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dm67.1 Enhancements to numbers of missing and present values

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Abstract: nmissing and npresent, originally published in Cox (1999), are extended, so that they may report on numbers
of missing or present values in each observation, as well as in each variable. The min() option specifying the minimum
number to be reported is also extended.

Keywords: describing variables, missing values, data management.

Syntax

nmissing
�
varlist

� �
if exp

� �
in range

� �
, min(#) obs

�
npresent

�
varlist

� �
if exp

� �
in range

� �
, min(#) obs

�
Description

nmissing lists the number of missing values in each variable in varlist (or optionally in each observation). Missing means
. for numeric variables and the empty string "" for string variables.

npresent lists the number of present (nonmissing) values in each variable in varlist (or optionally in each observation).

Options

min(#) specifies that only numbers at least # should be listed. The default is 1. The argument may be any positive integer
or expression evaluating to a positive integer. Expressions may include N. As a special case, all means the number of
variables in varlist or, with obs, the number of observations.

obs specifies that counting is for observations, not variables.

Remarks

nmissing reports on numbers of missing values. When called with no arguments, it reports on the whole dataset, including
both numeric and string variables. If a varlist is specified, or the minimum number of values to be reported is specified by the
min() option, then the focus is restricted accordingly.

npresent is the complementary command that reports on present (nonmissing) values.

nmissing and npresent were originally published in Cox (1999), which includes some comparative comments on the
reporting of missing values by summarize, inspect and codebook.

In this update, the new obs option extends reporting from columnwise (number of missing values in each variable) to
rowwise (number of missing values in each observation). This can be valuable for a variety of reasons. Observations with many,
or even all, values missing may be worth special note.

In addition, the min() option is now smarter; it understands expressions which evaluate to integers, including those in
terms of the total number of observations in the dataset N. As a special case min(all) is understood as the number of variables
in varlist, or, with obs, as the total number of observations under scrutiny, that is, excluding any observations not satisfying
any if or in restrictions. In the latter case, note a subtle distinction, as illustrated with the auto dataset: for that set N is 74,
the total number of observations, but all is 22 with if foreign, and may well vary depending on whatever other restrictions
are specified.

Examples

With the familiar auto dataset,

. nmissing

yields

rep78 5

while

. nmissing if foreign

yields

rep78 1
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while

. nmissing, obs min(all)

yields a report on those observations for which all values are missing (none in this dataset).

Reference
Cox, N. J. 1999. dm67: Numbers of missing and present values. Stata Technical Bulletin 49: 7–8. Reprinted in Stata Technical Bulletin Reprints,

vol. 9, pp. 26–27.

dm78.1 Describing variables in memory: update to Stata 7

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Abstract: ds2, a variant on ds originally published in Cox (2000), is updated to Stata 7. Longer variable names are abbreviated
to at most 8 characters, as in the results of ds.

Keywords: describing variables, variable names, data types, value labels, ds, data management.

Description

ds2 lists variable names in a compact format (or, optionally, in the same format as describe). It is a variant on ds.

ds2 was originally published in Cox (2000). For details, please see that insert.

This update attends to just one important point: the longer variable names which are allowed in Stata 7 are abbreviated on
display to at most 8 characters, just as in the results of ds in official Stata.

Reference
Cox, N. J. 2000. dm78: Describing variables in memory. Stata Technical Bulletin 56: 2–4.

dm87 Calculating the row product of observations

Philip Ryan, University of Adelaide, Australia, philip.ryan@adelaide.edu.au

Abstract: This insert describes a new option in egen which creates a new variable whose values are the row product of
observations.

Keywords: egen, row product.

Syntax

egen newvar = rprod(varlist)
�
if exp

� �
in range

� �
, pmiss(fignore j missing j 1g)

�
Description

rprod provides a multiplicative function for egen analogous to the additive rsum function. The row product of observations
of varlist meeting optional if and in conditions is returned in newvar. rprod insists that newvar be calculated in double
precision.

Option

pmiss(fignore j missing j 1g) specifies what is to be the product of observations at least one of which is missing.

pmiss(ignore), the default, ignores missing values and returns the product of all nonmissing observations in the row. If
all values are missing, then missing is returned.

pmiss(missing) returns missing for the product of observations if any observation in the row is missing. This holds even
if one or more of the nonmissing observations is zero.

pmiss(1) returns 1 for the product of observations if all observations in the row are missing. Otherwise it returns the
product of all nonmissing values. This choice would rarely be made (see the Appendix in Ryan 1999).

Note that a missing value is returned for rows excluded by if or in qualifiers.

Examples

We consider the 11 observations on variables a, b, and c listed below:
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. list

a b c
1. 2 3 4
2. 5 0 1
3. 0 0 0
4. . . .
5. 1 . 1
6. 8 3 .
7. 0 . 0
8. -3 4 5
9. -1 -7 2
10. . . -4
11. .75 -2 .25

We create three new variables using rprod in various ways.

. egen d = rprod(a-c)
(1 missing value generated)

. egen k = rprod(a-c) , pmiss(missing)
(5 missing values generated)

. egen q = rprod(a-c) in 8/11
(7 missing values generated)

. list

a b c d k q
1. 2 3 4 24 24 .
2. 5 0 1 0 0 .
3. 0 0 0 0 0 .
4. . . . . . .
5. 1 . 1 1 . .
6. 8 3 . 24 . .
7. 0 . 0 0 . .
8. -3 4 5 -60 -60 -60
9. -1 -7 2 14 14 14
10. . . -4 -4 . -4
11. .75 -2 .25 -.375 -.375 -.375

Acknowledgments

This program was written in response to a thread on the Statalist server started by Brian Jacob (ba-jacob@mail.consortium-
chicago.org). Nick Cox (n.j.cox@durham.ac.uk) provided helpful comments.

Reference
Ryan, P. 1999. dm71: Calculating the product of observations. Stata Technical Bulletin 51: 3–4. Reprinted in Stata Technical Bulletin Reprints, vol. 9,

pp. 45–48.

dm88 Renaming variables, multiply and systematically

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk
Jeroen Weesie, Utrecht University, Netherlands, j.weesie@fss.uu.nl

Abstract: renvars is a command to rename variables, which will be useful for multiple changes of names, especially those
which can be represented by a simple systematic rule, such as adding or changing of prefixes or postfixes. Both the ability
to change several names at once and a variety of specific and general transformation options are supported. There are also
inbuilt safety features; in particular, no variables will be renamed unless all new variable names specified or implied are
acceptable as such.

Keywords: renvars, rename, variable names, data management.

Syntax

renvars
�
varlist

�
\ newvarlist

�
, display test

�
renvars

�
varlist

�
, transformation option

�
display test symbol(str)

�
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where transformation option is one of

upper

lower

prefix(str)

postfix(str) (synonym suffix(str))

presub(str1 str2)

postsub(str1 str2)

subst(str1 str2)

predrop(#)

postdrop(#)

trim(#)

map(string expression)

Description

renvars renames the variables listed in varlist. If not specified, varlist defaults to all.

renvars [varlist] \ newvarlist renames each variable to the corresponding new name in newvarlist.

renvars [varlist], transformation option applies the transformation specified to each variable name in varlist.

renvars will not rename any variable unless all the new names specified are acceptable as new variable names when the
command is issued. However, a “new” name that is just the same as the existing name presents no problem.

Variable labels, value labels, formats, and characteristics are maintained.

Options

One of the following transformation options may be specified:

upper converts the variable names to uppercase.

lower converts the variable names to lowercase.

prefix(str) prefixes variable names with str.

postfix(str) postfixes variable names with str. suffix(str) is an exact synonym.

presub(str1 str2) replaces the leading string str1 by str2 in variable names. str2 may be empty.

postsub(str1 str2) replaces the trailing string str1 by str2 in variable names. str2 may be empty

subst(str1 str2) substitutes (all occurrences of) str1 by str2 in variable names. str2 may be empty.

predrop(#) removes the first # characters from the variable names.

postdrop(#) removes the last # characters from variable names.

trim(#) keeps the first # characters in the variable names while dropping the remaining characters.

map(string expression) specifies a rule for building new variable names from existing names. By default, @ is the placeholder
for existing names. This placeholder can be changed by specifying symbol().

display specifies that each change is displayed.

test specifies that the name changes are shown but not performed.

symbol(str) specifies a symbol to be used as a placeholder for the existing name in the map expression. The default is @. The
symbol used should not include characters used in existing variable names. It is difficult to imagine why you might want
to use this option.

Discussion

Renaming variables is a common need in data management. The Stata command rename provides a means of renaming
variables one at a time. A special supplementary command renpfix provides a systematic way of changing prefixes of several
variable names; see [R] rename. Jenkins and Cox (2001) have recently written rensfix, which tackles the similar problem of



6 Stata Technical Bulletin STB-60

changing suffixes. Despite these two extras, there are many problems which require renaming several variables at once. You
may wish either to specify lists of existing and new variable names or to apply some systematic rule to transform existing names
into new names.

It may be useful to warn at the outset that if there is any doubt about the consequences of renaming, you should first
run renvars with the option test. Then, renvars displays the name changes that would result, so you can verify that the
consequences are as expected.

Note first that programming constructs such as for (see [R] for) or, in Stata 7, foreach (see [P] foreach) can be used to
automate various multiple or systematic changes.

The easiest changes to make with for are one-to-one changes between a list of existing variable names and a corresponding
list of new names. The pattern is

for var varlist \ new newvarlist : rename X Y

which maps each existing name in varlist to the corresponding name in newvarlist. A crucial detail here is that syntax checking
within for ensures that first, the lists are of the same length (after expansion); and second, the variable names in the two lists
are indeed all existing and all new (and legal) at the time of issuing the command. For many users, if not all, this detail is a
valuable safety feature.

The easiest changes to make with foreach are systematic changes, whereby some rule maps existing variable names to
new names. One minimal pattern is

foreach oldvar of varlist varlist f
local newvar = function of ‘oldvar’
rename ‘oldvar’ ‘newvar’

g

(Stata 6.0 users could write this in more long-winded terms using while.) The crucial differences here are twofold. Many
different transformations can be put inside the foreach loop. If necessary, a transformation could be coded in two or more
lines. In addition, in the version here, each new name is checked for validity only at the time of each rename. In the event of
a problem, the foreach loop is exited with an error message. The consequence will typically be that some variables in varlist
are renamed but not others. In some situations, users will be left with a mess, and the need to clear it up.

renvars provides an alternative, written to be, as far as possible, safe and smart. It permits two syntaxes: one in which
new variable names are specified explicitly, and one in which a systematic rule is used to transform old names into new names.
The underlying principle is that no variables will be renamed unless all new variable names specified or implied are acceptable
as such. However, a “new” name that is just the same as the existing name presents no problem. For example, you may wish to
make all variable names lowercase. Any variable name which is already lowercase is acceptable. Think of this as no new name
(that is, one different and not in use) being implied.

The particular transformation options supplied cover various common needs: namely, changing case; adding, changing, or
deleting prefixes or postfixes; substituting one substring for another; and dropping characters at the beginning or end of variable
names. In addition, a general map() option has been supplied. Minimalists will note that several of the specific transformation
options are strictly redundant given map(). Thus, for example, lower is equivalent to map(lower("@")). Experience indicates,
however, that many users prefer to have options directly supplied for specific tasks, rather than be obliged to work out the syntax
needed with a more general option. Conversely, more experienced users may appreciate the flexibility of map().

Examples
. renvars v1-v4 \ id time income status

. renvars MYVAR1 MYVAR2 MYVAR3, lower

. renvars v1-v10, upper

. renvars, pref(X) test

. renvars, subs(X Y)

. renvars, predrop(1)

. renvars, map("D " + substr("@", 1, 6))

Reference
Jenkins, S. P. and N. J. Cox. 2001. dm83: Renaming variables: changing suffixes. Stata Technical Bulletin 59: 5–6.
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dm89 Dropping variables or observations with missing values

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Abstract: dropmiss drops variables or observations with all values (optionally any values) missing.

Keywords: dropping variables, dropping observations, missing values, data management.

Syntax

dropmiss
�
varlist

� �
, any trim piasm

�
dropmiss

�
varlist

� �
if exp

� �
in range

�
, obs

�
any trim piasm

�
Description

dropmiss drops those variables in varlist for which all (optionally any) observations have missing values, that is . for a
numeric variable and "" for a string variable.

dropmiss with the obs option drops those observations for which all (optionally any) variables in varlist have missing
values.

With both syntaxes, varlist defaults to all variables.

Options

any specifies that variables or observations are to be dropped if any values are missing in those variables or observations. Note
that this can have drastic effects and may even result in the dropping of all data.

trim specifies that whether string values are missing is to be determined after trimming leading and trailing spaces. For example,
with trim " " (a single blank) would count as missing.

piasm specifies that Period Is Also String Missing, that is, "." counts as missing. Some Stata users use "." to indicate missing.

trim piasm would specify that, for example, " . " counts as missing.

obs specifies that observations are to be dropped for which values of varlist are missing.

Remarks

A common problem in data management is that values may be missing. In some cases, all the values in one or more
variables or observations may be missing. This could arise for a variety of reasons. For example, many spreadsheet users find
it useful to have blank rows or columns as separators between different blocks of data. When read into Stata, such blanks will
typically be translated into missing values, which serve little or no purpose, so it may be desired to drop them from memory.

Before doing this, it is important to be clear which variables and which observations contain missing values, and several
Stata commands may be used to determine this, including summarize, list, inspect, and codebook. In addition, the command
nmissing (Cox 1999, 2001) produces relatively concise reports on numbers of missing values.

It is easy enough to type, for example, drop if varname == . if that is desired for individual variables, but it is also
helpful to have more systematic ways of handling the problem, especially for large datasets with many observations and/or many
variables.

dropmiss treats both numeric and string variables. In Stata, missing values are, syntactically, numeric missing or . for
numeric variables and empty strings "" for string variables. However, many users might have a broader view of missing values.
First, string values consisting of just one or more spaces might be regarded as missing just as much as empty strings. The option
trim trims values of leading and trailing spaces before determining whether they are empty. Second, some Stata users treat "."
as indicating missing string values. The option piasm (an acronym for period is also string missing) treats these as missing, in
addition to empty strings. trim and piasm may be combined.

Most commonly, users wish to drop variables or observations for which all values are missing, and this is the default for
dropmiss. Note that this is determined for any varlist specified. Thus, if you type dropmiss a b c, then any one of those
variables is dropped, if, and only if, all values are missing for that variable. More crucially, dropmiss a b c, obs drops any
observation, if, and only if, a, b and c are all missing for that observation; no account is taken of any other variables in the
dataset. If no varlist is specified, then all variables in the dataset are considered.

Less commonly, users wish to drop variables or observations for which any values (meaning one or more) are missing.
This is possible with the any option. It is, naturally, a much more drastic possibility and may even result in dropping all of the
dataset. Be sure that this option is exactly what you want before you use it; if in any doubt, save your dataset first.
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dropmiss does not tackle all possible problems in its field. Note also that egen, rmiss may be useful for counting the
number of missing values in each observation; see [R] egen.

Examples

To drop all variables with all values missing, type

. dropmiss

while to drop all observations with all values missing, type

. dropmiss, obs

With the auto dataset,

. dropmiss

drops nothing;

. dropmiss, any

drops rep78;

. dropmiss, obs

drops nothing; and

. dropmiss, obs any

drops 5 observations for which rep78 is missing.

Acknowledgments

Jeroen Weesie suggested adding if and in. Estie Sid Hudes prompted the addition of an optional varlist when the obs

option is specified and of the any option.

References
Cox, N. J. 1999. dm67: Numbers of missing and present values. Stata Technical Bulletin 49: 7–8. Reprinted in Stata Technical Bulletin Reprints,

vol. 9, pp. 26–27.

——. 2001. dm67.1: Enhancements to numbers of missing and present values. Stata Technical Bulletin 60: 2–3.

dm90 Listing distinct values of a variable

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Abstract: vallist puts a sorted list of the distinct nonmissing values of varname into local macro r(list) and displays that
list. It may be useful interactively or in programming.

Keywords: vallist, programming, macros.

Syntax

vallist varname
�
if exp

� �
in range

� �
, global(macname) labels quoted

�
no
�
trim max(#) words

format(format) sep(string) missing
�

Description

vallist puts a sorted list of the distinct nonmissing values of varname, which may be numeric or string, into local macro
r(list) and displays that list.

vallist may be used interactively, but it is most likely to be useful to programmers dealing with categorical or counted
data.
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Options

global(macname) puts the list into global macro macname.

labels specifies that labels should be used for numeric variables with value labels.

quoted specifies that values should be placed in quotes. This may be useful for string values or value labels containing embedded
spaces.

notrim suppresses trimming of trailing spaces from string values.

max(#) specifies that at most, the first # characters of text (string values or value labels) should be used for each value. For
example, max(8) may be needed to cut down text to elements acceptable in Stata 6 as matrix row or column names.

words specifies that text should be truncated to the first whole ‘word’, that is, just before the first space after a nonspace
character. For example, a string value of "foo bar" would be represented by "foo".

format(format) specifies a format for use. This is likely to be most useful with noninteger numeric values. A string format
should be specified for string values or value labels and a numeric format otherwise.

sep(string) specifies a separator other than a space, which is the default.

The sequence of operations is max(), words, format(), sep().

missing specifies that missing values should also be listed. Missing (that is, empty) values of string variables are specified as
"missing". Note that this description may be truncated with the max() option.

Discussion

Users tabulating their data, especially categorical or integer-valued variables, can see a listing of the distinct values observed,
together with other information such as frequencies of occurrence. Sometimes, it is desired to see a list of values presented more
concisely, or especially to put a list of those values into a local or global macro for use in a later command. In practice, this
need seems to occur most when the number of distinct values is (say) between 5 and 50. With a variable such as gender which
takes only a few values, it is not a burden to type out those values explicitly. While with a variable which takes on hundreds or
more distinct values, it is unlikely that a long list of those values is of use or interest. vallist is aimed at intermediate cases.

Examples

We start with some simple examples which show how vallist concisely displays distinct values for categorical variables
and how they are saved by default in r(list) and optionally in a named global macro.

. use auto
(1978 Automobile Data)

. vallist rep78
1 2 3 4 5

. di "‘r(list)’"
1 2 3 4 5

. vallist rep78 , g(rep78v)
1 2 3 4 5

. di "$rep78v"
1 2 3 4 5

. vallist foreign, labels
Domestic Foreign

For more information on macros such as r(list) saved by r class commands such as vallist, see [U] 21.8 Accessing results
calculated by other programs. The main practical point for users is that r(list) will be overwritten by the next r class
command that is issued, and so it may have only a brief existence. This is not a problem so long as r(list) is used immediately.
To put results in a longer-lasting macro, either copy the results from r(list) as soon as produced, or (as here) use a global
macro in addition.

Another use of vallist is to pick up for later use any list which it would be too tedious to enter by hand. Here a tick is
placed at every distinct value as marginal decoration for a histogram:

. vallist mpg , g(mpgval)
12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 34 35 41

. graph mpg, bin(14) xla(12 41) xti($mpgval) xsc(10,45) yla
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The same trick may be used to ensure that a series of graphs is labeled informatively. An example of one standard graphics
idiom is

. sort rep78

. by rep78 : graph mpg price

However, this idiom has two key disadvantages: individual graphs are not labeled informatively, and they cannot be saved to
individual files. An alternative is

. vallist rep78
1 2 3 4 5

. for num ‘r(list)’ : graph price mpg if rep78 == X, t1(rep78 is X) saving(rep78X)

-> graph price mpg if rep78 == 1, t1(rep78 is 1) saving(rep781)

-> graph price mpg if rep78 == 2, t1(rep78 is 2) saving(rep782)

-> graph price mpg if rep78 == 3, t1(rep78 is 3) saving(rep783)

-> graph price mpg if rep78 == 4, t1(rep78 is 4) saving(rep784)

-> graph price mpg if rep78 == 5, t1(rep78 is 5) saving(rep785)

In this toy example, it would have been no more work to do it the direct way

. for num 1 2 3 4 5 : graph price mpg if rep78 == X, t1(rep78 is X) saving(rep78X)

It is not difficult to imagine examples in which vallist offers a better route, especially when distinct values are numerous and
irregular in pattern.

With string or measured variables, vallist still works, but it is perhaps less useful. With string variables, there are some
choices over handling of string values which include spaces or which may be too long for some purpose. The quoted, notrim,
max(), words(), and sep() options may be useful here. Note that Stata itself trims leading spaces in any operation of the form

local macname = string variable[i]

Trailing spaces are also trimmed by default. With measured variables containing fractional parts, the format option often helps.

. vallist make
AMC Concord AMC Pacer AMC Spirit Audi 5000 Audi Fox BMW 320i Buick Century Buic
> k Electra Buick LeSabre Buick Opel Buick Regal Buick Riviera Buick Skylark Ca
> d. Deville Cad. Eldorado Cad. Seville Chev. Chevette Chev. Impala Chev. Malib
> u Chev. Monte Carlo Chev. Monza Chev. Nova Datsun 200 Datsun 210 Datsun 510 D
> atsun 810 Dodge Colt Dodge Diplomat Dodge Magnum Dodge St. Regis Fiat Strada
> Ford Fiesta Ford Mustang Honda Accord Honda Civic Linc. Continental Linc. Mar
> k V Linc. Versailles Mazda GLC Merc. Bobcat Merc. Cougar Merc. Marquis Merc.
> Monarch Merc. XR-7 Merc. Zephyr Olds 98 Olds Cutl Supr Olds Cutlass Olds Delt
> a 88 Olds Omega Olds Starfire Olds Toronado Peugeot 604 Plym. Arrow Plym. Cha
> mp Plym. Horizon Plym. Sapporo Plym. Volare Pont. Catalina Pont. Firebird Pon
> t. Grand Prix Pont. Le Mans Pont. Phoenix Pont. Sunbird Renault Le Car Subaru
> Toyota Celica Toyota Corolla Toyota Corona VW Dasher VW Diesel VW Rabbit VW
> Scirocco Volvo 260

. vallist make, sep(", ")
AMC Concord, AMC Pacer, AMC Spirit, Audi 5000, Audi Fox, BMW 320i, Buick Centur
> y, Buick Electra, Buick LeSabre, Buick Opel, Buick Regal, Buick Riviera, Buic
> k Skylark, Cad. Deville, Cad. Eldorado, Cad. Seville, Chev. Chevette, Chev. I
> mpala, Chev. Malibu, Chev. Monte Carlo, Chev. Monza, Chev. Nova, Datsun 200,
> Datsun 210, Datsun 510, Datsun 810, Dodge Colt, Dodge Diplomat, Dodge Magnum,
> Dodge St. Regis, Fiat Strada, Ford Fiesta, Ford Mustang, Honda Accord, Honda
> Civic, Linc. Continental, Linc. Mark V, Linc. Versailles, Mazda GLC, Merc. B
> obcat, Merc. Cougar, Merc. Marquis, Merc. Monarch, Merc. XR-7, Merc. Zephyr,
> Olds 98, Olds Cutl Supr, Olds Cutlass, Olds Delta 88, Olds Omega, Olds Starfi
> re, Olds Toronado, Peugeot 604, Plym. Arrow, Plym. Champ, Plym. Horizon, Plym
> . Sapporo, Plym. Volare, Pont. Catalina, Pont. Firebird, Pont. Grand Prix, Po
> nt. Le Mans, Pont. Phoenix, Pont. Sunbird, Renault Le Car, Subaru, Toyota Cel
> ica, Toyota Corolla, Toyota Corona, VW Dasher, VW Diesel, VW Rabbit, VW Sciro
> cco, Volvo 260

. vallist make, word
AMC AMC AMC Audi Audi BMW Buick Buick Buick Buick Buick Buick Buick Cad. Cad. C
> ad. Chev. Chev. Chev. Chev. Chev. Chev. Datsun Datsun Datsun Datsun Dodge Dod
> ge Dodge Dodge Fiat Ford Ford Honda Honda Linc. Linc. Linc. Mazda Merc. Merc.
> Merc. Merc. Merc. Merc. Olds Olds Olds Olds Olds Olds Olds Peugeot Plym. Ply
> m. Plym. Plym. Plym. Pont. Pont. Pont. Pont. Pont. Pont. Renault Toyota Toyo
> ta Toyota VW VW VW VW Volvo
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. vallist gratio
2.190000057220459 2.240000009536743 2.259999990463257 2.27999997138977 2.410000
> 085830688 2.430000066757202 2.47000002861023 2.52999997138977 2.5599999427795
> 41 2.730000019073486 2.75 2.869999885559082 2.930000066757202 2.9400000572204
> 59 2.97000002861023 2.980000019073486 3.049999952316284 3.059999942779541 3.0
> 79999923706054 3.150000095367432 3.200000047683716 3.210000038146972 3.230000
> 019073486 3.299999952316284 3.369999885559082 3.539999961853028 3.54999995231
> 6284 3.579999923706054 3.640000104904175 3.700000047683716 3.72000002861023 3
> .730000019073486 3.740000009536743 3.77999997138977 3.809999942779541 3.89000
> 0104904175

. vallist gratio , format(%3.2f)
2.19 2.24 2.26 2.28 2.41 2.43 2.47 2.53 2.56 2.73 2.75 2.87 2.93 2.94 2.97 2.98
> 3.05 3.06 3.08 3.15 3.20 3.21 3.23 3.30 3.37 3.54 3.55 3.58 3.64 3.70 3.72 3
> .73 3.74 3.78 3.81 3.89

Saved results

r(list) contains the list of distinct values.

gr46 Display a graph of nonlinear effects

Jeroen Weesie, Utrecht University, Netherlands, J.Weesie@fss.uu.nl

Abstract: After estimating a model in which the effect of some variable v was modeled via a number of functions of v (e.g.,
polynomials or splines in v), graphf displays the fitted effect of v against v, optionally with various forms of confidence
bands.

Keywords: interpretation, nonlinear effects, confidence bands, bootstrap.

Introduction

Suppose you estimate a model which includes various transformations f1(x); f2(x); : : : ; fk(x) of a variable x, in order to
assess (estimate) a nonlinear effect of variable x. The easiest way to evaluate what the estimated model asserts about the total
effect F (x) =

P
bjfj(x) of variable x is to display it in a graph of bF (x) versus x, possibly with a confidence band aroundbF (x). This insert describes a simple utility to do this.

Syntax

graphf var
�
varlist

� �
, eq(str) cb(none j value j envelope j bs [#]) level(#)

�
Description

graphf is a post-estimation command that produces a graph of the fitted values and confidence band of the effect of a
variable var, modeled via a linear predictor in (usually nonlinear) transformations of var. For instance, if the effect of working
experience (exp) is modeled via a linear term exp and a quadratic term exp2, then var = exp and varlist = exp exp2. Variables
in varlist that do not occur in the model are skipped with a warning.

If varlist is not specified, graphf will determine itself the varlist as the variables in the (selected equation of the) model
that are a function of var, that is, do not vary within levels of var.

Options

eq(str) specifies the name of the equation in which the variables occur. If eq() is not specified, graphf uses the first equation
of the model.

cb(value) specifies the type of confidence band to be displayed. Valid values are

none No band is displayed (the default).
value Specifies a value-wise confidence band that consists of the spline-connected lower and upper

limits of the value-wise confidence intervals.
envelope Ripley’s envelope confidence band is displayed. This band is obtained as the value-wise minimum

and maximum of the fitted values from 19 draws from the estimated multivariate distribution
of the estimators for the coefficients in the model estimated last.

bs [#] A parametric bootstrap confidence band, assuming multivariate normality of the parameter
estimates. The value-wise confidence interval is estimated by the bias-corrected method. The
number of Monte Carlo simulations # defaults to 1000.
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level(#) specifies the confidence level, in percent, for the value-wise confidence intervals. The default is level(95) or as set
by set level; see [R] level.

Example

We demonstrate the command using artificial data on income (inc) as a function of formal education (edu) and work
experience (exp). The data were generated with the following code fragment:

. set seed 123456789

. set obs 400

. gen edu = invnorm(uniform())

. gen exp = int(30*uniform())

. label var exp "work experience"

. gen inc = edu + log(0.1+10*exp) + 1*invnorm(uniform())

We expect a nonlinear effect of exp. First, we will fit regression models with quadratic and cubic effects for exp via
orthogonal polynomials.

. orthpoly exp, degree(3) gen(exp1 exp2 exp3)

. regress inc edu exp exp2

Source SS df MS Number of obs = 400
F( 3, 396) = 219.82

Model 1268.16207 3 422.720692 Prob > F = 0.0000
Residual 761.533804 396 1.92306516 R-squared = 0.6248

Adj R-squared = 0.6220
Total 2029.69588 399 5.08695709 Root MSE = 1.3867

inc Coef. Std. Err. t P>|t| [95% Conf. Interval]

edu 1.052901 .0729641 14.43 0.000 .9094554 1.196346
exp .1418497 .007852 18.07 0.000 .1264129 .1572866

exp2 -.6389055 .0693693 -9.21 0.000 -.7752837 -.5025274
_cons 2.395447 .1339128 17.89 0.000 2.132179 2.658716

What does the fitted quadratic effect of working experience on income look like? Remember, exp2 is not simply the square
of exp. An easy way to assess and interpret the nonlinear effect of exp on inc is making a plot of exp against the fitted effect
in exp. This is accomplished by invoking the command graphf exp which will graph the effect of exp.

. graphf exp
function of exp : exp exp2

Total effect of exp

F
(e

xp
 e

xp
2)

work experience
0 29

-1.19552

3.28929

Figure 1. Fitted quadratic effect of working experience on income.

Note that you did not have to specify the variables (exp and exp2) that you used to model the effect of working experience.
graphf selects itself the variables in the model that are a function of exp. In this case, graphf discovered that the model
includes the variables exp and exp2, and thus it has plotted exp against .1418 exp � .6389 exp2.

According to this plot, the effect of working experience decreases for larger levels of working experience. This is hard to
believe. Probably, the quadratic formulation of the experience effect is to blame here. We fit a cubic model for experience.
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. regress inc edu exp exp2 exp3

Source SS df MS Number of obs = 400
F( 4, 395) = 214.18

Model 1389.18895 4 347.297237 Prob > F = 0.0000
Residual 640.506932 395 1.62153654 R-squared = 0.6844

Adj R-squared = 0.6812
Total 2029.69588 399 5.08695709 Root MSE = 1.2734

inc Coef. Std. Err. t P>|t| [95% Conf. Interval]

edu 1.053465 .0670001 15.72 0.000 .9217432 1.185186
exp .1418463 .0072102 19.67 0.000 .1276711 .1560214

exp2 -.6388893 .0636991 -10.03 0.000 -.764121 -.5136575
exp3 .5500613 .0636698 8.64 0.000 .4248873 .6752354
_cons 2.39551 .122967 19.48 0.000 2.153759 2.637262

Again, we will graph the effect of experience on income. This time, we add a confidence band for the estimated effect.
Specifying cb(value) displays the value-wise bands, bF (x)� ��1(�)(se( bF (x)), where � is the standard normal cumulative
distribution function. Note that � defaults to the value set via set level and can be overruled with the option level.

. graphf exp, cb(value)
function of exp : exp exp2 exp3

Total effect of exp with 95% value-wise confidence band

F
(e

xp
 e

xp
2 

ex
p3

)

work experience
0 29

-2.65257

4.54779

Figure 2. Cubic effect of experience on income with pointwise confidence bands.

The nonconcave estimated form of the experience effect does not make good theoretical sense. I still suspect misspecification.
We next try linear splines (piecewise linear functions) as produced by the mkspline command,

. mkspline Exp 4 = exp

. regress inc edu Exp*

Source SS df MS Number of obs = 400
F( 5, 394) = 167.32

Model 1379.85553 5 275.971106 Prob > F = 0.0000
Residual 649.84035 394 1.64934099 R-squared = 0.6798

Adj R-squared = 0.6758
Total 2029.69588 399 5.08695709 Root MSE = 1.2843

inc Coef. Std. Err. t P>|t| [95% Conf. Interval]

edu 1.065626 .0675651 15.77 0.000 .9327928 1.198459
Exp1 .6608829 .0429611 15.38 0.000 .5764212 .7453446
Exp2 -.0794035 .0392677 -2.02 0.044 -.1566039 -.002203
Exp3 .1601726 .0400491 4.00 0.000 .081436 .2389092
Exp4 -.0020411 .0444742 -0.05 0.963 -.0894775 .0853954
_cons .279721 .206746 1.35 0.177 -.1267423 .6861844

We graph the fitted effect of experience, this time with a confidence band estimated by Ripley’s envelope method. Here,
the confidence band of bF (x) = F (x; b�) is estimated as the value-wise maximum and minimum of F (x; �i), where the �i,
i=1, : : : , 19, are random variates generated from a multivariate normal distribution with the mean and variance of b� from the
regression model.
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. graphf exp, cb(envelope)
function of exp : Exp1 Exp2 Exp3 Exp4

Total effect of exp with 95% Ripley confidence band

F
(E

xp
1 

E
xp

2 
E

xp
3 

E
xp

4)

work experience
0 29

0

5.94031

Figure 3. Cubic effect of experience on income with confidence bands using the Ripley envelope method.

While the estimated experience is not monotonic, the confidence band still allows monotonic concave effects, so I don’t
wonder much anymore. The estimated shape suggests a logarithmic or square-root effect of experience on income. (This could
hardly be a surprise as the data were generated under this assumption.)

Finally, I estimate a quadratic spline of experience in the truncated power series form (see, for example, Section 9.3 of
Seber and Wild 1989) with knots at 7.5, 15, and 22.5.

. drop Exp*

. gen Exp0 = (exp-15)^2

. forvalues i = 1/3 gen Exp‘i’ = max(0,exp-7.5*‘i’)^2

. regress inc edu Exp*

Source SS df MS Number of obs = 400
F( 5, 394) = 158.55

Model 1355.8444 5 271.168881 Prob > F = 0.0000
Residual 673.851473 394 1.71028293 R-squared = 0.6680

Adj R-squared = 0.6638
Total 2029.69588 399 5.08695709 Root MSE = 1.3078

inc Coef. Std. Err. t P>|t| [95% Conf. Interval]

edu 1.075485 .0692212 15.54 0.000 .9393955 1.211574
Exp0 -.0230213 .0014832 -15.52 0.000 -.0259374 -.0201052
Exp1 -.0072883 .0029849 -2.44 0.015 -.0131566 -.00142
Exp2 .0486917 .0103251 4.72 0.000 .0283926 .0689908
Exp3 -.0389595 .0209896 -1.86 0.064 -.0802251 .0023062
_cons 5.629674 .1858246 30.30 0.000 5.264343 5.995006

Now, we display the graph with a confidence band estimated based on a parametric bootstrap of 1000 replications from the
multivariate normal distribution also used by the envelope method (see Davison and Hinkley 1997).

(Continued on next page)
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. graphf exp, cb(bs)
function of exp : Exp0 Exp1 Exp2 Exp3

Total effect of exp with 95% bc/bs confidence band

F
(E

xp
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E
xp

1 
E

xp
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E
xp
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work experience
0 29

-5.84305

.733529

Figure 4. Cubic effect of experience on income with confidence bands from parametric bootstrap.

So far, the command graphf was illustrated in the simple context of a linear regression analysis. graphf can also be
used with other estimation commands such as logit or stcox, and with multiple-equation models such as mlogit or reg3 by
selecting the appropriate equation via the eq() option.

In the examples shown here, graphf was able to figure out which variables in the models were the transformations of exp.
How does graphf perform this “magic”? Remember, in mathematical terms a set (x; y) can be interpreted as a function if “for
each x there is only one y”. This is easy to verify with variables as well. This method is, of course, not foolproof, especially if
your data comprise continuous (as opposed to categorical) variables. In such a case, graphf may include too many variables,
and you may overrule graphf by specifying the varlist yourself, as in

. graphf exp Exp0 Exp1 Exp2 Exp3
(output omitted )

In this case, graphf will test whether the variables Exp0, Exp1, Exp2, and Exp3 are constant within levels of exp.

References
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sg160 On boundary-value likelihood-ratio tests

Roberto G. Gutierrez, Stata Corporation, rgutierrez@stata.com
Shana Carter, Stata Corporation, scarter@stata.com

David M. Drukker, Stata Corporation, ddrukker@stata.com

Abstract: Several Stata commands perform likelihood-ratio tests for the presence of overdispersion or random effects. By their
very nature, these tests are boundary tests in that they test whether a positive-valued parameter is strictly greater than zero.
In such cases, having the null space on the boundary makes standard likelihood ratio theory invalid and special consideration
must be given to ensure that correct p-values are obtained. In particular, the correct p-values are shown to be one half
of what was previously thought. This insert describes the problem in general terms and outlines the modifications to the
affected commands that have resulted under Stata 7.

Keywords: likelihood-ratio test, chi-square, boundary test, overdispersion, random effects, variance components, frailty models.

Implicit boundary tests in Stata

Consider as a motivating example the Stata command nbreg, which fits the gamma–Poisson mixture

f(yij�i) =
(�i�i)

yie
��i�i

�(yi + 1)

where �i = exp(xi� + o�seti) and �i is an unobserved parameter with a gamma(1=�; 1=�) density. Since � has a mean of
1 and a variance of �, as the overdispersion � goes to zero, the model reduces to Poisson. A natural comparison of the two
models is the likelihood-ratio test of Ho : � = 0 versus H1 : � > 0 with � = 0 being on the boundary of the parameter space.
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In the context of panel data (the xt family of commands), boundary tests arise from random effects models where the
variance component is estimated via maximum likelihood. For example, xtreg fits models of the form

yit = �+ xit� + �i + �it

where the �i’s are random effects. The likelihood-ratio test of Ho : �
2
� = 0 versus the right-sided alternative is a boundary test.

The other affected xt commands perform an analogous boundary test for the presence of an overall group random effect.

In both the above situations, a critical regularity condition is violated. The null parameter space is no longer interior to the
full parameter space, and thus the usual result which states that the likelihood-ratio test statistic tends towards �21 in distribution
is untrue. As a result, the p-values given by these estimation routines pre-Stata 7 are incorrect.

In addition, with the release of Stata 7, streg now allows a frailty() option to fit parametric survival models with
overdispersion. Therefore, the hazard function given a latent multiplicative random effect is

h(tj�i) = �ih(t)

where h(t) is any of the parametric hazard functions already estimated by streg, and �i is random with a mean of 1 and a
variance of � and is distributed as either gamma (frailty(gamma)) or inverse-Gaussian (frailty(invgaussian)). In this
case, the likelihood-ratio test of Ho : � = 0 versus H1 : � > 0 also falls on the boundary of the parameter space, and thus
requires the same special consideration as nbreg and as the xt commands.

Limiting distribution of the likelihood-ratio test statistic

Examinations of the large-sample properties of likelihood-ratio tests under nonstandard conditions can be found as early as
Moran (1970) and Chant (1974), with Self and Liang (1987) giving more general and rigorous consideration. Miller (1977) also
studies this problem specifically when testing for the presence of a single random effect.

For the purpose of deriving limiting distributions, Self and Liang (1987) distinguish likelihood-ratio tests according to the
number of parameters that fall into the four categories generated by whether the parameter is of primary interest and by whether
the parameter value is on the boundary under the null.

The implicit likelihood-ratio tests under our consideration are mutually common in the sense that they all consist of exactly
one boundary parameter that is of primary interest, with all other parameters being nuisance parameters that are interior under
the null. This corresponds to Case 5 of Self and Liang (1987) in which case the limiting distribution of the likelihood-ratio
test statistic is shown to be a 50:50 mixture of the �

2
0 (point mass at zero) and �

2
1 distributions. This mixture is denoted as

��201. Thus, any upper-tail area that is calculated with respect to this limiting distribution will be equal to one-half times the
corresponding area calculated with respect to the �21 distribution.

Updates

With the release of Stata 7, the commands nbreg, xtclog, xtintreg, xtlogit, xtnbreg, xtpois, xtprobit, xtreg,
xttobit, and zinb have been updated so that the p-values of the boundary tests are now based on a 50:50 mixture of the �20
and �

2
1 distributions, i.e., the ��201 distribution. This distribution was also utilized when the frailty() option was added to

streg.

Example

Consider the cancer data which ships with Stata 7 to which we fit a Gompertz regression model with gamma heterogeneity.

. use /usr/local/stata7/cancer
(Patient Survival in Drug Trial)

. stset studytime died

failure event: died ~= 0 & died ~= .
obs. time interval: (0, studytime]
exit on or before: failure

48 total obs.
0 exclusions

48 obs. remaining, representing
31 failures in single record/single failure data

744 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 39
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. streg drug age, dist(gompertz) frailty(gamma) nolog

failure _d: died
analysis time _t: studytime

Gompertz regression -- log relative-hazard form
Gamma frailty

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 37.20
Log likelihood = -42.044123 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1827866 .1011623 -3.07 0.002 .0617805 .5408011
age 1.129536 .0496724 2.77 0.006 1.036257 1.231211

gamma .1129468 .0507817 2.22 0.026 .0134166 .2124771
/ln_the -1.628188 2.458232 -0.66 0.508 -6.446234 3.189859

theta .196285 .4825141 .0015865 24.28501

Likelihood ratio test of theta=0: chibar2(01) = 0.19 Prob>=chibar2 = 0.330

The test statistic for the likelihood-ratio test of Ho : � = 0 is labeled as chibar2(01), and the level of significance is obtained
as Pr(�21 > 0.19)=2. In situations where the estimated � is so small as to be indistinguishable from zero, the test statistic is set
to zero to reflect this. In that case, a p-value of Pr(�21 > 0)=2 = 0.5 would be misleading, and thus a p-value of 1 is reported
instead. For this reason, the level of significance is labeled as Prob>=chibar2 instead of being a strict inequality.

Simulation

Consider the simulation run below which empirically examines the distribution of the likelihood-ratio test statistic present
in xtreg, mle.

. capture program drop boundary

. program define boundary
1. version 7
2. if "‘1’" == "?" {
3. global S_1 "chi"
4. exit
5. }
6. drop _all
7. set obs 5000
8. gen x1 = -1 + 2*uniform()
9. gen x2 = -1 + 2*uniform()
10. gen xb = -1 + 0.5*x1 + 1.5*x2
11. gen y = xb + invnorm(uniform())
12. gen u = int(_n/5)
13. xtreg y x1 x2, i(u) mle
14. post ‘1’ (e(chi2_c))
15. end

. set seed 10001

. simul boundary, reps(1000)

. sort chi

. summ

Variable Obs Mean Std. Dev. Min Max

chi 1000 .4819788 1.105139 0 14.0836

. count if chi==0
496

. summ if _n>r(N)

Variable Obs Mean Std. Dev. Min Max

chi 504 .9563071 1.403981 .0000406 14.0836

For each of 1,000 replications, a dataset is generated with arbitrary panels, and a linear regression model with random effects is
fit using maximum likelihood. The test statistic, which tests the presence of a random effect, is then recorded for each replication,
and the results of the simulation are summarized.
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The summary of the simulation results show that the empirical distribution of the test statistic is indeed consistent with that
of a ��201. Note that roughly half of the time the test statistic is zero, and when not zero has a mean and a standard deviation
consistent with that of a �21 random variable. In addition, a �2 quantile-quantile plot of the nonzero test statistics is given below.

ch
i

Expected Chi-Squared d.f. = 1
6.2e-06 9.5678

6.2e-06

14.0836

Figure 1. �2 quantile-quantile plot of nonzero values of chi.
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sg161 Analysis of the turning point of a quadratic specification

Jeroen Weesie, Utrecht University, Netherlands, J.Weesie@fss.uu.nl

Abstract: wherext assists in interpreting results from a model with a quadratic specification.

Keywords: interpretation, quadratic, bootstrap.

Introduction

Suppose you estimated some model (regress, logit, heckman, etc.) with a quadratic specification for some variable, that
is, you include both a linear and quadratic term. wherext helps interpret the results. For a related command on more general
nonlinear specifications, please refer to graphf given in Weesie (2001). wherext displays the range of the variable, the value
argext at which the combination of the linear and quadratic terms are extremal (“turning point”), and provides a confidence
interval for argext based on the delta method or on a parametric bootstrap. Depending on the location of argext relative to the
range of the variable, you can now easily determine whether the total effect of a variable is always positive (negative) or whether
it changes sign at a meaningful value.

Syntax

wherext linear-var quadratic-var
�
, eq(str) bootstrap reps(#) kdensity

�
(options)

�
level(#)

�
Description

wherext is a post-estimation command that helps interpret the results from estimating a model that includes a variable v
and a quadratic term in v. wherext displays the range of v, the value of v (called argext) at which the linear plus quadratic
terms are extreme (turning point), and a standard error and confidence interval of argext.

The quadratic term in v may take the general form a+ bv + cv
2; wherext verifies that it is indeed quadratic.

The standard error and confidence interval are computed via the delta method, and optionally by Monte Carlo simulation.
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Options

eq(str) specifies the name of the equation in which the variables occur. If not specified, the first equation is assumed.

bootstrap specifies that a simulation estimate of the confidence interval of argext is computed. The simulator assumes that the
coefficients of the linear and quadratic terms are distributed as bivariate normal with mean and variance obtained from the
estimation command.

reps(#) specifies the number of Monte Carlo simulations to be performed. The default is 10,000.

kdensity
�
(options)

�
specifies that a kernel density estimate of the distribution of argext is displayed. The graph is overlaid

with a normal distribution based on the delta method. Options for the kdensity command can be provided as an argument
to the kdensity option of wherext, without the comma. For example, kdensity(parzen) specifies that option parzen

is issued when invoking kdensity.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

Example

We demonstrate wherext using artificial data on income (inc) as a function of formal education (edu) and work experience
(exp). We expect a nonlinear effect of exp. We first fit a regression model:

. regress inc edu exp exp2

Source SS df MS Number of obs = 400
F( 3, 396) = 210.72

Model 10638.797 3 3546.26567 Prob > F = 0.0000
Residual 6664.43908 396 16.8293916 R-squared = 0.6148

Adj R-squared = 0.6119
Total 17303.2361 399 43.3665065 Root MSE = 4.1024

inc Coef. Std. Err. t P>|t| [95% Conf. Interval]

edu 1.161939 .2158516 5.38 0.000 .7375808 1.586298
exp .861577 .0858501 10.04 0.000 .6927981 1.030356
exp2 -.0113556 .0027453 -4.14 0.000 -.0167528 -.0059584

_cons 1.68029 .5508591 3.05 0.002 .5973158 2.763264

To obtain information about the turning point of the experience effect, we invoke wherext with the linear and quadratic
terms.

. wherext exp exp2

range of exp = [0,31]
exp+exp2 has maximum in argext = 37.93618
Std Error of argext (delta method) = 5.597306
95% confidence interval for argext = (26.96566, 48.9067)

Apparently, experience has a positive effect on income, but the effect decreases with increasing levels of experience. The
point at which extra experience affects income negatively is estimated to be 37.9 years. wherext refers to this point as the
turning point. This is well beyond the range of experiences over which we have data; the maximal labor market experience
in the data is 31 years. Thus, we would probably like to treat the possible negative effect of experience as an artificial result
of extrapolating the model. Whether we can be sure depends on how sure we can be about the location of the turning point.
Using the delta method (that is, linearly approximating the nonlinear function of the turning point in the regression coefficients),
wherext computed the standard error of argext as 5.6. A symmetric confidence interval for argext is formed based on the
assumption that argext is normally distributed. In this case, the confidence interval for argext clearly overlaps with the relevant
range of experience. It looks like we may well have to face the possibility that experience has a negative effect for high levels
of experience.

It is hard to make sense of this theoretically. Before we try, let’s take a closer look at the methods used. The turning point
argext = b[exp2]=2 b[exp] depends quite nonlinearly on the regression coefficient, especially if b[exp2] is small. We may
indeed cast doubt on the quality of the normal approximation to the distribution of argext, even if we have reasonable confidence
in the adequacy of the normal approximation of the distribution of the regression coefficients. To assess the distribution of argext,
we can turn to a parametric bootstrap that assumes that the coefficients b[exp] and b[exp2] are indeed distributed as bivariate
normal (see Davison and Hinkley 1997; see also King et al. 2000).
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. wherext exp exp2, boot rep(1000) kdensity seed(123)

range of exp = [0,31]
exp+exp2 has maximum in argext = 37.93618
Std Error of argext (delta method) = 5.597306
95% confidence interval for argext = (26.96566,48.9067)

Parametric bootstrap statistics (assuming bivariate normality)

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

argext 1000 37.93618 1.845084 11.201 15.956 59.91636 (N)
30.33916 57.58017 (P)
30.20184 56.46141 (BC)

N = normal, P = percentile, BC = bias-corrected
seed used 123

argext

 bootstrap density  normal density

26.0323 312.366

0

.071221

Figure 1. Bootstrap distribution of argext.

wherext displays a kernel density estimate of the distribution of argext, overlaid with the normal distribution obtained from
the delta method. (Note: this is not the normal distribution that kdensity uses.) Figure 1 leads us to question the adequacy of the
symmetric confidence intervals formed under the assumption that argext is normally distributed. The percentile and bias-corrected
estimates of the confidence interval of argext are strongly asymmetric. According to these confidence intervals, the turning point
of experience likely does not occur in the observed range of experience, and hence the theoretical puzzle does not need to be
addressed.

Some readers may now be worried about the adequacy of the assumption that the regression coefficients are normally
distributed. We can make a further step and perform a nonparametric bootstrap based on resampling observations. Such a bootstrap
takes a considerable amount of time, since it has to estimate the models many times over. The parametric bootstrap, in contrast,
only has to draw from a bivariate distribution and compute the turning point for each draw. The latter is quite fast.

. bs "regress inc edu exp exp2" "-0.5*_b[exp]/_b[exp2]", rep(1000)

command: regress inc edu exp exp2
statistic: -0.5*_b[exp]/_b[exp2]
(obs=400)

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 1000 37.93618 1.891745 8.962951 20.34781 55.52455 (N)
30.68794 60.43152 (P)
30.14097 58.88775 (BC)

N = normal, P = percentile, BC = bias-corrected

We see that there is a good similarity between the parametric and nonparametric bootstrap results. This is often the case
with smooth models from the class of generalized linear models, but not with “less linear” models, such as sample selection
models. Thus, in a future version of wherext, an option to perform the nonparametric bootstrap automatically may be included.
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sg162 Tools for spatial data analysis

Maurizio Pisati, University of Milano Bicocca, Italy, maurizio.pisati@galactica.it

Abstract: A suite of commands for spatial data analysis is presented and illustrated.

Keywords: exploratory spatial data analysis, hotspots, Moran scatterplot, spatial autocorrelation, spatial clusters, spatial correlo-
gram, spatial regression, spatial weights matrix, test for spatial dependence.

Syntax

spatwmat
�
using filename

�
, name(weights matrix)

�
drop(numlist) xcoord(varname) ycoord(varname)

band(numlist) friction(#) binary standardize eigenval(eigen matrix)
�

spatgsa varlist , weights(matrix)
�
moran geary go twotail

�
spatcorr varname , bands(numlist) xcoord(varname) ycoord(varname)

�
geary cumulative

twotail graph needle savegraph(filename
�
, replace

�
)
�

spatlsa varname , weights(matrix)
�
moran geary go1 go2 id(varname) twotail sort

graph(moran j go1 j go2) symbol(id j n) map(filename) xcoord(varname) ycoord(varname)

savegraph(filename
�
, replace

�
)
�

spatdiag , weights(matrix)

spatreg depvar
�
indepvars

�
, weights(weights matrix) eigenval(eigen matrix) model(lag j error)�

nolog robust level(#)
�

Description

spatwmat imports or generates the spatial weights matrices required by spatgsa, spatlsa, spatdiag, and spatreg. As
an option, spatwmat also generates the eigenvalues matrix required by spatreg.

spatgsa computes three global spatial autocorrelation statistics: Moran’s I , Geary’s c, and Getis and Ord’s G. For each
requested statistic and each variable in varlist, spatgsa computes and displays in tabular form the statistic itself, the expected
value of the statistic under the null hypothesis of global spatial independence, the standard deviation of the statistic, the z-value,
and the corresponding one- or two-tailed p-value.

spatcorr computes and optionally plots Moran’s I or Geary’s c spatial correlogram based on two or more consecutive or
cumulative distance bands. For each distance band, spatcorr computes and displays in tabular form the requested statistic, the
expected value of the statistic under the null hypothesis of global spatial independence, the standard deviation of the statistic,
the z-value, and the corresponding one- or two-tailed p-value.

spatlsa computes four local spatial autocorrelation statistics: Moran’s Ii, Geary’s ci, Getis and Ord’s Gi, and Getis and
Ord’s G�i . For each requested statistic and each location in the analysis, spatlsa computes and displays in tabular form the
statistic itself, the expected value of the statistic under the null hypothesis of local spatial independence, the standard deviation
of the statistic, the z-value, and the corresponding one- or two-tailed p-value. As an option, spatlsa also displays a Moran
scatterplot, a map of Moran scatterplot values, a map of Gi z-values, or a map of G�i z-values.

spatdiag carries out several diagnostic tests for spatial dependence in OLS regression. For each test, spatdiag computes
and displays in tabular form the relevant statistic, the degrees of freedom of the test, and the corresponding p-value. spatdiag
can be used only after regress.

spatreg estimates the spatial lag and the spatial error regression models by maximum likelihood.

Options for spatwmat

using filename requests that the matrix weights matrix be imported from filename, an external Stata datafile which includes
exactly N cases and N variables containing the user-defined spatial weights (missing values are not allowed).

name(weights matrix) is required. It specifies the name of the N �N spatial weights matrix to be generated, where N denotes
the number of locations in the analysis.
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drop(numlist), if used with option using filename, specifies the cases (rows) and variables (columns) to be dropped before
generating matrix weights matrix.

xcoord(varname) is required if option using filename is not specified. It specifies the name of the variable containing the
x-coordinate of each location in the analysis.

ycoord(varname) is required if option using filename is not specified. It specifies the name of the variable containing the
y-coordinate of each location in the analysis. Both the x-coordinate and the y-coordinate must be expressed in projected
units, for example, meters, kilometers, miles, or arbitrary digitizing units.

band(numlist) is required if option using filename is not specified. It specifies the lower and upper bounds of the distance band
within which location pairs must be considered neighbors, that is, spatially contiguous, and, therefore, assigned a nonzero
spatial weight. By default, spatwmat generates spatial weights as

wij =

�
0; if dij � lb or dij > ub

1=d
f
ij ; if lb < dij � ub

where (i; j) denotes the location pair, dij denotes the Euclidean distance between locations i and j, lb denotes the lower
bound of the specified distance band, ub denotes the upper bound of the specified distance band, and f denotes a positive
friction parameter (by default f = 1).

friction(#) specifies the friction parameter to be used in the computation of spatial weights (see above).

binary requests that a binary weights matrix be generated. To this aim, all nonzero spatial weights are set to 1.

standardize requests that a row-standardized weights matrix be generated. To this aim, all nonzero spatial weights are rescaled
so that within each row their sum equals 1.

eigenval(eigen matrix) requests that an additional N � 1 matrix be generated containing the eigenvalues of weights matrix.
This matrix is required by spatreg.

Options for spatgsa

weights(matrix) is required. It specifies the name of the spatial weights matrix to be used in the computation of the requested
global spatial autocorrelation statistics. This matrix must have been generated by spatwmat.

moran requests that Moran’s I and the related quantities of interest be computed and displayed.

geary requests that Geary’s c and the related quantities of interest be computed and displayed.

go requests that Getis and Ord’s G and the related quantities of interest be computed and displayed. This option requires that
the spatial weights matrix specified by the weights option be a nonstandardized symmetric binary weights matrix.

twotail requests that two-tailed p-values be computed and displayed instead of the default one-tailed p-values.

To run spatgsa, it is necessary to specify at least one of the moran, geary, and go options.

Options for spatcorr

bands(numlist) is required. It specifies the sequence of lower and upper bounds of the distance bands to be used in the
calculation of the spatial correlogram. For example, if bands(0 2 4 6) is specified, and cumulative is not specified,
then the spatial correlogram will be computed on the consecutive distance bands: (0; 2], (2; 4], (4; 6]. On the other hand,
if option cumulative is specified, then the spatial correlogram will be computed on the cumulative distance bands: (0; 2],
(0; 4], (0; 6].

xcoord(varname) is required. It specifies the name of the variable containing the x-coordinate of each location in the analysis.

ycoord(varname) is required. It specifies the name of the variable containing the y-coordinate of each location in the analysis.
Both the x-coordinate and the y-coordinate must be expressed in projected units, for example, meters, kilometers, miles,
or arbitrary digitizing units.

geary requests that Geary’s c spatial correlogram be computed and optionally plotted instead of the default Moran’s I spatial
correlogram.

cumulative requests that cumulative distance bands be used instead of the default consecutive distance bands.

twotail requests that two-tailed p-values be computed and displayed instead of the default one-tailed p-values.

graph requests that the spatial correlogram be plotted.

needle requests that the spatial correlogram be plotted using vertical lines from zero (for Moran’s I) or one (for Geary’s c) to
the computed statistics instead of lines that connect the computed statistics.
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savegraph(filename [, replace]) requests that the graph be saved in filename. If filename exists, an error will occur unless
replace is also specified. filename must have one of the extensions .ps, .eps, .prn, or .wmf.

Options for spatlsa

weights(matrix) is required. It specifies the name of the spatial weights matrix to be used in the computation of the requested
local spatial autocorrelation statistics. This matrix must have been generated by spatwmat.

moran requests that Moran’s Ii and the related quantities of interest be computed and displayed.

geary requests that Geary’s ci and the related quantities of interest be computed and displayed.

go1 requests that Getis and Ord’s Gi and the related quantities of interest be computed and displayed. This option requires that
the spatial weights matrix specified by the weights option be a nonstandardized symmetric binary weights matrix.

go2 requests that Getis and Ord’s G�i and the related quantities of interest be computed and displayed. This option requires that
the spatial weights matrix specified by the weights option be a nonstandardized symmetric binary weights matrix.

id(varname) specifies the name of the variable containing the identifier of each location in the analysis.

twotail requests that two-tailed p-values be computed and displayed instead of the default one-tailed p-values.

sort requests that statistics be displayed in ascending order based on z-values instead of the default case order.

graph(moran j go1 j go2) requests that a graphical representation of results be displayed.

graph(moran), without option map(filename), requests that a Moran scatterplot be displayed. This option requires that
the spatial weights matrix specified by the weights option be a row-standardized weights matrix.

graph(moran), with option map(filename), requests that a map of Moran scatterplot values be displayed. This option
requires that the spatial weights matrix specified by the weights option be a row-standardized weights matrix.

graph(go1) requests that a map of Gi z-values be displayed. This option requires that the map option also be specified.

graph(go2) requests that a map of G�i z-values be displayed. This option requires that the map option also be specified.

symbol(id j n) requests that in the Moran scatterplot locations be represented by an identifier instead of the default graphic
symbol.

symbol(id) requests that locations be identified by the values of the variable specified by option id(varname).

symbol(n) requests that locations be identified by the case number.

map(filename) specifies the file containing the coordinates of the polygon(s) that delineate the geographical area of analysis. (For
a description of the file format, see below.) This option requires that options xcoord(varname) and ycoord(varname) be
specified.

xcoord(varname) specifies the name of the variable containing the x-coordinate of each location in the analysis.

ycoord(varname) specifies the name of the variable containing the y-coordinate of each location in the analysis. Both the
x-coordinate and the y-coordinate must be expressed in projected units, for example, meters, kilometers, miles, or arbitrary
digitizing units.

savegraph(filename [, replace]) requests that the graph be saved in filename. If filename exists, an error will occur unless
replace is also specified. filename must have one of the extensions .ps, .eps, .prn, or .wmf.

To run spatlsa, it is necessary to specify at least one of the moran, geary, go1, or go2 options.

Options for spatdiag

weights(matrix) is required. It specifies the name of the spatial weights matrix to be used in the computation of the diagnostics.
This matrix must have been generated by spatwmat.

Options for spatreg

weights(matrix) is required. It specifies the name of the spatial weights matrix to be used in the estimation of the requested
spatial regression model. This matrix must have been generated by spatwmat.

eigenval(eigen matrix) is required. It specifies the name of the eigenvalues matrix to be used in the estimation of the requested
spatial regression model. This matrix must have been generated by spatwmat.

model(lag j error) is required. It specifies the type of spatial regression model to be estimated.

model(lag) requests that the spatial lag model be estimated.
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model(error) requests that the spatial error model be estimated.

nolog requests that reporting of the iteration log be suppressed.

robust requests that the Huber/White/sandwich estimator of variance be used instead of the traditional calculation.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

Using spatwmat

One of the main distinguishing features of spatial data analysis is that it takes into account the spatial arrangement of the
observational units, which we will call locations (Anselin 1992a). This spatial arrangement is represented by a spatial weights
matrix W whose elements wij express the presence or absence (binary weights matrix) or the degree (nonbinary weights matrix)
of potential spatial interaction between each possible pair of locations.

The primary purpose of spatwmat is to generate the N � N spatial weights matrices required by spatgsa, spatlsa,
spatdiag, and spatreg, where N denotes the number of locations in the analysis. spatwmat can accomplish this task either
by importing a user-defined matrix stored in an external Stata datafile, or by using the spatial coordinates of locations supplied
by the user. As an option, spatwmat also generates the N � 1 eigenvalues matrix required by spatreg.

To illustrate the practical application of spatwmat, as well as the other commands discussed in this insert, I will use data
on 49 contiguous planning neighborhoods in Columbus, Ohio (Anselin 1988).

. use columbusdata.dta

. describe

Contains data from columbusdata.dta
obs: 49
vars: 6 30 Jan 2001 14:44
size: 1,225 (100.0% of memory free)

storage display value
variable name type format label variable label

id byte %8.0g Neighborhood id value
hoval float %9.0g Housing value (in $1,000)
income float %9.0g Household income (in $1,000)
crime float %9.0g Residential burglaries &

vehicle thefts per 1,000
households

x float %9.0g x coordinate of centroid (in
arbitrary digitizing units)

y float %9.0g y coordinate of centroid (in
arbitrary digitizing units)

Sorted by: id

Before using these data to carry out the analyses of interest, we have to generate the proper spatial weights matrix. As
mentioned above, a way to accomplish this task consists of importing a user-defined matrix stored in an external Stata datafile.

. spatwmat using columbusswm.dta, name(W)

The following matrix has been created:

1. Imported binary weights matrix W
Dimension: 49x49

As we can see, when everything is finished, spatwmat informs us that a 49 � 49 spatial weights matrix named W has been
created; moreover, spatwmat has detected that the imported matrix is made up of binary weights. In case we would like to
analyze only the first ten neighborhoods, we could use option drop(numlist).

. spatwmat using columbusswm.dta, name(W) drop(11/49)

The following matrix has been created:

1. Imported binary weights matrix W
Dimension: 10x10

. matrix list W, nonames



Stata Technical Bulletin 25

symmetric W[10,10]
0
1 0
0 1 0
0 0 1 0
1 0 0 0 0
1 1 0 0 1 0
0 1 1 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

If we specify the standardize option, we obtain a row-standardized spatial weights matrix.

. spatwmat using columbusswm.dta, name(W) drop(11/49) standardize

The following matrix has been created:

1. Imported binary weights matrix W (row-standardized)
Dimension: 10x10

. matrix list W, nonames format(%4.2f)

W[10,10]
0.00 0.33 0.00 0.00 0.33 0.33 0.00 0.00 0.00 0.00
0.25 0.00 0.25 0.00 0.00 0.25 0.25 0.00 0.00 0.00
0.00 0.33 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00
0.25 0.25 0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.00
0.00 0.20 0.20 0.00 0.00 0.20 0.00 0.20 0.20 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Alternatively, spatwmat can be used to generate several kinds of distance-based spatial weights matrices. For example,

. spatwmat, name(W) xcoord(x) ycoord(y) band(0 3) binary

The following matrix has been created:

1. Distance-based binary weights matrix W
Dimension: 49x49
Distance band: 0 < d <= 3
Friction parameter: 1
Minimum distance: 0.1
1st quartile distance: 1.0
Median distance: 1.7
3rd quartile distance: 2.4
Maximum distance: 4.8
Largest minimum distance: 0.67
Smallest maximum distance: 2.53

As we can see from the output, the above command has generated a 49� 49 binary weights matrix named W whose elements
take value 1 if locations are within a distance of 3 digitizing units from each other, and value 0 otherwise. The output also
offers some additional information that may help specify the proper distance band. For instance, the value corresponding to the
largest minimum distance suggests that if we specify an upper bound smaller than 0.67, there will be at least one location with
no neighbors:

. spatwmat, name(W) xcoord(x) ycoord(y) band(0 0.66) binary

The following matrix has been created:

1. Distance-based binary weights matrix W
Dimension: 49x49
Distance band: 0 < d <= .66
Friction parameter: 1
Minimum distance: 0.1
1st quartile distance: 1.0
Median distance: 1.7
3rd quartile distance: 2.4
Maximum distance: 4.8
Largest minimum distance: 0.67
Smallest maximum distance: 2.53

Beware! 1 location has no neighbors
You are advised to extend the distance band
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Finally, spatwmat can be used to generate the eigenvalues matrix required by spatreg:

. spatwmat using columbusswm.dta, name(W) standardize eigenval(E)

The following matrices have been created:

1. Imported binary weights matrix W (row-standardized)
Dimension: 49x49

2. Eigenvalues matrix E
Dimension: 49x1

Using spatgsa

Spatial autocorrelation can be defined as the phenomenon that occurs when the spatial distribution of the variable of interest
exhibits a systematic pattern (Cliff and Ord 1981). spatgsa computes three measures of global spatial autocorrelation: Moran’s
I (Moran 1948), Geary’s c (Geary 1954), and Getis and Ord’s G (Getis and Ord 1992). Moran’s I is given by

I =

PN

i=1

PN

j=1 wijZiZj

S0m2

where wij denotes the elements of the spatial weights matrix W corresponding to the location pair (i; j), Zi = Yi � Y , Yi
denotes the value taken on by the variable Y of interest at location i; �Y denotes the mean of variable Y , S0 =

P
i

P
j wij ,

and m2 =
P

i Z
2
i =N .

Under the null hypothesis of no global spatial autocorrelation, the expected value of I is given by

E(I) = �1=(N � 1)

If I is larger than its expected value, then the overall distribution of variable Y can be seen as characterized by positive spatial
autocorrelation, meaning that the value taken on by Y at each location i tends to be similar to the values taken on by Y at
spatially contiguous locations. On the other hand, if I is smaller than its expected value, then the overall distribution of variable
Y can be seen as characterized by negative spatial autocorrelation, meaning that the value taken on by Y at each location i

tends to be different from the values taken on by Y at spatially contiguous locations. Inference is based on z-values, computed
by subtracting E(I) from I and dividing the result by the standard deviation of I

zI =
I � E(I)

sd(I)

The formula for the standard deviation of I depends on the assumptions about the data and the nature of spatial autocorrelation.
spatgsa computes sd(I) under the total randomization assumption (for details and formulas, see Sokal et al. 1998); under this
assumption zI follows a normal distribution (asymptotically), so that its significance can be evaluated by means of a standard
normal table (Anselin 1992a).

Geary’s c is computed by

c = (N � 1)

PN

i=1

PN

j=1wij(Zi � Zj)
2

2NS0m2

Under the null hypothesis of no global spatial autocorrelation, the expected value of c equals 1. If c is larger than 1, then the
overall distribution of variable Y can be seen as characterized by negative spatial autocorrelation; on the other hand, if c is
smaller than 1, then the overall distribution of variable Y can be seen as characterized by positive spatial autocorrelation. As in
the case of Moran’s I , inference is based on z-values, computed by subtracting 1 from c and dividing the result by the standard
deviation of c

zc =
c� 1

sd(c)

spatgsa computes sd(c) under the total randomization assumption (for details and formulas, see Sokal et al. 1998), which
implies that zc is asymptotically distributed as a standard normal variate (Anselin 1992a).

Getis and Ord’s G is computed by

G =

P
i6=j wijYiYjP
i6=j YiYj
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where variable Y can take only positive values, and wij denotes the elements of a nonstandardized symmetric binary weights
matrix where wii = 0. Under the null hypothesis of no global spatial autocorrelation, the expected value of G equals

E(G) =
S0

N(N � 1)

G measures the overall spatial clustering of values of Y in a peculiar way and, therefore, its interpretation is somewhat different
from that of I and c. Specifically, if G is larger than its expected value, then the overall distribution of variable Y can be seen
as characterized by positive spatial autocorrelation with a prevalence of high-valued clusters. On the other hand, if G is smaller
than its expected value, then the overall distribution of variable Y is still characterized by positive spatial autocorrelation, but
with a prevalence of low-valued clusters (Getis and Ord 1992). As in the other cases, inference is based on z-values, computed
by subtracting E(G) from G and dividing the result by the standard deviation of G

zG =
G� E(G)

sd(G)

Asymptotically, zG approximates a standard normal variate (for details and formulas, see Getis and Ord 1992).

Let us now use the Columbus data to see how spatgsa works in practice. Since we want to compute all the statistics
discussed above, we decide to use the nonstandardized symmetric binary weights matrix stored in file columbusswm.dta.

. use columbusdata.dta, clear

. spatwmat using columbusswm.dta, name(W)

The following matrix has been created:

1. Imported binary weights matrix W
Dimension: 49x49

. spatgsa hoval income crime, weights(W) moran geary go

Measures of global spatial autocorrelation

Weights matrix

Name: W
Type: Imported (binary)
Row-standardized: No

Moran’s I

Variables I E(I) sd(I) z p-value*

hoval 0.220 -0.021 0.085 2.824 0.002
income 0.413 -0.021 0.086 5.067 0.000
crime 0.521 -0.021 0.087 6.212 0.000

Geary’s c

Variables c E(c) sd(c) z p-value*

hoval 0.805 1.000 0.138 -1.411 0.079
income 0.716 1.000 0.131 -2.165 0.015
crime 0.584 1.000 0.109 -3.835 0.000

Getis & Ord’s G

Variables G E(G) sd(G) z p-value*

hoval 0.098 0.099 0.006 -0.188 0.425
income 0.098 0.099 0.005 -0.057 0.477
crime 0.126 0.099 0.006 4.714 0.000

*1-tail test

To carry out a two-tailed test, we simply have to add option twotail to the above command.
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Using spatcorr

In some cases, it is useful to evaluate global spatial autocorrelation at several levels of spatial separation, for example,
for different distance bands. One way to accomplish this task is to use spatgsa repeatedly, each time specifying a different
distance-based spatial weights matrix. Alternatively, we can use spatcorr to compute and optionally plot a Moran’s I or Geary’s
c spatial correlogram based on two or more consecutive or cumulative distance bands (Cliff and Ord 1981; Bailey and Gatrell
1995; Chen and Getis 1998). For each distance band, spatcorr first generates a row-standardized binary weights matrix, and
then uses this matrix to compute the requested statistic and the related quantities of interest.

To see how spatcorr works in practice, let us go back to the Columbus data. To compute a Moran’s I spatial correlogram
for variable crime based on five consecutive distance bands of width 1, the proper command is

. use columbusdata.dta, clear

. spatcorr crime, bands(0(1)5) xcoord(x) ycoord(y)

Moran’s I spatial correlogram

Residential burglaries & vehicle thefts per 1,000 households

Distance bands I E(I) sd(I) z p-value*

(0-1] 0.416 -0.021 0.062 7.105 0.000
(1-2] -0.211 -0.021 0.041 -4.691 0.000
(2-3] -0.410 -0.021 0.050 -7.756 0.000
(3-4] 0.157 -0.021 0.100 1.779 0.038
(4-5] 0.812 -0.021 0.203 4.095 0.000

*1-tail test

Were we interested in cumulative distance bands, we could use

. spatcorr crime, bands(0(1)5) xcoord(x) ycoord(y) cumulative

Moran’s I spatial correlogram

Residential burglaries & vehicle thefts per 1,000 households

Distance bands I E(I) sd(I) z p-value*

(0-1] 0.416 -0.021 0.062 7.105 0.000
(0-2] 0.036 -0.021 0.026 2.169 0.015
(0-3] -0.093 -0.021 0.010 -6.955 0.000
(0-4] -0.037 -0.021 0.004 -4.073 0.000
(0-5] -0.021 -0.021 0.000 0.014 0.494

*1-tail test

Finally, we can ask spatcorr to plot the spatial correlogram:

. spatcorr crime, bands(0(1)5) xcoord(x) ycoord(y) graph
(output omitted )

which gives the graph in Figure 1.
Moran’s I spatial correlogram
Residential burglaries & vehicle thefts per 1,000 households

I

Distance bands
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-0.50
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Figure 1. Moran’s I spatial correlogram for the crime variable.
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Using spatlsa

The measures of global spatial autocorrelation discussed above offer an “average” picture of the spatial distribution of the
variable of interest and, therefore, may hide interesting features of the phenomenon under study. To overcome this limitation,
during the last decade several measures of local spatial autocorrelation have been devised. Such statistics can serve different
purposes. When applied to datasets lacking global spatial autocorrelation, local statistics may be able to reveal one or more limited
areas exhibiting significant deviation from spatial randomness. When applied to datasets where global spatial autocorrelation is
present, local statistics may help identify the locations that contribute most to the overall pattern of spatial clustering (Sokal et al.
1998). More generally, local statistics are employed to detect significant spatial clustering around individual locations, sometimes
referred to as hotspots.

spatlsa computes four local spatial autocorrelation statistics: Moran’s Ii, Geary’s ci, Getis and Ord’s Gi, and Getis and
Ord’s G�i (for details and formulas, see Getis and Ord 1992; Anselin 1995; Sokal et al. 1998). To interpret the results displayed
by spatlsa, the following remarks should be taken into account:

� The expected value and the standard deviation of both Ii and ci are computed under the total randomization assumption.

� As shown by Sokal et al. (1998), significance testing for local spatial autocorrelation is problematic and, therefore, the
reported p-values should be regarded just as an approximate indication of statistical significance, especially in the presence of
global spatial autocorrelation. However, the statistics (especially in their standardized form) are informative when employed
in an exploratory manner.

� Like their global counterparts, Moran’s Ii and Geary’s ci spot both positive and negative spatial autocorrelation. Specifically,
positive Ii z-values and negative ci z-values indicate clustering of similar values of Y around location i, that is, positive
local spatial autocorrelation, while negative Ii z-values and positive ci z-values indicate clustering of dissimilar values of
Y around location i, that is negative local spatial autocorrelation. On the other hand, Getis and Ord’s Gi and G�i can detect
only positive spatial autocorrelation. Specifically, positive Gi and G

�

i z-values indicate spatial clustering of high values of
Y around location i, while negative Gi and G

�

i z-values indicate spatial clustering of low values of Y around location i.

To illustrate the practical use of spatlsa, let us consider again the Columbus data. To compute the Moran’s Ii and Getis
and Ord’s G�i statistics for variable crime, we must enter the following commands:

. use columbusdata.dta, clear

. spatwmat using columbusswm.dta, name(W)

The following matrix has been created:

1. Imported binary weights matrix W
Dimension: 49x49

. spatlsa crime, weights(W) moran go2

Measures of local spatial autocorrelation

Weights matrix

Name: W
Type: Imported (binary)
Row-standardized: No

Moran’s Ii (Residential burglaries & vehicle thefts pe)

Location Ii E(Ii) sd(Ii) z p-value*

1 1.586 -0.063 1.674 0.985 0.162
2 0.019 -0.083 1.912 0.054 0.479
3 0.460 -0.125 2.289 0.255 0.399
4 -7.442 -0.083 1.912 -3.850 0.000
5 1.474 -0.042 1.381 1.097 0.136
6 0.375 -0.083 1.912 0.240 0.405
7 2.429 -0.167 2.581 1.006 0.157
8 -0.363 -0.042 1.381 -0.233 0.408
9 4.409 -0.125 2.289 1.981 0.024
10 0.161 -0.083 1.912 0.128 0.449
11 -0.324 -0.063 1.674 -0.156 0.438
12 2.703 -0.063 1.674 1.652 0.049
13 4.959 -0.083 1.912 2.638 0.004
14 2.495 -0.063 1.674 1.528 0.063
15 0.935 -0.042 1.381 0.707 0.240
16 4.846 -0.104 2.113 2.342 0.010
17 3.414 -0.208 2.815 1.287 0.099
18 0.195 -0.146 2.443 0.140 0.444
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19 -0.024 -0.125 2.289 0.044 0.482
20 1.180 -0.104 2.113 0.607 0.272
21 -0.496 -0.083 1.912 -0.216 0.415
22 0.214 -0.083 1.912 0.156 0.438
23 -0.210 -0.146 2.443 -0.026 0.490
24 3.465 -0.125 2.289 1.569 0.058
25 -0.103 -0.104 2.113 0.000 0.500
26 1.090 -0.063 1.674 0.689 0.246
27 0.814 -0.083 1.912 0.470 0.319
28 0.272 -0.083 1.912 0.186 0.426
29 0.035 -0.125 2.289 0.070 0.472
30 2.539 -0.125 2.289 1.164 0.122
31 8.793 -0.188 2.704 3.321 0.000
32 11.771 -0.146 2.443 4.877 0.000
33 10.351 -0.125 2.289 4.577 0.000
34 8.276 -0.104 2.113 3.965 0.000
35 1.600 -0.146 2.443 0.714 0.238
36 9.910 -0.167 2.581 3.904 0.000
37 4.529 -0.146 2.443 1.913 0.028
38 7.290 -0.104 2.113 3.498 0.000
39 0.501 -0.083 1.912 0.306 0.380
40 3.692 -0.125 2.289 1.667 0.048
41 2.400 -0.063 1.674 1.471 0.071
42 2.763 -0.104 2.113 1.357 0.087
43 0.465 -0.063 1.674 0.315 0.376
44 2.114 -0.083 1.912 1.149 0.125
45 2.035 -0.042 1.381 1.503 0.066
46 6.216 -0.104 2.113 2.991 0.001
47 2.304 -0.042 1.381 1.698 0.045
48 2.499 -0.042 1.381 1.840 0.033
49 2.173 -0.042 1.381 1.604 0.054

Getis & Ord’s G2i (Residential burglaries & vehicle thefts pe)

Location G2i E(G2i) sd(G2i) z p-value*

1 0.057 0.082 0.019 -1.340 0.090
2 0.099 0.102 0.021 -0.132 0.448
3 0.167 0.143 0.024 1.013 0.156
4 0.116 0.102 0.021 0.661 0.254
5 0.038 0.061 0.016 -1.433 0.076
6 0.086 0.102 0.021 -0.772 0.220
7 0.218 0.184 0.026 1.285 0.099
8 0.062 0.061 0.016 0.069 0.473
9 0.203 0.143 0.024 2.521 0.006
10 0.079 0.102 0.021 -1.138 0.128
11 0.053 0.082 0.019 -1.540 0.062
12 0.044 0.082 0.019 -2.003 0.023
13 0.043 0.102 0.021 -2.851 0.002
14 0.048 0.082 0.019 -1.821 0.034
15 0.037 0.061 0.016 -1.511 0.065
16 0.071 0.122 0.022 -2.325 0.010
17 0.189 0.224 0.028 -1.263 0.103
18 0.154 0.163 0.025 -0.375 0.354
19 0.145 0.143 0.024 0.079 0.469
20 0.158 0.122 0.022 1.595 0.055
21 0.108 0.102 0.021 0.281 0.389
22 0.111 0.102 0.021 0.435 0.332
23 0.157 0.163 0.025 -0.235 0.407
24 0.183 0.143 0.024 1.701 0.044
25 0.119 0.122 0.022 -0.158 0.437
26 0.061 0.082 0.019 -1.133 0.129
27 0.082 0.102 0.021 -0.982 0.163
28 0.091 0.102 0.021 -0.517 0.303
29 0.147 0.143 0.024 0.189 0.425
30 0.202 0.143 0.024 2.501 0.006
31 0.281 0.204 0.027 2.806 0.003
32 0.250 0.163 0.025 3.454 0.000
33 0.222 0.143 0.024 3.328 0.000
34 0.181 0.122 0.022 2.630 0.004
35 0.246 0.163 0.025 3.271 0.001
36 0.275 0.184 0.026 3.475 0.000
37 0.209 0.163 0.025 1.828 0.034
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38 0.181 0.122 0.022 2.625 0.004
39 0.116 0.102 0.021 0.661 0.254
40 0.182 0.143 0.024 1.661 0.048
41 0.113 0.082 0.019 1.663 0.048
42 0.177 0.122 0.022 2.464 0.007
43 0.099 0.082 0.019 0.958 0.169
44 0.065 0.102 0.021 -1.780 0.038
45 0.033 0.061 0.016 -1.760 0.039
46 0.063 0.122 0.022 -2.675 0.004
47 0.029 0.061 0.016 -1.975 0.024
48 0.029 0.061 0.016 -1.975 0.024
49 0.032 0.061 0.016 -1.803 0.036

*1-tail test

Sometimes, it might be useful to have the results displayed in ascending order of the z-values:

. spatlsa crime, weights(W) moran sort

Measures of local spatial autocorrelation

Weights matrix

Name: W
Type: Imported (binary)
Row-standardized: No

Moran’s Ii (Residential burglaries & vehicle thefts pe)

Location Ii E(Ii) sd(Ii) z p-value*

4 -7.442 -0.083 1.912 -3.850 0.000
8 -0.363 -0.042 1.381 -0.233 0.408
21 -0.496 -0.083 1.912 -0.216 0.415
11 -0.324 -0.063 1.674 -0.156 0.438
23 -0.210 -0.146 2.443 -0.026 0.490
25 -0.103 -0.104 2.113 0.000 0.500
19 -0.024 -0.125 2.289 0.044 0.482
2 0.019 -0.083 1.912 0.054 0.479
29 0.035 -0.125 2.289 0.070 0.472
10 0.161 -0.083 1.912 0.128 0.449
18 0.195 -0.146 2.443 0.140 0.444
22 0.214 -0.083 1.912 0.156 0.438
28 0.272 -0.083 1.912 0.186 0.426
6 0.375 -0.083 1.912 0.240 0.405
3 0.460 -0.125 2.289 0.255 0.399
39 0.501 -0.083 1.912 0.306 0.380
43 0.465 -0.063 1.674 0.315 0.376
27 0.814 -0.083 1.912 0.470 0.319
20 1.180 -0.104 2.113 0.607 0.272
26 1.090 -0.063 1.674 0.689 0.246
15 0.935 -0.042 1.381 0.707 0.240
35 1.600 -0.146 2.443 0.714 0.238
1 1.586 -0.063 1.674 0.985 0.162
7 2.429 -0.167 2.581 1.006 0.157
5 1.474 -0.042 1.381 1.097 0.136
44 2.114 -0.083 1.912 1.149 0.125
30 2.539 -0.125 2.289 1.164 0.122
17 3.414 -0.208 2.815 1.287 0.099
42 2.763 -0.104 2.113 1.357 0.087
41 2.400 -0.063 1.674 1.471 0.071
45 2.035 -0.042 1.381 1.503 0.066
14 2.495 -0.063 1.674 1.528 0.063
24 3.465 -0.125 2.289 1.569 0.058
49 2.173 -0.042 1.381 1.604 0.054
12 2.703 -0.063 1.674 1.652 0.049
40 3.692 -0.125 2.289 1.667 0.048
47 2.304 -0.042 1.381 1.698 0.045
48 2.499 -0.042 1.381 1.840 0.033
37 4.529 -0.146 2.443 1.913 0.028
9 4.409 -0.125 2.289 1.981 0.024
16 4.846 -0.104 2.113 2.342 0.010
13 4.959 -0.083 1.912 2.638 0.004
46 6.216 -0.104 2.113 2.991 0.001
31 8.793 -0.188 2.704 3.321 0.000
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38 7.290 -0.104 2.113 3.498 0.000
36 9.910 -0.167 2.581 3.904 0.000
34 8.276 -0.104 2.113 3.965 0.000
33 10.351 -0.125 2.289 4.577 0.000
32 11.771 -0.146 2.443 4.877 0.000

*1-tail test

As an option, spatlsa computes and displays a Moran scatterplot (Anselin 1995). This option, however, requires that a
row-standardized weights matrix be used:

. spatwmat using columbusswm.dta, name(WS) standardize

The following matrix has been created:

1. Imported binary weights matrix WS (row-standardized)
Dimension: 49x49

. spatlsa crime, weights(WS) moran graph(moran) symbol(n)
(output omitted )

The results of this are given in Figure 2.
Moran scatterplot (Moran’s I = 0.511)
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Figure 2. Moran scatterplot for variable crime.

The Moran scatterplot is a plot of Wz versus z, where W denotes a row-standardized spatial weights matrix and
z = (Y � �Y )=sd(Y ). The oblique line represents the linear regression line obtained by regressing Wz on z, and its slope
equals Moran’s I (in this case I = 0.511). As we can see, the Moran scatterplot is divided into four quadrants, each of which
represents a different kind of spatial association:

� The upper right quadrant represents spatial clustering of high values of Y around high-value locations. In general, these
locations are associated with positive values of Ii, Gi, and G

�

i , and negative values of ci.

� The lower left quadrant represents spatial clustering of low values of Y around low-value locations. In general, these
locations are associated with positive values of Ii and negative values of ci, Gi, and G

�

i .

� The lower right quadrant represents spatial clustering of low values of Y around high-value locations. In general, these
locations are associated with negative values of Ii and positive values of ci

� The upper left quadrant represents spatial clustering of high values of Y around low-value locations. In general, these
locations are associated with negative values of Ii and positive values of ci.

As an option, spatlsa can display a map of Moran scatterplot values:

. spatlsa crime, w(WS) moran graph(moran) map(columbusboundary.dta) x(x) y(y)
(output omitted )

which gives the map in Figure 3.
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Moran scatterplot
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Figure 3. Map of Moran scatterplot values for variable crime. Figure 4. Map of G�

i
z-values for variable crime.

In this map, locations belonging to quadrant 1 of the Moran scatterplot (high-high spatial association) are represented by
a circle, locations belonging to quadrant 2 (low-low spatial association) are represented by a square, locations belonging to
quadrant 3 (high-low spatial association) are represented by a triangle, and locations belonging to quadrant 4 (low-high spatial
association) are represented by a diamond; symbol size is proportional to the corresponding Ii z-value. The external file used
to draw the boundaries of the geographical area object of analysis (in this case columbusboundary.dta) must include the
following variables: ID, which contains the identifier of the polygon(s) that make up the geographical area object of analysis, X,
which contains the x-coordinates of the polygon(s), and Y, which contains the y-coordinates of the polygon(s). The coordinates
of the polygon(s) must be expressed in the same units in which the coordinates of the locations object of analysis are expressed.
Moreover, the coordinates of each polygon must be arranged so as to correspond to consecutive nodes.

With spatlsa it is also possible to map Gi or G�i z-values:

. spatlsa crime, w(W) go2 graph(go2) map(columbusboundary.dta) x(x) y(y)
(output omitted )

which gives the map in Figure 4.

In this case, locations associated with positive Gi or G�i z-values are represented by a circle, while locations associated
with negative Gi or G�i z-values are represented by a square; symbol size is proportional to the corresponding z-value.

Using spatdiag

The indication of a significant pattern of spatial clustering given by spatial autocorrelation statistics represents only the first
step in the analysis of spatial data. Such statistics show that the values taken on by the variable Y of interest at the different
locations are more spatially clustered than they would be under a random assignment, but they do not explain why such clustering
occurs (Anselin 1992b).

To answer this question, one could use the standard OLS regression model

Y = X� + �

where Y denotes an N � 1 vector of observations on the variable Y (the dependent variable), X denotes an N � k matrix
of observations on the explanatory variables, � denotes a k � 1 vector of regression parameters, and � denotes a vector of
normally distributed, homoskedastic, and uncorrelated errors. However, when the observations are spatial units, that is, locations,
the standard OLS regression model may be misspecified because of the presence of spatial dependence among observations. In
this insert, two kinds of spatial dependence will be considered. The first takes the form of a spatial autoregressive process in the
error term and corresponds to the following spatial regression model

Y = X� + �

where � = �W� + �, � denotes the spatial autoregressive parameter, � denotes a vector of homoskedastic and uncorrelated
errors, and all the other terms are defined as above (Anselin and Hudak 1992). We refer to this model as the spatial error model.

The second kind of spatial dependence takes the form of a mixed regressive spatial autoregressive process and corresponds
to the following spatial regression model

Y = �WY +X� + �
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where � denotes the spatial autoregressive parameter, WY denotes the spatially lagged dependent variable, and all the other
terms are defined as above (Anselin and Hudak 1992). We refer to this model as the spatial lag model.

spatdiag performs several tests for both kinds of spatial dependence. Before carrying out these tests, an OLS regression
model must be estimated using regress. Returning to the Columbus data, suppose we want to express variable crime (residential
burglaries and vehicle thefts per 1,000 households) as a linear and additive function of the explanatory variables hoval (housing
value in U.S. thousands of dollars), and income (household income in U.S. thousands of dollars):

. use columbusdata.dta, clear

. spatwmat using columbusswm.dta, name(W) standardize

The following matrix has been created:

1. Imported binary weights matrix W (row-standardized)
Dimension: 49x49

. regress crime hoval income

Source SS df MS Number of obs = 49
F( 2, 46) = 28.39

Model 7423.32674 2 3711.66337 Prob > F = 0.0000
Residual 6014.89281 46 130.758539 R-squared = 0.5524

Adj R-squared = 0.5329
Total 13438.2195 48 279.962907 Root MSE = 11.435

crime Coef. Std. Err. t P>|t| [95% Conf. Interval]

hoval -.2739315 .1031987 -2.65 0.011 -.4816597 -.0662033
income -1.597311 .3341308 -4.78 0.000 -2.269881 -.9247405
_cons 68.61896 4.735486 14.49 0.000 59.08692 78.151

. spatdiag, weights(W)

Diagnostic tests for spatial dependence in OLS regression

Fitted model

crime = hoval + income

Weights matrix

Name: W
Type: Imported (binary)
Row-standardized: Yes

Diagnostics

Test Statistic df p-value

Spatial error:
Moran’s I 2.955 1 0.003
Lagrange multiplier 5.723 1 0.017
Robust Lagrange multiplier 0.079 1 0.778

Spatial lag:
Lagrange multiplier 9.364 1 0.002
Robust Lagrange multiplier 3.720 1 0.054

As we can see from the output, spatdiag carries out three tests for spatial error dependence (Moran’s I�, simple Lagrange
multiplier LM�, and robust Lagrange multiplier LM�

� ) and two tests for spatial lag dependence (simple Lagrange multiplier
LM� and robust Lagrange multiplier LM�

� ). I� and LM� test for the null hypothesis that � = 0, while LM� tests that � = 0.
When testing for � = 0, however, I� and LM� also respond to nonzero �; likewise, when testing for � = 0, LM� also
corresponds to nonzero �. The robust tests LM�

� and LM
�

� have been devised to avoid this problem. For details and formulas
pertaining to all these tests, see Anselin and Hudak (1992) and Anselin et al. (1996).

Using spatreg

spatreg estimates the spatial error and the spatial lag regression models (see above) by maximum likelihood, using Stata’s
ml routine:

. use columbusdata.dta, clear

. spatwmat using columbusswm.dta, name(W) eigenval(E) standardize
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The following matrices have been created:

1. Imported binary weights matrix W (row-standardized)
Dimension: 49x49

2. Eigenvalues matrix E
Dimension: 49x1

. spatreg crime hoval income, weights(W) eigenval(E) model(error)

initial: log likelihood = -187.42512
rescale: log likelihood = -187.42512
rescale eq: log likelihood = -187.42512
Iteration 0: log likelihood = -187.42512
Iteration 1: log likelihood = -183.49132
Iteration 2: log likelihood = -183.38161
Iteration 3: log likelihood = -183.38047
Iteration 4: log likelihood = -183.38047

Weights matrix
Name: W
Type: Imported (binary)
Row-standardized: Yes

Spatial error model Number of obs = 49
Variance ratio = 0.321
Squared corr. = 0.536

Log likelihood = -183.38047 Sigma = 9.78

Coef. Std. Err. z P>|z| [95% Conf. Interval]

crime
hoval -.3022502 .0905532 -3.34 0.001 -.4797312 -.1247692

income -.941312 .3702766 -2.54 0.011 -1.667041 -.2155832
_cons 59.89322 5.883702 10.18 0.000 48.36137 71.42506

lambda .5617903 .1524222 3.69 0.000 .2630482 .8605323

Wald test of lambda=0: chi2(1) = 13.585 (0.000)
Likelihood ratio test of lambda=0: chi2(1) = 7.994 (0.005)
Lagrange multiplier test of lambda=0: chi2(1) = 5.723 (0.017)

Acceptable range for lambda: -1.536 < lambda < 1.000

In addition to the usual statistics, the output produced by spatreg for the spatial error model reports the following
information:

� Variance ratio: this is a pseudo R
2 statistic equal to Var(bY )=Var(Y ), where Var(bY ) denotes the variance of the predicted

values of the dependent variable, and Var(Y ) denotes the variance of the observed values of dependent variable (Anselin
1992a).

� Squared correlation: this is another pseudo R
2 statistic equal to the squared correlation between the predicted and the

observed values of the dependent variable (Anselin 1992a).

� Sigma: this is the maximum likelihood root MSE.

� The results for three tests of � = 0 (Wald, likelihood-ratio, and LM�). Although these three tests are asymptotically
equivalent, they tend to produce different results in finite samples. In most cases, the ordering of the test statistics in terms
of their magnitude is W � LR � LM� (Anselin 1988). The likelihood-ratio test is carried out only if option robust is
not specified.

� Acceptable range for �: the lower and the upper limits of this range correspond to the inverse of the minimum and maximum
eigenvalues of the spatial weights matrix W .

The output produced by spatreg for the spatial lag model is exactly the same as that produced for the spatial error model,
with the exception that the results for three tests of � = 0 are reported:

. spatreg crime hoval income, weights(W) eigenval(E) model(lag)

initial: log likelihood = -187.42512
rescale: log likelihood = -187.42512
rescale eq: log likelihood = -187.42512
Iteration 0: log likelihood = -187.42512
Iteration 1: log likelihood = -182.65034
Iteration 2: log likelihood = -182.39202
Iteration 3: log likelihood = -182.39043
Iteration 4: log likelihood = -182.39043
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Weights matrix
Name: W
Type: Imported (binary)
Row-standardized: Yes

Spatial lag model Number of obs = 49
Variance ratio = 0.615
Squared corr. = 0.652

Log likelihood = -182.39043 Sigma = 9.77

crime Coef. Std. Err. z P>|z| [95% Conf. Interval]

crime
hoval -.2659263 .0882217 -3.01 0.003 -.4388376 -.0930149

income -1.031616 .3284158 -3.14 0.002 -1.675299 -.3879326
_cons 45.07925 7.871214 5.73 0.000 29.65195 60.50654

rho .4310232 .1236179 3.49 0.000 .1887366 .6733099

Wald test of rho=0: chi2(1) = 12.157 (0.000)
Likelihood ratio test of rho=0: chi2(1) = 9.974 (0.002)
Lagrange multiplier test of rho=0: chi2(1) = 9.364 (0.002)

Acceptable range for rho: -1.536 < rho < 1.000

For details on maximum likelihood estimation of the spatial error and the spatial lag regression models, see Anselin (1988)
and Anselin and Hudak (1992).

Saved Results

spatgsa saves in r():

Matrices
r(Moran) Moran’s I and related quantities of interest
r(Geary) Geary’s c and related quantities of interest
r(GetisOrd) Getis and Ord’s G and related quantities of interest

spatcorr saves in r():

Matrices
r(Moran) Moran’s I and related quantities of interest
r(Geary) Geary’s c and related quantities of interest

spatlsa saves in r():

Matrices
r(Moran) Moran’s Ii and related quantities of interest
r(Geary) Geary’s ci and related quantities of interest
r(GetisOrd1) Getis and Ord’s Gi and related quantities of interest
r(GetisOrd2) Getis and Ord’s G�

i
and related quantities of interest

spatlsa saves in r():

Matrices
r(stats) test statistics and related quantities of interest

spatreg saves in e():

Scalars
e(rc) return code
e(ll) log-likelihood
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ll 0) log-likelihood for model without spatial autoregressive parameter
e(chi2) �2

e(k) number of estimated parameters
e(ic) number of iterations
e(N) number of observations
e(df m) degrees of freedom for �2 test
e(p) p-value for �2 test
e(k eq) number of equations
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e(k dv) number of dependent variables
e(minEigen) 1/(minimum eigenvalue)
e(maxEigen) 1/(maximum eigenvalue)
e(Wald) Wald test statistic
e(LM) simple Lagrange multiplier test statistic
e(varRatio) variance ratio
e(sqCorr) squared correlation between Y and Ŷ

Macros
e(depvar) name of the dependent variable
e(cmd) spatreg

e(opt) type of optimization
e(title) type of spatial regression model
e(user) name of likelihood-evaluator program
e(chi2type) type of model �2 test
e(vcetype) covariance estimation method

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(resid) regression residuals
e(yhat) predicted values of the dependent variable
e(ilog) iteration log

Functions
e(sample) marks estimation sample
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sts18 A test for long-range dependence in a time series

Christopher F. Baum, Boston College, baum@bc.edu
Tairi Room, Boston College, room@bc.edu

Abstract: This insert implements the Hurst–Mandelbrot rescaled range statistic and the Lo (1991) modified rescaled range statistic
to test for long-range dependence in a time series.

Keywords: fractional integration, long memory, rescaled range, time series.

Syntax

lomodrs varname
�
if exp

� �
in range

� �
, maxlag(#)

�
lomodrs is for use with time-series data. You must tsset your data before using lomodrs; see [R] tsset.

varname may contain time-series operators; see [U] 14.4.3 Time-series varlists.
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Options

maxlag(#) specifies the maximum lag order for the test. By default, maxlag is calculated from the sample size and from the
first-order autocorrelation coefficient of the varname using the data-dependent rule of Andrews (1991), assuming that the
data-generating process is AR(1). If maxlag is set to zero, the test performed is the classical Hurst–Mandelbrot rescaled-range
statistic.

Description

The model of an autoregressive fractionally integrated moving average process of a time series of order (p; d; q), denoted
by ARFIMA (p; d; q), with mean �, may be written using operator notation in terms of a white noise series � having variance
�
2
� as

�(L)(1� L)
d
(yt � �) = �(L)�t (1)

where L is the backward-shift operator, �(L) = 1� �1L� � � � � �pL
p, �(L) = 1 + #1L+ � � �+ #qL

q, and (1� L)d is the
fractional differencing operator defined by

(1� L)d =

1X
k=0

�(k � d)Lk

�(�d)�(k + 1)
(2)

with �(�) denoting the gamma (generalized factorial) function. The parameter d is allowed to assume any real value. The
arbitrary restriction of d to integer values gives rise to the standard autoregressive integrated moving average (ARIMA) model.
The stochastic process yt is both stationary and invertible if all zeros of �(L) and �(L) lie outside the unit circle and jdj < 0.5.
The process is nonstationary for d � 0.5, as it possesses infinite variance, for example, see Granger and Joyeux (1980).

Assuming that d 2 [0; 0.5), Hosking (1981) showed that the autocorrelation function, �(�), of an ARFIMA process is
proportional to k

2d�1 as k ! 1. Consequently, the autocorrelations of the ARFIMA process decay hyperbolically to zero as
k ! 1 in contrast to the faster, geometric decay of a stationary ARMA process. For d 2 (0; 0.5),

Pn

j=�n j�(j)j diverges as
n ! 1, and the ARFIMA process is said to exhibit long memory, or long-range positive dependence. The process is said to
exhibit intermediate memory (anti-persistence), or long-range negative dependence, for d 2 (�0:5; 0).

The importance of long-range dependence in economic and financial time series was first studied by Mandelbrot (1972),
who proposed the R=S (range over standard deviation) statistic, also known as the rescaled-range statistic, originally developed
by Hurst (1951) in the context of hydrological studies. The R=S statistic is the range of the partial sums of deviations of a time
series from its mean, rescaled by its standard deviation. For a sample x1; : : : ; xn,

Qn =
1

sn

2
4 max
1�k�n

kX
j=1

(xj � �xn)� min
1�k�n

kX
j=1

(xj � �xn)

3
5

where sn is the maximum likelihood estimator of the standard deviation of x. The first bracketed term is the maximum of the
partial sums of the first k deviations of xj from the full-sample mean, which is nonnegative. The second bracketed term is
the corresponding minimum, which is nonpositive. The difference of these two quantities is thus nonnegative, so that Qn > 0.
Empirical studies have demonstrated that the R=S statistic has the ability to detect long-range dependence in the data. Like many
other estimators of long-range dependence, though, the R=S statistic has been shown to be excessively sensitive to “short-range
dependence,” or short memory, features of the data. Lo (1991) shows that a sizable AR(1) component in the data generating
process will seriously bias the R=S statistic. He modifies the R=S statistic to account for the effect of short-range dependence
by applying a “Newey–West” correction (using a Bartlett window) to derive a consistent estimate of the long-range variance
of the time series. For maxlag > 0, the denominator of the statistic is computed as the Newey–West estimate of the long run
variance of the series; see [R] newey.

Critical values for the test are taken from Table II of Lo (1991).

Saved results

lomodrs saves the following in r():

Scalars
r(lomodrs) test statistic
r(N) degrees of freedom
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Remarks

The description of the Hurst–Mandelbrot and Lo statistics draws heavily from Chapter 2 of Campbell et al. (1997).

Examples

Data from Terence Mills’ Econometric Analysis of Financial Time Series on U.S. S&P 500 stock returns are analyzed.

. use http://fmwww.bc.edu/ec-p/data/Mills2d/sp500a.dta

. tsset
time variable: year, 1871 to 1997

. lomodrs sp500ar

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .780838 (1 lags via Andrews criterion) N = 124

. lomodrs sp500ar, max(0)

Hurst-Mandelbrot Classical R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .799079 N = 124

. lomodrs sp500ar if tin(1946,)

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: 1.08705 (0 lags via Andrews criterion) N = 50

Applied to the full sample, the Lo modified R=S test rejects the null hypothesis of no long-range dependence at the 95%
level. The Hurst–Mandelbrot test yields a similar inference. When the sample is restricted to the postwar era, the Lo test no
longer can reject the null hypothesis at any level of significance.
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sts19 Multivariate portmanteau (Q) test for white noise

Richard Sperling, The Ohio State University, rsperling@boo.net
Christopher F. Baum, Boston College, baum@bc.edu

Abstract: This routine performs a multivariate portmanteau (Q) test for white noise in a time series context.

Keywords: autocorrelation, white noise, time series, Q test.

Syntax

wntstmvq varlist
�
if exp

� �
in range

� �
, lags(#) varlags(#)

�
wntstmvq is for use with with time-series data. You must tsset your data before using wntstmvq; see [R] tsset.

varlist may contain time-series operators; see [U] 14.4.3 Time-series varlists.
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Options

lags(#) specifies the number of sample autocorrelations, that is, the maximum lag order to be included in the test. If not
specified, it takes on a default value of min(N=2� 2; 40) where N is the number of available observations.

varlags(#) specifies the order of the VAR (vector autoregression) used to produce the series in varlist. If specified, varlags
must not exceed lags.

Description

wntstmvq performs the multivariate Ljung–Box portmanteau (or Q) test for white noise in a set of time series. This test is
a generalization of the univariate Ljung–Box portmanteau (Q) test implemented in Stata as wntestq. The multivariate form of
the test was proposed by Hosking (1980) and others. Hosking (1981) demonstrated the equivalence of the several forms in the
literature. The test implemented here is that described in Johansen (1995, 22). It is often applied to the residuals of a multivariate
regression, such as a VAR (vector autoregression).

The null hypothesis of the multivariate test is that the autocorrelation functions of all series in varlist have no significant
elements for lags one through that specified by the lags option. The lags parameter may be specified by the user. If the series
in varlist are residuals from a vector autoregression, the varlist option should be specified to provide the order of the VAR.

As a function of s lags, the test statistic

LB(s) = T (T + 2)

sX
j=1

1

T � j
tr
h bC0j

bC�100
bC 0

0j
bC�100

i

where

bC0j = T
�1

TX
t=j+1

b�tb�0t�j
is distributed, under the null hypothesis, as �2 with degrees of freedom equal to p

2(lags� varlags) where p is the number
of series in varlist. A rejection indicates that at least one series is not white noise.

Although portmanteau statistics are commonly applied in diagnosing time series models, some caution should be exercised
with their use in a cointegration context. Jacobson (1995, 179) states “[O]ne should exercise some care when using the portmanteau
statistic for evaluating the fit of a cointegration model. This observation is due to the facts that cointegration implies the presence
of unit roots and an assumption underlying the properties of the portmanteau statistic is that of a stationary process disqualifying
roots on the unit circle. There is to my knowledge no theoretical result justifying the use of portmanteau statistics in connection
with potential unit roots. Nevertheless these tests are being used : : :”

Some guidance for the application of tests of this nature in the vector autoregressive setting is given by Bender and Grouven
(1993), who find that the number of lags must be carefully chosen in order to avoid significant loss of power of the test. They
conduct a simulation study and tabulate appropriate choices of the number of lags as a function of sample size, model order,
and model dimension.

Saved Results

wntstmvq saves the following scalars in r():

r(stat) test statistic r(k) number of series
r(df) degrees of freedom r(s) maximum lag order
r(p) p-value r(nobs) number of observations

Examples

The Grunfeld investment data (20 years of annual data on five U.S. corporations) are analyzed.

. set matsize 100

. use http://fmwww.bc.edu/ec-p/data/Greene2000/tbl15-1.dta,clear

. reshape wide i f c,i(year) j(firm)
(output omitted )

. tsset year,yearly
time variable: year, 1935 to 1954

. mvreg i1 i2 i3 = f1 c1 f2 c2 f3 c3

(output omitted )
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. for num 1/3:predict epsX,equation(iX) r
(output omitted )

. wntstmvq eps1-eps3

Multivariate Ljung-Box statistic (3 variables, 8 lags): 98.5122
Prob > chi2(72) = 0.0207

The three residual series from this multivariate regression model do not appear to be white noise.
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sxd4 Sample size estimation for cluster designed samples

Joanne M. Garrett, University of North Carolina, joanne garrett@med.unc.edu

Abstract: The command sampclus which estimates sample sizes required for the difference of means or proportions, adjusted
for cluster size and intraclass correlation, is described and illustrated.

Keywords: cluster sampling, sample size.

Background

More and more frequently we see studies that use a cluster sampling design. In this design, a sample (preferably random)
of natural groups of individuals is selected, rather than a random sample of the individuals themselves. We are interested in
examining the individuals, not the groupings to which they belong. However, a key assumption for most statistical tests is that
the observations are independent. This assumption may be violated using this sampling technique. Ideally, it would be preferable
to have a random sample of observations, but at times this may not be cost effective or even feasible.

Consider a study of the effect of the presence of sciatica on the length of time to recovery for patients with acute low back
pain. A random sample of physicians (clusters) is selected, and each physician then recruits a sample of low back pain patients
(observations). The study question is interested in the patients, not the physicians. However, patients seeing the same physician
may not be independent. There may be characteristics or practice patterns of Physician A that help patients to recover from their
low back pain more quickly, while patients seeing Physician B may not receive the same benefits. Therefore, patients seeing
Physician A may be more correlated to each other than we would expect had they been drawn randomly from the population,
and thus are not independent.

This correlation factor is referred to as intraclass correlation. Nonindependence of the observations will not bias our point
estimates (for example, change our estimated means or proportions), but can result in standard errors that are too small. We
must correct the standard errors for any nonindependence of patients due to a physician effect. Using a cluster sample design
does not necessarily mean intraclass correlation will be an issue. In order for it to affect our estimates, the factors causing the
correlation must have some effect on the outcome we’re studying. For instance, if Physician “A” encourages all her patients to
get flu shots, and Physician “B” does not, we would not necessarily expect this practice to differentially affect how quickly
patients recover from back pain. However, it is difficult to predict beforehand whether intraclass correlation will be a problem.
Therefore, whenever we use a cluster sample design, we must assume nonindependence is possible and prepare for it accordingly.

Until recently, studies seemed to ignore any potential intraclass correlation problems, perhaps for as simple a reason as there
were no easy ways on the computer to make the adjustment. Now, the correction is easy to do, so most authors of journal articles
are very conscientious about reporting and adjusting for intraclass correlation. The method for doing so is particularly easy in
Stata, using either the cluster option which is available for many of Stata’s programs (for example, regress or logistic)
or the svy commands. But, given that an inflation of the standard errors by definition reduces power, it follows that we will
need larger sample sizes to detect the difference in effect that we hope to find when we design a study using a cluster method
of sampling. Funding agencies have become much more critical of grant proposals that do not take this potential problem into
account when selecting an adequate sample size.

In addition to the usual factors needed to estimate sample size (effect size, standard deviation, alpha, and power), there
are two other factors that will directly affect how many observations we need to collect. The first is the amount of intraclass
correlation present. In reality, for studies using a cluster design simply for feasibility reasons (as in the example of physicians
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selecting patients), the intraclass correlations tend to be fairly small; often between 0 and 0.05, and rarely more than 0.1, although
theoretically they could be higher. In fact, sometimes the corrected p-values are even smaller than without the correction (the
intraclass correlation is negative). This makes no intuitive sense, since it implies that observations within a cluster are more
different from each other than we might expect had they been chosen randomly.

The second additional factor affecting sample size is the number of observations per cluster. The larger the number of
clusters and the fewer observations per cluster, the less the effect on the standard error estimates. In other words, a sample of
250 consisting of 50 clusters with 5 observations per cluster will have better power than the same sample size consisting of 25
clusters with 10 observations per cluster. In fact, with only one observation per cluster, we’re back to a simple random sample.

If we can make a guess at these two factors, that is, intraclass correlation and cluster size, we can adjust our sample size
calculations by multiplying the variance of the sample size formulas by the following correction (Kish 1965)

1 + �(m� 1)

where m =average number of observations per cluster, � =intraclass correlation

If there is no intraclass correlation, that is, � = 0, this correction factor reduces to 1, thus causing no increase in the sample
size estimate.

Syntax

sampclus ,
�

obsclus(#) j numclus(#)
	 �

rho(#)
�

Description

sampclus estimates sample sizes required for the difference of means or proportions, adjusted for cluster size and intraclass
correlation. If the cluster size is one or the intraclass correlation is zero, the sample sizes will be the same as those calculated
using sampsi. sampclus uses the sample size estimates produced by sampsi, which must be specified first.

Options

obsclus(#) is the number of observations in each cluster. When specified, it will return corrected sample sizes and the minimum
number of clusters needed. For example, obsclus(10) calculates corrected sample size and number of physicians (clusters)
needed assuming each physician recruits 10 patients.

numclus(#) is the maximum number of clusters. When specified, it will return corrected sample sizes and the number of
observations needed in each cluster. The number of observations per cluster is rounded up so that the number of clusters
will not exceed numclus, but may be fewer. If too few clusters are requested for the other given parameters, sampclus
will prompt for the minimum number of clusters possible. For example, numclus(40) calculates corrected sample size and
number of patients needed per physician assuming 40 physicians (clusters) are chosen.

rho(#) is the intraclass correlation (from 0 to 1.0). The default is rho(0), which causes no change in the original estimated
sample sizes.

Note that one must choose either obsclus or numclus, but not both.

Illustrating difference of two means, selecting number of observations per cluster

In the study of sciatica and length of time to recovery from acute low back pain, we know that patients on average take
14 days (with a standard deviation of 20) to recover. We expect patients with sciatica to take an additional 7 days to improve
(21 days). In designing a study to test this hypothesis, the sample sizes we would need to detect a 7 day difference in recovery
time between the two groups, with a two-sided alpha of 0.05 and 80% power is

. sampsi 14 21, sd(20) p(.8) a(.05)

Estimated sample size for two-sample comparison of means
Test Ho: m1 = m2, where m1 is the mean in population 1

and m2 is the mean in population 2
Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

m1 = 14
m2 = 21

sd1 = 20
sd2 = 20

n2/n1 = 1.00
Estimated required sample sizes:

n1 = 129
n2 = 129
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We would need 129 patients with sciatica and 129 patients without sciatica to detect a 7 day difference in recovery time.

Suppose we plan to collect our data taking a random sample of physicians and expect each physician to recruit 10 patients
(cluster sample design). How would this affect our sample size? After running sampsi, we can use sampclus to answer this
question.

. sampclus, obsclus(10)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 129
n2 (uncorrected) = 129

Intraclass correlation = 0

Average obs. per cluster = 10
Minimum number of clusters = 26

Estimated sample size per group:

n1 (corrected) = 129
n2 (corrected) = 129

We still need only 129 patients per group (sciatica versus no sciatica) and a total of 26 physicians (clusters). The intraclass
correlation was not specified, thus defaulting to 0, causing no increase in sample size.

This time let’s guess that there will be an intraclass correlation of about 0.1.

. sampclus, obsclus(10) rho(.1)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 129
n2 (uncorrected) = 129

Intraclass correlation = .1

Average obs. per cluster = 10
Minimum number of clusters = 50

Estimated sample size per group:

n1 (corrected) = 246
n2 (corrected) = 246

The intraclass correlation has increased each sample from 129 to 246, and now requires at least 50 physicians.

Next, we will try reducing the observations per cluster to five, that is, each physician will recruit five rather than 10 patients,
but maintain the same intraclass correlation.

. sampclus, obsclus(5) rho(.1)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 129
n2 (uncorrected) = 129

Intraclass correlation = .1

Average obs. per cluster = 5
Minimum number of clusters = 73

Estimated sample size per group:

n1 (corrected) = 181
n2 (corrected) = 181

We are able to get by with fewer patients (181 per group), but must increase the number of physicians in the study to 73.

Finally, we know that only about 25% of low back pain patients tend to have sciatica, so we look at a sample size calculation
for 10 observations per physician, correlation of 0.1, and three times as many patients without sciatica as with sciatica.

. sampsi 14 21, sd(20) p(.8) a(.05) ratio(3)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

m1 = 14
m2 = 21

sd1 = 20
sd2 = 20

n2/n1 = 3.00
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Estimated required sample sizes:

n1 = 86
n2 = 258

. sampclus, obsclus(10) rho(.1)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 86
n2 (uncorrected) = 258

Intraclass correlation = .1

Average obs. per cluster = 10
Minimum number of clusters = 66

Estimated sample size per group:

n1 (corrected) = 164
n2 (corrected) = 492

Thus, we need 164 patients with sciatica and 492 without, and 66 physicians selecting 10 patients each.

Illustrating difference of two means, selecting number of clusters

Sometimes, we know ahead of time that the number of clusters may be limited, that is, we know we will not be able to
recruit more than, say, 40 physicians. It is possible to specify the number of physicians (clusters) rather than the number of
patients per physician. Then, sampclus will calculate the sample size needed for each group and the number of observations
per cluster. We go back to the first power calculation from the sciatica study, and calculate the number of patients needed for
each group (sciatica versus no sciatica) and the number of patients each physician must recruit, assuming 40 physicians and an
intraclass correlation of 0.1.

. sampsi 14 21, sd(20) p(.8) a(.05)
(output omitted )

. sampclus, numclus(40) rho(.1)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 129
n2 (uncorrected) = 129

Intraclass correlation = .1

Average obs. per cluster = 17
Minimum number of clusters = 40

Estimated sample size per group:

n1 (corrected) = 336
n2 (corrected) = 336

We need 336 patients with sciatica, 336 patients without sciatica, and 40 physicians, each recruiting 17 patients, in order to
correct our sample size estimate for an intraclass correlation of 0.1.

Illustrating difference of two proportions

Using the same study, let the outcome be the proportion of patients who have not recovered from their back pain by 4
weeks. We know that typically about 20% of acute low back pain patients have not recovered by four weeks. We think the
percentage may be 30% for patients who also have sciatica. The sample sizes we would need to detect this difference between
the two groups, with a two-sided alpha of 0.05 and 80% power is

. sampsi .2 .3, p(.8) a(.05)

Estimated sample size for two-sample comparison of proportions

Test Ho: p1 = p2, where p1 is the proportion in population 1
and p2 is the proportion in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

p1 = 0.2000
p2 = 0.3000

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 313
n2 = 313



Stata Technical Bulletin 45

We need 313 patients with sciatica and 313 patients without sciatica to see the 10% difference in the proportion of patients who
have not recovered by four weeks.

Now, we look at the same example using 10 observations per cluster and an intraclass correlation of 0.1.

. sampclus, obsclus(10) rho(.1)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 313
n2 (uncorrected) = 313

Intraclass correlation = .1

Average obs. per cluster = 10
Minimum number of clusters = 119

Estimated sample size per group:
n1 (corrected) = 595
n2 (corrected) = 595

Taking into account the cluster design of the study, our sample sizes have increased to 595 per group and a total of 119 physicians.

Finally, we try the calculation assuming only 40 physicians.

. sampclus, numclus(40) rho(.1)

For this rho, the minimum number of clusters possible is: 63

We get an error message telling us that, given these sets of sample size parameters, it is not possible to estimate a sample size
with fewer than 63 clusters. We can either rerun sampclus with 63 clusters or try reducing the correlation. First, we will try
using 63 clusters.

. sampclus, numclus(63) rho(.1)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 313
n2 (uncorrected) = 313

Intraclass correlation = .1

Average obs. per cluster = 1410
Minimum number of clusters = 63

Estimated sample size per group:

n1 (corrected) = 44415
n2 (corrected) = 44415

Unfortunately, even with 63 clusters, the number of patients needed would be impossible to get, so we try going back to
40 clusters, and reduce the correlation to 0.05.

. sampclus, numclus(40) rho(.05)

Sample Size Adjusted for Cluster Design

n1 (uncorrected) = 313
n2 (uncorrected) = 313

Intraclass correlation = .05

Average obs. per cluster = 69
Minimum number of clusters = 40

Estimated sample size per group:

n1 (corrected) = 1378
n2 (corrected) = 1378

This is a more manageable number of patients than in the previous example, but even a small amount of intraclass correlation
with only 40 clusters causes a fairly large increase in our estimated sample size compared to the uncorrected estimate. As with
all sample size calculations, we may need to experiment with several combinations of values until we find a sample size that is
both valid, as well as realistic.

References
Kish L. 1965. Survey Sampling. New York: John Wiley and Sons.



46 Stata Technical Bulletin STB-60

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (979–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Systems Countries served: Israel
Consultants Ltd. Phone: +972 (0)4 6100101

Address: P.O. Box 5 Fax: +972 (0)4 6100101
38900 CAESAREA, Israel Email: stata@watchwise.net

Company: Axon Technology Company Ltd Countries served: Taiwan
Address: 9F, No. 259, Sec. 2 Phone: +886-(0)2-27045535

Ho-Ping East Road Fax: +886-(0)2-27541785
TAIPEI 106, Taiwan Email: hank@axon.axon.com.tw

Company: Chips Electronics Countries served: Indonesia, Brunei, Malaysia, Singapore
Address: Kelapa Puyuh IV KB 23 Phone / Fax: 62 - 21 - 452 17 61

Kelapa Gading Permai Mobile Phone: 62 - 81 - 884 95 84
JAKARTA 14240, Indonesia Email: puyuh23@indo.net.id

Company: Dittrich & Partner Consulting Countries served: Germany, Austria, Czech Republic,
Address: Kieler Straße 17 Hungary, Poland

5. floor Phone: +49 2 12 / 26 066 - 0
D-42697 Solingen, Germany Fax: +49 2 12 / 26 066 - 66

URL: http://www.dpc.de Email: sales@dpc.de

Company: IEM Countries served: South Africa, Botswana, Lesotho,
Address: P.O. Box 2222 Namibia, Mozambique, Swaziland,

PRIMROSE 1416, South Africa Zimbabwe
Phone: +27-11-8286169

Fax: +27-11-8221377
Email: iem@hot.co.za

Company: JasonTech Inc. Countries served: Korea
Address: 181-3 Hansang B/D, Bangyidong Phone: +82-(0)2-420-6700

Songpaku Fax: +82-(0)2-420-8600
Seoul 138-050, Korea Email: info@jat.co.kr

Company: MercoStat Consultores Countries served: Uruguay, Argentina, Brazil, Paraguay
Address: 9 de junio 1389 Phone: 598-2-613-7905

CP 11400 MONTEVIDEO, Uruguay Fax: 598-2-613-7905
Email: mercost@adinet.com.uy

Company: Metrika Consulting Countries served: Sweden, Baltic States, Denmark,
Address: Mosstorpsvagen 48 Finland, Iceland, Norway

183 30 Taby STOCKHOLM, Sweden Phone: +46-708-163128
URL: http://www.metrika.se Fax: +46-8-7924747

Email: sales@metrika.se

Company: MultiON Consulting, SA de CV Countries served: Mexico
Address: Insurgentes Sur 1236-301 Phone: 52 (5) 559-4050 Ext 190

Mexico, DF, 03200, Mexico Fax: 52 (5) 559-4048
Email: multion@multion.com.mx

(List continued on next page)
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International Stata Distributors

(Continued from previous page)

Company: Ritme Informatique Countries served: France, Belgium, Luxembourg
Address: 34, boulevard Haussmann Phone: +33 (0)1 42 46 00 42

75009 Paris, France Fax: +33 (0)1 42 46 00 33
URL: http://www.ritme.com Email: info@ritme.com

Company: Scientific Solutions S.A. Countries served: Switzerland
Address: Avenue du Général Guisan, 5 Phone: 41 (0)21 711 15 20

CH-1009 Pully/Lausanne, Switzerland Fax: 41 (0)21 711 15 21
Email: info@scientific-solutions.ch

Company: Smit Consult Countries served: Netherlands
Address: Doormanstraat 19 Phone: +31 416-378 125

5151 GM Drunen, Netherlands Fax: +31 416-378 385
URL: http://www.smitconsult.nl Email: info@smitconsult.nl

Company: Survey Design & Analysis Services Pty Ltd Countries served: Australia, New Zealand
Address: PO Box 1206 Phone: +61 (0)3 9878 7373

Blackburn North VIC 3130, Australia Fax: +61 (0)3 9878 2345
URL: http://survey-design.com.au Email: sales@survey-design.com.au

Company: Timberlake Consultants Countries served: United Kingdom, Eire
Address: Unit B3 Broomsleigh Bus. Park Phone: +44 (0)208 697 3377

Worsley Bridge Road Fax: +44 (0)208 697 3388
LONDON SE26 5BN, United Kingdom Email: info@timberlake.co.uk

URL: http://www.timberlake.co.uk

Company: Timberlake Consultants Srl Countries served: Italy
Address: Via Baden Powell, 8 Phone: +39 (0)864 210101

67039 SULMONA (AQ), Italy Fax: +39 (0)864 206014
URL: http://www.timberlake.it Email: timberlake@arc.it

Company: Timberlake Consulting S.L. Countries served: Spain
Address: Calle Mendez Nunez, 1, 3 Phone: +34 95 421 9369

41011 Sevilla, Spain Fax: +34 95 422 0648
Email: timberlake@zoom.es

Company: Timberlake Consultores, Lda. Countries served: Portugal
Address: Praceta Raúl Brandao, n�1, 1�E Phone: 351 (0)1 471 73 47

2720 ALFRAGIDE, Portugal Fax: +351 (0)1 471 73 47
Email: timberlake.co@mail.telepac.pt

Company: Vishvas Marketing-Mix Services Countries served: India
Address: CnO S. D. Wamorkar Phone: +91-251-440087

“Prashant” Vishnu Nagar, Naupada Fax: +91-22-5378552
THANE - 400602, India Email: vishvas@vsnl.com


