Stata Technical Bulletin

A publication to promote communication among Stata users

Editor

Joseph Hilbe Stata Technical Bulletin 10952 North 128th Place Scottsdale, Arizona 85259-4464 602-860-1446 FAX stb@stata.com EMAIL

Associate Editors

J. Theodore Anagnoson, Cal. State Univ., LA Richard DeLeon, San Francisco State Univ. Paul Geiger, USC School of Medicine Lawrence C. Hamilton, Univ. of New Hampshire Stewart West, Baylor College of Medicine

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC, fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the ideas, including communication of the ideas to other parties, even if the material is never published in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets, and help files) are copyright (c) by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered trademark of Stata Corporation.

Contents of this is	sue	page
an1.1.	STB categories and insert codes (Reprint)	2
an16.	Stata 3.0 released	2
an16.1.	Implications for the STB	2
crc12.	Oops!	3
dm2.2.	Stat/Transfer 2.0 review update	3
sed6.	Quartiles, outliers, and normality: Some Monte Carlo results	4
smv4.	Oneway multivariate analysis of variance (MANOVA)	5
smv5.	Performing loglinear analysis of cross-classifications	7
sqv2.	A graphical method for assessing the goodness of fit of logit models	17
srd11.	Generating ordered ("cascading") dummy variables	19
srd12.	Some model selection statistics	22
tt3.	Teaching biochemistry & chemistry with Stata: Understanding buffer solutions	26

an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

Gener	al Categories:		
an	announcements	ip	instruction on programming
сс	communications & letters	OS	operating system, hardware, &
dm	data management		interprogram communication
dt	data sets	qs	questions and suggestions
gr	graphics	tt	teaching
in	instruction	ZZ	not elsewhere classified
Statist	tical Categories:		
sbe	biostatistics & epidemiology	srd	robust methods & statistical diagnostics
sed	exploratory data analysis	ssa	survival analysis
sg	general statistics	ssi	simulation & random numbers
smv	multivariate analysis	SSS	social science & psychometrics
snp	nonparametric methods	sts	time-series, econometrics
sqc	quality control	sxd	experimental design
sqv	analysis of qualitative variables	SZZ	not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an16	Stata 3.0 released	
		Ted Anderson, CRC, 800-782-8272, 800-248-8272 (Canada), FAX 310-393-7551

I am pleased to announce that Stata 3.0 has been released and is shipping now. You should have already received a copy of the *Stata News* detailing the updates and providing upgrade information, but if you have not, please call. We will tell you about it over the phone and get the materials to you as quickly as possible.

an16.1	Implications for the STB

Joseph Hilbe, Editor, STB, FAX 602-860-1446

The release of Stata 3.0 causes a problem for the STB. Stata 3.0 has, among other things, an enhanced programming language that is incompatible with previous versions. It can, however, execute old Stata programs, but only after a change is made to them.

The STB will accept future submissions written in either Stata 2.1 or 3.0, but I am going to require that all programs run properly under Stata 3.0. Stata 3.0 includes a new version command that tells it the release under which the program was written. All programs written in 3.0 should include the line 'version 3.0' immediately following the program define. If the program is written under 2.1, the line should read 'version 2.1'.

Stata 2.1 does not provide a version command, however, and the inclusion of this line will prevent the program from running under 2.1 even if the program was written for 2.1. This problem is easily addressed. The ado-file version.ado is included in the an16.1 directory of the STB-6 disk. If you continue to use Stata 2.1, please install the file; it reads

I suggest installing this in your c:\ado or \stata\ado directories. This ado-file will add a version command to your Stata and check that the version number of the program is 2.1. Ado-files written for 3.0 will not run with your Stata, but any ado-files that can run, will run. They will also run correctly under version 3.0 because Stata's internal version command will reset the interpretation of the program back to the old level.

If you use old ado-files previously published in the STB, and if you do upgrade to Stata 3.0, you will need to do something to make the old ado-files work. Before doing anything, however, look in the new manual to see if you still need the old STB program. Many of the previously published programs have been incorporated into the new Stata. Many, however, have not.

There are two ways you can make the old ado-files work which are outlined in the new manual—see [0] new. The best choice is to go back and edit each of the old ado-files and add a 'version 2.1' immediately following the program define.

crc12	Oops!

It had to happen; there is an error in Stata 3.0. In [5s] ci (volume 2, p. 180), we state that the standard error of the mean s_{μ} is defined $\sqrt{s^2/(n-1)}$. We, of course, should have said that the standard error of the mean is $\sqrt{s^2/n}$.

The good news is that the manual accurately reflects the software. The bad news is that the manual really does accurately reflect the software, at least for those of you who received early shipments. Thus, the error also appears in the ci and cii commands themselves. Installing the crc directory from STB-6 disk will fix the problem. Install it even if you are uncertain whether your version has this problem. Be careful not to fall into old habits: the procedure for installing the crc directory has changed—see [7] stb_dos or [7] stb_unix.

If you do not have access to the diskettes, the fix is easy. Line 35 of cii.ado (found in \stata\ado or /usr/local/stata/ado) reads mac def S_4=`s'/sqrt(`n'-1). Change it to read mac def S_4=`s'/sqrt(`n'). That will fix both cii and ci.

dm2.2	Stat/Transfer 2.0 review update
-------	---------------------------------

Joseph Hilbe, Editor, STB, FAX 602-860-1446

In dm2, I reviewed DBMS/COPY and Stat/Transfer. If you will recall, my basic conclusion was that DBMS/COPY was a more professional effort, but that Stat/Transfer was adequate for certain applications and substantially less expensive.

Circle Systems has upgraded Stat/Transfer to produce Stat/Transfer Version 2 and has now produced a thoroughly professional data conversion utility. Among my previous criticisms was that it included only a menu mode, and not a very good one at that. It can now be run in both menu and command modes and the menu system has been completely redone. One nice feature is that it remembers how menus were previously filled in, so you can run it using menus and then later redo the transfer by typing only a single command. I have run it from both the DOS and Window's environments.

Circle Systems has expanded Stat/Transfer's coverage, for instance, it is the only transfer utility that supports Lotus 1-2-3 for Windows and Excel 3.0 for Windows. Like DBMS/COPY, it now supports SAS transport files (but DBMS/COPY is still unique in that it supports regular DOS and Unix SAS files, too). Stat/Transfer 2.0 supports:

Database	Spreadsheet	Statistical
Alpha Four	Excel	Gauss
Clipper	Lotus 1-2-3 (all)	SAS Transport
dBASE II-IV	Quattro Pro	SPSS export
Foxbase	Symphony	Stata
Paradox	• • •	SYSTAT

As before, Stat/Transfer users may select variables to be transferred; that is, it is easy to choose a subset of variables for conversion between packages. A new feature, it is now possible to specify variable types.

Stat/Transfer comes with a new 62-page manual. In most cases, however, a user will never need to consult the manual; the on-screen menu selections together with appropriate default settings (which one can modify) allow near intuitive use.

I put Stat/Transfer 2.0 through the same series of tests as previously. In two of the tests, the old Stat/Transfer did not produce desirable results. One test involved a source file with duplicates names. The old version simply transferred the duplicate names! The new version properly adds a numeric value, starting with "1", to make duplicate names unique, a solution similar to that adopted by DBMS/COPY. The second test checked what happens when there is an illegal variable name in the source file. Previously, Stat/Transfer produced a data set containing the illegal names, making the result unusable. Version 2.0, like DBMS/COPY, converts illegal variable names into legal ones.

Stat/Transfer 2.0 impressed me as an excellent transfer or conversion utility. If you use any of the major database or spreadsheet programs, or use Gauss, SAS, SPSS, or SYSTAT together with Stata, the time saved having Stat/Transfer will be well worth the expense.

Version 2.0 can be purchased for \$129 from Circle Systems or from Computing Resource Center (1-800-782-8272). Upgrades from version 1.4 are available for \$60. Academic rates have been set at \$60 for new purchases and an upgrade price of only \$30. Site licenses can also be arranged.

sed6 Quartiles, outliers, and normality: Some Monte Carlo results

Lawrence C. Hamilton, Department of Sociology, Univ. of New Hampshire, l_hamilton@unhh.unh.edu

In an American Statistician article, Frigge, Hoaglin, and Iglewicz (1989) note that different statistical packages employ a variety of definitions in constructing their boxplots. These can lead to substantially different-looking plots, based on the same data. Two main areas of disagreement are (1) approximations for sample quartiles and (2) identification of "severe" outliers. Their article gives examples, and lists eight alternative definitions for sample quartiles.

Boxplot quartiles determine not only the range spanned by the central box (drawn from Q1 to Q3), but also which observations get identified as "outliers" and, in some implementations, "severe outliers" (for an introduction to boxplots, see Hamilton 1990). Stata's summarize, detail and graph, box estimate quartiles with a version of Frigge et al.'s definition 5 (though Stata adds a provision for case weights). The iqr program described in STB-3 (Hamilton 1991) builds upon summarize and so also uses this definition. On the other hand, the lv (letter values) command introduced with Stata 3.0 reports "hinges" (approximate quartiles) based on definition $6.^1$ The results differ for certain sample sizes: $n = 7, 11, 15, 19, \ldots$. When they do differ, the hinges (definition 6) are closer to the center, thus producing a narrower "midspread" (approximate interquartile range) and labeling more cases as outliers.

Hoaglin, Iglewicz, and Tukey (1986) performed a Monte Carlo investigation of outliers in samples from Gaussian populations. They found that the percentage of samples containing severe outliers (values below Q1 - 3IQR or above Q3 + 3IQR) declines with increasing sample size, from n = 10 to 300. With still larger samples this pattern theoretically must reverse, however. We know that 100% of infinite-size Gaussian samples will contain outliers.

Figures 1–5 use new Monte Carlo data to explore this terrain in greater detail.² Figure 1 shows the observed percentage of samples from Gaussian populations that contain severe outliers, based on 1,000 artificial samples per sample size, n = 5 to 31. In small samples, both definition 5 and definition 6 behave unsmoothly. They "peak" (detect more outliers) at $n = 5, 9, 13, 17, \ldots$ As expected, definition 6 detects more outliers than definition 5 at $n = 7, 11, 15, 19, \ldots$. These cycles dampen, and differences between the two estimates fade, as sample size increases.

After about n = 15, the proportion of samples containing severe outliers falls below 5% (Figure 2). It eventually levels off and then rises slowly, exceeding 5% again only as sample sizes surpass about 20,000 cases (Figure 3). Circles in Figure 3 depict the experimental results, while the up-to-right line (actually a curve) shows theoretical expectations based on Gaussian population quartiles. Figure 4 carries the theoretical curve further, showing that the percentage of samples with outliers exceeds 90% as n surpasses about one million cases.

For n > 2500, experimental results generally follow Gaussian-population theory—because sampling variation in quartile estimates no longer plays a large role. Experimental standard deviations of the quartile estimates dropped from about .55 at n = 5 to .03 at n = 2500 and .008 at n = 30,000 (Figure 5).

Severe outliers challenge analysts in several ways. They may signify measurement errors, mixed populations, omitted variables, or other trouble. Whatever their cause, they tend to disproportionately influence analytical results. Figures 1–3 emphasize another reason for paying attention to outliers: they should be rare, if samples truly come from a Gaussian population. Less than 5% of samples drawn experimentally from a Gaussian population included any severe outliers, for sample sizes ranging from about n = 15 to 20,000. The presence of any severe outliers in samples of this size could therefore be viewed as sufficient evidence to reject normality at the 5% significance level.

Notes

- 1. According to Frigge et al., SPSS and Statgraphics use definition 5; Minitab and Systat use definition 6. SAS defaults to definition 4, but offers 5 and certain others as options.
- 2. The accompanying data set, outliers.dta, contains the results graphed in Figures 1-4. I will be happy to share the complete Monte Carlo data (44,000 observations in two datasets) with anyone who sends two 1.44mb disks.

References

Frigge, M., D. C. Hoaglin, and B. Iglewicz. 1989. Some implementations of the boxplot. The American Statistician 43: 50-54.

Hamilton, L. C. 1990. Modern Data Analysis: A First Course in Applied Statistics. Pacific Grove, CA: Brooks/Cole.

-----. 1991. Resistant normality check and outlier identification. Stata Technical Bulletin 3: 15-18.

Hoaglin, D. C., B. Iglewicz, and J. W. Tukey. 1986. Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association 81: 991–999.

|--|

Joseph Hilbe, Editor, STB, FAX 602-860-1446

The syntax for manova is

manova grp_var dep_vars, matrix

manova is written under Stata 3.0. manova allows the user to perform a oneway multivariate analysis of variance on two dependent variables and one independent variable. The latter may be over two or more levels or groups. A matrix option is available that provides output of the W (within-groups sum of squares and cross-products) and T (total SS and CP) matrices together with their respective determinants. Wilk's Lambda λ is provided with an F statistic and corresponding significance.

In the case of non-factorial designs, λ is the ratio of the determinant of W to the determinant of T. It is a multivariate test evaluating whether the groups significantly differ in their measures on the set of dependent variables.

The displayed ANOVA table provides univariate F tests for each dependent variable. The F tests show whether the levels or groups differ for each dependent variable.

The following example consists of a data set comprised of one independent variable with four levels (coded as 1–4), and two dependent variables. As a comparison, I have provided partial output of an SPSS/PC+ MANOVA run on the same data set. I have placed manova4.dta on the STB-6 diskette for your use.

manova.ado is the most basic MANOVA procedure. Although a simple factorial design can be constructed as an ado-file, one cannot easily write an ado-file for a model allowing three dependent variables. This would necessitate finding the determinant of a 3×3 matrix—a more tedious task. Matrices of greater dimension would be required for models with a greater number of dependent variables.

Example

```
. describe
Contains data from manova4.dta
 Obs:
         33 (max=126264)
Vars:
          3 (max=
                   99)
Width:
       12 (max=
                  200)
                float %9.0g
 1. iv
 2. dv1
                float %9.0g
                float %9.0g
 3. dv2
Sorted by:
Note: Data has changed since last save
. manova iv dv1 dv2, m
            Oneway Multivariate Analysis of Variance
     Number of obs in model = 33
                                   Number of groups = 4
     Model degrees freedom = 3,29
Variable | HypSS
                     ErrSS HypMS
                                         ErrMS
                                                   F
                                                        Prob>F
        7449.2531 32410.9893 2483.0844 1117.6203 2.22 0.1069
dv1
dv2
         23481.0713 43160.9893 7827.0238 1488.3100 5.26 0.0051
               -----
Wilk's lambda (df:6,56) =
                            0.3327
                                                  6.85 0.0000
   W matrix
                     32410.9893
                                   32756.2393
                     32756.2393
                                   43160.9893
   T matrix
                     39860.2424
                                   40946.8788
                                   66642.0606
                     40946.8788
 W determinant = 325919149.1571
                                 T determinant = 979721808.9394
```

Below is output from SPSS/PC+ for the same problem:

SPSS/PC+ The Statistical Package for IBM PC MANOVA dv1 dv2 by iv(1,4). * * ANALYSIS OF VARIANCE -- DESIGN 1 * * EFFECT .. IV Multivariate Tests of Significance (S = 2, M = 0, N = 13) Test Name Value Approx. F Hypoth. DF Error DF Sig. of F 6.14659 .000 Pillais .77740 6.00 58.00 Hotellings 1.67518 7.53830 6.00 54.00 .000 6.84870 Wilks .33266 6.00 56.00 .000 .59124 Roys _ _ _ _ _ _ _ _ _ _ _

6

 Univariate F-tests with (3,29) D. F.

 Variable
 Hypoth. SS
 Error SS
 Hypoth. MS
 Error MS
 F Sig. of F

 DV1
 7449.25314
 32410.9893
 2483.08438
 1117.62032
 2.22176
 .107

 DV2
 23481.0713
 43160.9893
 7827.02377
 1488.30998
 5.25900
 .005

References

Bruning, J. L. and B. L. Kintz. 1987. Computational Handbook of Statistics, 3d ed. Glenview, IL: Scott, Foresman & Co. Johnson, R. A. and D. W. Wichern. 1988. Applied Multivariate Statistical Analysis. Englewood Cliffs, NJ: Prentice–Hall. Tabachnick, B. G. and L. S. Fidell. 1989. Using Multivariate Analysis. New York: Harper & Row.

smv5 Performing loglinear analysis of cross-classifications

D. H. Judson, Dept. of Sociology, Washington State Univ., Pullman, WA 99164-4020

Cross-classified count data is a common occurrence in the social, behavioral, and health sciences. Often only the table itself is available for analysis. loglin analyzes up to four-way tables of counts:

loglin count varlist [=exp] [in range] [if exp], fit(margins to be fitted)
[ltol(#) iter(#) offset(variable) anova keep resid collapse]

[loglin will work with either Stata 2.1 or 3.0, but 2.1 users must install version.ado; see an16.1—ed.] loglin estimates a Poisson maximum-likelihood loglinear model. There are two cases: (1) You have only a summary table, and *count* indicates the number of cases that fall in each level of *varlist*, or (2) you have full information on all cases, so that each case should count once. If you fall into case 2, you would be better served to use the poisson command on your full data set.

For loglin, the *count* variable should contain positive integers reflecting the number of cases that fall in the crossclassification of *varlist*. The counts must be positive for each observed combination of the independent variables. If a count is zero, you may assume that it is a structural zero and replace it with a missing value or a zero cell weight; you may add a small positive constant, .5 for example, to zero cells; or, best of all, you may get more data.

Cell weights

If you specify =*exp*, loglin will assume that the expression represents cell weights. The default option for cell weights is no rescaling. If you wish to specify a particular cell as a structural zero, you may specify a cell weight of zero for that cell.

Functional form

This model falls in the class of generalized linear models with a categorical design matrix, a log link, and a Poisson distributed disturbance. Thus, the program generates a design matrix similar to the anova command, which is then passed to the poilog, a modification of the poisson regression program. The functional form of the model is log-linear:

$$\ln (E(count)) = pred + offset$$

where the predicted value is a linear combination of the design matrix for the categorical independent variables in *varlist*. Unlike poisson, the predict command may not be used after loglin; specify resid instead, which will add the predicted cell frequencies to the copy of the data in memory. If offset() is specified, it is added to the predicted value for the purposes of estimation, so that the prediction is actually a predicted rate.

anova option and constraints

Like anova, the design matrix for loglin is not identified, hence constraints must be imposed on estimated parameters in order to generate an unique solution. There are two types used in this command: ANOVA-like and regression-like. In regression-like constraints, redundant levels of independent variables are summarily dropped (the first level is dropped, then any interaction with it). In ANOVA-like constraints, the first level is dropped, but the missing level is set equal to -1 times the sum of all the other levels. Interpret regression-like parameter estimates as deviations from the baseline level, and interpret ANOVA-like parameter estimates as deviations from the grand mean. To activate ANOVA-like constraints, specify the anova option. Otherwise, regression-like constraints will be used.

STB-6

keep option

loglin normally drops the variables it generates for estimation. If you specify keep, these variables will be retained in the data for future use. Only the 1st-order variables (i.e., A1, A2, \cdots Ax, B1, B2, \cdots By, C1, C2, \cdots Cz, etc.) will be labeled. Keeping the variables allows the user to create a new design matrix from the already existing variables, or to generate specialized models, but it does add substantially to the size of the data set. keep does not work when collapse is specified.

resid option

If you specify resid, estimated expected cell frequencies, residuals and standardized residuals will be calculated, displayed, and stored in the variables _cellhat, _resid, and _stdres. Residuals are calculated as actual cell count minus the estimated expected cell count. Standardized residuals are calculated as residual divided by the square root of the estimated expected cell count. If collapse is also specified, the above will be displayed but not retained in the data.

collapse option

Specify the collapse option only if your data contains more variables than you wish to work with in the specific model fit and you wish to analyze the subset specified in *varlist* as if it were the complete table.

collapse calculates cell counts for the variables in *varlist*, adding together the counts from all other variables not in *varlist* and placing them in appropriate cells (i.e., it collapses the table). It then generates a temporary data set on which it performs analysis. After calculations are completed, it restores the original data set. Note that if you specify both the resid and collapse options, your estimated expected cell frequencies, residuals, and standardized residuals will be displayed, but not saved with your original data set.

fit(margins to be fit)

The fit option is the engine that drives the loglin command. To specify a loglinear model, the fit option must be specified. This program generates hierarchical models, so that only the highest interaction is specified; all lower-level interactions will automatically be included. Separate the margins by commas, and specify interactions with a blank. The fit notation follows that developed by Feinberg (1981). For example, suppose we have summary data with three independent variables—iv1, iv2, and iv3—with counts coded in a variable called dv. If we wish to fit an independence model (i.e., [1] [2] [3] in Feinberg's notation), we type

```
loglin dv iv1 iv2 iv3, fit(iv1,iv2,iv3)
```

If we wish to fit a saturated model ([123] in Feinberg's notation), we type

loglin dv iv1 iv2 iv3, fit(iv1 iv2 iv3)

Estimation

loglin generates the appropriate design matrix for the configurations fit and passes that matrix to the poilog command for estimation. poilog, which is a minor modification of poisson, uses iteratively reweighted least squares, the estimates of which are equivalent to maximum-likelihood (See McCullagh and Nelder 1983, 31–34, for a discussion of the algorithm).

Convergence

The parameters ltol() and iter() may be used to control the maximization process. ltol() specifies the maximum change in the log likelihood that will be accepted as indicating convergence (default 1e-7), and iter() specifies the maximum number of iterations (default 100).

Theory of loglinear models

Assume that we have observations on N cases on k discrete variables A_1, \dots, A_k .

Let

 A_1 take on $0, 1, 2, \ldots, n_1$ discrete values;

 A_2 take on $0, 1, 2, ..., n_2$ values;

••

 A_k take on $0, 1, 2, \ldots, n_k$ values.

We arrange these observations in a contingency table or cross-tabulation or cross-classification table. For example, let A_1 take on 2 values, A_2 take on 2 values, and A_3 take on 2 values. Let A_1 represent race of murderer (0=white, 1=nonwhite), A_2 represent race of victim (0=white, 1=nonwhite), and A_3 represent death penalty (0=life, 1=death). This data is presented in Agresti (1984, 32). If we place the appropriate counts in the cells, then the cross-tabulation is

	Race of murderer			
	Whi	ite	Nonwhite	
Death penalty:	Yes	No	Yes	No
White victim	19	132	11	52
Nonwhite victim	0	9	6	97

We have data on 3 variables, but there is a 4th variable, and the most important variable. Cell counts are the variable of real interest; they range from 0 to N for any cell. So we are particularly interested in modeling the distribution of cell counts.

Let $Y_{n_1,n_2,...,n_k}$ be independently distributed POI($\mu_{n_1,n_2,...,n_k}$). That is, each cell count is independently Poisson distributed with its own parameter $\mu_{n_1,n_2,...,n_k}$. Under the assumption that the cell counts are independently distributed, we can write the likelihood function as

$$L(\mu|Y) = \prod_{j=1}^{n_1 n_2 \cdots n_k} \frac{e^{-\mu_j} \mu_j^{Y_j}}{Y_j!}$$

and the log-likelihood function as:

$$\ln L(\mu|Y) = \sum_{j=1}^{n_1 n_2 \cdots n_k} -\ln(Y_j!) - \mu_j + Y_j \ln(\mu_j)$$

We have specified the stochastic component of the table; if we estimated these parameters using the cell frequency data, we would have one unique parameter for each cell. This would perfectly reproduce the table, but would not be particularly informative. To take the death penalty example, such a model would be presented verbally as "there are X whites who kill whites who get the death penalty; Y whites who kill nonwhites who get the death penalty; Z whites who kill nonwhites who do not get the death penalty; etc." Obviously, this information can be obtained simply by looking at the cell counts.

We wish to find a more parsimonious model that summarizes, with "reasonable" goodness of fit, the data in the table. Thus, we specify a structural component to answer the question: What is the effect of race of victim, race of murderer, etc.? A convenient specification is as follows:

Let $\ln \mu = X\beta$, where X is a $(n_1 \times \cdots \times n_k \times v)$ design matrix of nonstochastic variables, β is a $(v \times 1)$ vector of design parameters, and μ is a $(n_1 \times \cdots \times n_k \times 1)$ vector of log cell parameters. Note that $\ln \mu_j = X_j\beta = X_{j,1}\beta_1 + X_{j,2}\beta_2 + \cdots + X_{j,v}\beta_v$. As can be seen, each row of the matrix X times the parameter vector β , determines the log of the cell parameter μ . This is substituted into the likelihood function, partial derivatives taken, and the root(s) of this equation in β can be solved iteratively using, for example, the Newton–Raphson algorithm or iteratively reweighted least squares.

The final question to be answered is, what is X and how is it specified? Since the only other variables of interest are A_1, \ldots, A_k , we use X as a design matrix of indicator variables specifying unique parameters for specific cells. Consider the example of a $2 \times 2 \times 2$ death penalty table. If we were to specify the model that all the cell frequencies are the same (meaning that all the Poisson counts are governed by the same parameter, or that, e.g., P[death penalty|nonwhite murderer]=P[death penalty|white murderer], we specify X as a $n_1 \times \cdots \times n_k \times 1$ matrix and β as a 1×1 vector. Thus,

$$\ln(\mu) = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} \cdot (\beta) = \begin{pmatrix} \beta\\\beta\\\vdots\\\beta \end{pmatrix}$$

If this model fits the data well, we have simplified the structure of the table, from a maximum of 8 parameters, 1 per cell, to this minimum of 1.

Now consider a more sophisticated model: We wish to specify a baseline level of occupants in each cell, plus an additional amount in all death penalty cells (so that the margins of our estimated cell frequencies will be the same as the margins in the obtained table), an additional amount in all nonwhite victim cells (to fit that margin), and an additional amount in all nonwhite murderer cells (to fit that margin). This results in

What does this model say?

White murderers $(A_1 = 0)$ who kill white victims $(A_2 = 0)$ receive the nondeath penalty $(A_3 = 0)$ a baseline number of times (β_0) .

White murderers $(A_1 = 0)$ who kill white victims $(A_2 = 0)$ receive the nondeath penalty $(A_3 = 0)$ a baseline number of times (β_0) plus an additional amount (β_1) that adjusts for the relative frequency of death penalties.

White murderers $(A_1 = 0)$ who kill nonwhite victims $(A_2 = 1)$ receive the nondeath penalty $(A_3 = 0)$ a baseline number of times (β_0) plus a race of victim effect (β_2) .

White murderers $(A_1 = 0)$ who kill nonwhite victims $(A_2 = 0)$ receive the nondeath penalty $(A_3 = 0)$ a baseline number of times (β_0) plus an additional amount (β_1) that adjusts for the relative frequency of death penalties plus a race of victim effect (β_2) .

Additional effects can be determined for other combinations in the table. Please note that this interpretation depends on the use of regression-like constraints (Long 1984, 405) in the estimation process. If ANOVA-like constraints or some other constraints were used, the interpretation of the meaning of the parameters would be altered. However, by diagramming the table and collecting the parameters affecting each cell, the interpretation of the particular constraints used becomes clear. In general, individual parameters should be interpreted with great care, since their estimated value usually depends upon the constraints chosen. See Elswick, Gennings, Chinchilli, and Dawson (1991) for an excellent discussion of estimability and a simple method for determining estimable parameters.

Example

```
. use agr72
. describe
Contains data from c:\data\work\agr72.dta
  Obs:
           24 (max= 10380)
 Vars:
            4
              (max=
                       100)
                           %9.0g
                                               # OF INDIVIDUALS
  1. count
                    float
                           %9.0g
  2. dept
                                               BERKELEY DEPARTMENT
                    float
  3. male
                    float
                           %9.0g
                                               1=MALE APPLICANT
  4. admitted
                    float
                          %9.0g
                                               1=ADMITTED TO BERKELEY
Sorted by: dept
                   male admitted
. * The following listing exhibits the "standard" data structure assumed by loglin.
. list, nodisp
          count
                       dept
                                   male
                                           admitted
                                                   0
  1.
             19
                                      0
                          1
  2.
             89
                                       0
                                                   1
                          1
  з.
            313
                          1
                                                   0
                                       1
  4.
            512
                          1
                                       1
                                                   1
                                                   0
  5.
              8
                          2
                                       0
  6.
             17
                          2
                                       0
                                                   1
  7.
            207
                          2
                                                   0
                                       1
                          2
  8.
            353
                                       1
                                                   1
                          3
                                                   0
  9.
            391
                                       0
 10.
            202
                          3
                                       0
                                                   1
            205
                          3
                                                   0
 11.
                                      1
 12.
            120
                          3
                                       1
                                                   1
```

13.	2	44	4	0	(0		
14.	1	31	4	0		1		
15.	2	79 20	4	1	,	1		
17	2	30 QQ	4 5	1		0		
18.	2	94	5	Ő		1		
19.	1	38	5	1		0		
20.		53	5	1		1		
21.	3	17	6	0		0		
22.		24	6	0		1		
23.	3	51	6	1	(0		
24.		22	6	1	:	1		
<pre>. * Fin . * the . * but . * Ass . logl: Variabl Variabl Variabl Margins Note: F</pre>	rst, w e male t the sume r in cou le dep le mal le adm s fit: Regres	<pre>e fit margi indivi egress nt dep t = A e = B itted dept, sion-l</pre>	the indep n, and th dual cell ion-like t male ac = C male,adm ike const	pendence mo ne admitted Ls may not constraint dmitted, f: itted traints are	odel. Thi d margin w be comple ts unless o it(dept,ma e assumed.	s means th ill be con tely repro otherwise le,admitte The firs	at the dept ma mpletely reprod oduced. indicated. ed) keep resid	rgin, uced, h
variabl	le (an	d all	interact	ions with :	it) will b	e dropped	from estimatio	n.
Iterat	ion O:	Log L	ikelihood	d = -1404	.5778 Chan	ge = 1		
Iterat	ion 1:	Log L	ikelihood	d = -1137	.0895 Chan	ge = 267.	. 4883	
Iterat	ion 2:	Log L	ikelihood	d = -1128	.3747 Chan	ge = 8.71	148	
Iterat.	1011 3 1011 3	Log L	ikelihood	1 = -1128 1 = -1128	.3669 Chan	ge – .00: ge =	90 19	
Note: (Conver	gence	achieved	. Last chai	nge = 0.7	0000000000		
Poissor	n Reor	ession	(Log li	uk function	n)	Number of	f cells = 24	
Goodnes	ss of	fit ch	i2(16) =	2097.672		Model chi	12(7) = 552.422	
Prob >	chi2		=	0.0000		Prob > ch	112 = 0.0000	
Log Lik	keliho	od	=	-1128.367				
Variabl	Le	Coeffi	cient	Std. Erron	r t	Prob >	t Mean	
	+							-
_cour	nt						188.58333	
	+ \2	4	66793	05273	7 –8.85	1 0 00	16666667	-
1	13	0	16208	.046488	8 -0.34	9 0.73	30 .16666667	
Ī	44	1	63844	.048310	6 -3.39	1 0.00	.16666667	
I	A5	4	68504	.05276	5 -8.87	9 0.00	.16666667	
1	A6	2	67522	.049723	3 -5.38	0.00	.16666667	
E	32	.3	82868	.030275	5 12.64	6 0.00	.5	
(C2	4	56739	.03050	7 -14.97	2 0.00	.5	
_cor	ns	5.	44498	.039189	9 138.94	2 0.00	00 1	
count 10	dept 1	male a	amittea	_Celinat _	_resid _s	tares		
19 89	1	0	1	201.090	212 117.1	-19 07A		
313	-			146 678	-57 678	-13.970 -4 762		
010	1	1	0	146.678 339.627	-57.678	-13.970 -4.762 -1.445		
512	1 1	1 1	0	146.678 339.627 215.101	-57.678 -26.627 296.898	-13.970 -4.762 -1.445 20.244		
512 8	1 1 2	1 1 0	0 1 0	146.678 339.627 215.101 145.211	-57.678 -26.627 296.898 -137.211	-13.970 -4.762 -1.445 20.244 -11.386		
513 512 8 17	1 1 2 2	1 1 0 0	1 0 1 0 1	146.678 339.627 215.101 145.211 91.969	-57.678 -26.627 296.898 -137.211 -74.969	-13.970 -4.762 -1.445 20.244 -11.386 -7.817		
513 512 8 17 207	1 1 2 2 2	1 1 0 0 1	0 1 0 1 0	146.678 339.627 215.101 145.211 91.969 212.950	-57.678 -26.627 296.898 -137.211 -74.969 -5.950	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408		
512 8 17 207 353	1 1 2 2 2 2 2	1 1 0 0 1 1	1 0 1 0 1 0 1	$146.678 \\ 339.627 \\ 215.101 \\ 145.211 \\ 91.969 \\ 212.950 \\ 134.871 \\ 952 \\ 950 \\ 134.871 \\ 952 \\ 950 \\ 134.871 \\ 952 \\ 950 \\ 134.871 \\ 952 \\ 950 \\ 134.871 \\ 952 \\ 950 \\ 134.871 \\ 952 \\ 950 \\$	-57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783		
512 8 17 207 353 391	1 2 2 2 2 3 3	1 1 0 1 1 0	1 0 1 0 1 0 1 0	$146.678 \\ 339.627 \\ 215.101 \\ 145.211 \\ 91.969 \\ 212.950 \\ 134.871 \\ 227.869 \\ 144.320 \\ 144.3$	-57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801		
512 8 17 207 353 391 202 205	1 1 2 2 2 2 3 3 3	1 1 0 1 1 0 0	0 1 0 1 0 1 0 1	$146.678 \\ 339.627 \\ 215.101 \\ 145.211 \\ 91.969 \\ 212.950 \\ 134.871 \\ 227.869 \\ 144.320 \\ 334.167 \\ \end{cases}$	-57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066		
512 8 17 207 353 391 202 205 120	1 1 2 2 2 3 3 3 3 3	1 1 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0	$146.678 \\ 339.627 \\ 215.101 \\ 145.211 \\ 91.969 \\ 212.950 \\ 134.871 \\ 227.869 \\ 144.320 \\ 334.167 \\ 211.643 \\ $	-57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299		
512 8 17 207 353 391 202 205 120 244	1 2 2 2 3 3 3 3 4	1 1 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0	$146.678 \\ 339.627 \\ 215.101 \\ 145.211 \\ 91.969 \\ 212.950 \\ 134.871 \\ 227.869 \\ 144.320 \\ 334.167 \\ 211.643 \\ 196.593 \\ \end{array}$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381		
512 8 17 207 353 391 202 205 120 244 131	1 2 2 3 3 3 3 4 4	1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511$	-57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581		
512 8 17 207 353 391 202 205 120 244 131 279	1 2 2 2 3 3 3 3 4 4 4	1 1 0 0 1 1 0 0 1 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301$	-57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548		
512 512 8 17 207 353 391 202 205 120 244 131 279 138	1 2 2 3 3 3 4 4 4 4	1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548 -3.300		
512 8 17 207 353 391 202 205 120 244 131 279 138 299	1 2 2 3 3 3 4 4 4 4 5	1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0	0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594\\144.963$	-57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594 154.037	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548 -3.300 12.794		
512 8 17 207 353 391 202 205 120 244 131 279 138 299 94	1 2 2 2 3 3 3 4 4 4 5 5	1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594\\144.963\\91.811\\245.564$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594 154.037 2.189 24.89	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548 -3.300 12.794 0.228		
512 8 17 207 353 391 202 205 120 244 131 279 138 299 94 138 299	1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5	1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594\\144.963\\91.811\\212.586\\124.640$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594 154.037 2.189 -74.586 -91.642	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548 -3.300 12.794 0.228 -5.116 -7.202		
512 8 17 207 353 391 202 205 120 244 131 279 138 299 94 138 53 317	$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594\\144.963\\91.811\\212.586\\134.640\\177.232$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594 154.037 2.189 -74.586 -81.640 139.768	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548 -3.300 12.794 0.228 -5.116 -7.036 10.499		
512 8 17 207 353 391 202 205 120 244 131 279 138 299 94 138 53 317 24	$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594\\144.963\\91.811\\212.586\\134.640\\177.232\\112.249$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594 154.037 2.189 -74.586 -81.640 139.768 -88.249	-13.970 -4.762 -1.445 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548 -3.300 12.794 0.228 -5.116 -7.036 10.499 -8.329		
512 8 17 207 353 391 202 205 120 244 131 279 138 299 94 138 53 317 24 351	$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\$	1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594\\144.963\\91.811\\212.586\\134.640\\177.232\\112.249\\259.908\\$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594 154.037 2.189 -74.586 -81.640 139.768 -88.249 91.092	-13.970 -4.762 -1.45 20.244 -11.386 -7.817 -0.408 18.783 10.807 4.801 -7.066 -6.299 3.381 0.581 -0.548 -3.300 12.794 0.228 -5.116 -7.036 10.499 -8.329 5.650		
512 8 17 207 353 391 202 205 120 244 131 279 138 299 94 138 53 317 24 351 22	$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$146.678\\339.627\\215.101\\145.211\\91.969\\212.950\\134.871\\227.869\\144.320\\334.167\\211.643\\196.593\\124.511\\288.301\\182.594\\144.963\\91.811\\212.586\\134.640\\177.232\\112.249\\259.908\\164.611$	-57.678 -57.678 -26.627 296.898 -137.211 -74.969 -5.950 218.129 163.131 57.680 -129.167 -91.643 47.407 6.489 -9.301 -44.594 154.037 2.189 -74.586 -81.640 139.768 -88.249 91.092 -142.611	$\begin{array}{r} -13.970 \\ -4.762 \\ -1.445 \\ 20.244 \\ -11.386 \\ -7.817 \\ -0.408 \\ 18.783 \\ 10.807 \\ 4.801 \\ -7.066 \\ -6.299 \\ 3.381 \\ 0.581 \\ -0.548 \\ -3.300 \\ 12.794 \\ 0.228 \\ -5.116 \\ -7.036 \\ 10.499 \\ -8.329 \\ 5.650 \\ -11.115 \end{array}$		

. \ast Describe the data to see changes wrought by the resid and keep options.

. describe Contains data from c:\data\work\agr72.dta 24 (max= 10380) Obs: 15 (max= 100) Vars: 1. count float %9.0g # OF INDIVIDUALS 2. dept float %9.0g BERKELEY DEPARTMENT 3. male float %9.0g 1=MALE APPLICANT float %9.0g 1=ADMITTED TO BERKELEY 4. admitted CELL FREQUENCY float %6.0f 5. _count 6. A2 byte %8.0g dept== 2.0000 7. A3 %8.0g dept== 3.0000 byte 4.0000 dept== 8. A4 byte %8.0g 9. A5 byte %8.0g dept== 5.0000 %8.0g dept== 10. A6 6.0000 byte 11. B2 byte %8.0g male== 1.0000 %8.0g 12. C2 admitted== 1.0000 byte float %8.3f ESTIMATED EXPECTED CELL FREQ. 13. _cellhat 14. _resid float %7.3f **RESIDUAL** 15. _stdres STANDARDIZED RESIDUAL float %7.3f Sorted by: dept male admitted Note: Data has changed since last save . format A2-C2 %2.0f . * Listing the variables A2-C2 displays the "design matrix" for the . * loglinear model. In addition, this design matrix can be modified to . * fit more esoteric models such as those described in Agresti, 1984. . list A2-C2, nodisplay A6 A2 A3 A4 A5 B2 C2 1. 0 0 0 0 0 0 0 0 2. 0 0 0 0 0 1 3. 0 0 0 0 0 1 0 4. 0 0 0 0 0 1 1 5. 1 0 0 0 0 0 0 6. 1 0 0 0 0 0 1 0 0 0 7. 0 0 1 1 8. 1 0 0 0 0 1 1 9. 0 0 0 0 0 0 1 10. 0 1 0 0 0 0 1 11. 0 1 0 0 0 1 0 12. 0 0 0 0 1 1 1 13. 0 0 1 0 0 0 0 14. 0 0 1 0 0 0 1 15. 0 0 1 0 0 1 0 16. 0 0 1 0 0 1 1 17. 0 0 0 1 0 0 0 18. 0 0 0 1 0 0 1 19. 0 0 0 1 0 1 0 20. 0 0 0 1 0 1 1 21. 0 0 0 0 1 0 0 22. 0 0 0 0 1 0 1 23. 0 0 0 0 1 1 0 0 0 0 24. 0 1 1 1 . * Now we fit the less parsimonious model [dept male],[dept admitted]: . * This model assigns the following parameters to cells: . * dept male admitted . * 0 0 constant 1 . * 0 1 constant + C2 1 . * 1 1 0 constant + B2 constant + B2 + C2 . * 1 1 1 . * constant + A2 2 0 0 2 0 1 constant + A2 + C2 . * + CA22 . * 2 0 constant + A2 + B2 + AB22 1 * 2 1 1 constant + A2 + B2 + C2 + AB22. * 3 0 0 constant + A3 constant + A3 + C2 constant + A3 + B2 + AB32 constant + A3 . * 3 0 1 + CA23 3 0 . * 1 . * 3 constant + A3 + B2 + C2 + AB321 1 . * 4 0 0 constant + A4 constant + A4 + C2 constant + A4 + B2 + AB42 . * + CA24 4 0 1 . * 4 0 1 . * 4 1 1 constant + A4 + B2 + C2 + AB42constant + A5 . * 5 0 0 . * constant + A5 + C2 + CA255 0 1

```
+ AB52
                       constant + A5 + B2
      5
           1
                0
                       constant + A5 + B2 + C2 + AB52
. *
      5
           1
               1
. *
                      constant + A6
      6
           0
                0
. *
      6
           0
                       constant + A6
                                                    + CA26
                1
                                         + C2
                       constant + A6 + B2 + AB62
. *
      6
           1
                0
. *
                       constant + A6 + B2 + C2 + AB62
      6
           1
                1
. * Note that all of the above functions are estimable.
. * Note in the following that interactions specified in the fit option
. * do not need to be in the same order as in the variable specification.
. loglin count dept male admitted, fit(admitted dept, dept male) keep resid
Variable dept = A
Variable male = B
Variable admitted = C
Margins fit: admitted dept, dept male
Note: Regression-like constraints are assumed. The first level of each
variable (and all interactions with it) will be dropped from estimation.
Iteration 0: Log Likelihood = -1404.5778 Change = 1
Iteration 1: Log Likelihood = -404.8278 Change = 999.75
Iteration 2: Log Likelihood = -120.38834 Change = 284.43946
Iteration 3: Log Likelihood = -92.429359 Change = 27.958981
Iteration 4: Log Likelihood = -90.437172 Change = 1.992187
Iteration 5: Log Likelihood = -90.398109 Change = .039063
Note: Convergence achieved. Last change = 0.000000000
Poisson Regression (Log link function)
                                             Number of cells= 24
Goodness of fit chi2(6) = 21.734
                                             Model chi2(17) = 2628.359
Prob > chi2
               =
                           0.0014
                                             Prob > chi2 = 0.0000
                       = -90.398
Log Likelihood
Variable | Coefficient Std. Error
                                         t Prob > |t|
                                                              Mean
                     -----
                                  _____
  count
                                                         188.58333
                                                         _____
           -1.43096 .232683 -6.150 0.000 .16666667
     A2

        2.30438
        .116079
        19.852
        0.000
        .16666667

        1.86308
        .120481
        15.464
        0.000
        .16666667

     A3
                                              0.000
             1.86308
2.03498
                                     15.464
17.005
     A4
                                                        .16666667
     A5
                            .119666
                                                0.000
                                     17.743 0.000 .16666667
     A6
             2.11643
                            .119283
                            .228598
   AB22
              1.07581
                                       4.706
                                                0.000
                                                         .08333333
   AB32
              -2.63462
                            .123429
                                     -21.345
                                                0.000
                                                         .08333333
   AB42
              -1.92709
                            .124644 -15.461
                                                0.000 .08333333
   AB52
                                                        .08333333
              -2.75479
                            .135098 -20.391
                                                0.000
    AB62
              -1.94356
                            .126826
                                     -15.325
                                                 0.000
                                                         .08333333
              2.03325
                                     19.870
                             .10233
                                                0.000
    B2
                                                        . 5
                                     8.679
     C2
               .59346
                            .068381
                                                 0.000
                                                        .5
   CA22
              -.050595
                            .10968
                                      -0.461
                                                0.649
                                                         .08333333
                            .097259 -12.432
   CA23
             -1.20915
                                                 0.000
                                                        .08333333
    CA24
              -1.25833
                            .101516 -12.395
                                                 0.000
                                                        .08333333
                            .117333
                                                 0.000
   CA25
              -1.68296
                                     -14.343
                                                         .08333333
   CA26
              -3.26911
                            .167069
                                      -19.567
                                                 0.000
                                                         .08333333
              3.64886
                            .105828
                                     34.479
                                                 0.000
                                                        1
   cons
   ----+--
             _____
count dept male admitted _cellhat _resid _stdres
      1 0 0 38.431 -19.431 -3.134
1 0 1 69.569 19.431 2.330
 19
 89
             1 0 293.569 19.431
 313
        1
                                           1.134
            1
                 1 531.431 -19.431
0 9.188 -1.188
 512
                                          -0.843
        1
  8
        2
             0
                                          -0.392
 17
        2
           0
                         15.812 1.188
                                          0.299
                 1
                                 1.188
           1
 207
        2
                 0
                        205.812
                                          0.083
 353
        2
                        354.188
                                 -1.188
                                          -0.063
             1
                  1
                     384.998 6.002
 391
           0
                                          0.306
        3
                 0
 202
        3
            0
                       208.002 -6.002
                                          -0.416
                 1
 205
        3
             1
                 0
                        211.002
                                  -6.002
                                          -0.413
                                 6.002
                                          0.562
 120
        3
             1
                 1
                        113.998
 244
                     247.633 -3.633 -0.231
        4
             0
                 0
                      127.367
                                 3.633
 131
            0
                                           0.322
        4
                 1
 279
        4
             1
                 0
                        275.367
                                  3.633
                                          0.219
 138
        4
           1
                 1
                       141.633 -3.633 -0.305
 299
        50
50
                      294.077
                                  4,923
                                          0.287
                 0
                                         -0.495
 94
        5
             0
                 1
                         98.923
                                  -4.923
        51
 138
                       142.923
                                 -4.923 -0.412
                 0
 53
      51
                1
                        48.077 4.923
                                         0.710
```

```
317
                          319.031
         6
              0
                   0
                                   -2.031
                                             -0.114
 24
         6
              0
                   1
                          21,969
                                    2.031
                                              0.433
 351
         6
              1
                   0
                          348.969
                                    2.031
                                              0.109
 22
         6
                           24.031
                                   -2.031
                                             -0.414
              1
                   1
. describe
Contains data from c:\stata\work\agr72.dta
 Obs:
          24 (max= 10380)
 Vars:
         25 (max= 100)
                 float %9.0g
                                          # OF INDIVIDUALS
 1. count
                  float %9.0g
  2. dept
                                           BERKELEY DEPARTMENT
                  float %9.0g
                                           1=MALE APPLICANT
 3. male
  4. admitted
                  float
                         %9.0g
                                           1=ADMITTED TO BERKELEY
  5. _count
                  float %6.0f
                                           CELL FREQUENCY
  6. A2
                  byte
                         %8.0g
                                           dept==
                                                      2.0000
 7. A3
                  byte
                         %8.0g
                                           dept==
                                                      3.0000
                         %8.0g
                                           dept==
 8. A4
                                                      4.0000
                  byte
                                                      5.0000
 9. A5
                  byte
                         %8.0g
                                           dept==
                         %8.0g
 10. A6
                  byte
                                           dept==
                                                      6.0000
 11. B2
                         %8.0g
                                                      1.0000
                  byte
                                           male==
                         %8.0g
 12. C2
                  byte
                                           admitted== 1.0000
 13. CA22
                  byte
                         %8.0g
 14. CA23
                  byte
                         %8.0g
                         %8.0g
15. CA24
                  byte
 16. CA25
                         %8.0g
                  byte
 17. CA26
                  byte
                         %8.0g
                         %8.0g
18. AB22
                  byte
 19. AB32
                  byte
                         %8.0g
                         %8.0g
 20. AB42
                  byte
 21. AB52
                  byte
                         %8.0g
 22. AB62
                  byte
                         %8.0g
 23. _cellhat
                  float %8.3f
                                           ESTIMATED EXPECTED CELL FREQ.
 24. _resid
                  float %7.3f
                                           RESTDUAL
 25. _stdres
                  float %7.3f
                                           STANDARDIZED RESIDUAL
Sorted by: dept male admitted
Note: Data has changed since last save
. * Again we list A2-AB62 to display the "design matrix."
. format A2-AB62 %2.0f
. list A2-AB62, nodisplay
     A2 A3 A4 A5 A6 B2 C2 CA22 CA23 CA24 CA25 CA26 AB22 AB32
AB42 AB52 AB62
 1. 0 0
              0
                  0
                      0
                          0
                              0
                                  0
                                      0
                                          0
                                               0
                                                  0
                                                      0
                                                          0
                                                               0
                                                                  0
                                                                      0
  2. 0
          0
              0
                  0
                      0
                          0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                               0
                                                                  0
                                                                      0
                              1
 3. 0
          0
              0
                  0
                      0
                          1
                              0
                                  0
                                      0
                                          0
                                               0
                                                  0
                                                      0
                                                           0
                                                               0
                                                                  0
                                                                      0
  4. 0
          0
              0
                  0
                      0
                                  0
                                      0
                                          0
                                               0
                                                  0
                                                       0
                                                           0
                                                               0
                                                                  0
                                                                      0
                          1
                              1
          0
              0
                  0
                      0
                              0
                                  0
                                      0
                                          0
                                              0
                                                               0
                                                                      0
  5.
                          0
                                                  0
                                                      0
                                                          0
                                                                  0
     1
  6.
     1
          0
              0
                  0
                      0
                          0
                              1
                                  1
                                      0
                                          0
                                               0
                                                  0
                                                      0
                                                          0
                                                               0
                                                                  0
                                                                      0
  7. 1
          0
              0
                  0
                      0
                          1
                              0
                                  0
                                      0
                                          0
                                               0
                                                  0
                                                           0
                                                               0
                                                                  0
                                                                      0
                                                      1
                  0
  8. 1
          0
              0
                      0
                                      0
                                          0
                                              0
                                                          0
                                                              0
                                                                      0
                          1
                              1
                                  1
                                                  0
                                                      1
                                                                  0
  9.
     0
          1
              0
                  0
                      0
                          0
                              0
                                  0
                                      0
                                          0
                                               0
                                                  0
                                                      0
                                                           0
                                                               0
                                                                  0
                                                                      0
                  0
 10. 0
          1
              0
                      0
                          0
                              1
                                  0
                                      1
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                              0
                                                                 0
                                                                      0
 11. 0
          1
              0
                  0
                      0
                          1
                              0
                                  0
                                      0
                                          0
                                               0
                                                  0
                                                      0
                                                          1
                                                               0
                                                                  0
                                                                      0
 12. 0
          1
              0
                  0
                      0
                          1
                              1
                                  0
                                      1
                                          0
                                              0
                                                  0
                                                      0
                                                          1
                                                               0
                                                                  0
                                                                      0
                  0
13. 0
          0
              1
                      0
                          0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                              0
                                                                 0
                                                                      0
 14. 0
          0
              1
                  0
                      0
                          0
                              1
                                  0
                                      0
                                          1
                                               0
                                                  0
                                                      0
                                                           0
                                                               0
                                                                  0
                                                                      0
 15. 0
          0
                  0
                      0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                                  0
                                                                      0
              1
                          1
                                                              1
 16. 0
          0
              1
                  0
                      0
                          1
                              1
                                  0
                                      0
                                          1
                                              0
                                                  0
                                                      0
                                                          0
                                                               1
                                                                  0
                                                                      0
 17. 0
          0
              0
                  1
                      0
                          0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                               0 0
                                                                      0
 18. 0
          0
              0
                      0
                          0
                                  0
                                      0
                                          0
                                                  0
                                                      0
                                                          0
                                                              0 0
                                                                      0
                  1
                              1
                                              1
 19. 0
          0
              0
                  1
                      0
                          1
                              0
                                  0
                                      0
                                          0
                                               0
                                                  0
                                                      0
                                                          0
                                                               0
                                                                  1
                                                                      0
 20. 0
                                                               0
          0
              0
                      0
                                  0
                                      0
                                          0
                                                  0
                                                      0
                                                          0
                                                                      0
                  1
                              1
                                              1
                          1
                                                                 1
 21. 0
          0
              0
                  0
                      1
                          0
                              0
                                  0
                                      0
                                          0
                                              0
                                                  0
                                                      0
                                                          0
                                                               0
                                                                 0
                                                                      0
 22. 0
          0
              0
                  0
                      1
                          0
                              1
                                  0
                                      0
                                          0
                                              0
                                                  1
                                                      0
                                                          0
                                                               0
                                                                  0
                                                                      0
```

1 1 0 0 0 0 0 0 0 0 0 1

23 0

24. 0

0 0

```
. * For comparison purposes, we re-estimate the model using anova-like
. * constraints. Note that expected cell frequencies, residuals,
. * standardized residuals, and goodness-of-fit chi-square statistics
. * all remain the same. The parameter estimates change, and they are
. * interpreted differently than with regression-like constraints.
. loglin count dept male admitted, fit(dept male,dept admitted) resid anova
Variable dept = A
Variable male = B
Variable admitted = C
Margins fit: dept male, dept admitted
Note: Anova-like constraints are assumed. The first level of each
variable (and all interactions with it) will be dropped from estimation.
The variable codings are constrained to sum to zero, so the first
level will equal -1 times the sum of the other levels.
Iteration 0: Log Likelihood = -1404.5778 Change = 1
Iteration 1: Log Likelihood = -404.8278 Change = 999.75
Iteration 2: Log Likelihood = -120.38834 Change = 284.43946
Iteration 3: Log Likelihood = -92.429359 Change = 27.958981
Iteration 4: Log Likelihood = -90.437172 Change = 1.992187
Iteration 5: Log Likelihood = -90.398109 Change = .039063
Note: Convergence achieved. Last change = 0.000000000
Poisson Regression (Log link function)
                                        Number of cells=
                                                             24
Goodness of fit chi2(6) = 21.734
                                        Model chi2(17) = 2628.359
               = 0.0014
Prob > chi2
                                       Prob > chi2 = 0.0000
Log Likelihood
                   = -90.398
Variable | Coefficient Std. Error
                                      t Prob>t
                                                         Mean
          _____
_____
  count
                                                    188.58333
    A2 -.761805 .087896 -8.667 0.000
                                                             0
              .539039
                         .039247 13.734 0.000
     A3
                                                             0
             .426922
                          .0402 10.620 0.000
.048433 -0.565 0.577
     A4
                                                            0
             -.027346
                         .048433
     A5
                                                             0
                                    -4.942 0.000
                         .067454
             -.333357
     A6
                                                             0
   AB22
             1.21993
                         .086536
                                  14.097 0.000
                                                             0
                         .036305
   AB 32
              -.63529
                                   -17.499
                                              0.000
                                                             0
        -.281525
   AB42
                          .03699
                                    -7.611
                                             0.000
                                                             0
             -.695373
   AB52
                         .042671
                                   -16.296 0.000
                                                             0
   AB 62
             -.289757
                          .038207
                                             0.000
                                                             0
                                    -7.548
   AC22
              .597214
                          .040075
                                    14.902
                                             0.000
                                                             0
   AC32
              .017937
                          .034316
                                    0.523
                                             0.606
                                                             0
                                    -0.183
                          .036313
                                              0.000
   AC42
             -.006653
                                                             0
   AC52
                          .043538
                                              0.000
                                                             0
              -.218969
                                    -5.029
   AC62
             -1.01204
                          .065215
                                   -15.518
                                             0.000
                                                             0
    B2
              .334605
                          .019502
                                   14.615
                                              0.000
                                                             0
    C2
              -.325782
                          .019502
                                   -16.705
                                             0.000
                                                             0
        184.909
   _cons
                          .025989
             4.80567
                                             0.000
                                                             1
_____
                          _cellhat
count dept male admitted
                                      _resid _stres
                                    -19.431 -3.134
19.431 2.330
      1
19
           0 0
                            38.431
89
            0
                            69.569
      1
                 1
      1
          1
              0
                         293.569
                                      19.431 1.134
313
512
      1 1 1
                         531.431
                                      -19.431 -0.843
      2
                         9.188
15.812
8
           0
                0
                                      -1.188 -0.392
                1
                                      1.188 0.299
17
           0
207
                         205.812
                                       1.188
      2 1
                0
                                              0.083
353
      2
                           354.188
                                       -1.188 -0.063
           1
                1
391
      3
           0
                 0
                           384.998
                                       6.002
                                              0.306
202
      3
         0
                1
                           208.002
                                       -6.002 -0.416
                                       -6.002 -0.413
205
          1
                           211.002
      3
                0
120
      3
                           113.998
                                        6.002
           1
                 1
                                              0.562
244
           0
                           247.633
                                       -3.633 -0.231
       4
                 0
131
       4
          0
                1
                           127.367
                                       3.633 0.322
279
      4
           1
                 0
                           275.367
                                        3.633
                                              0.219
                                       -3.633 -0.305
138
      4
           1
                1
                           141.633
299
                          294.077
                                       4.923 0.287
      5
           0
                0
94
      5
           0
                            98.923
                                       -4.923 -0.495
                1
138
      5
           1
                0
                           142.923
                                       -4.923 -0.412
53
      5
          1
                1
                            48.077
                                       4.923 0.710
317
      6
           0
                0
                           319.031
                                       -2.031 -0.114
24
      6
           0
                1
                            21.969
                                        2.031
                                              0.433
                                       2.031 0.109
351
      6
                0
                           348.969
           1
```

24.031

-2.031 -0.414

6

1

1

22

. * Finally, we fit the so-called "saturated model." The saturated model specifies a number of parameters equal to the number of cells; thus, . * all cell frequencies are fit perfectly. . loglin dept male admitted =count, fit(male admitted dept) keep resid Variable dept = A Variable male = BVariable admitted = CMargins fit: male admitted dept Note: Regression-like constraints are assumed. The first level of each variable (and all interactions with it) will be dropped from estimation. Iteration 0: Log Likelihood = -1404.5778 Change = 1 Iteration 1: Log Likelihood = -490.0153 Change = 914.5625 Iteration 2: Log Likelihood = -121.71842 Change = 368.29688 Iteration 3: Log Likelihood = -82.286781 Change = 39.431639 Iteration 4: Log Likelihood = -79.618813 Change = 2.667968 Iteration 5: Log Likelihood = -79.530922 Change = .087891 Note: Convergence achieved. Last change = 0.000000000 Poisson Regression (Log link function) Number of cells = 24Goodness of fit chi2(0) = 0.000 Model chi2(23) = 2650.094 _ Prob > chi2 Prob > chi2 = 0.0000= -79.531 Log Likelihood Variable | Coefficient Std. Error t Prob > |t| Mean ____ _count 188.58333 _____ A2 -.864997 .421566 -2.0520.051 .16666667 A3 3.02427 .234985 12.870 0.000 .16666667 A4 2.55273 .238242 10.715 0.000 .16666667 .16666667 A5 2.756 .236654 11.646 0.000 A6 | 2.81446 .236252 11.913 0.000 .16666667 B2 | 2.80176 .236338 11.855 0.000 .5 0.000 BC22 -1.05208.262776 -4.004 .25 BA22 .451513 .430985 1.048 0.305 .08333333 BA23 -3.44746.251585 -13.7030.000 .08333333 BA24 -2.66772.252075 -10.583 0.000 .08333333 BA25 -3.57495 .257782 -13.868 0.000 .08333333 BA26 -2.69988.248721 -10.855 0.000 .08333333 BCA222 .832054 .510522 1.630 0.116 .04166667 BCA223 .299636 3.928 1.177 0.001 .04166667 BCA224 .970089 .302697 3.205 0.004 .04166667 BCA225 1.25226 .330408 3.790 0.001 .04166667 .86318 .402771 .04166667 BCA226 2.143 0.042 C2 1.5442 .252786 6.109 0.000 .5 CA22 -.790426.497809 -1.588.08333333 0.125 CA23 -2.20464.267231 -8.250 0.000 .08333333 CA24 -2.16617.275025 -7.876 0.000 .08333333 CA25 -2.70135.279089 -9.6790.000 .08333333 CA26 -4.12505.329765 -12.5090.000 .08333333 .229475 12.831 0.000 2.94444 _cons 1 ----+ _ _ _ _ _ _ _ _ _ _ _ _____ dept male admitted _cellhat _resid count_stdres 0 0 19.000 0.000 0.000 19 1 89 1 0 89.000 -0.000 -0.000 1 313 1 1 0 313.000 -0.000 -0.000 512.000 512 1 1 1 0.000 0.000 8 8.000 0.000 2 0 0 0.000 17 2 0 17.000 0.000 0.000 1 207 2 1 0 207.000 -0.000 -0.000 353 2 1 353.000 0.000 0.000 1 0.000 391 3 0 0 391.000 0.000 202 3 0 202.000 0.000 0.000 1 205 3 205.000 0.000 0.000 0 1 120 3 1 120.000 -0.000 -0.000 1 244 4 0 0 244.000 0.000 0.000 131.000 -0.000 131 4 0 1 -0 000 279 279.000 0.000 0.000 4 1 0 138 4 138.000 0.000 0.000 1 1 299 5 0 0 299.000 -0.000 -0.000 94 5 0 1 94.000 -0.000-0.000 138 138.000 0.000 5 1 0 0.000 53 5 1 1 53.000 0.000 0.000 317 6 0 0 317.000 0.000 0.000 24 6 0 1 24.000 0.000 0.000

Comparison of loglinear results: GAUSS and the loglin command

I have compared the results from loglin with results from several other packages, most importantly, the GAUSS loglinear analysis module, which uses the Newton-Raphson algorithm to maximize the log-likelihood directly (Long 1990). I have used three data sets included on the STB-6 disk: agr72.dta, a three-way cross-classification of admissions to graduate school at UC-Berkeley; (Sex by Department by Whether admitted, Agresti 1984, 71–73); agr67.dta, a three-way cross-classification of dumping severity in operations for duodenal ulcer patients (Operation type by Hospital by Dumping severity, Agresti 1984, 67; originally presented in Grizzle, Starmer, and Koch 1969); and 4way.dta, a hypothetical four-way data set (iv1 by iv2 by iv3 by iv4). To summarize, I found no differences between GAUSS loglinear and loglin to the fourth decimal place in any parameter estimate, estimated standard error, t-statistic, or probability value. I found no differences to the second decimal place in any likelihood ratio chi-square, estimated cell frequency, or standardized residual, and likewise found small differences at the third and fourth decimal places. In no case was any substantive conclusion at risk.

References

Agresti, A. 1984. Analysis of Ordinal Categorical Data. New York: John Wiley & Sons.

Elswick, R. K., Jr., C. Gennings, V. M. Chinchilli, and K. S. Dawson. 1991. A simple approach for finding estimable functions in linear models. The American Statistician 45: 51–53.

Feinberg, S. 1981. The Analysis of Cross-Classified Categorical Data. Cambridge, MA: The MIT Press.

Grizzle, J. E., C. F. Starmer, and G. G. Koch. 1969. Analysis of categorical data by linear models. Biometrics 25: 489-504.

Long, J. S. 1984. Estimable functions in log-linear models. Sociological Methods and Research 12: 399-432.

-----. 1990. Loglinear analysis. In Gauss Applications. Aptech Systems, Inc., 26250 196th Place SE, Kent, WA 98042, 206-631-6679.

McCullagh, P., and J. A. Nelder. 1983. Generalized Linear Models. London: Chapman and Hall.

sqv2	A graphical method for assessing the goodness of fit of logit models

D. H. Judson, Dept. of Sociology, Washington State Univ., Pullman, WA 99164-4020

Assessing the goodness of fit of logit models is troublesome. Stata's logit command incorporates one method in its tabulate option. The option collapses the predicted values of the logit model into zero or one predictions: If the logit model prediction is greater than or equal to .5, the predicted value is one. If the logit model prediction is less than .5, the predicted value is zero. The tabulate option is less desirable, however, because it collapses into a binary space a prediction which is fundamentally continuous in nature; the predicted logit function.

An alternative suggestion is a pseudo- R^2 measure, with analogous properties to the regression R^2 . One of these is already used in logiodds.ado [and the 3.0 logistic command—ed.]. Two others that have been proposed are described in Aldrich and Nelson (1984, 57–58). Aldrich and Nelson's Pseudo- $R^2 = c/(N+c)$, where c is the likelihood-ratio chi-square statistic and N is the sample size. They also suggest a measure derived from McKelvey and Zavoina (1975), which is written as pseudo- $R^2 = ExSS/(ExSS + 3.29 * N)$, where ExSS = ("Explained Sum of Squares") = $\sum (Y^* - Y')$. In this formula, Y^* equals the predicted value of the dependent variable Y, and Y' equals the mean value of the predicted dependent variable Y^* . These pseudo- R^2 measures, while potentially useful, are not ideal because they are only "analogous" to the regression R^2 and they are not widely accepted, reported, or used.

The alternative which I propose makes use of Stata's strength in graphical methods. Instead of collapsing or summarizing information from data, as all of the above methods do, let us take advantage of the subtlety of the human eye. This example makes use of a data set called example.dta on disk. In this data set (results from which are reported more fully in Judson and Duran-Aydintug 1990), we recorded experimental subjects' choices (1 or 0) in four different choice situations (story1-story4) where there were estimated rewards (rewards1 and rewards0) and costs (costs1 and costs0) associated with the choices. The first example assumes one intercept exists for all four choice situations, and generates a single predicted logit function. The file logit1.do generates the graph.

. use example.dta . logit choice lvratio lcratio,tabulate Iteration 0: Log Likelihood =-82.121327 Iteration 1: Log Likelihood = -66.62887 Iteration 2: Log Likelihood =-64.207386 Iteration 3: Log Likelihood = -64.01465

Iteration 4: Log Likelihood =-64.012898 Iteration 5: Log Likelihood =-64.012898									
Logit Esti	Logit Estimates Number of obs = 126 chi2(2) = 36.22								
Log Likeli	ihood =-64.01289	98		Prob > chi2	= 0.0000				
Variable	Coefficient	Std. Erro	or t	Prob > t	Mean				
choice					.6428571				
lvratio	.3401437	.080483	4.226	0.000	1.649815				
lcratio	.1112064	.063810	51 1.743	0.084	.3032699				
_cons	.2662457	.220288	34 1.209	0.229	1				
Compar Outcome	rison of Outcome Pr < .5	es and Proba Pr >= .5	abilities Total						
Failure	22	23	45						
Success	9	72	81						
Total	31	95	126						
. predict	predict								
. gen logo	dds = log(pred:	ict/(1-pred:	ict))						
. lab var	logodds "PREDIC	CTED LOGIT H	UNCTION"						
. sort log	godds								
. graph choice predict logodds, symbol(oi) connect(.L) jitter(2) xline(0) yline(.5) l1("CHOICE") t1("GRAPH OF LOGIT FUNCTION VS. ACTUAL CHOICE")									
. $*$ The above command generates figure 1									

As can be seen, the immediate question that the eye assesses is how closely does the line come to the "bulk" of the points? By using the jitter option, the points have simulated mass. The vertical and horizontal lines mark off the regions corresponding to those in the tabulation in the logit command. Those points falling in the upper-right and lower-left quadrants are "hits," while those points fall in the other two quadrants are "misses." In addition, outliers become apparent, as in the one case far in the lower-right quadrant: The predicted logit function for this case is quite close to one, but instead the subject chose option zero.

The second example assumes that each separate story has its own intercept, and thus estimates a parameter for each story (story1-story4). While this is a more realistic model in our experimental context, it makes graphical analysis somewhat more troublesome. The file logit2.do generates four graphs on one screen, one for each story.

. use exam	ple.dta				
. logit ch	oice story1 sto	ry2 story3 stor	y4 lvrat	io lcratio,ta	abulate nocons
Iteration Iteration Iteration Iteration Iteration Iteration	0: Log Likelih 1: Log Likelih 2: Log Likelih 3: Log Likelih 4: Log Likelih 5: Log Likelih	ood =-87.336545 ood =-62.575621 ood =-59.498732 ood =-59.156149 ood =-59.149952 ood = -59.14995			
Logit Esti	mates			Number of ob	os = 126
Log Likeli	hood = -59.1499	5			
Variable	Coefficient	Std. Error	t	Prob > t	Mean
choice					.6428571
story1	.369128	.3946969	0.935	0.352	.3174603
story2	.6762513	.4486641	1.507	0.134	.2936508
story3	.965393	.553165	1.745	0.084	.2301587
story4	-1.045009	.5369355	-1.946	0.054	.1587302
lvratio	.3156666	.083842	3.765	0.000	1.649815
lcratio	.1114089	.0716004	1.556	0.122	.3032699
+ Compar	ison of Outcome	s and Probabili	ties		

Outcome	Pr < .5	Pr >= .5	Total
Failure Success	27 9	18 72	45 81
Total	36	90	126

```
. predict predict
. gen logodds = log(predict/(1-predict))
. lab var logodds "PREDICTED LOGIT FUNCTION"
. sort story logodds
. graph choice predict logodds, by(story) symbol(oi) connect(.L) jitter(2)
xline(0) yline(.5) l1("CHOICE") t1("GRAPH OF LOGIT FUNCTION VS. ACTUAL
CHOICE")
. * The above command generates figure 2
```

Although this graph is somewhat less aesthetically pleasing, it does illustrate not only goodness of fit but also certain analytically interesting aspects of the data. In the case of story 2, there exists enough variation in predictions to make the complete logit function appear, and the marginal distribution of choices corroborates this. In the case of stories 1, 3, and 4, however, there is a preponderance of cases in one category or the other. For example, in story 3 virtually all predictions are in the upper-right quadrant, and most cases did indeed choose that option. In story 4, however, the predictions were almost uniformly in the lower-left quadrant, and most cases chose that option.

In summary, this technique adds one more graphical method to the data analyst's arsenal of methods. It is quite easy to apply and generates a result that is readily interpretable.

References

Aldrich, J. H. and F. D. Nelson. 1984. Linear Probability, Logit, and Probit Models. Beverly Hills, CA: Sage Publications.

Judson, D. H. and C. Duran-Aydintug 1990. Test of the satisfaction-balance decision model using direct numeric estimation. Social Forces 70: 475–494.
McKelvey, R. D. and W. Zavoina. 1975. A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology 4: 103–120.

srd11	Generating ordered ("cascading") dummy variables	

Richard Goldstein, Qualitas, Brighton, MA, EMAIL goldst@harvarda.bitnet

The syntax for the cascade command is

cascade varname [if exp] [in range], generate(newvar)

[cascade will work with either Stata 2.1 or 3.0, but 2.1 users must install version.ado; see an16.1—ed.] cascade adds a set of new dummy variables to your data set that are "cascading"; that is, rather than dummy variables that are coded 0/1 for each particular value in the variable (as occurs using 'tab varname, gen(newvar)'—see [5s] tabulate in the Stata 3.0 reference manual), this creates variables coded 0/1 where a 1 is given if the case has the value for that variable or any lower value for that variable.

The generate() "option" is not optional. *newvar* should have no more than 6 characters.

The values of *varname* do not have to start with 1 and do not have to be consecutive, but they do have to be stored as bytes. If the variable is not a byte, you can easily convert it by using either compress or recast assuming it is an integer between -127 and 126.

This ado-file is useful when your categorical variable is *ordered*. In this case, each dummy variable shows the amount of change between categories rather than the amount of change between the category of interest and the reference category. For more, including a discussion of the meaning of these dummy's in Cox proportional hazards and in logistic regression, see Walter, Feinstein, and Wells (1987).

The ado-file automatically uses the lowest category (i.e., the category with the lowest value) as the reference category. If instead you want to use the highest category as the reference category, form a new variable that is equal to a + b - oldvar, where a and b are the lowest and highest values of the categories. Thus, if you have a variable coded 1–4 and want to use 4 as the reference category, type 'gen *newvar=5-oldvar*'. Note that this trick only works if the lowest category is non-negative. In any case, after forming the new variable, proceed as above.

Example 1

```
. use auto
(1978 Automobile Data)
. compress
mpg was int now byte
rep78 was int now byte
trunk was int now byte
turn was int now byte
foreign was int now byte
make was str18 now str17
. cascade rep78 if rep78!=., gen(rep78)
```

The following output can be obtained at any time by removing the asterisks (comment markers) from the second and third last lines of the ado-file. This output shows the resulting coding (an easier-to-read example has been made up below this output by editing).

-> rep	78=	1				
	rep78	rep782	rep783	rep784	rep785	
2.	1	0	0	0	0	
-> rep	78=	2				
-	rep78	rep782	rep783	rep784	rep785	
10.	2	1	0	0	0	
-> rep	78=	3				
-	rep78	rep782	rep783	rep784	rep785	
40.	- 3	1	1	0	0	
-> rep	78=	4				
-	rep78	rep782	rep783	rep784	rep785	
58.	- 4	1	1	1	0	
-> rep	78=	5				
-	rep78	rep782	rep783	rep784	rep785	
69.	- 5	- 1	- 1	- 1	- 1	
-> rep	78=					
-	rep78	rep782	rep783	rep784	rep785	
74.						

Here is the output, edited for clarity—you can see where the name "cascading" comes from.

	rep78	rep782	rep783	rep784	rep785
2.	- 1	0	0	0	- 0
10.	2	1	0	0	0
40.	3	1	1	0	0
58.	4	1	1	1	0
69.	5	1	1	1	1
74.					

Contrast the above cascading dummies with "normal" dummy variables which would have one "1" in each of the second through fifth rows (as shown just below).

	rep78	rep782	rep783	rep784	rep785
2.	1	0	0	0	0
10.	2	1	0	0	0
40.	3	0	1	0	0
58.	4	0	0	1	0
69.	5	0	0	0	1
74.	•				

The following summary and tabulate commands show that the correct number of cases are in each group; 97% of the cases have a 1 for rep782 because 97% of the cases have greater than a 1 on rep78 (of the non-missing cases); similarly, 16% of the non-missing cases have a 1 for rep785 since 16% of the non-missing cases have a 5 for rep78.

. summ rep7*						
Variable	Obs	Mean	Std. Dev.	Mi	n	Max
rep78	69	3.405797	.9899323		1	5
rep782	69	.9710145	.1689948		0	1
rep783	69	.8550725	.3546068		0	1
rep784	69	.4202899	.4972216		0	1
rep785	69	.1594203	.3687494		0	1
. tab rep78 Repair						
Record 1978		Freq.	Percent	Cum.		
1	+ 	2	2.90	2.90		
2		8	11.59	14.49		
3	1	30	43.48	57.97		
4		18	26.09	84.06		
5		11	15.94	100.00		
Total	• 	69	100.00			

Example 2

The variable mpg, tabulated below, does not have 1 as its minimum value and is not limited to consecutive integers—dummy variables are only formed for those values that exist and that are larger than the minimum value.

. cascade mpg, . describe mpg*	gen (mpg) *		
8. mpg	byte	%8.0g	Mileage (mpg)
14. mpg14	byte	%8.0g	mpg==14
15. mpg15	byte	%8.0g	mpg==15
(output for mpg16-	-mpg25 omi	tted)	
26. mpg26	byte	%8.0g	mpg==26
27. mpg28	byte	%8.0g	mpg==28
(output for mpg29-	-mpg30 omi	tted)	
30. mpg31	byte	%8.0g	mpg==31
31. mpg34	byte	%8.0g	mpg==34
32. mpg35	byte	%8.0g	mpg==35
33. mpg41	byte	%8.0g	mpg==41

Example 3

The following are example regressions, showing the difference between "normal" and "cascading" dummy variables:

. use auto (1978 Automot . compress re rep78 was int . * First, le . tab rep78, Repair	pile Data) p78 ; now byte pt's make tra gen(rep)	ditional dum	nmy´s:			
Record 1978	Freq.	Percent	Cum.			
1	2	2.90	2.90			
2	8	11.59	14.49			
3	30	43.48	57.97			
4	18	26.09	84.06			
5	11	15.94	100.00			
Total	69	100.00				
. * and now,	ordinal dumm	y´s:				
. cascade rep	78 if rep78!	, gen(rep7	78)			
. * Here is a	a list of all	the new dum	nmy variables,	and the	original	variable:
. desc rep*					0	
13. rep78	byte	%8.0g	Repair Reco	rd 1978		
14. rep1	byte	%8.0g	rep78==	1.0000		
15. rep2	byte	%8.0g	rep78==	2.0000		
16. rep3	byte	%8.0g	rep78==	3.0000		
17. rep4	byte	%8.0g	rep78==	4.0000		
18. rep5	byte	%8.0g	rep78==	5.0000		
19. rep782	byte	%8.0g	rep78==2			
20. rep783	byte	%8.0g	rep78==3			
21. rep784	byte	%8.0g	rep78==4			
22. rep785	byte	%8.0g	rep78==5			

Regression using traditional dummies:

. * Regres . reg mpg	ssion using trac weight weightso	litio q rep	nal dummy´s 2-rep5	:				
Source	SS	df	MS			Number of obs	=	69
Model Residual Total	1616.29232 723.910582 2340.2029	6 62 68	269.382053 11.6759771 34.4147485			F(6, 62) Prob > F R-square Adj R-square Root MSE		23.07 0.0000 0.6907 0.6607 3.417
Variable	Coefficient	St	d. Error		t	Prob > t		Mean
mpg	•						2	1.28986
weight weightsq rep2 rep3	013743 1.32e-06 6012862 -1.057246		.0042661 6.78e-07 2.706235 2.516164	-3 1 -0 -0	. 221 . 950 . 222	0.002 0.056 2.0.825 0.676	3	032.029 9812703 .115942 4347826
rep4	-1.525988		2.594396	-0	.588	0.559 0.650	•	2608696
_cons	50.7208		7.163491	7	.080	0.000	•	1

I now show regression using ordinal dummy's. Note that you could obtain the coefficients shown below from those above using subtraction; similarly, you could obtain the p-values shown below using the test command on the above regression. However, at least in some cases, I find the use of ordinal dummy's easier.

. reg mpg weight weightsq rep782-rep785

Source	SS	df	MS		Number of obs	= 69 = 23.07
Model Residual	1616.29232 723.910582	6 62	269.382053 11.6759771		Prob > F R-square Adi R-square	= 0.0000 = 0.6907 = 0.6607
Total	2340.2029	68	34.4147485		Root MSE	= 3.417
Variable	Coefficient	St	d. Error	t	Prob > t	Mean
mpg						21.28986
weight weightsq rep782 rep783 rep784 rep785 _cons	013743 1.32e-06 6012862 4559596 4687423 2.756869 50.7208		.0042661 6.78e-07 2.706235 1.380617 1.064018 1.347234 7.163491	-3.22 1.95 -0.22 -0.33 -0.44 2.04 7.08	1 0.002 0 0.056 2 0.825 0 0.742 1 0.661 5 0.045 0 0.000	3032.029 9812703 .9710145 .8550725 .4202899 .1594203 1

References

Walter, S. D., A. R. Feinstein, and C. K. Wells. 1987. Coding ordinal independent variables in multiple regression analyses. American Journal of Epidemiology 125: 319–323.

|--|

Richard Goldstein, Qualitas, Brighton, MA, EMAIL goldst@harvard.bitnet

The syntax for amemiya is

amemiya

[amemiya will work with either Stata 2.1 or 3.0, but 2.1 users must install version.ado; see an16.1—ed.] Type the one word, amemiya, directly after typing a regression to obtain a set of model selection statistics. Note that neither if nor in are allowed—if you estimate a regression using either of these options, you should temporarily drop the effected cases!

How does one compare, in an overall way, non-nested models? Part of the answer comes from the literature on choosing subsets of right-hand-side variables (nested models). amemiya.ado produces several model selection criteria to help choose between models, regardless of whether they are nested, and to help decide whether a model is guilty of "overfit" (too many right-hand-side variables).

These statistics are not perfect answers to either goal. In particular, if you really are choosing only from among nested models, two statistics not produced here would be of help: (1) Mallow's Cp (Mallows 1973); and, (2) Mean Squared Error of Prediction (MSEP). A good discussion of both can be found in Miller (1990).

For this ado-file, I am more concerned with non-nested models where the response variable (dependent variable, left-hand-side variable) is the same in each model to be compared. Many now use R^2 , adjusted R^2 , RMSE, etc. These are produced already by Stata. Several other statistics, however, have been suggested and these are not produced by Stata but are in this ado-file. These statistics include:

1) The adjusted R^2 based on Amemiya's Prediction Criterion.

This statistic penalizes R^2 more heavily than adjusted R^2 for each additional degree of freedom used on the right-hand side of the equation. The formula is

Amemiya's
$$R^2 = 1 - \left(\frac{n+p}{n-p}\right)(1-R^2)$$

whereas the formula for adjusted R^2 is $1 - [(n/(n-p))(1-R^2)]$. In both formulas, n is the number of observations in the model, while p is the number of right-hand side variables, not including the constant. As with other R^2 -type measures, maximize this. The difference between this and the standard adjusted- R^2 (as reported by Stata) is that Amemiya's version has a higher penalty for adding variables.

2) Hocking's Sp criterion (closely related to both Cp and MSEP).

This is an adjustment of the residual Sum of Squares; the formula is

$$\frac{X(n-p-1)}{(n-p)(n-p-2)} \quad \text{where} \quad X = \sum \left(\frac{\text{residual}^2}{n-p-1}\right)$$

Minimize this criterion. This can be interpreted as measuring the "expected squared distance between the true and predicted values of the dependent variable y" (Thompson 1978, 130).

3) Akaike's Information Criterion, presented in both its logged and unlogged forms.

Certain texts, packages, etc., use logged while others use the unlogged form—it is unlogged simply by exponentiating). The formula is

$$\ln\left(\frac{\text{Residual SS}}{n}\right)\frac{2(p+1)}{n}$$

Minimize this criterion. This has a tradeoff between parsimony and precision: the first part of the formula shows the precision issue, while the second part shows the penalty for increasing parameters.

4) Schwarz's Bayesian Criterion, presented in both its logged and unlogged forms (same rationale as AIC, above). The formula is

$$\ln\left(\frac{\text{Residual SS}}{n}\right)\frac{p*\ln(n)}{n}$$

The unlogged version is obtained by exponentiating the logged result. Minimize this criterion. Bayesians interpret this as "choosing the *a posteriori* most probable model" (Judge et al. 1988).

5) Finally, the prediction sum of squares (PRESS) is presented; the formula is

$$\sum \left(\frac{\text{residual}}{1-hat}\right)^2$$

where hat is the diagonal of the hat matrix from Stata. Minimize this criterion, also. This is a cross-validation type measure, originally based on deleting one observation at a time and re-estimating the equation.

These statistics can, in part, be shown to imply the following F-ratios for retaining variables in a regression (this table is taken from Maddala 1988, 431).

Criterion	F-value implications
Adjusted R^2	F < 1
Amemiya's PC adjusted R^2	$F < \frac{2n}{n+p}$, where p is the number of variables retained
Hocking Sp	$F < 2 + \frac{k+1}{n-pp-1}$, where k is the number of $n - pp - 1$ variables deleted and pp is the sum of variables kept and deleted
Akaike's AIC	$F < \frac{n-pp}{n-p}$

The following example is taken from Madansky (1988, 187–188, discussion on 182–187) (and is on the STB-6 disk as madansky.dta). Note that the following do not exactly match what is in the text, but it is clear that at least some of the numbers in the text are wrong due to typo's. The value for AIC, however, always differs and I believe that the book is wrong; the values here match those given by SHAZAM.

. reg y x1	L						
Source	SS	df	MS		Number of obs	= 15	
Model	206.577604	F(1, 13) = 5577604 $F(1, 13) = 5577604$ $F(1, 13) = 1000$		= 10.33 = 0.0068			
Residual	260.075669	13 20.0	058207		R-square	= 0.4427	
Total	466.653272	14 33.3	323766		Adj R-square Root MSE	= 0.3998 = 4.4728	
у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
x1	.9972144	.310331	3.213	0.007	.3267851	1.667644	
_cons	12.34756	3.350041	3.686	0.003	5.110237	19.58489	
. amemiya Amemiya's Hocking's Akaike's l or, u Schwarz's or, u Prediction	PC criterion Sp criterion Information Cr unlogged, Bayesian Crit unlogged, n Sum of Squar	R-squared in is iterion (AI erion (SBC) es (PRESS)	s C) is is		0. 1. 3. 22. 3. 24. 336.	3631 5481 1196 6371 2140 8783 1367	
. reg y x2	2						
Source	SS	df	MS		Number of obs	= 15	
Model 260.749533 1 26 Residual 205.903739 13 15		1 260. 13 15.8	749533 387492		F(1, 13) = 16. Prob > F = 0.00 R-square = 0.55 Adj R-square = 0.52		
Total	466.653272	14 33.3	323766		Root MSE	= 3.9798	
у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
x2 _cons	1.097699 11.25614	.2705402 2.944624	4.057 3.823	0.001 0.002	.5132321 4.894666	1.682165	
. amemiya Amemiya's Hocking's Akaike's l or, u Schwarz's or, u Prediction	PC criterion Sp criterion Information Cr unlogged, Bayesian Crit unlogged, a Sum of Squar	R-squared in is iterion (Al erion (SBC) es (PRESS)	s C) is is is		0. 1. 2. 17. 2. 19. 260.	4957 2256 8860 9219 9804 6963 1023	
Source	SS	df	MS		Number of obs	= 15	
					F(1, 13)	= 68.53	
Model Residual	392.248783	1 392.1 13 5.72	248783 342223		Prob > F R-square	= 0.0000 = 0.8406	
	•				Adj R-square	= 0.8283	
Total	466.653272	14 33.3	323766		Root MSE	= 2.3924	
у 	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
x3 _cons	912256 35.83242	.1101955 1.730221	-8.279 20.710	0.000	-1.150319 32.09451	6741931 39.57034	
. amemiya Amemiya's PC criterion R-squared is Hocking's Sp criterion is Akaike's Information Criterion (AIC) is or, unlogged, Schwarz's Bayesian Criterion (SBC) is or, unlogged,				0. 0. 1. 6. 1. 7. 98.	8178 4429 8681 4762 9625 1174 3418		

. reg y x1	1 x2					
Source	SS	df	MS		Number of obs	= 15
Model Residual	459.578218 7.07505472	2 22 12 .5	29.789109 589587893		Prob > F R-square	= 0.0000 = 0.9848
Total	466.653272	14 33	3.3323766		Adj R-square Root MSE	= 0.9823 = .76785
у	Coef.	Std. Eri	r. t	P> t	[95% Conf.	Interval]
x1 x2 _cons	.9784734 1.081421 1.506976	.0532824 .052204 .777564	4 18.36 5 20.71 7 1.93	4 0.000 5 0.000 8 0.077	.8623811 .967677 1871922	1.094566 1.195165 3.201144
. amemiya Amemiya's Hocking's Akaike's 1 or, u Schwarz's or, u Prediction	PC criterion Sp criterion Information Cr Inlogged, Bayesian Crit Inlogged, in Sum of Squar	R-square is iterion erion (SP es (PRESS	d is (AIC) is 3C) is 3) is		0.1 0. -0.1 -0.1 0. 10.	9802 0495 3515 7036 2099 8107 9673
. reg y x		عد	MC		Number of the	- 15
Model Residual	+ + 404.871672 61.7816009	2 20 12 5	MS D2.435836 .14846674		F(2, 12) Prob > F R-square	= 15 = 39.32 = 0.0000 = 0.8676
Total	466.653272	14 33	3.3323766		Adj R-square Root MSE	= 0.8455 = 2.269
у	Coef.	Std. Eri	r. t	P> t	[95% Conf.	Interval]
x1 x3 _cons	.3024733 7958872 31.06062	.1931733 .1282430 3.461233	1 1.56 6 -6.20 2 8.97	6 0.143 6 0.000 4 0.000	1184147 -1.075306 23.51924	.7233613 5164685 38.60199
. amemiya Amemiya's Hocking's Akaike's or, u Schwarz's or, u Prediction	PC criterion Sp criterion Information Cr Inlogged, Bayesian Crit Inlogged, n Sum of Squar	R-squared is iterion erion (SH es (PRESS	d is (AIC) is 3C) is 3) is		0.: 0. 1. 6. 1. 7. 96.	8269 4320 8156 1445 9572 0792 8731
. reg y x2	2 x3					
Source Model	SS 401.811713	df 2 20	MS 00.905856		Number of obs F(2, 12) Prob > F	= 15 = 37.18 = 0.0000
Residual Total	64.8415597 466.653272	12 5 	.40346331 3.3323766		R-square Adj R-square Root MSE	= 0.8610 = 0.8379 = 2.3245
у	Coef.	Std. Eri	r. t	P> t	[95% Conf.	Interval]
x2 x3 _cons	+ 296209 7708549 30.73721	.2226583 .1508702 4.182762	3 1.33 2 -5.10 2 7.34	0 0.208 9 0.000 9 0.000	1889218 -1.099573 21.62375	.7813398 442137 39.85066
. amemiya Amemiya's Hocking's Akaike's I or, u Schwarz's	PC criterion Sp criterion Information Cr mlogged, Bayesian Crit	R-squared is iterion erion (SI	d is (AIC) is 3C) is		0 0 1 6 2	8183 4534 8639 4488 0055

or, unlogged, 7.4299 Prediction Sum of Squares (PRESS) is 90.7040

. reg y x1	L x2 x3								
Source	SS	df		MS		Number of obs	=	15	
4	•					F(3, 11)	=	277.78	
Model	460.573689	3	153.5	24563		Prob > F	=	0.0000	
Residual	6.07958324	11	.5526	89385		R-square	=	0.9870	
	+					Adj R-square	=	0.9834	
Total	466.653272	14	33.33	23766		Root MSE	=	.74343	
у	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]	
x1	.8862159	.0859	9472	10.311	0.000	.6970473	1	.075384	
x2	.9707826	.0967	7001	10.039	0.000	.757947	1	.183618	
х3	1078856	.0803	3877	-1.342	0.207	2848178		0690466	
_cons	5.152686	2.818	3881	1.828	0.095	-1.05163		11.357	
. amemiya									
Amemiya's	PC criterion	R-squa	ared is			0.9	980	5	
Hocking's	Sp criterion	is				0.0	0.0507 -0.3698 0.6909		
Akaike's l	Information Cr	iterio	on (AIC) is		-0.3			
or, u	nlogged,					0.0			
Schwarz's	Bayesian Crit	erion	(SBC)	is		-0.3	.1810		
or, u	nlogged,					0.8345		5	
Predictior	ı Sum of Squar	res (PF	RESS) i	S		10.4578			
. reg y									
Source	SS	df		MS		Number of obs	=	15	
	•					F(0, 14)	=	•	
Model	0.00	0		•		Prob > F	=	•	
Residual	466.653272	14	33.33	23766		R-square	=	0.0000	
	+					Adj R-square	=	0.0000	
Total	466.653272	14	33.33	23766		Root MSE	=	5.7734	
у	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]	
_cons	22.45267	1.490	0691	15.062	0.000	19.25545	2	5.64988	
. amemiva									
Amemiva´s	Amemiva's PC criterion R-squared is					0.0	000	0	
Hocking's	Sp criterion		2.3	2.3931					
Akaike's l	Information Cr		3.5709						
or, u	inlogged,				35.5475			5	
Schwarz's	chwarz's Bayesian Criterion (SBC) is					3.0	618	1	
or, u	inlogged,					37.3	265	7	
Prediction	Sum of Squar	res (PF	RESS) i	s	535.6989				

References

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and Tsoung-Chao Lee. 1988. Introduction to the Theory and Practice of Econometrics. 2d ed. New York: John Wiley & Sons.

Madansky, A. 1988. Prescriptions for Working Statisticians. New York: Springer-Verlag.

Maddala, G. S. 1988. Introduction to Econometrics. New York: Macmillan Publishing Co.

Mallows, C. L. 1973. Some comments on Cp. Technometrics 15: 661-675.

Miller, A. J. 1990. Subset Selection in Regression. London: Chapman & Hall.

Thompson, M. L. 1978. Selection of variables in multiple regression: Part I. A review and evaluation and Part II. Chosen procedures, computations and examples. International Statistical Review 46: 1–19, 129–146.

tt3 Teaching biochemistry and chemistry with Stata: Understanding buffer solution

Paul Geiger, Univ. of Southern California School of Medicine, EMAIL pgeiger@vm.usc.edu

Stata provides an ideal way for teaching students how to manipulate buffer calculations to further their understanding of this subject. For instance, in undergraduate chemistry or biochemistry the students usually learn the important property that the useful range of a buffer lies one pH unit on either side of the pK_a value of the specific compound chosen. Stata allows exploration of this "fact" using many pK_a values and concentration ranges and can show buffer behavior graphically. The student can ask "what if" questions easily and get results quickly for real and simulated compounds as well.

Buffer ions maintain solutions at constant pH, a term defined as the negative \log_{10} of hydrogen ion concentration. A biochemical investigation can depend critically on selecting the correct buffer. Although buffer principles arise in beginning chemistry classes, even many advanced students don't fully understand the chemical basis of buffer action. Lack of thought often causes inappropriate selection of a buffer for a particular experimental design. Often, Tris buffer appears in the literature in experiments carried out at pH values near 7 to 7.4, a poor range for this compound (see below).

Buffering a solution depends on the use of weak acids or bases. These compounds don't completely dissociate in aqueous solution but exist in equilibrium mixtures as shown in the following generic dissociation reaction for a weak acid:

$$HB \rightleftharpoons H^+ + B^-$$

Adding strong acid (H^+) to a buffered system reduces the concentration of conjugate base (B^-) and the amount of conjugate acid (HB) correspondingly increases. Addition of strong base (OH^-) forces the reaction in the opposite direction. The following equation expresses the equilibrium constant, K_a , as the ratio of the product of the concentrations of hydrogen ion, $[H^+]$, and conjugate base, $[B^-]$, to the undissociated compound, [HB]:

$$K_a = \frac{[H^+][B^-]}{[HB]}$$

After rearranging, taking the log (base 10) and changing signs, we use the symbols pK_a and pH in the well-known Henderson-Hasselbalch equation (Atkinson et al. 1987; Segel 1976):

$$pH = pK_a + \log \frac{[B^-]}{[HB]}$$

This important equation allows the experimentalist to calculate the pH of a buffer solution if the molar ratio of buffer ions and the pK_a of the weak acid are known. Also, the molar ratio of $[B^-]/[HB]$ necessary to prepare a buffer solution at a specific pH value can be calculated if the pK_a is known.

The data file supplied in Stata format on the disk provides example values that might be used for instruction. The weak acid, HB, changes by 5 millimolar (mM) increments as does the conjugate base, B^- . The total concentration of acid and conjugate base add up to 100 mM, a reasonable concentration for certain biochemical work. Three buffers, N-2-acetamidoiminodiacetic acid (ADA), $pK_a = 6.6$; 3-(N-morpholino)-propanesulfonic acid (MOPS), $pK_a = 7.2$; and tris(hydroxymethyl)-aminomethane (Tris), $pK_a = 8.3$, illustrate realistic choices of pK1, pK2 and pK3 for demonstration (Boyer 1986, 39). Calculated pH values follow from use of the Stata generate command, the log (base10) of the concentration ratio, $[B^-]/[HB]$, shown in the table as variable logB_HB, and the Henderson-Hasselbalch equation, e.g., generate pH1 = pK1 + logB_HB. I chose twenty observations arbitrarily. More would require finer millimolar increments and perhaps show better definition of the curves at their extremes.

The first figure plots pH vs B^- and shows vividly how the buffers differ in their respective ranges of application. In fact the useful range really amounts to less than ± 1 pH unit on close inspection. The second figure illustrates this point and gives some idea of the buffering capacity of a 100 mM solution of ADA. Using the Stata ado command 'dydx pH1 B, generate(dpH_dB)' provides the variable, dpH_dB. This value plotted against pH1 gives the illustrated U-shaped curve and a striking picture of the useful buffering range for ADA. A 1000 mM solution would use up that much more acid (base) before changing pH significantly away from the pK_a value. A plot of dpH_dB vs B^- also gives a U-shaped curve illustrating the change in pH for a change in amount of base present (not shown). Again, the least change occurs in the region closest to the 50/50 ratio of base to acid in the buffering solution.

In summary, I believe that Stata in the hands of teachers and students will lead to much better understanding and assimilation of chemical calculations as well as theory on both elementary and advanced levels. In addition, working with Stata is simple and straightforward. I invite comparison of the above exercise with the spreadsheet format for modeling developed by Atkinson et al., 1987.

References

Atkinson, D. E., et al. 1987. Dynamic Models in Biochemistry: A Workbook of Computer Simulations Using Electronic Spreadsheets. Menlo Park, CA: Benjamin/Cummings.

Boyer, R. F. 1986. Modern Experimental Biochemistry. Menlo Park, CA: Addison-Wesley.

Segel, I. H. 1976. Biochemical Calculations. 2d ed. New York: John Wiley & Sons.