Title

nbreg postestimation — Postestimation tools for nbreg and gnbreg

Description

The following postestimation commands are available for nbreg and gnbreg:

command	description					
estat	AIC, BIC, VCE, and estimation sample summary					
estat (svy)	postestimation statistics for survey data					
estimates	cataloging estimation results					
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients					
linktest	link test for model specification					
${\tt lrtest}^1$	likelihood-ratio test					
margins	marginal means, predictive margins, marginal effects, and average marginal effects					
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients					
predict	predictions, residuals, influence statistics, and other diagnostic measures					
predictnl	point estimates, standard errors, testing, and inference for generalized predictions					
suest	seemingly unrelated estimation					
test	Wald tests of simple and composite linear hypotheses					
testnl	Wald tests of nonlinear hypotheses					

 1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for details about estat (svy).

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic nooffset]
predict [type] { stub* | newvar<sub>reg</sub> newvar<sub>disp</sub> } [if] [in], scores
```

statistic	description				
Main					
n	number of events; the default				
ir	incidence rate (equivalent to predict, n nooffset)				
pr(<i>n</i>)	unconditional probability $Pr(y_i = n)$				
pr(<i>a</i> , <i>b</i>)	unconditional probability $Pr(a \le y_j \le b)$				
xb	linear prediction				
stdp	standard error of the linear prediction				

In addition, relevant only after gnbreg are the following:

statistic	description
Main	
<u>a</u> lpha	predicted values of α_j
<u>lna</u> lpha	predicted values of $\ln \alpha_j$
<u>stdpl</u> na	standard error of predicted $\ln \alpha_j$

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

(Main)

- n, the default, calculates the predicted number of events, which is $\exp(\mathbf{x}_j\beta)$ if neither offset(varname_o) nor exposure(varname_e) was specified when the model was fit; $\exp(\mathbf{x}_j\beta + offset_j)$ if offset() was specified; or $\exp(\mathbf{x}_j\beta) \times exposure_j$ if exposure() was specified.
- ir calculates the incidence rate $\exp(\mathbf{x}_j\beta)$, which is the predicted number of events when exposure is 1. This is equivalent to specifying both the n and the nooffset options.
- pr(n) calculates the unconditional probability $Pr(y_j = n)$, where n is a nonnegative integer that may be specified as a number or a variable.
- pr(a,b) calculates the unconditional probability $Pr(a \le y_j \le b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

b missing $(b \ge .)$ means $+\infty$; pr(20,.) calculates $Pr(y_j \ge 20)$; pr(20,*b*) calculates $Pr(y_j \ge 20)$ in observations for which $b \ge .$ and calculates $Pr(20 \le y_j \le b)$ elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable *a* causes a missing value in that observation for pr(a,b).

- xb calculates the linear prediction, which is $x_j\beta$ if neither offset() nor exposure() was specified; $x_j\beta$ + offset_j if offset() was specified; or $x_j\beta$ + ln(exposure_j) if exposure() was specified; see nooffset below.
- stdp calculates the standard error of the linear prediction.
- alpha, lnalpha, and stdplna are relevant after gnbreg estimation only; they produce the predicted values of α_i , $\ln \alpha_i$, and the standard error of the predicted $\ln \alpha_i$, respectively.
- nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $x_j\beta$ rather than as $x_j\beta$ +offset_j or $x_j\beta$ + ln(exposure_j). Specifying predict ..., nooffset is equivalent to specifying predict ..., ir.

2

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (\mathbf{x}_i \boldsymbol{\beta})$.

The second new variable will contain $\partial \ln L/\partial (\ln \alpha_i)$ for dispersion(mean) and gnbreg.

The second new variable will contain $\partial \ln L/\partial (\ln \delta)$ for dispersion(constant).

Remarks

After nbreg and gnbreg, predict returns the expected number of deaths per cohort and the probability of observing the number of deaths recorded or fewer.

. use http://www.stata-press.com/data/r11/rod93											
. nbreg deaths i.cohort, nolog											
Negative binor	nial regressio	Number	of ob	s =	21						
	LR chi	2(2)	=	0.14							
Dispersion	Prob >		=	0.9307							
Log likelihood	i = −108.48841	Pseudo	R2	=	0.0007						
deaths	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]				
cohort											
2	.0591305	.2978419	0.20	0.843	524	6289	.64289				
3	0538792	.2981621	-0.18	0.857	638	2662	.5305077				
_cons	4.435906	.2107213	21.05	0.000	4.	0229	4.848912				
/lnalpha	-1.207379	.3108622			-1.81	6657	5980999				
alpha	. 29898	.0929416			.162	5683	.5498555				
Likelihood-ratio test of alpha=0: chibar2(01) = 434.62 Prob>=chibar2 = 0.000											
. predict count (option n assumed; predicted number of events)											
. predict p, p	pr(0, deaths)										
. summarize deaths count p											
Variable	Obs	Mean	Std. Dev	ν.	Min	M	ax				
deaths	21	84.66667	48.84192	2	10	1	97				
count	21	84.66667	4.00773	-		89.571					
р	21	.4991542	.2743702	2 .0070	255	.98012	85				

The expected number of deaths ranges from 80 to 90. The probability $Pr(y_i \leq deaths)$ ranges from 0.007 to 0.98.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

In the following, we use the same notation as in [R] nbreg.

Methods and formulas are presented under the following headings:

Mean-dispersion model Constant-dispersion model

Mean-dispersion model

The equation-level scores are given by

$$\operatorname{score}(\mathbf{x}\boldsymbol{\beta})_{j} = p_{j}(y_{j} - \mu_{j})$$
$$\operatorname{score}(\tau)_{j} = -m \left\{ \frac{\alpha_{j}(\mu_{j} - y_{j})}{1 + \alpha_{j}\mu_{j}} - \ln(1 + \alpha_{j}\mu_{j}) + \psi(y_{j} + m) - \psi(m) \right\}$$

where $\tau_j = \ln \alpha_j$ and $\psi(z)$ is the digamma function.

Constant-dispersion model

The equation-level scores are given by

$$score(\mathbf{x}\boldsymbol{\beta})_j = m_j \left\{ \psi(y_j + m_j) - \psi(m_j) + \ln(p) \right\}$$
$$score(\tau)_j = y_j - (y_j + m_j)(1 - p) - score(\mathbf{x}\boldsymbol{\beta})_j$$

where $\tau_j = \ln \delta_j$.

Also see

- [R] nbreg Negative binomial regression
- [U] 20 Estimation and postestimation commands

4