution can be optionally chosen by the user, or default to the values specified below.

The program applies methods proposed in the Stata FAQ archive:

http://www.stata.com/support/faqs/stat/mvnorm.html

Syntax

mkbilogn var1 var2
�
, r(#) m1(#) s1(#) m2(#) s2(#)

�

Options

r(#) correlation of ln(var1) and ln(var2); default is .5.

m1(#) mean of ln(var1); default is 0.

s1(#) standard deviation of ln(var1); default is 1.

m2(#) mean of ln(var2); default is 0.

s2(#) standard deviation of ln(var2); default is 1.

Example
. clear

. set obs 10000

obs was 0, now 10000

. mkbilogn y1 y2, r(.3) m1(1) s1(2) m2(3) s2(4)

Creating 2 r.v.s X1 X2 s.t. x1=log(X1), x2=log(X2) are bivariate

Normal with mean(x1) = 1 ; mean(x2) = 3 ; s.d.(x1) = 2 ;

s.d.(x2) = 4 ; corr(x1,x2) = .3

. generate ly1 = ln(y1)

. generate ly2 = ln(y2)
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. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

y1 | 10000 21.41347 217.5634 .0012415 19863.65

y2 | 10000 34875.93 1093960 1.19e-06 9.79e+07

ly1 | 10000 1.040054 1.990629 -6.691414 9.896646

ly2 | 10000 3.095062 4.04193 -13.64018 18.39969

. corr

(obs=10000)

| y1 y2 ly1 ly2

--------+------------------------------------

y1| 1.0000

y2| 0.0023 1.0000

ly1| 0.2078 0.0270 1.0000

ly2| 0.0585 0.1011 0.2963 1.0000

Saved results

Two new variables (var1, var2) are added to the current dataset.
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sg106 Fitting Singh–Maddala and Dagum distributions by maximum likelihood

Stephen P. Jenkins, University of Essex, UK, stephenj@essex.ac.uk

Introduction

Economists and statisticians sometimes find it useful to fit parametric functional forms to data on a variable. smfit fits
the three-parameter Singh–Maddala (1976) distribution and dagumfit fits the Dagum (1977, 1980) distribution, in each case by
maximum likelihood (ML) methods, to a distribution of a random variable incvar, where unit record observations on incvar

are available. The Singh–Maddala distribution is also known as the Burr Type 12 distribution and the Dagum distribution as the
Burr Type 3 distribution. These three-parameter distributions have been shown to provide a good fit to empirical income data
relative to other parametric functional forms; see McDonald (1984), for example. For derivation of Lorenz orderings of pairs
of income distributions in terms of their Singh–Maddala and Dagum parameters, see Wifling and Kraemer (1993) and Kleiber
(1996). Of course the Singh–Maddala and Dagum distributions might be suitable for describing any skewed variable, not just
income.

Programmers may find smfit and dagumfit of interest because they are examples of the application of ml in a case which
is unlike a regression model (there are no covariates or dependent variable in the conventional sense).

The Singh–Maddala distribution

The Singh–Maddala distribution has distribution function

F (x) = 1�

"
1

1 + (x=b)a

#q

where a � 0, b � 0, q > 1=a are parameters, for random variable X � 0 (income). The parameters a and q are the key
distributional shape parameters; b is a scale parameter.

Letting z = 1 + (x=b)a, then F (x) = 1� z
�q , and the probability density function is

f(x) = (aq=b)z�(q+1)(x=b)(a�1)

The likelihood function for a sample of incomes is specified as the product of the densities for each person (weighted where
relevant), and is maximized by smfit using Stata’s deriv0 (numerical derivatives) method. In fact, transformations of the three
parameters are estimated (to impose the necessary restrictions) and the parameters derived from these.
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The formulas used to derive the distributional summary statistics presented (optionally) are as follows. The rth moment
about the origin is given by

b
r
B(1 + r=a; q � r=a)=B(1; q)

where B(u; v) is the Beta distribution = G(u)G(v)=G(u + v) and G is the gamma function (exp(lngamma(.)) in Stata),
which by substitution and using the result that G(1) = 1, implies that the moments can be written

b
r
G(1 + r=a)G(q � r=a)=G(q)

and hence

E(X) = bG(1 + 1=a)G(q � 1=a)=G(q)

Var(X) = b
2
G(1 + 2=a)G(q � 2=a)=G(q)� (E(X))2

from which the standard deviation and half the squared coefficient of variation can be derived. The percentiles are derived by
inverting the distribution function

xp = b[(1� p)(�1=q) � 1](1=a)

for each p = F (xp).

The Gini coefficient of inequality, Gini, is given by

1�Gini = G(q)G(2q � 1=a)=[G(q � 1=a)G(2q)]

The Lorenz curve ordinates L(p) at each p = F (xp) use the Beta cdf, ibeta(.) in Stata:

L(p) = ibeta(1 + 1=a; q � 1=a; 1� (1� p)(1=q))

Syntax

smfit incvar
�
weight

� �
if exp

� �
in range

� �
, stats cdf(cdfname) pdf(pdfname)

level(#) nolog trace a0(#) b0(#) q0(#)
�

fweights and aweights are allowed.

To reset problem-size limits, see help matsize.

Options

stats displays selected distributional statistics implied by the Singh–Maddala parameter estimates; percentiles, cumulative shares
of total income at percentiles (i.e., the Lorenz curve ordinates), the mean, standard deviation, variance, half the coefficient
of variation squared, Gini coefficient, and percentile ratios p90=p10, p75=p25.

cdf(cdfname) creates a new variable cdfname containing the estimated Singh–Maddala cdf value F (x) for each x in the dataset.

pdf(pdfname) creates a new variable pdfname containing the estimated Singh–Maddala pdf value f(x) for each x in the dataset.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level;

see [U] 26.4 Specifying the width of confidence intervals.

nolog suppresses the iteration logs.

trace reports the current value of the estimated parameters at each iteration; see [R] maximize.

a0(#), b0(#), q0(#) allow the user to specify starting values for the Singh–Maddala parameters. Default starting values are
a = 2, q = 2, and b = sample mean of incvar.
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Saved results

The global macros set by ml post, plus

S a, S b, S q estimated parameters a, b, q, respectively

Access to estimated coefficients (transformations of the parameters) and their standard errors are available in the usual way:
see [U] 20.5 Accessing coefficients and standard errors, and [R] matrix get.

The Dagum distribution

The Dagum distribution has distribution function

F (x) =

�
1 + hx

�d

�
�b

where b > 0, h > 0, d > 1=b are parameters, for random variable X > 0 (income). Parameters b and d are the key distributional
shape parameters; h is a scale parameter.

The probability density function is

f(x) = [(bdh)x(�d�1)]=[1 + hx
(�d)](b+1)

The likelihood function for a sample of incomes is specified as the product of the densities for each person (weighted
where relevant), and is maximized by dagumfit using Stata’s deriv0 (numerical derivatives) method. Transformations of the
3 parameters are estimated (to impose the necessary restrictions) and the parameters derived from these.

The formulas used to derive the distributional summary statistics presented (optionally) are as follows. The rth moment
about the origin is given by

[bh(r=d)]B(1� r=d; b+ r=d)

By substitution and using the result that G(1) = 1, implies that the moments can be written

bh
(r=d)

G(1� r=d)G(b+ r=d)=G(b+ 1)

and hence

E(X) = [bh(1=d)]G(1� 1=d)G(b+ 1=d)=G(b+ 1)

Var(X) = [bh(2=d)]G(1� 2=d)G(b+ 2=d)=G(b+ 1)� (E(X))2

from which the standard deviation and half the squared coefficient of variation can be derived. The percentiles are derived by
inverting the distribution function:

xp = h
(1=d)[p(�1=b) � 1](�1=d)

for each p = F (xp).

The Gini coefficient of inequality is given by

1�Gini = [G(b)G(2b+ 1=d)]=[G(2b)G(b+ 1=d)]

The Lorenz curve ordinates L(p) at each p = F (xp) use the Beta cdf

L(p) = ibeta(b+ 1=d; 1� 1=d; p(1=b))
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Syntax

dagumfit incvar
�
weight

� �
if exp

� �
in range

� �
, stats cdf(cdfname) pdf(pdfname)

level(#) nolog trace b0(#) d0(#) h0(#)
�

fweights and aweights are allowed.

To reset problem-size limits, see help matsize.

Options

stats displays selected distributional statistics implied by the Dagum model parameter estimates: percentiles, cumulative shares
of total income at percentiles (i.e., the Lorenz curve ordinates), the mean, standard deviation, variance, half the coefficient
of variation squared, Gini coefficient, and percentile ratios p90=p10, p75=p25.

cdf(cdfname) creates a new variable cdfname containing the estimated Dagum cdf value F (x) for each x.

pdf(pdfname) creates a new variable pdfname containing the estimated Dagum pdf value f(x) for each x.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level;

see [U] 26.4 Specifying the width of confidence intervals.

nolog suppresses the iteration logs.

trace reports the current value of the estimated parameters at each iteration. See [R] maximize.

b0(#), d0(#), h0(#) allow the user to specify starting values for the Dagum parameters. Default starting values are b = exp(4),
d = exp(0.1), and h = 1 + exp(13).

Saved results

The global macros set by ml post, plus

S b, S d, S h estimated parameters b, d, h, respectively

Access to estimated coefficients (transformations of the parameters) and their standard errors are available in the usual way;
see [U] 20.5 Accessing coefficients and standard errors, and [R] matrix get.

Examples

The illustrative examples use the same income distribution data as described in Jenkins (1999). The income variable is
eybhc with fweight variable wgt.

In order to compare the results of smfit and dagumfit, the former is run excluding nonpositive values of eybhc. The
Singh–Maddala distribution is defined for nonnegative incomes but the Dagum distribution only for positive incomes. The results
are as follows:

. smfit eybhc [fw = wgt] if eybhc>0, stats cdf(smF) pdf(smf)

Iteration 0: Log Likelihood = -40547.317

Iteration 1: Log Likelihood = -40062.416

Iteration 2: Log Likelihood = -39888.368

Iteration 3: Log Likelihood = -39879.841

Iteration 4: Log Likelihood = -39879.785

Iteration 5: Log Likelihood = -39879.785

ML fit of Singh-Maddala distribution Number of obs = 6448

Model chi2(0) = .

Prob > chi2 = .

Log Likelihood = -39879.7845655

------------------------------------------------------------------------------

eybhc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

p1 |

_cons | .5637748 .0298546 18.884 0.000 .505261 .6222887

---------+--------------------------------------------------------------------

p2 |

_cons | 5.357418 .0291111 184.033 0.000 5.300361 5.414475

---------+--------------------------------------------------------------------

p3 |

_cons | .178296 .0513498 3.472 0.001 .0776523 .2789397

------------------------------------------------------------------------------
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a = 1+exp(p1) = 2.75729; std. err. = 0.05246; z = 52.55669

b = 1+exp(p2) = 213.17639; std. err. = 6.17669; z = 34.51304

q = exp(p3) = 1.19518; std. err. = 0.06137; z = 19.47428

Singh-Maddala model estimates for distribution of eybhc

------------------------------------------------------------

Percentiles Cumulative shares of

total eybhc (Lorenz ordinates)

1% 37.73642 0.00119

5% 68.58355 0.01072

10% 89.78419 0.02785

20% 120.04293 0.07317

25% 132.97006 0.10032

30% 145.33266 0.13018

40% 169.71135 0.19776

50% 195.34499 0.27599 Mean 233.07720

60% 224.44103 0.36587 Std. Dev. 175.49745

70% 260.51414 0.46956

75% 283.25851 0.52781 Variance 30799.35345

80% 311.44974 0.59147 Half CV^2 0.28347

90% 404.94247 0.74246 Gini coeff. 0.33268

95% 513.02045 0.83928 p90/p10 4.51018

99% 855.57398 0.94708 p75/p25 2.13024

. dagumfit eybhc [fw = wgt], stats cdf(dagumF) pdf(dagumf)

Warning: eybhc has 20 values < 0. Not used in calculations

Iteration 0: Log Likelihood = -2537735.5

(nonconcave function encountered)

Iteration 1: Log Likelihood = -57019.692

(nonconcave function encountered)

Iteration 2: Log Likelihood = -45368.91

Iteration 3: Log Likelihood = -41395.382

(nonconcave function encountered)

Iteration 4: Log Likelihood = -41065.244

Iteration 5: Log Likelihood = -40128.555

Iteration 6: Log Likelihood = -39919.827

Iteration 7: Log Likelihood = -39894.729

Iteration 8: Log Likelihood = -39884.318

Iteration 9: Log Likelihood = -39882.885

Iteration 10: Log Likelihood = -39882.863

Iteration 11: Log Likelihood = -39882.863

Iteration 12: Log Likelihood = -39882.863

ML fit of Dagum distribution Number of obs = 6448

Model chi2(0) = .

Prob > chi2 = .

Log Likelihood = -39882.8626763

------------------------------------------------------------------------------

eybhc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

p1 |

_cons | -.1156061 .0447439 -2.584 0.010 -.2033025 -.0279097

---------+--------------------------------------------------------------------

p2 |

_cons | 1.113663 .0194751 57.184 0.000 1.075493 1.151834

---------+--------------------------------------------------------------------

p3 |

_cons | 16.22055 .3753564 43.214 0.000 15.48486 16.95623

------------------------------------------------------------------------------

b = exp(p1) = 0.89083; std. err. = 0.03986; z = 22.34942

d = exp(p2) = 3.04549; std. err. = 0.05931; z = 51.34757

h = 1+exp(p3) = 11078840.30261; std. err. = 4158512.76880; z = 2.66414

Dagum model estimates for distribution of eybhc

------------------------------------------------------------

Percentiles Cumulative shares of

total eybhc (Lorenz ordinates)

1% 37.73208 0.00117

5% 68.95422 0.01067

10% 90.29702 0.02777

20% 120.51138 0.07299

25% 133.33829 0.10004

30% 145.57025 0.12974

40% 169.62770 0.19686

50% 194.89853 0.27442 Mean 234.77654
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60% 223.64366 0.36338 Std. Dev. 188.66945

70% 259.48672 0.46592

75% 282.24383 0.52353 Variance 35596.15976

80% 310.64428 0.58654 Half CV^2 0.32290

90% 406.43660 0.73643 Gini coeff. 0.33721

95% 520.03530 0.83332 p90/p10 4.50111

99% 894.92777 0.94313 p75/p25 2.11675

The likelihood values and estimates of the percentiles, inequality indices and other distribution parameters are remarkably
similar for both models.

All the estimates are also very similar to their nonparametric counterparts. For example, the nonparametric estimate of the
Gini coefficient is 0.333 and of the GE(2) index (half the squared coefficient of variation), 0.362: see the output from ineqdeco

in Jenkins (1999). Other nonparametric statistics can be derived by summary, detail:

. summarize eybhc [fw=wgt] if eybhc>0, detail

Equiv. net income BHC

-------------------------------------------------------------

Percentiles Smallest

1% 41.10482 .0076653

5% 79.116 1.938724

10% 92.79689 2.631398 Obs 55687900

25% 127.8417 2.808512 Sum of Wgt. 55687900

50% 195.036 Mean 233.7762

Largest Std. Dev. 198.8109

75% 287.5094 1846.438

90% 402.397 2013.499 Variance 39525.79

95% 504.1051 3024.663 Skewness 14.44232

99% 818.264 7740.044 Kurtosis 484.1126

The greatest difference between the parametric and nonparametric estimates is at the very bottom and, especially, the very
top of the distribution. The latter difference is almost certainly due to the presence of a single high income outlier; note for
example the large under-estimation of the top-sensitive index GE(2) = half the squared coefficient of variation. In some cases,
one might argue that the parametric estimates were more reliable on the grounds that income data in the extreme tails of the
distribution are not reliable.

Goodness-of-fit may also be assessed graphically using probability plots. The psm, qsm, pdagum, and qdagum programs
written by Cox (1999) provide these using estimates produced by smfit and dagumfit.

The similarity of estimates in the example appears contrary to the claim sometimes made in the literature that the Dagum
distribution typically provides a better fit than the Singh–Maddala one. Results can perhaps be reconciled by observing that in
virtually all cases reported to date, estimates have been derived from grouped (banded) income data rather than unit record data
as here.

Other criteria besides goodness-of-fit may be relevant to a choice between smfit and dagumfit. The main difference I
have found is in convergence stability and time. In all the applications I have experimented with, smfit has converged quickly
in only a few iterations from the default starting values. By contrast, dagumfit typically took many more iterations and in
fact sometimes failed to converge using the default starting values (try fitting the Dagum distribution to the variable price in
auto.dta). In the illustration shown above, smfit took about a minute to converge using a Pentium P1/166 PC running Stata 5.0
for Windows 95, but dagumfit required almost 18 minutes. Part of the problem is that it is difficult to specify good default
starting values for dagumfit. In all the cases where the program did not converge, experimentation with a range of alternative
starting values led eventually to convergence. Use of the trace option is therefore recommended in all initial fits.
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sg107 Generalized Lorenz curves and related graphs

Stephen P. Jenkins, ISER, University of Essex, UK, stephenj@essex.ac.uk
Philippe Van Kerm, GREBE, University of Namur, Belgium, philippe.vankerm@fundp.ac.be

Generalized Lorenz curves (henceforth GLC’s) are frequently used by economists as a tool for representing and comparing
empirical distributions, typically of income. The GLC of a continuously distributed variable y plots the cumulative total of
y divided by total population size against p = F (y), the cumulative distribution function. Mathematically, point coordinates
[p(y);GL(p(y))] of the GLC are given by

p(y) = F (y); GL(p(y)) =

Z y

0

xf(x)dx

with f(x) = dF (x)=dx. If the GLC coordinates are computed using a series of discrete data points y1; : : : ; yN , where observations
have been ordered so that y1 � y2 � : : : � yN , one obtains

p(yi) =
i

N
; GL(p(yi)) =

Pi
j=1 yj

N

and analogously for weighted data.

GLCs of income distributions have attractive properties, related to checks of “welfare dominance” and “poverty dominance.”
For example, if one were to draw the GLCs for two countries A and B, and found that the GLC for A lay above the GLC for B
at each value of p, then one may conclude that welfare is higher and poverty lower in distribution A compared to distribution
B, according to all measures of welfare and poverty satisfying a standard set of desirable axioms. See for example Shorrocks
(1983) or the texts by Cowell (1995) or Lambert (1993) for further details.

A series of graphical instruments are closely related to GLCs, some of them perhaps better known. The most obvious is the
Lorenz curve. The Lorenz curve of a variable y plots the cumulative share of y against p = F (y), the cumulative distribution
function. The LC coordinates for the corresponding discrete case are thus p(yi) = i=N L(p(yi)) =

Pi
j=1 yj=

PN
j=1 yj The

Lorenz curve of y is simply the GLC of y=�y where �y is the mean of y. If two Lorenz curves do not intersect, one may
conclude that inequality in the distribution with the higher curve is lower than inequality in the other distribution, according to
all standard inequality indices (e.g., all those in the Atkinson and Generalized Entropy classes, and the Gini coefficient).

Imagine now that one plots the cumulative share of some other variable s (observed jointly with y) against p = F (y),
the cumulative distribution function. The picture obtained is the concentration curve of s against y. Say we observe a set of
pairs (y1; s1); : : : ; (yN ; sN ) indexed in such a way that y1 � y2 � : : : � yN , the coordinates of the concentration curve are
p(yi; si) = i=N , C(p(yi; si)) =

Pi
j=1 sj=

PN
j=1 sj =

Pi
j=1 sj=�s=N , where �s is the mean of s. Concentration curves are

particularly useful for the analysis of taxes, benefits, and income redistribution (see, for example, Lambert 1993).

The so-called TIP (Three I’s of Poverty) curves can also be easily introduced in this framework (Jenkins and Lambert 1997).
Let z be some threshold and define the variables g as g =z� y and r as r =1� (y=z) = g=z. The coordinates of the TIP curve
are

p(yi; z) =
i

N
;TIP(p(yi; z)) =

Pi
j=1 gj

N

whereas the coordinates of the TIP of normalized poverty gaps are

p(yi; z) =
i

N
;TIPn(p(yi; z)) =

Pi
j=1 rj

N
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TIP curves are useful for simultaneously displaying the several dimensions of poverty in a single picture; incidence, intensity
and inequality. Moreover, configurations of TIP curves are informative about “poverty dominance” for most indices of poverty
which satisfy a standard set of desirable axioms.

glcurve greatly facilitates the drawing of all these graphs and permits straightforward visual dominance checks.

Syntax

glcurve varname
�
weight

� �
if exp

� �
in range

� �
, pvar(pvarname) glvar(glvarname)

sortvar(svarname) by(groupvar) split nograph replace graph options
�

aweights and fweights are allowed.

Options

pvar(pvarname) generates the variable pvarname containing the x-ordinates of the created Generalized Lorenz curve.

glvar(glvarname) generates the variable glvarname containing the y-ordinates of the created Generalized Lorenz curve.

sortvar(svarname) specifies the variable by which the data are sorted before the ordinates are computed. By default, the data
are sorted in ascending order of varname. If the sortvar option is specified, sorting and cumulation are in ascending order
of svarname.

by(groupvar)specifies that the y-ordinates are to be computed separately for each subgroup defined by groupvar. groupvar must
be numeric.

split [to be used only in conjunction with by(groupvar)] specifies that a series of new variables is generated containing
the Generalized Lorenz y-ordinates for each sub-group specified in by(groupvar). When split is specified, the string in
glvar(glvarname), truncated after 4 characters, is used as a prefix to create the new variables glva x1, glva x2, : : : where
x1, x2, : : : are the values taken by groupvar. To avoid problems, the number of digits taken by the observations in groupvar
should be at most 3 (otherwise the length of glva must be reduced to fewer than 5 characters accordingly).

nograph avoids the automatic display of a crude graph made out of the created variables. nograph is assumed if by(.) is
specified without split.

replace allows the variables pvarname and glvarname to be overwritten if existing names are specified in pvar(.) and
glvar(.). pvarname and glvarname must otherwise be new variable names.

graph options are any of the options allowed with graph, twoway; see help for graph.

Examples

Given the definitions outlined earlier, it is straightforward to understand how glcurve works. The generated variables
pvarname and glvarname are simply such that pvarname[i]=p(varname[i]) and glvarname[i]=gl(p(varname[i])) with the
operators p(.) and gl(.) as defined above and with the is assigned so that svarname[1]�svarname[2]� : : : � svarname[ N].
Whenever the by(.) option is specified, the same construct holds but the ordinates are computed for each distinct subgroup
designated by groupvar (population totals converted to subgroup totals). As should be clear from their definitions, Lorenz curves,
concentration curves as well as TIP curves can be readily obtained as long as the svarname is appropriately chosen and by first
applying a simple transformation to the variable of interest (e.g., for the concentration or Lorenz curves, dividing by the overall
mean).

Let us give a few examples. The dataset subcvse.dta (extracted from a Belgian survey on low income households, the
CVSEW—see the notes of subcvse.dta) provided with this insert contains four variables; a (single adult equivalent) household
income measure (eqinc), an indicator of the sex of the household head (headfem), an indicator of the home tenancy status of
the household (owner) and the amount of child benefits received by the household (chpay).

Suppose we wish to compare welfare levels between female-headed households and male-headed households. We can draw
the Generalized Lorenz curves of the two groups by typing

. glcurve eqinc, by(headfem) split xlabel(0,0.25,0.50,0.75,1) ylabel

which results in the drawing of Figure 1 (the GLC for male-headed households is the dashed curve).
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Figure 1. Generalized Lorenz curves for household incomes by head of household gender.

One may prefer to focus on comparisons of Lorenz curves for the two groups. In this case, we should first type the following
in order to construct the income measure divided by the relevant subgroup average:

. generate eqinc_m = eqinc

. for 0 1,l(n): su eqinc_m if headfem==@ // replace

> eqinc_m=eqinc_m/_result(3) if headfem==@

We can then build and draw the Lorenz curves, together with the 45 degree line which corresponds to the Lorenz curve
for a perfectly equal distribution, with the following commands:

. glcurve eqinc_m, glvar(lc) pvar(p) by(headfem) split nograph

. graph lc_* p p ,s(...) c(lll) xlabel(0,0.25,0.50,0.75,1)

> ylab(0,0.25,0.50,0.75,1) yline(0,1) xline(0, 1) noaxis
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Figure 2. Comparing Lorenz curves for the two groups in Figure 1.

In order to illustrate the use of the sortvar(.) option, let us draw now a Concentration curve. Suppose we wish to see
how child benefits are distributed relative to the income distribution. Let us draw the Concentration curve of chpay (solid line)
along with the Lorenz curve of eqinc (dashed line).

. summarize eqinc

. replace eqinc_m = eqinc/_result(3)

. glcurve eqinc_m, gl(lc) p(p) replace nograph

. summarize chpay

. generate mchpay = chpay/_result(3)

. glcurve mchpay , gl(cc) sort(eqinc_m) nograph

. graph lc cc p p, c(lll) s(...) xlabel(0,0.25,0.50,0.75,1)

> ylabel(0,0.25,0.50,0.75,1) yline(0,1) xline(0, 1) noaxis



28 Stata Technical Bulletin STB-48

L
o

re
n

z
 L

[p
_

i]
 &

 C
o

n
c

e
n

tr
a

ti
o

n
 C

[p
_

i]

Lorenz and Concentrat ion Curves
Population Share, p_i

 Cum. Dist.  of eqinc_m/_N  Cum. Dist.  of mchpay/_N
 Cum. Pop. Prop.

0 .25 .5 .75 1

0

.25

.5

.75

1

Figure 3. Lorenz and concentration curves for child benefits.

Let us finally show how TIP curves can be constructed. Suppose we wish to make poverty comparisons among two population
subgroups, households who own their house (solid lines below) and households who rent their house (dashed lines below). We
set the poverty line at 200 monetary units. To draw the TIP curves of absolute poverty gaps, simply type

. generate tip = (200 - eqinc)*(eqinc<=200)

. glcurve tip , gl(tip) p(tipp) sort(eqinc) by(owner) split

> xlabel(0,0.25,0.50,0.75,1) ylabel
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Figure 4. TIP curves of absolute poverty gaps for home owners and renters.

Imagine now that we consider setting a lower poverty line for households that own their houses, e.g., 170 monetary units.
We want to construct TIP curves of relative poverty gaps:

. generate tiprel = (1 - (eqinc/200))*(eqinc<=200) if owner==0

. replace tiprel = (1 - (eqinc/170))*(eqinc<=170) if owner==1

. glcurve tiprel , gl(tipr) p(tipp) replace sort(eqinc) by(owner)

> split xlabel(0,0.25,0.50,0.75,1) ylabel

(Graph on next page)
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Figure 5. TIP curves of relative poverty gaps.
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sg108 Computing poverty indices

Philippe Van Kerm, GREBE, University of Namur, Belgium, philippe.vankerm@fundp.ac.be

Description

The objective of this insert is to help automate the estimation of a series of standard poverty measures from unit record
income data. The indices computed by poverty are classic measures from the Foster–Greer–Thorbecke class (including the
headcount ratio and the poverty gap ratio), the income gap ratio and the aggregate poverty gap, the Sen, Takayama, Thon
and Watts indices, and measures from the Clark–Hemming–Ulph class. The formulas for all these measures are given below.
However, I refer the reader to the literature on poverty measurement or to the original papers for an exposition of the properties
of the various indices (see among the references given below).

Consider a dataset of n observations with each entry being one income recipient unit (for example, household, individual,
and so on). Let yi be the income of the ith observation, wi be the weight of the ith element (e.g., household size) ri be the
rank of the ith element in the whole distribution (taking weights into account), and z be the poverty line.

Define the indicator Ii = 0 if yi � z, and 1 otherwise, and define N =
Pn

i=1 wi, S =
Pn

i=1 wiIi.

(Continued on next page)
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The poverty measures estimated by poverty are computed as follows:

Foster–Greer–Thorbecke class: FGT(�) =
1

N

nX
i=1

�
z � yi

z

��

wiIi

Headcount ratio: h = FGT(0)

Poverty gap ratio: pgr = FGT(1)

Income gap ratio: igr =
1

S

nX
i=1

�
z � yi

z

�
wiIi

Aggregate poverty gap: apg =
Pn

i=1 (z � yi)wiIi

Watts index: watts =
1

N

nX
i=1

(ln(z)� ln(yi))wiIi

Clark–Hemming–Ulph class: CHU(�) =
1

�N

nX
i=1

�
1�

�
yi

z

���
wiIi

Thon index: thon =
2

z (N + 1)N

nX
i=1

(N + 1� ri) (z � yi)wiIi

Takayama index: tak = 1 +
1

N
�

"
2
PN

i=1 (N + 1� ri)wi (yiIi + z (1� Ii))PN
i=1Nwi (yiIi + z (1� Ii))

#

Sen index: sen =
2

z (S + 1)N

nX
i=1

(S + 1� ri) (z � yi)wiIi

In the Foster–Greer–Thorbecke class, along with FGT(0) and FGT(1), poverty computes FGT(�) with � =0.5, 1.5,
2, 2.5, 3, 3.5, 4, 4.5, 5. In the Clark–Hemming–Ulph class, poverty computes CHU(�) with � =0.1, 0.25, 0.5, 0.75, 0.9.

Syntax

poverty varname
�
weight

� �
if exp

� �
in range

� �
, line(#) gen(newvarname) select options

�
aweights and fweights are allowed.

Options

line(#) specifies the value of the poverty line. If # is set to �1, the poverty line is computed as half the median of varname.
If # is set to �2, it is computed as two-thirds the median of varname. Default is �1.

gen(newvarname) creates the new variable newvarname and sets it to 1 for all observations identified as poor (i.e., observations
for which varname is below the specified poverty line) and 0 for observations identified as non-poor. newvarname is set to
missing for observations with missing varname or not included by the if in statements.

select options are options used to select the indices to be computed. It can be any of the following (multiple selections are
allowed, see examples below):
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h : headcount ratio apg : aggregate poverty gap
pgr : poverty gap ratio igr : income gap ratio
s : Sen index w : Watts index

tak : Takayama index thon : Thon index
fgt1 : FGT(0:5) fgt2 : FGT(1:5)
fgt3 : FGT(2) fgt4 : FGT(2:5)
fgt5 : FGT(3) fgt6 : FGT(3:5)
fgt7 : FGT(4) fgt8 : FGT(4:5)
fgt9 : FGT(5) chu1 : CHU(0:1)
chu2 : CHU(0:25) chu3 : CHU(0:5)
chu4 : CHU(0:75) chu5 : CHU(0:9)
all : wrapper to select all the above indices at once.

Example

The use of poverty is extremely simple. Consider the dataset subcvse.dta provided with glcurve in Jenkins and Van
Kerm (1999). We have a (single adult equivalent) household income measure (eqinc) and a variable with the household size
(size). Applying poverty to eqinc (f)weighted by size with the all option returns the whole series of measures computed
over all observations and taking half the median of eqinc as the poverty line.

. poverty eqinc [fw=size] , all

------------------------------------------------------------------------------

Poverty measures of eqinc

------------------------------------------------------------------------------

Your selection is made of 200 observations.

The following poverty analysis has been using the 200 non-missing

observations for eqinc in your selection.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The poverty line is set at 134.5 units

(1/2 of median value)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Headcount ratio % 1.020

Aggregate poverty gap 233.5 units

(or equivalently 0.48 units per obs.)

Poverty gap ratio % 0.354

Income gap ratio % 34.721

Watts index 0.557

Index FGT(0.5) *100 0.562

Index FGT(1.5) *100 0.249

Index FGT(2.0) *100 0.188

Index FGT(2.5) *100 0.150

Index FGT(3.0) *100 0.124

Index FGT(3.5) *100 0.105

Index FGT(4.0) *100 0.090

Index FGT(4.5) *100 0.079

Index FGT(5.0) *100 0.069

Clark et al. index (0.10) *100 0.528

Clark et al. index (0.25) *100 0.489

Clark et al. index (0.50) *100 0.434

Clark et al. index (0.75) *100 0.390

Clark et al. index (0.90) *100 0.368

Sen index *100 0.466

Thon index *100 0.706

Takayama index *100 0.353

[fweight= size]

------------------------------------------------------------------------------

If we are interested only in the headcount ratio, the poverty gap ratio and the Sen index and want to check the sensitivity
of the results against a different poverty line (e.g., two-third of the median), we can type

. poverty eqinc [fw=size] , h pgr s line(-2)

------------------------------------------------------------------------------

Poverty measures of eqinc

------------------------------------------------------------------------------

Your selection is made of 200 observations.

The following poverty analysis has been using the 200 non-missing

observations for eqinc in your selection.
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The poverty line is set at 179.3333333333334 units

(2/3 of median value)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Headcount ratio % 5.102

Poverty gap ratio % 0.887

Sen index *100 1.326

[fweight= size]

------------------------------------------------------------------------------

In order to study poverty incidence in a particular sub-population, we can save the value of the poverty line computed over
the whole population (see Saved Results below) and re-do the analysis by specifying the saved poverty line and selecting the
appropriate observations:

. loc line2 = $S_4

. poverty eqinc if size<5 [fw=size] , h pgr s line(`line2')

------------------------------------------------------------------------------

Poverty measures of eqinc

------------------------------------------------------------------------------

Your selection is made of 180 observations.

The following poverty analysis has been using the 180 non-missing

observations for eqinc in your selection.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The poverty line is set at 179.3333 units

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Headcount ratio % 6.812

Poverty gap ratio % 1.184

Sen index *100 1.771

[fweight= size]

------------------------------------------------------------------------------

Saved Results

poverty saves a number of results:

S 1 total number of observations in the data
S 2 number of observations used to compute the indices
S 3 weighted number of observations
S 4 value of the poverty line
S 5 weighted number of observations identified as poor

(the following results are only available if the measure has been requested)

S 6 headcount ratio [FGT(0)] S 17 FGT(4)
S 7 aggregate poverty gap S 18 FGT(4.5)
S 8 poverty gap ratio [FGT(1)] S 19 FGT(5)
S 9 income gap ratio S 20 CHU(0.10)
S 10 Watts index S 21 CHU(0.25)
S 11 FGT(0.5) S 22 CHU(0.50)
S 12 FGT(1.5) S 23 CHU(0.75)
S 13 FGT(2) S 24 CHU(0.90)
S 14 FGT(2.5) S 25 Sen index
S 15 FGT(3) S 26 Thon index
S 16 FGT(3.5) S 27 Takayama index
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sg109 Utility to convert binomial frequency records to frequency weighted data

Mario Cleves, Stata Corporation, mcleves@stata.com

[Editor’s note: There are no help files or ado-files for this insert as this is an undocumented command in Stata 6.]

Syntax

bitowt case# var pop var
�
if exp

� �
in range

� �
, case(newvarname) weight(newvarname)

�
Description

bitowt converts binomial frequency records to frequency weighted data. case# var specifies the variable containing the
number of cases represented by each observation and pop var specifies the corresponding number of total subjects (cases plus
controls). This command will change the data in memory.

Options

case(newvarname) specifies the name of a new binomial case-indicator variable containing 1 for cases and 0 for controls. If
case() is not specified, case( case) is assumed.

weight(newvarname) specifies the name of a variable that will contain frequency weights. If weight() is not specified,
weight( weight) is assumed.

Remarks

bitowt is a utility that converts binomial frequency data to frequency weighted data. Binomial frequency data can be
directly analyzed with epitab’s cc, tabodds and mhodds commands, but has to be converted if other commands such as
poisson or logistic are to be used.

In each record of a binomial dataset there is a variable indicating the number of cases, a variable indicating the total number
of subjects (cases plus controls), and additional variables. For example, the following is a binomial dataset:

. list in 1/8

agegrp tobacco D N

1. 25-34 0-9 0 140

2. 25-34 10-19 2 38

3. 25-34 20-29 0 22

4. 25-34 30+ 0 32

5. 35-44 0-9 4 218

6. 35-44 10-19 8 92

7. 35-44 20-29 6 54

8. 35-44 30+ 0 34

Each observation has a variable indicating the observed number of cases, D, out of N subjects in the corresponding age
group and tobacco-use stratum. That is, in the first observation, there are no cases out of 140 subjects age 25 to 34 who use 0
to 9 grams of tobacco per day. In the second observation, there are 2 cases out of 38 subjects age 25 to 34 who use 10 to 19
grams of tobacco per day, and so on.

We can use the cc, mhodds and tabodds commands directly on these data by specifying the binomial() option. The
data, however, needs to be converted to single record or frequency record data in order to use other Stata commands.

The bitowt command can convert our binomial data to frequency data.

. bitowt D N

. list agegrp tobacco _case _weight

agegrp tobacco _case _weight

1. 25-34 0-9 0 140

2. 25-34 0-9 1 0

3. 25-34 10-19 0 36

4. 25-34 10-19 1 2

5. 25-34 20-29 0 22

6. 25-34 20-29 1 0

7. 25-34 30+ 0 32
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8. 25-34 30+ 1 0

9. 35-44 0-9 0 214

10. 35-44 0-9 1 4

11. 35-44 10-19 0 84

12. 35-44 10-19 1 8

13. 35-44 20-29 0 48

14. 35-44 20-29 1 6

15. 35-44 30+ 0 34

16. 35-44 30+ 1 0

In this new dataset, each of the original observations is split into two observations: one for the cases and one for the
controls. Because we did not specify the case() or the weight() option, the default variable names case and weight were
used to name the new variables. The case variable indicates whether the observations are for cases or for controls and the
weight variable specifies the corresponding number of cases or controls.

This new dataset can be used with any Stata command that allows frequency weights. For example, we could use logistic

to further analyze these data remembering to specify the [fweight= weight] option.

sg110 Hardy–Weinberg equilibrium test and allele frequency estimation

Mario Cleves, Stata Corporation, mcleves@stata.com

Syntax

genhw all1 all2
�
weight

� �
if exp

� �
in range

� �
, binvar

�
genhwi #AA #Aa #aa

�
, label(genotypes) binvar

�
genhw allows fweights.

Description

genhw estimates allele frequencies, genotype frequencies, and disequilibrium coefficients for codominant traits or data of
completely known genotypes, and performs asymptotic Hardy–Weinberg (HW) equilibrium tests. In the case of two alleles, it
also calculates an exact HW significance probability.

genhw expects each observation to contain the values of the two alleles at the locus being examined (all1 and all2). Allele
values can be numeric or string.

genhwi is the immediate form of genhw using the genotypic counts on the command line, where #AA, #Aa and #aa are
the counts for the AA, Aa and aa genotypes. Note that this command only works for biallelic loci.

Options

binvar specifies that binomial standard errors be reported for each allele. These standard errors are calculated assuming that the
population is in Hardy–Weinberg equilibrium. By default, standard errors that do not require this assumption are reported.

label(genotypes) specifies labels to be used in the output of the genotype frequency table. This option is only valid for the
immediate form of the command.

Remarks

genhw estimates allele and genotype frequencies for codominant traits or data where there is no ambiguity regarding
genotypes. It also performs asymptotic tests for Hardy–Weinberg equilibrium and estimates the disequilibrium coefficient (D)
for each heterozygotic genotype in the sample. See Methods and Formulas for details of these calculations.

Example 1: biallelic locus

Sham (1998) presented MN blood group data from a random sample of 747 individuals. We would like to test whether or
not the population is in Hardy–Weinberg equilibrium. We entered these data into a Stata dataset. Here are a few observations:

. list in 1/10

a1 a2

1. M M

2. M N

3. N N

4. M M
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5. M M

6. M M

7. M M

8. M M

9. M M

10. M M

Each observation corresponds to one of the 747 individuals and records that individual’s genotype; the a1 variable holds
the value of the first allele, and the a2 variable that of the second allele.

We now perform the test for Hardy–Weinberg equilibrium.

. genhw a1 a2

Genotype | Observed Expected

------------+-----------------------------

MM | 233 242.37

MN | 385 366.26

NN | 129 138.37

------------+-----------------------------

total | 747 747.00

Allele | Observed Frequency Std. Err.

------------+--------------------------------------

M | 851 0.5696 0.0125

N | 643 0.4304 0.0125

------------+--------------------------------------

total | 1494 1.0000

Estimated disequilibrium coefficient (D) = -0.0125

Hardy-Weinberg Equilibrium Test:

Pearson chi2 (1) = 1.956 Pr= 0.1620

likelihood-ratio chi2 (1) = 1.959 Pr= 0.1616

Exact significance prob = 0.1793

The command first tabulates the observed and expected (under HW) genotype frequencies, the allele frequencies, and
corresponding estimated standard errors. Then it calculates Pearson’s and the likelihood-ratio chi-squared statistics, and in the
case of a biallelic locus, an exact significance probability is also reported.

For these data all three Hardy–Weinberg tests agree. They are not statistically significant; therefore, we fail to reject the
null hypothesis that the population is in Hardy–Weinberg equilibrium.

We also obtained an estimate of the disequilibrium coefficient (D). At Hardy–Weinberg equilibrium, the expected value of
the disequilibrium coefficient is zero.

An immediate form of the above command that will yield the same results is constructed using the observed genotype
counts:

. genhwi 233 385 129, label(MM MN NN)

The label() option is used to label the tables. The genhwi command expects the genotype counts to be ordered as shown
in the syntax diagram.

Because there is no statistical evidence that this population is not in Hardy–Weinberg equilibrium, we can rerun the command
specifying the binvar option producing binomial standard error.

. genhw a1 a2, binvar

Genotype | Observed Expected

------------+-----------------------------

MM | 233 242.37

MN | 385 366.26

NN | 129 138.37

------------+-----------------------------

total | 747 747.00

Allele | Observed Frequency Std. Err.

------------+--------------------------------------

M | 851 0.5696 0.0128 (binomial)

N | 643 0.4304 0.0128 (binomial)

------------+--------------------------------------

total | 1494 1.0000

Estimated disequilibrium coefficient (D) = -0.0125
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Hardy-Weinberg Equilibrium Test:

Pearson chi2 (1) = 1.956 Pr= 0.1620

likelihood-ratio chi2 (1) = 1.959 Pr= 0.1616

Exact significance prob = 0.1793

Example 2: multiallelic locus

Spencer et al. (1964) examined the distribution of the red cell acid phosphatase polymorphism in 178 randomly selected
individuals. They identified 3 alleles at this locus; A, B and C. We would like to test the null hypothesis that these data are
consistent with Hardy–Weinberg equilibrium. Their data has been entered into Stata. Here are the first ten observations:

. list in 1/10

all1 all2

1. A A

2. A B

3. A C

4. B B

5. B C

6. A B

7. A B

8. B B

9. A A

10. B B

We now perform the test for Hardy–Weinberg equilibrium:

. genhw all1 all2

Disequilibrium

Genotype | Observed Expected Coefficient (D)

------------+--------------------------------------

AA | 17 21.95

AB | 86 76.19 -0.0275

AC | 5 4.92 -0.0002

BB | 61 66.14

BC | 9 8.53 -0.0013

CC | 0 0.28

------------+--------------------------------------

Total | 178 178.00

Allele | Observed Frequency Std. Err.

------------+--------------------------------------

A | 125 0.3511 0.0237

B | 217 0.6096 0.0242

C | 14 0.0393 0.0101

------------+--------------------------------------

Hardy-Weinberg Equilibrium Test:

Pearson chi2 (3) = 3.078 Pr= 0.3798

likelihood-ratio chi2 (3) = 3.407 Pr= 0.3330

Similar to the output in the biallelic case, genotype and allele frequency tables are produced. However, instead of only one
disequilibrium coefficient, in the multiallelic case, a disequilibrium coefficient is estimated for each heterozygous genotype.

For these data, we fail to reject the null hypothesis that the population is in Hardy–Weinberg equilibrium with respect to
this locus.

Saved results

genhw saves in r():

Scalars
r(chi2) Pearson’s chi squared
r(df) degrees of freedom
r(chi2 p) significance probability (Pearson)
r(lr chi2) likelihood-ratio chi squared
r(lr p) significance probability (LR)
r(p exact) exact significance probability (biallelic only)
r(D) disequilibrium coefficient (biallelic only)
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Methods and formulas

Borrowing the notation from Weir (1996), let Au, u = f1; :::; kg represent k alleles at a locus and AuAv represent each
of the possible k(k + 1)=2 distinct genotypes.

Consider a random sample of n individuals. Then the observed alleles counts, nu, are

nu = 2nuu +
X
u6=v

nuv

where nuv and nuu are respectively, the observed number of heterozygotes AuAv and homozygotes AuAu in the sample.

The population allele frequencies are therefore estimated as

bpu = nu

2n

and their variances as

var(bpu) = 1

2n
(bpu + Puu � 2bp2u)

where Puu is the observed frequency of the AuAu genotype.

Each allele variance under Hardy–Weinberg equilibrium simplifies to the variance of a binomial distribution with parameters
pu and 2n:

var(bpu) = 1

2n
bpu(1� bpu)

The expected genotype frequencies under the assumption of Hardy–Weinberg equilibrium are estimated as

E(Puu) = bp2u
for homozygotes, and

E(Puv) = 2bpubpv (u 6= v)

for heterozygotes.

The disequilibrium coefficients for heterozygous genotypes are estimated as

bDuv = bpubpv � 1

2
Puv

The Pearson’s chi-squared test statistic is computed using the observed and expected genotype counts as

X
u

(nuu � nbp2u)2
nbp2u �

X
u6=v

(nuv � 2nbpubpv)2
2nbpubpv

and the likelihood-ratio chi squared test statistic as

�2ln

�
L0

L1

�
where

L0 =
X
u

nuuln

�
nu

2n

�2

+
X
u

X
u6=v

nuvln

�
nunv

2n2

�
and

L1 =
X
u

nuuln

�
nuu

n

�
+
X
u

X
u 6=v

nuvln

�
nuv

n

�
Both Pearson’s and the likelihood-ratio chi-squared test statistics are distributed with k(k � 1)=2 degrees of freedom.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: IEM
Systems Consultants Address: P.O. Box 2222

Address: P.O. Box 1169 PRIMROSE 1416
17100 NAZERATH-ELLIT South Africa
Israel

Phone: +972 (0)6 6100101 Phone: +27-11-8286169
Fax: +972 (0)6 6554254 Fax: +27-11-8221377

Email: assc@netvision.net.il Email: iem@hot.co.za
Countries served: Israel Countries served: South Africa, Botswana,

Lesotho, Namibia, Mozambique,
Swaziland, Zimbabwe

Company: Axon Technology Company Ltd Company: MercoStat Consultores
Address: 9F, No. 259, Sec. 2 Address: 9 de junio 1389

Ho-Ping East Road CP 11400 MONTEVIDEO
TAIPEI 106 Uruguay
Taiwan

Phone: +886-(0)2-27045535 Phone: 598-2-613-7905
Fax: +886-(0)2-27541785 Fax: Same

Email: hank@axon.axon.com.tw Email: mercost@adinet.com.uy
Countries served: Taiwan Countries served: Uruguay, Argentina, Brazil,

Paraguay

Company: Chips Electronics Company: Metrika Consulting
Address: Lokasari Plaza 1st Floor Room 82 Address: Mosstorpsvagen 48

Jalan Mangga Besar Raya No. 82 183 30 Taby STOCKHOLM
JAKARTA Sweden
Indonesia

Phone: 62 - 21 - 600 66 47 Phone: +46-708-163128
Fax: 62 - 21 - 600 66 47 Fax: +46-8-7924747

Email: puyuh23@indo.net.id Email: sales@metrika.se
Countries served: Indonesia Countries served: Sweden, Baltic States,

Denmark, Finland, Iceland,
Norway

Company: Dittrich & Partner Consulting Company: Ritme Informatique
Address: Kieler Strasse 17 Address: 34, boulevard Haussmann

5. floor 75009 Paris
D-42697 Solingen France
Germany

Phone: +49 2 12 / 26 066 - 0 Phone: +33 (0)1 42 46 00 42
Fax: +49 2 12 / 26 066 - 66 +33 (0)1 42 46 00 33

Email: sales@dpc.de Email: info@ritme.com
URL: http://www.dpc.de URL: http://www.ritme.com

Countries served: Germany, Austria, Italy Countries served: France, Belgium,
Luxembourg

(List continued on next page)
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International Stata Distributors

(Continued from previous page)

Company: Scientific Solutions S.A. Company: Timberlake Consulting S.L.
Address: Avenue du Général Guisan, 5 Address: Calle Mendez Nunez, 1, 3

CH-1009 Pully/Lausanne 41011 Sevilla
Switzerland Spain

Phone: 41 (0)21 711 15 20 Phone: +34 (9) 5 422 0648
Fax: 41 (0)21 711 15 21 Fax: +34 (9) 5 422 0648

Email: info@scientific-solutions.ch Email: timberlake@zoom.es
Countries served: Switzerland Countries served: Spain

Company: Smit Consult Company: Timberlake Consultores, Lda.
Address: Doormanstraat 19 Address: Praceta Raúl Brandao, n�1, 1�E

5151 GM Drunen 2720 ALFRAGIDE
Netherlands Portugal

Phone: +31 416-378 125 Phone: +351 (0)1 471 73 47
Fax: +31 416-378 385 Fax: +351 (0)1 471 73 47

Email: J.A.C.M.Smit@smitcon.nl Email: timberlake.co@mail.telepac.pt
URL: http://www.smitconsult.nl

Countries served: Netherlands Countries served: Portugal

Company: Survey Design & Analysis Company: Unidost A.S.
Services P/L Rihtim Cad. Polat Han D:38

Address: 249 Eramosa Road West Kadikoy
Moorooduc VIC 3933 81320 ISTANBUL
Australia Turkey

Phone: +61 (0)3 5978 8329 Phone: +90 (216) 414 19 58
Fax: +61 (0)3 5978 8623 Fax: +30 (216) 336 89 23

Email: sales@survey-design.com.au Email: info@unidost.com
URL: http://survey-design.com.au URL: http://abone.turk.net/unidost

Countries served: Australia, New Zealand Countries served: Turkey

Company: Timberlake Consultants Company: Vishvas Marketing-Mix Services
Address: 47 Hartfield Crescent Address: “Prashant” Vishnu Nagar

WEST WICKHAM Baji Prabhu Deshpande Path, Naupada
Kent BR4 9DW THANE - 400602
United Kingdom India

Phone: +44 (0)181 462 0495 Phone: +91-251-440087
Fax: +44 (0)181 462 0493 Fax: +91-22-5378552

Email: info@timberlake.co.uk Email: vishvas@vsnl.com
URL: http://www.timberlake.co.uk

Countries served: United Kingdom, Eire Countries served: India


