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stcox postestimation — Postestimation tools for stcox

Description
The following postestimation commands are of special interest after stcox:

command Description

estat concordance compute the concordance probability
stcurve plot the survivor, hazard, and cumulative hazard functions

estat concordance is not appropriate after estimation with svy.

For information on estat concordance, see below. For information on stcurve, see
[ST] stcurve.

The following standard postestimation commands are also available:

command Description

estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Special-interest postestimation commands

estat concordance calculates the concordance probability, which is defined as the probability
that predictions and outcomes are concordant. estat concordance provides two measures of the
concordance probability: Harrell’s C and Gönen and Heller’s K concordance coefficients. estat
concordance also reports the Somers’ D rank correlation, which is obtained by calculating 2C − 1
or 2K − 1.
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, sv statistic nooffset partial
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, mv statistic

[
partial

]
sv statistic description

Main

hr predicted hazard ratio, also known as the relative hazard; the default
xb linear prediction xjβ
stdp standard error of the linear prediction; SE(xjβ)
∗basesurv baseline survivor function
∗basechazard baseline cumulative hazard function
∗basehc baseline hazard contributions
∗mgale martingale residuals
∗csnell Cox–Snell residuals
∗deviance deviance residuals
∗ldisplace likelihood displacement values
∗lmax LMAX measures of influence
∗effects log frailties

mv statistic description

Main
∗scores efficient score residuals
∗esr synonym for scores
∗dfbeta DFBETA measures of influence
∗schoenfeld Schoenfeld residuals
∗scaledsch scaled Schoenfeld residuals

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample. Starred statistics are calculated only for the estimation sample, even when e(sample)

is not specified. nooffset is allowed only with unstarred statistics.
mgale, csnell, deviance, ldisplace, lmax, dfbeta, schoenfeld, and scaledsch are not allowed with svy

estimation results.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

hr, the default, calculates the relative hazard (hazard ratio), that is, the exponentiated linear prediction,
exp(xjβ̂).

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a
set of parameters, β0, β1, β2, . . . , βk, and the linear prediction is β̂1x1j + β̂2x2j + · · ·+ β̂kxkj ,
often written in matrix notation as xjβ̂.
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The x1j , x2j , . . . , xkj used in the calculation are obtained from the data currently in memory
and do not have to correspond to the data on the independent variables used in estimating β.

stdp calculates the standard error of the prediction, that is, the standard error of xjβ̂.

basesurv calculates the baseline survivor function. In the null model, this is equivalent to the Kaplan–
Meier product-limit estimate. If stcox’s strata() option was specified, baseline survivor functions
for each stratum are provided.

basechazard calculates the cumulative baseline hazard. If stcox’s strata() option was specified,
cumulative baseline hazards for each stratum are provided.

basehc calculates the baseline hazard contributions. These are used to construct the product-limit
type estimator for the baseline survivor function generated by basesurv. If stcox’s strata()
option was specified, baseline hazard contributions for each stratum are provided.

mgale calculates the martingale residuals. For multiple-record-per-subject data, by default only one
value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within
subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s
overall martingale residual. In single-record-per-subject data, the partial martingale residuals are
the martingale residuals.

csnell calculates the Cox–Snell generalized residuals. For multiple-record data, by default only one
value per subject is calculated and, it is placed on the last record for the subject.

Adding the partial option will produce partial Cox–Snell residuals, one for each record within
subject; see partial below. Partial Cox–Snell residuals are the additive contributions to a subject’s
overall Cox–Snell residual. In single-record data, the partial Cox–Snell residuals are the Cox–Snell
residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have
been transformed to be more symmetric about zero. For multiple-record data, by default only one
value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial deviance residuals, one for each record within
subject; see partial below. Partial deviance residuals are transformed partial martingale residuals.
In single-record data, the partial deviance residuals are the deviance residuals.

ldisplace calculates the likelihood displacement values. A likelihood displacement value is an
influence measure of the effect of deleting a subject on the overall coefficient vector. For multiple-
record data, by default only one value per subject is calculated, and it is placed on the last record
for the subject.

Adding the partial option will produce partial likelihood displacement values, one for each
record within subject; see partial below. Partial displacement values are interpreted as effects
due to deletion of individual records rather than deletion of individual subjects. In single-record
data, the partial likelihood displacement values are the likelihood displacement values.

lmax calculates the LMAX measures of influence. LMAX values are related to likelihood displacement
values because they also measure the effect of deleting a subject on the overall coefficient vector.
For multiple-record data, by default only one LMAX value per subject is calculated, and it is placed
on the last record for the subject.

Adding the partial option will produce partial LMAX values, one for each record within subject;
see partial below. Partial LMAX values are interpreted as effects due to deletion of individual
records rather than deletion of individual subjects. In single-record data, the partial LMAX values
are the LMAX values.
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effects is for use after stcox, shared() and provides estimates of the log frailty for each group.
The log frailties are random group-specific offsets to the linear predictor that measure the group
effect on the log relative-hazard.

scores calculates the efficient score residuals for each regressor in the model. For multiple-record
data, by default only one score per subject is calculated, and it is placed on the last record for the
subject.

Adding the partial option will produce partial efficient score residuals, one for each record
within subject; see partial below. Partial efficient score residuals are the additive contributions to
a subject’s overall efficient score residual. In single-record data, the partial efficient score residuals
are the efficient score residuals.

One efficient score residual variable is created for each regressor in the model; the first new
variable corresponds to the first regressor, the second to the second, and so on.

esr is a synonym for scores.

dfbeta calculates the DFBETA measures of influence for each regressor in the model. The DFBETA
value for a subject estimates the change in the regressor’s coefficient due to deletion of that subject.
For multiple-record data, by default only one value per subject is calculated, and it is placed on
the last record for the subject.

Adding the partial option will produce partial DFBETAs, one for each record within subject; see
partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records
rather than deletion of individual subjects. In single-record data, the partial DFBETAs are the
DFBETAs.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld residuals. This option may not be used after stcox with the
exactm or exactp option. Schoenfeld residuals are calculated and reported only at failure times.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable
corresponds to the first regressor, the second to the second, and so on.

scaledsch calculates the scaled Schoenfeld residuals. This option may not be used after stcox with
the exactm or exactp option. Scaled Schoenfeld residuals are calculated and reported only at
failure times.

One scaled Schoenfeld residual variable is created for each regressor in the model; the first new
variable corresponds to the first regressor, the second to the second, and so on.

Note: The easiest way to use the preceding four options is, for example,

. predict double stub*, scores

where stub is a short name of your choosing. Stata then creates variables stub1, stub2, etc. You
may also specify each variable explicitly, in which case there must be as many (and no more)
variables specified as there are regressors in the model.

nooffset is allowed only with hr, xb, and stdp, and is relevant only if you specified off-
set(varname) for stcox. It modifies the calculations made by predict so that they ignore the
offset variable; the linear prediction is treated as xjβ̂ rather than xjβ̂ + offsetj .

partial is relevant only for multiple-record data and is valid with mgale, csnell, deviance,
ldisplace, lmax, scores, esr, and dfbeta. Specifying partial will produce “partial” versions
of these statistics, where one value is calculated for each record instead of one for each subject.
The subjects are determined by the id() option to stset.
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Specify partial if you wish to perform diagnostics on individual records rather than on individual
subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to
deletion of one record, rather than the effect due to deletion of all records for a given subject.

Syntax for estat concordance
estat concordance

[
if
] [

in
] [

, concordance options
]

concordance options description

Main

harrell compute Harrell’s C coefficient; the default
gheller compute Gönen and Heller’s concordance coefficient
se compute asymptotic standard error of Gönen and Heller’s coefficient
all compute statistic for all observations in the data
noshow do not show st setting information

Menu
Statistics > Postestimation > Reports and statistics

Options for estat concordance

� � �
Main �

harrell, the default, calculates Harrell’s C coefficient, which is defined as the proportion of all
usable subject pairs in which the predictions and outcomes are concordant.

gheller calculates Gönen and Heller’s K concordance coefficient instead of Harrell’s C coefficient.
The harrell and gheller options may be specified together to obtain both concordance measures.

se calculates the smoothed version of Gönen and Heller’s K concordance coefficient and its asymptotic
standard error. The se option requires the gheller option.

all requests that the statistic be computed for all observations in the data. By default, estat
concordance computes over the estimation subsample.

noshow prevents estat concordance from displaying the identities of the key st variables above
its output.

Remarks
Remarks are presented under the following headings:

Baseline functions
Making baseline reasonable
Residuals and diagnostic measures
Multiple records per subject
Predictions after stcox with the tvc() option
Predictions after stcox with the shared() option
estat concordance
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Baseline functions

predict after stcox provides estimates of the baseline survivor and baseline cumulative hazard
function, among other things. Here the term baseline means that these are the functions when all
covariates are set to zero, that is, they reflect (perhaps hypothetical) individuals who have zero-valued
measurements. When you specify predict’s basechazard option, you obtain the baseline cumulative
hazard. When you specify basesurv, you obtain the baseline survivor function. Additionally, when
you specify predict’s basehc option, you obtain estimates of the baseline hazard contribution at
each failure time, which are factors used to develop the product-limit estimator for the survivor
function generated by basesurv.

Although in theory S0(t) = exp{−H0(t)}, where S0(t) is the baseline survivor function and
H0(t) is the baseline cumulative hazard, the estimates produced by basechazard and basesurv
do not exactly correspond in this manner, although they closely do. The reason is that predict
after stcox uses different estimation schemes for each; the exact formulas are given in Methods and
formulas.

When the Cox model is fit with the strata() option, you obtain estimates of the baseline functions
for each stratum.

Example 1: Baseline survivor function

Baseline functions refer to the values of the functions when all covariates are set to 0. Let’s graph
the survival curve for the Stanford heart transplant model that we fit in example 3 of [ST] stcox, and
to make the baseline curve reasonable, let’s do that at age = 40 and year = 70.

Thus we will begin by creating variables that, when 0, correspond to the baseline values we desire,
and then we will fit our model with these variables instead. We then predict the baseline survivor
function and graph it:

. use http://www.stata-press.com/data/r11/stan3
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70, nolog

failure _d: died
analysis time _t: t1

id: id

Cox regression -- Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

LR chi2(4) = 17.56
Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age40 1.030224 .0143201 2.14 0.032 1.002536 1.058677
posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416
surgery .3738278 .163204 -2.25 0.024 .1588759 .8796
year70 .8873107 .059808 -1.77 0.076 .7775022 1.012628

. predict s, basesurv
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. summarize s

Variable Obs Mean Std. Dev. Min Max

s 172 .6291871 .2530009 .130666 .9908968

Our recentering of age and year did not affect the estimation, a fact you can verify by refitting the
model with the original age and year variables.

To see how the values of the baseline survivor function are stored, we first sort according to
analysis time and then list some observations.

. sort _t id

. list id _t0 _t _d s in 1/20

id _t0 _t _d s

1. 3 0 1 0 .9908968
2. 15 0 1 1 .9908968
3. 20 0 1 0 .9908968
4. 45 0 1 0 .9908968
5. 39 0 2 0 .9633915

6. 43 0 2 1 .9633915
7. 46 0 2 0 .9633915
8. 61 0 2 1 .9633915
9. 75 0 2 1 .9633915

10. 95 0 2 0 .9633915

11. 6 0 3 1 .9356873
12. 23 0 3 0 .9356873
13. 42 0 3 1 .9356873
14. 54 0 3 1 .9356873
15. 60 0 3 0 .9356873

16. 68 0 3 0 .9356873
17. 72 0 4 0 .9356873
18. 94 0 4 0 .9356873
19. 38 0 5 0 .9264087
20. 70 0 5 0 .9264087

At time t = 2, the baseline survivor function is 0.9634, or more precisely, S0(2 + ∆t) = 0.9634.
What we mean by S0(t+ ∆t) is the probability of surviving just beyond t. This is done to clarify
that the probability includes escaping failure at precisely time t.

The above also indicates that our estimate of S0(t) is a step function, and that the steps occur
only at times when failure is observed—our estimated S0(t) does not change from t = 3 to t = 4
because no failure occurred at time 4. This behavior is analogous to that of the Kaplan–Meier estimate
of the survivor function; see [ST] sts.
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Here is a graph of the baseline survival curve:

. line s _t, sort c(J)
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This graph was easy enough to produce because we wanted the survivor function at baseline. To
graph survivor functions after stcox with covariates set to any value (baseline or otherwise), use
stcurve; see [ST] stcurve.

The similarity to Kaplan–Meier is not limited to the fact that both are step functions that change
only when failure occurs. They are also calculated in much the same way, with predicting basesurv
after stcox having the added benefit that the result is automatically adjusted for all the covariates in
your Cox model. When you have no covariates, both methods are equivalent. If you continue from
the previous example, you will find that

. sts generate s1 = s

and

. stcox, estimate

. predict double s2, basesurv

produce the identical variables s1 and s2, both containing estimates of the overall survivor function,
unadjusted for covariates. We used type double for s2 to precisely match sts generate, which
gives results in double precision.

If we had fit a stratified model by using the strata() option, the recorded survivor-function
estimate on each observation would be for the stratum of that observation. That is, what you get is
one variable that holds not an overall survivor curve, but instead a set of stratum-specific curves.

Example 2: Baseline cumulative hazard

Obtaining estimates of the baseline cumulative hazard, H0(t), is just as easy as obtaining the
baseline survivor function. Using the same data as previously,

. use http://www.stata-press.com/data/r11/stan3, clear
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70
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. stcox age40 posttran surg year70
(output omitted )

. predict ch, basechazard

. line ch _t, sort c(J)

0
.5

1
1.

5
2

cu
m

ul
at

iv
e 

ba
se

lin
e 

ha
za

rd

0 500 1000 1500 2000
_t

The estimated baseline cumulative hazard is also a step function with the steps occurring at the
observed times of failure. When there are no covariates in your Cox model, what you obtain is
equivalent to the Nelson–Aalen estimate of the cumulative hazard (see [ST] sts), but using predict,
basechazard after stcox allows you to also adjust for covariates.

To obtain cumulative hazard curves at values other than baseline, you could either recenter your
covariates—as we did previously with age and year—so that the values in which you are interested
become baseline, or simply use stcurve; see [ST] stcurve.

Example 3: Baseline hazard contributions

Mathematically, a baseline hazard contribution, hi = (1−αi) (see Kalbfleisch and Prentice 2002,
115), is defined at every analytic time ti at which a failure occurs and is undefined at other times. Stata
stores hi in observations where a failure occurred and stores missing values in the other observations.

. use http://www.stata-press.com/data/r11/stan3, clear
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted )

. predict double h, basehc
(97 missing values generated)
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. list id _t0 _t _d h in 1/10

id _t0 _t _d h

1. 1 0 50 1 .01503465
2. 2 0 6 1 .02035303
3. 3 0 1 0 .
4. 3 1 16 1 .03339642
5. 4 0 36 0 .

6. 4 36 39 1 .01365406
7. 5 0 18 1 .01167142
8. 6 0 3 1 .02875689
9. 7 0 51 0 .

10. 7 51 675 1 .06215003

At time t = 50, the hazard contribution h1 is 0.0150. At time t = 6, the hazard contribution h2

is 0.0204. In observation 3, no hazard contribution is stored. Observation 3 contains a missing value
because observation 3 did not fail at time 1. We also see that values of the hazard contributions are
stored only in observations that are marked as failing.

Hazard contributions by themselves have no substantive interpretation, and in particular they should
not be interpreted as estimating the hazard function at time t. Hazard contributions are simply mass
points that are used as components to calculate the survivor function; see Methods and formulas. You
can also use hazard contributions to estimate the hazard, but because they are only mass points, they
need to be smoothed first. This smoothing is done automatically with stcurve; see [ST] stcurve.
In summary, hazard contributions in their raw form serve no purpose other than to help replicate
calculations done by Stata, and we demonstrate this below simply for illustrative purposes.

When we created the new variable h for holding the hazard contributions, we used type double
because we plan on using h in some further calculations below and we wish to be as precise as
possible.

In contrast with the baseline hazard contributions, the baseline survivor function, S0(t), is defined
at all values of t: its estimate changes its value when failures occur, and at times when no failures
occur, the estimated S0(t) is equal to its value at the time of the last failure.

Continuing with our example, we now predict the baseline survivor function:

. predict double s, basesurv

. list id _t0 _t _d h s in 1/10

id _t0 _t _d h s

1. 1 0 50 1 .01503465 .68100303
2. 2 0 6 1 .02035303 .89846438
3. 3 0 1 0 . .99089681
4. 3 1 16 1 .03339642 .84087361
5. 4 0 36 0 . .7527663

6. 4 36 39 1 .01365406 .73259264
7. 5 0 18 1 .01167142 .82144038
8. 6 0 3 1 .02875689 .93568733
9. 7 0 51 0 . .6705895

10. 7 51 675 1 .06215003 .26115633

In the above, we sorted by id, but it is easier to see how h and s are related if we sort by t
and put the failures on top:
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. gsort +_t -_d

. list id _t0 _t _d h s in 1/18

id _t0 _t _d h s

1. 15 0 1 1 .00910319 .99089681
2. 20 0 1 0 . .99089681
3. 45 0 1 0 . .99089681
4. 3 0 1 0 . .99089681
5. 75 0 2 1 .02775802 .96339147

6. 61 0 2 1 .02775802 .96339147
7. 43 0 2 1 .02775802 .96339147
8. 39 0 2 0 . .96339147
9. 95 0 2 0 . .96339147

10. 46 0 2 0 . .96339147

11. 6 0 3 1 .02875689 .93568733
12. 42 0 3 1 .02875689 .93568733
13. 54 0 3 1 .02875689 .93568733
14. 60 0 3 0 . .93568733
15. 23 0 3 0 . .93568733

16. 68 0 3 0 . .93568733
17. 72 0 4 0 . .93568733
18. 94 0 4 0 . .93568733

The baseline hazard contribution is stored on every failure record—if multiple failures occur at a given
time, the value of the hazard contribution is repeated—and the baseline survivor is stored on every
record. (More correctly, baseline values are stored on records that meet the criterion and that were
used in estimation. If some observations are explicitly or implicitly excluded from the estimation,
their baseline values will be set to missing, no matter what.)

With this listing, we can better understand how the hazard contributions are used to calculate the
survivor function. Because the patient with id = 15 died at time t1 = 1, the hazard contribution for
that patient is h15 = 0.00910319. Because that was the only death at t1 = 1, the estimated survivor
function at this time is S0(1) = 1− h15 = 1− 0.00910319 = 0.99089681. The next death occurs at
time t1 = 2, and the hazard contribution at this time for patient 43 (or patient 61 or patient 75, it
does not matter) is h43 = 0.02775802. Multiplying the previous survivor function value by 1− h43

gives the new survivor function at t1 = 2 as S0(2) = 0.96339147. The other survivor function values
are then calculated in succession, using this method at each failure time. At times when no failures
occur, the survivor function remains unchanged.

Technical note

Consider manually obtaining the estimate of S0(t) from the hi:

. sort _t _d

. by _t: keep if _d & _n==_N

. generate double s2 = 1-h

. replace s2 = s2[_n-1]*s2 if _n>1

s2 will be equivalent to s as produced above. If you had obtained stratified estimates, the code would
be
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. sort group _t _d

. by group _t: keep if _d & _n==_N

. generate double s2 = 1-h

. by group: replace s2 = s2[_n-1]*s2 if _n>1

Making baseline reasonable

When predicting with basesurv or basechazard, for numerical accuracy reasons, the baseline
functions must correspond to something reasonable in your data. Remember, the baseline functions
correspond to all covariates equal to 0 in your Cox model.

Consider, for instance, a Cox model that includes the variable calendar year among the covariates.
Say that year varies between 1980 and 1996. The baseline functions would correspond to year 0,
almost 2,000 years in the past. Say that the estimated coefficient on year is −0.2, meaning that the
hazard ratio for one year to the next is a reasonable 0.82.

Think carefully about the contribution to the predicted log cumulative hazard: it would be approx-
imately −0.2× 2,000 = −400. Now e−400 ≈ 10−173, which on a digital computer is so close to 0
that there is simply no hope that H0(t)e−400 will produce an accurate estimate of H(t).

Even with less extreme numbers, problems arise, even in the calculation of the baseline survivor
function. Baseline hazard contributions near 1 produce baseline survivor functions with steps differing
by many orders of magnitude because the calculation of the survivor function is cumulative. Producing
a meaningful graph of such a survivor function is hopeless, and adjusting the survivor function to
other values of the covariates is too much work.

For these reasons, covariate values of 0 must be meaningful if you are going to specify the
basechazard or basesurv option. As the baseline values move to absurdity, the first problem you
will encounter is a baseline survivor function that is too hard to interpret, even though the baseline
hazard contributions are estimated accurately. Further out, the procedure Stata uses to estimate the
baseline hazard contributions will break down—it will produce results that are exactly 1. Hazard
contributions that are exactly 1 produce survivor functions that are uniformly 0, and they will remain
0 even after adjusting for covariates.

This, in fact, occurs with the Stanford heart transplant data:

. use http://www.stata-press.com/data/r11/stan3, clear
(Heart transplant data)

. stcox age posttran surg year
(output omitted )

. predict ch, basechazard

. predict s, basesurv

. summarize ch s

Variable Obs Mean Std. Dev. Min Max

ch 172 745.1134 682.8671 11.88239 2573.637
s 172 1.45e-07 9.43e-07 0 6.24e-06

The hint that there are problems is that the values of ch are huge and the values of s are close to
0. In this dataset, age (which ranges from 8 to 64 with a mean value of 45) and year (which ranges
from 67 to 74) are the problems. The baseline functions correspond to a newborn at the turn of the
century on the waiting list for a heart transplant!
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To obtain accurate estimates of the baseline functions, type

. drop ch s

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted )

. predict ch, basechazard

. predict s, basesurv

. summarize ch s

Variable Obs Mean Std. Dev. Min Max

ch 172 .5685743 .521076 .0090671 1.963868
s 172 .6291871 .2530009 .130666 .9908968

Adjusting the variables does not affect the coefficient (and, hence, hazard-ratio) estimates, but it
changes the values at which the baseline functions are estimated to be within the range of the data.

Technical note
Above we demonstrated what can happen to predicted baseline functions when baseline values

represent a departure from what was observed in the data. In the above example, the Cox model
fit was fine and only the baseline functions lacked accuracy. As baseline values move even further
toward absurdity, the risk-set accumulations required to fit the Cox model will also break down. If
you are having difficulty getting stcox to converge or you obtain missing coefficients, one possible
solution is to recenter your covariates just as we did above.

Residuals and diagnostic measures

Stata can calculate Cox–Snell residuals, martingale residuals, deviance residuals, efficient score
residuals (esr), Schoenfeld residuals, scaled Schoenfeld residuals, likelihood displacement values,
LMAX values, and DFBETA influence measures.

Although the uses of residuals vary and depend on the data and user preferences, traditional
and suggested uses are the following: Cox–Snell residuals are useful in assessing overall model fit.
Martingale residuals are useful in determining the functional form of covariates to be included in the
model and are occasionally useful in identifying outliers. Deviance residuals are useful in examining
model accuracy and identifying outliers. Schoenfeld and scaled Schoenfeld residuals are useful for
checking and testing the proportional-hazards assumption. Likelihood displacement values and LMAX
values are useful in identifying influential subjects. DFBETAs also measure influence, but they do so
on a coefficient-by-coefficient basis. Likelihood displacement values, LMAX values, and DFBETAs are
all based on efficient score residuals.

Example 4: Cox–Snell residuals

Let’s first examine the use of Cox–Snell residuals. Using the cancer data introduced in example 2
in [ST] stcox, we first perform a Cox regression and then predict the Cox–Snell residuals.

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. stset studytime, failure(died)
(output omitted )
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. stcox age drug, nolog

failure _d: died
analysis time _t: studytime

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.120325 .0417711 3.05 0.002 1.041375 1.20526
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622

. predict cs, csnell

The csnell option tells predict to output the Cox–Snell residuals to a new variable, cs. If
the Cox regression model fits the data, these residuals should have a standard censored exponential
distribution with hazard ratio 1. We can verify the model’s fit by calculating—based, for example, on
the Kaplan–Meier estimated survivor function or the Nelson–Aalen estimator—an empirical estimate
of the cumulative hazard function, using the Cox–Snell residuals as the time variable and the data’s
original censoring variable. If the model fits the data, the plot of the cumulative hazard versus cs
should approximate a straight line with slope 1.

To do this, we first re-stset the data, specifying cs as our new failure-time variable and died as
the failure/censoring indicator. We then use the sts generate command to generate the km variable
containing the Kaplan–Meier survivor estimates. Finally, we generate the cumulative hazard, H, by
using the relationship H = −ln(km) and plot it against cs.

. stset cs, failure(died)
(output omitted )

. sts generate km = s

. generate H = -ln(km)
(1 missing value generated)

. line H cs cs, sort ytitle("") clstyle(. refline)
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We specified cs twice in the graph command above so that a reference 45◦ line is plotted.
Comparing the jagged line with the reference line, we observe that the Cox model does not fit these
data too badly.

Technical note
The statement that “if the Cox regression model fits the data, the Cox–Snell residuals have a

standard censored exponential distribution with hazard ratio 1” holds only if the true parameters,
β, and the true cumulative baseline hazard function, H0(t), are used in calculating the residuals.
Because we use estimates β̂ and Ĥ0(t), deviations from the 45◦ line in the above plots could be due
in part to uncertainty about these estimates. This is particularly important for small sample sizes and
in the right-hand tail of the distribution, where the baseline hazard is more variable because of the
reduced effective sample caused by prior failures and censoring.

Example 5: Martingale residuals

Let’s now examine the martingale residuals. Martingale residuals are useful in assessing the
functional form of a covariate to be entered into a Cox model. Sometimes the covariate may need
transforming so that the transformed variable will satisfy the assumptions of the proportional hazards
model. To find the appropriate functional form of a variable, we fit a Cox model excluding the variable
and then plot a lowess smooth of the martingale residuals against some transformation of the variable
in question. If the transformation is appropriate, then the smooth should be approximately linear.

We apply this procedure to our cancer data to find an appropriate transformation of age (or to
verify that age need not be transformed).

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. stset studytime, failure(died)
(output omitted )

. stcox drug
(output omitted )

. predict mg, mgale

. lowess mg age, mean noweight title("") note("") m(o)
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We used the lowess command with the mean and noweight options to obtain a plot of the
running-mean smoother to ease interpretation. A lowess smoother or other smoother could also be
used; see [R] lowess. The smooth appears nearly linear, supporting the inclusion of the untransformed
version of age in our Cox model. Had the smooth not been linear, we would have tried smoothing
the martingale residuals against various transformations of age until we found one that produced a
near-linear smooth.

Martingale residuals can also be interpreted as the difference over time of the observed number of
failures minus the difference predicted by the model. Thus a plot of the martingale residuals versus
the linear predictor may be used to detect outliers.

Plots of martingale residuals are sometimes difficult to interpret, however, because these residuals
are skewed, taking values in (−∞, 1). For this reason, deviance residuals are preferred for examining
model accuracy and identifying outliers.

Example 6: Deviance residuals

Deviance residuals are a rescaling of the martingale residuals so that they are symmetric about
0 and thus are more like residuals obtained from linear regression. Plots of these residuals against
the linear predictor, survival time, rank order of survival, or observation number can be useful in
identifying aberrant observations and assessing model fit. We continue from the previous example,
but we need to first refit the Cox model with age included:

. drop mg

. stcox drug age
(output omitted )

. predict mg, mgale

. predict xb, xb

. scatter mg xb
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. predict dev, deviance

. scatter dev xb

−
2

−
1

0
1

2
de

vi
an

ce
 r

es
id

ua
l

3 4 5 6 7 8
Linear prediction

We first plotted the martingale residuals versus the linear predictor and then plotted the deviance
residuals versus the linear predictor. Given their symmetry about 0, deviance residuals are easier to
interpret, although both graphs yield the same information. With uncensored data, deviance residuals
should resemble white noise if the fit is adequate. Censored observations would be represented as
clumps of deviance residuals near 0 (Klein and Moeschberger 2003, 381). Given what we see above,
there do not appear to be any outliers.

In evaluating the adequacy of the fitted model, we must determine if any one subject has
a disproportionate influence on the estimated parameters. This is known as influence or leverage
analysis. The preferred method of performing influence or leverage analysis is to compare the
estimated parameter, β̂, obtained from the full data, with estimated parameters β̂i, obtained by fitting
the model to the N − 1 subjects remaining after the ith subject is removed. If β̂− β̂i is close to 0,
the ith subject has little influence on the estimate. The process is repeated for all subjects included
in the original model. To compute these differences for a dataset with N subjects, we would have to
execute stcox N additional times, which could be impractical for large datasets.

To avoid fitting N additional Cox models, an approximation to β̂− β̂i can be made based on the
efficient score residuals; see Methods and formulas. The difference β̂− β̂i is commonly referred to
as DFBETA in the literature; see [R] regress postestimation.

Example 7: DFBETAs

You obtain DFBETAs by using predict’s dfbeta option:

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)
. stset studytime, failure(died)

(output omitted )

. stcox age drug
(output omitted )

. predict df*, dfbeta
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The last command saves the estimates of DFBETAi = β̂ − β̂i for i = 1, . . . , N in the variables
df1 and df2. We can now plot these versus either time or subject (observation) number to identify
subjects with disproportionate influence. To maximize the available information, we plot versus time
and label the points by their subject numbers.

. generate obs = _n

. scatter df1 studytime, yline(0) mlabel(obs)
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. scatter df2 studytime, yline(0) mlabel(obs)
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From the second graph we see that observation 35, if removed, would decrease the coefficient on
drug by approximately 0.15 or, equivalently, decrease the hazard ratio for drug by a factor of
approximately exp(−0.15) = 0.861.

DFBETAs as measures of influence have a straightforward interpretation. Their only disadvantage is
that the number of values to examine grows both with sample size and with the number of regressors.
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Two alternative measures of influence are likelihood displacement values and LMAX values, and
both measure each subject’s influence on the coefficient vector as a whole. Thus, for each, you have
only one value per subject regardless of the number of regressors. As was the case with DFBETAs,
likelihood displacement and LMAX calculations are also based on efficient score residuals; see Methods
and formulas.

Likelihood displacement values measure influence by approximating what happens to the model
log likelihood (more precisely, twice the log likelihood) when you omit subject i. Formally, the
likelihood displacement value for subject i approximates the quantity

2
{

logL
(
β̂
)
− logL

(
β̂i

)}
where β̂ and β̂i are defined as previously and L(·) is the partial likelihood for the Cox model estimated
from all the data. In other words, when you calculate L(·), you use all the data, but you evaluate at
the parameter estimates β̂i obtained by omitting the ith subject. Note that because β̂ represents an
optimal solution, likelihood displacement values will always be nonnegative.

That likelihood displacements measure influence can be seen through the following logic: if subject
i is influential, then the vector β̂i will differ substantially from β̂. When that occurs, evaluating the
log likelihood at such a suboptimal solution will give you a very different log likelihood.

LMAX values are closely related to likelihood displacements and are derived from an eigensystem
analysis of the matrix of efficient score residuals; see Methods and formulas for details.

Both likelihood displacement and LMAX values measure each subject’s overall influence, but they
are not directly comparable with each other. Likelihood displacement values should be compared only
with other likelihood displacement values, and LMAX values only with other LMAX values.

Example 8: Likelihood displacement and LMAX values

You obtain likelihood displacement values with predict’s ldisplace option, and you obtain
LMAX values with the lmax option. Continuing from the previous example:

. predict ld, ldisplace

. predict lmax, lmax

. list _t0 _t _d ld lmax in 1/10

_t0 _t _d ld lmax

1. 0 1 1 .0059511 .0735375
2. 0 1 1 .032366 .1124505
3. 0 2 1 .0038388 .0686295
4. 0 3 1 .0481942 .0113989
5. 0 4 1 .0078195 .0331513

6. 0 4 1 .0019887 .0308102
7. 0 5 1 .0069245 .0614247
8. 0 5 1 .0051647 .0763283
9. 0 8 1 .0021315 .0353402

10. 0 8 0 .0116187 .1179539
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We can plot the likelihood displacement values versus time and label the points by observation number:

. scatter ld studytime, mlabel(obs)
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The above shows subjects 16 and 46 to be somewhat influential. A plot of LMAX values will show
subject 16 as influential but not subject 46, a fact we leave to you to verify.

Schoenfeld residuals and scaled Schoenfeld residuals are most often used to test the proportional-
hazards assumption, as described in [ST] stcox PH-assumption tests.

Multiple records per subject

In the previous section, we analyzed data from a cancer study, and in doing so we were very loose
in differentiating “observations” versus “subjects”. In fact, we used both terms interchangeably. We
were able to get away with that because in that dataset each subject (patient) was represented by only
one observation—the subjects were the observations.

Oftentimes, however, subjects need representation by multiple observations, or records. For example,
if a patient leaves the study for some time only to return later, at least one additional record will be
needed to denote the subject’s return to the study and the gap in their history. If the covariates of
interest for a subject change during the study (for example, transitioning from smoking to nonsmoking),
then this will also require representation by multiple records.

Multiple records per subject are not a problem for Stata; you simply specify an id() variable
when stsetting your data, and this id() variable tells Stata which records belong to which subjects.
The other commands in Stata’s st suite know how to then incorporate this information into your
analysis.

For predict after stcox, by default Stata handles diagnostic measures as always being at the
subject level, regardless of whether that subject comprises one observation or multiple ones.
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Example 9: Stanford heart transplant data

As an example, consider, as we did previously, data from the Stanford heart transplant study:

. use http://www.stata-press.com/data/r11/stan3, clear
(Heart transplant data)

. stset
-> stset t1, id(id) failure(died)

id: id
failure event: died != 0 & died < .

obs. time interval: (t1[_n-1], t1]
exit on or before: failure

172 total obs.
0 exclusions

172 obs. remaining, representing
103 subjects
75 failures in single failure-per-subject data

31938.1 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 1799

. list id _t0 _t _d age posttran surgery year in 1/10

id _t0 _t _d age posttran surgery year

1. 1 0 50 1 30 0 0 67
2. 2 0 6 1 51 0 0 68
3. 3 0 1 0 54 0 0 68
4. 3 1 16 1 54 1 0 68
5. 4 0 36 0 40 0 0 68

6. 4 36 39 1 40 1 0 68
7. 5 0 18 1 20 0 0 68
8. 6 0 3 1 54 0 0 68
9. 7 0 51 0 50 0 0 68

10. 7 51 675 1 50 1 0 68

The data come to us already stset, and we type stset without arguments to examine the current
settings. We verify that the id variable has been set as the patient id. We also see that we have 172
records representing 103 subjects, implying multiple records for some subjects. From our listing, we
see that multiple records are necessary to accommodate changes in patients’ heart-transplant status
(pretransplant versus posttransplant).

Residuals and other diagnostic measures, where applicable, will by default take place at the subject
level, meaning that (for example) there will be 103 likelihood displacement values for detecting
influential subjects (not observations, but subjects).

. stcox age posttran surg year
(output omitted )

. predict ld, ldisplace
(69 missing values generated)
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. list id _t0 _t _d age posttran surgery year ld in 1/10

id _t0 _t _d age posttran surgery year ld

1. 1 0 50 1 30 0 0 67 .0596877
2. 2 0 6 1 51 0 0 68 .0154667
3. 3 0 1 0 54 0 0 68 .
4. 3 1 16 1 54 1 0 68 .0298421
5. 4 0 36 0 40 0 0 68 .

6. 4 36 39 1 40 1 0 68 .0359712
7. 5 0 18 1 20 0 0 68 .1260891
8. 6 0 3 1 54 0 0 68 .0199614
9. 7 0 51 0 50 0 0 68 .

10. 7 51 675 1 50 1 0 68 .0659499

Because here we are not interested in predicting any baseline functions, it is perfectly safe to leave
age and year uncentered. The “(69 missing values generated)” message after predict tells us that
only 103 out of the 172 observations of ld were filled in; that is, we received only one likelihood
displacement per subject. Regardless of the current sorting of the data, the ld value for a subject is
stored in the last chronological record for that subject as determined by analysis time, t.

Patient 4 has two records in the data, one pretransplant and one posttransplant. As such, the ld
value for that patient is interpreted as the change in twice the log likelihood due to deletion of both
of these observations, that is, the deletion of patient 4 from the study. The interpretation is at the
patient level, not the record level.

If, instead, you want likelihood displacement values that you can interpret at the observation level
(that is, changes in twice the log likelihood due to deleting one record), you simply add the partial
option to the predict command above:

. predict ld, ldisplace partial

We do not think these kinds of observation-level diagnostics are generally what you would want, but
they are available.

In the above, we discussed likelihood displacement values, but the same issue concerning subject-
level versus observation-level interpretation also exists with Cox–Snell residuals, martingale residuals,
deviance residuals, efficient score residuals, LMAX values, and DFBETAs. Regardless of which diagnostic
you examine, this issue of interpretation is the same.

There is one situation where you do want to use the partial option. If you are using martingale
residuals to determine functional form and the variable you are thinking of adding varies within
subject, then you want to graph the partial martingale residuals against that new variable. Because
the variable changes within subject, the martingale residuals should also change accordingly.

Predictions after stcox with the tvc() option

The residuals and diagnostics discussed previously are not available after estimation with stcox
with the tvc() option, which is a convenience option for handling time-varying covariates:
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. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. stcox drug age, tvc(age) nolog

failure _d: died
analysis time _t: studytime

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

main
drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

tvc
age .9970966 .0042415 -0.68 0.494 .988818 1.005445

Note: variables in tvc equation interacted with _t

. predict dev, deviance
this prediction is not allowed after estimation with tvc();
see tvc note for an alternative to the tvc() option
r(198);

The above fits a Cox model to the cancer data and includes an interaction of age with analysis
time, t. Such interactions are useful for testing the proportional-hazards assumption: significant
interactions are violations of the proportional-hazards assumption for the variable being interacted
with analysis time (or some function of analysis time). That is not the situation here.

In any case, models with tvc() interactions do not allow predicting the residuals and diagnostics
discussed thus far. The solution in such situations is to forgo the use of tvc(), expand the data, and
use factor variables to specify the interaction:

. generate id = _n

. streset, id(id)
(output omitted )

. stsplit, at(failures)
(21 failure times)
(534 observations (episodes) created)
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. stcox drug age c.age#c._t, nolog

failure _d: died
analysis time _t: studytime

id: id

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 582
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

c.age#c._t .9970966 .0042415 -0.68 0.494 .988818 1.005445

. predict dev, deviance
(534 missing values generated)

. summarize dev

Variable Obs Mean Std. Dev. Min Max

dev 48 .0658485 1.020993 -1.804876 2.065424

We split the observations, currently one per subject, so that the interaction term is allowed to vary
over time. Splitting the observations requires that we first establish a subject id variable. Once that
is done, we split the observations with stsplit and the at(failures) option, which splits the
records only at the observed failure times. This amount of splitting is the minimal amount required to
reproduce our previous Cox model. We then include the interaction term c.age#c. t in our model,
verify that our Cox model is the same as before, and obtain our 48 deviance residuals, one for each
subject.

Predictions after stcox with the shared() option

A Cox shared frailty model is a Cox model with added group-level random effects such that

hij(t) = h0(t) exp(xijβ + νi)

with νi representing the added effect due to being in group i; see Cox regression with shared frailty
in [ST] stcox for more details. You fit this kind of model by specifying the shared(varname) option
with stcox, where varname identifies the groups. stcox will produce an estimate of β, its covariance
matrix, and an estimate of the variance of the νi. What it will not produce are estimates of the νi

themselves. These you can obtain postestimation with predict.

Example 10: Shared frailty models

In example 9 of [ST] stcox, we fit a shared frailty model to data from 38 kidney dialysis patients,
measuring the time to infection at the catheter insertion point. Two recurrence times (in days) were
measured for each patient.

The estimated νi are not displayed in the stcox coefficient table but may be retrieved postestimation
by using predict with the effects option:
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. use http://www.stata-press.com/data/r11/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. qui stcox age female, shared(patient)

. predict nu, effects

. sort nu

. list patient nu in 1/2

patient nu

1. 21 -2.448707
2. 21 -2.448707

. list patient nu in 75/L

patient nu

75. 7 .5187159
76. 7 .5187159

From the results above, we estimate that the least frail patient is patient 21, with ν̂21 = −2.45,
and that the frailest patient is patient 7, with ν̂7 = 0.52.

Technical note
When used with shared-frailty models, predict’s basehc, basesurv, and basechazard options

produce estimates of baseline quantities that are based on the last-step penalized Cox model fit.
Therefore, the term baseline means that not only are the covariates set to 0 but the νi are as well.

Other predictions, such as martingale residuals, are conditional on the estimated frailty variance being
fixed and known at the onset.

estat concordance
estat concordance calculates the concordance probability, which is defined as the probability

that predictions and outcomes are concordant. estat concordance provides two measures of the
concordance probability: Harrell’s C and Gönen and Heller’s K concordance coefficients. Harrell’s
C, which is defined as the proportion of all usable subject pairs in which the predictions and outcomes
are concordant, is computed by default. Gönen and Heller (2005) propose an alternative measure of
concordance, computed when the gheller option is specified, that is not sensitive to the degree of
censoring, unlike Harrell’s C coefficient. This estimator is not dependent on the observed event or
the censoring time and is a function of only the regression parameters and the covariate distribution,
which leads to the asymptotic unbiasedness. estat concordance also reports the Somers’ D rank
correlation, which is derived by calculating 2C − 1 for Harrell’s C and 2K − 1 for Gönen and
Heller’s K.

estat concordance may not be used after a Cox regression model with time-varying covariates
and may not be applied to weighted data or to data with delayed entries. The computation of
Gönen and Heller’s K coefficient is not supported for shared-frailty models, stratified estimation, or
multiple-record data.
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Example 11: Harrell’s C

Using our cancer data, we wish to evaluate the predictive value of the measurement of drug and
age. After fitting a Cox regression model, we use estat concordance to calculate Harrell’s C
index.

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. stcox drug age

failure _d: died
analysis time _t: studytime

Iteration 0: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration 0: log likelihood = -83.323546

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. estat concordance, noshow

Harrell’s C concordance statistic

Number of subjects (N) = 48
Number of comparison pairs (P) = 849
Number of orderings as expected (E) = 679
Number of tied predictions (T) = 15

Harrell’s C = (E + T/2) / P = .8086
Somers’ D = .6172

The result of stcox shows that the drug results in a lower hazard and therefore a longer survival
time, controlling for age and older patients being more likely to die. The value of Harrell’s C is
0.8086, which indicates that we can correctly order survival times for pairs of patients 81% of the
time on the basis of measurement of drug and age. See Methods and formulas for the full definition
of concordance.

Technical note
estat concordance does not work after a Cox regression model with time-varying covariates.

When the covariates are varying with time, the prognostic score, PS = xβ, will not capture or
condense the information in given measurements, in which case it does not make sense to calculate
the rank correlation between PS and survival time.
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Example 12: Gönen and Heller’s K

Alternatively, we can obtain Gönen and Heller’s estimate of the concordance probability, K. To
do so, we specify the gheller option with estat concordance:

. estat concordance, noshow gheller

Gonen and Heller’s K concordance statistic

Number of subjects (N) = 48

Gonen and Heller’s K = .7748
Somers’ D = .5496

Gönen and Heller’s concordance coefficient may be preferred to Harrell’s C when censoring is
present because Harrell’s C can be biased. Because 17 of our 48 subjects are censored, we prefer
Gönen and Heller’s concordance to Harrell’s C.

Saved results
estat concordance saves the following in r():

Scalars
r(N) number of observations r(K) Gönen and Heller’s K coefficient
r(n P) number of comparison pairs r(K s) smoothed Gönen and Heller’s K

coefficient
r(n E) number of orderings as expected r(K s se) standard error of the smoothed K

coefficient
r(n T) number of tied predictions r(D) Somers’ D coefficient for Harrell’s C

r(C) Harrell’s C coefficient r(D K) Somers’ D coefficient for Gönen and
Heller’s K

r(n P), r(n E), and r(n T) are returned only when strata are not specified.

Methods and formulas
All methods presented in this entry have been implemented as ado-files that use Mata.

Let xi be the row vector of covariates for the time interval (t0i, ti ] for the ith observation in
the dataset (i = 1, . . . , N ). The Cox partial log-likelihood function, using the default Peto–Breslow
method for tied failures is

logLbreslow =
D∑

j=1

∑
i∈Dj

wi(xiβ + offseti)− wi log

∑
`∈Rj

w` exp(x`β + offset`)




where j indexes the ordered failure times tj ( j = 1, . . . , D), Dj is the set of dj observations that
fail at tj , dj is the number of failures at tj , and Rj is the set of observations k that are at risk at
time tj (that is, all k such that t0k < tj ≤ tk). wi and offseti are, respectively, the weight and linear
offset for observation i, if specified.
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If the Efron method for ties is specified at estimation, the partial log likelihood is

logLefron =
D∑

j=1

∑
i∈Dj

xiβ + offseti − d−1
j

dj−1∑
k=0

log

∑
`∈Rj

exp(x`β + offset`)− kAj




for Aj = d−1
j

∑
`∈Dj

exp(x`β + offset`). Weights are not supported with the Efron method.

At estimation, Stata also supports the exact marginal and exact partial methods for handling ties,
but only the Peto–Breslow and Efron methods are supported in regard to the calculation of residuals,
diagnostics, and other predictions. As such, only the partial log-likelihood formulas for those two
methods are presented above, for easier reference in what follows.

If you specified efron at estimation, all predictions are carried out using the Efron method; that is,
the handling of tied failures is done analogously to the way it was done when calculating logLefron.
If you specified breslow (or nothing, because breslow is the default), exactm, or exactp, all
predictions are carried out using the Peto–Breslow method. That is not to say that if you specify
exactm at estimation, your predictions will be the same as if you had specified breslow. The
formulas used will be the same, but the parameter estimates at which they are evaluated will differ
because those were based on different ways of handling ties.

Define zi = xiβ̂ + offseti. Schoenfeld residuals for the pth variable using the Peto–Breslow
method are given by

rSpi
= δi (xpi − api)

where

api =

∑
`∈Ri

w`xp` exp(z`)∑
`∈Ri

w` exp(z`)

δi indicates failure for observation i, and xpi is the pth element of xi. For the Efron method,
Schoenfeld residuals are

rSpi
= δi (xpi − bpi)

where

bpi = d−1
i

di−1∑
k=0

∑
`∈Ri

xp` exp(z`)− kd−1
i

∑
`∈Di

xp` exp(z`)∑
`∈Ri

exp(z`)− kd−1
i

∑
`∈Di

exp(z`)

Schoenfeld residuals are derived from the first derivative of the log likelihood, with

∂ logL
∂βp

∣∣∣∣
β̂

=
N∑

i=1

rSpi
= 0

and only those observations that fail (δi = 1) contribute a Schoenfeld residual to the derivative.

For censored observations, Stata stores a missing value for the Schoenfeld residual even though the
above implies a value of 0. This is to emphasize that no calculation takes place when the observation
is censored.

Scaled Schoenfeld residuals are given by

r∗Si
= β̂ + d Var(β̂)rSi

where rSi
= (rS1i

, . . . , rSmi
)′, m is the number of regressors, and d is the total number of failures.
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In what follows, we assume the Peto–Breslow method for handling ties. Formulas for the Efron
method, while tedious, can be obtained by applying similar principles of averaging across risk sets,
as demonstrated above with Schoenfeld residuals.

Efficient score residuals are obtained by

rEpi = rSpi − exp(zi)
∑

j:t0i<tj≤ti

δjwj(xpi − apj)∑
`∈Rj

w` exp(z`)

Like Schoenfeld residuals, efficient score residuals are also additive components of the first derivative
of the log likelihood. Whereas Schoenfeld residuals are the contributions of each failure, efficient
score residuals are the contributions of each observation. Censored observations contribute to the log
likelihood (and its derivative) because they belong to risk sets at times when other observations fail. As
such, an observation’s contribution is twofold: 1) If the observation ends in failure, a risk assessment
is triggered, that is, a term in the log likelihood is computed. 2) Whether failed or censored, an
observation contributes to risk sets for other observations that do fail. Efficient score residuals reflect
both contributions.

The above computes efficient score residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the efficient score residual for a given subject
is calculated by summing the efficient scores over the observations within that subject.

Martingale residuals are

rMi
= δi − exp(zi)

∑
j:t0i<tj≤ti

wjδj∑
`∈Rj

w` exp(z`)

The above computes martingale residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the martingale residual for a given subject
is calculated by summing rMi over the observations within that subject.

Martingale residuals are in the range (−∞, 1). Deviance residuals are transformations of martingale
residuals designed to have a distribution that is more symmetric about zero. Deviance residuals are
calculated using

rDi
= sign(rMi

)
[
− 2 {rMi

+ δi log(δi − rMi
)}
]1/2

These residuals are expected to be symmetric about zero but do not necessarily sum to zero.

The above computes deviance residuals at the observation level. If you have multiple records per
subject and do not specify the partial option, then the deviance residual for a given subject is
calculated by applying the above transformation to the subject-level martingale residual.

The estimated baseline hazard contribution is obtained at each failure time as hj = 1− α̂j , where
α̂j is the solution to

∑
k∈Dj

exp(zk)

1− α̂exp(zk)
j

=
∑
`∈Rj

exp(z`)

(Kalbfleisch and Prentice 2002, eq. 4.34, 115).
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The estimated baseline survivor function is

Ŝ0(t) =
∏

j:tj≤t

α̂j

When estimated with no covariates, Ŝ0(t) is the Kaplan–Meier estimate of the survivor function.

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor
function calculation, yet the values of α̂j are set at their starting values and are not iterated.
Equivalently,

Ĥ0(t) =
∑

j:tj≤t

dj∑
`∈Rj

exp(z`)

When estimated with no covariates, Ĥ0(t) is the Nelson–Aalen estimate of the cumulative hazard.

Cox–Snell residuals are calculated with

rCi
= δi − rMi

where rMi
are the martingale residuals. Equivalently, Cox–Snell residuals can be obtained with

rCi
= exp(zi)Ĥ0(ti)

The above computes Cox–Snell residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the Cox–Snell residual for a given subject
is calculated by summing rCi over the observations within that subject.

DFBETAs are calculated with
DFBETAi = rEi

Ṽar(β̂)

where rEi = (rE1i , . . . , rEmi) is a row vector of efficient score residuals with one entry for each
regressor, and Ṽar(β̂) is the model-based variance matrix of β̂.

Likelihood displacement values are calculated with

LDi = rEi
Var(β̂)r′Ei

(Collett 2003, 136). In both of the above, rEi can represent either one observation or, in multiple-
record data, the cumulative efficient score for an entire subject. For the former, the interpretation is
that due to deletion of one record; for the latter, the interpretation is that due to deletion of all a
subject’s records.

Following Collett (2003, 137), LMAX values are obtained from an eigensystem analysis of

B = Θ Var(β̂) Θ′

where Θ is the N ×m matrix of efficient score residuals, with element (i, j) representing the jth
regressor and the ith observation (or subject). LMAX values are then the absolute values of the elements
of the unit-length eigenvector associated with the largest eigenvalue of the N ×N matrix B.
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For shared-frailty models, the data are organized into G groups, with the ith group consisting of
ni observations, i = 1, . . . , G. From Therneau and Grambsch (2000, 253–255), for fixed θ, estimates
of β and ν1, . . . , νG are obtained by maximizing

logL(θ) = logLCox(β, ν1, . . . , νG) +
G∑

i=1

[
1
θ
{νi − exp(νi)}+

(
1
θ

+Di

){
1− log

(
1
θ

+Di

)}
− log θ

θ
+ log Γ

(
1
θ

+Di

)
− log Γ

(
1
θ

)]
where Di is the number of death events in group i, and logLCox(β, ν1, . . . , νG) is the standard Cox
partial log likelihood, with the νi treated as the coefficients of indicator variables identifying the
groups. That is, the jth observation in the ith group has log relative-hazard xijβ + νi.

You obtain the estimates of ν1, . . . , νG with predict’s effects option after stcox, shared().

estat concordance
Harrell’s C was proposed by Harrell Jr. et al. (1982) and was developed to evaluate the results

of a medical test. The C index is defined as the proportion of all usable subject pairs in which
the predictions and outcomes are concordant. The C index may be applied to ordinary continuous
outcomes, dichotomous diagnostic outcomes, ordinal outcomes, and censored time-until-event response
variables.

In predicting the time until death, C is calculated by considering all comparable patient pairs. A
pair of patients is comparable if either 1) the two have different values on the time variable, and
the one with the lowest value presents a failure, or 2) the two have the same value on the time
variable, and exactly one of them presents a failure. If the predicted survival time is larger for the
patient who lived longer, the predictions for the pair are said to be concordant with the outcomes.
From Fibrinogen Studies Collaboration (2009), Harrell’s C is defined as

∑
k(Ek +Tk/2)/

∑
k(Dk),

where Dk is the total number of pairs usable for comparison in stratum k, Ek is the number of pairs
for which the predictions are concordant with the outcomes and the predictions are not identical in
stratum k, and Tk is the number of usable pairs for which the predictions are identical in stratum k.
If there are no strata specified, then the formula for Harrell’s C reduces to (E + T/2)/D.

For a Cox proportional hazards model, the probability that the patient survives past time t is given
by S0(t) raised to the exp(xβ) power, where S0(t) is the baseline survivor function, x denotes a set
of measurements for the patient, and β is the vector of coefficients. A Cox regression model is fit by
the stcox command. The hazard ratio, exp(xβ), is obtained by predict after stcox. Because the
predicted survivor time and the predicted survivor function are one-to-one functions of each other,
the predicted survivor function can be used to calculate C instead of the predicted survival time. The
predicted survivor function decreases when the predicted hazard ratio increases; therefore, Harrell’s
C can be calculated by computing E, T , and D, based on the observed outcomes and the predicted
hazard ratios.

C takes a value between 0 and 1. A value of 0.5 indicates no predictive discrimination, and values
of 0 or 1.0 indicate perfect separation of subjects with different outcomes. See Harrell Jr., Lee, and
Mark (1996) for more details. Somers’ D rank correlation is calculated by 2C−1; see Newson (2002)
for a discussion of Somers’ D.

In the presence of censoring, Harrell’s C coefficient tends to be biased. An alternative measure
of concordance that is asymptotically unbiased with censored data was proposed by Gönen and
Heller (2005). This estimator does not depend on observed time directly and is a function of only
the regression parameters and the covariate distribution, which leads to its asymptotic unbiasedness
and thus robustness to the degree of censoring.
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Let ∆xij be the pairwise difference xi − xj . Then Gönen and Heller’s concordance probability
estimator is given by

K = KN (β̂) =
2

N(N − 1)

∑
i<j

∑{
I(∆xjiβ̂ < 0)

1 + exp(∆xjiβ̂)
+

I(∆xijβ̂ < 0)

1 + exp(∆xijβ̂)

}

where I(·) is an indicator function. Somers’ D rank correlation is calculated by 2K − 1.
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Also see
[ST] stcox — Cox proportional hazards model

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands


