Title

zinb postestimation — Postestimation tools for zinb

Description

The following postestimation commands are available for zinb:

command	description
estat	AIC, BIC, VCE, and estimation sample summary
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
${\tt lrtest}^1$	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

¹ lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for details about estat (svy).

Syntax for predict

predict	[type] newvar $[if]$ $[in]$ $[, statistic nooffset]$
predict	$[type] \{stub* newvar_{reg} newvar_{inflate} newvar_{lnalpha}\} [if] [in], scores$
statistic	description
Main	
n	number of events; the default
ir	incidence rate
pr	probability of a degenerate zero
$\overline{\mathrm{pr}}(n)$	unconditional probability $Pr(y_j = n)$
pr(a,b)	unconditional probability $Pr(a \le y_j \le b)$
xb	linear prediction
stdp	standard error of the linear prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Main

- n, the default, calculates the predicted number of events, which is $(1 p_j) \exp(\mathbf{x}_j \beta)$ if neither offset() nor exposure() was specified when the model was fit, where p_j is the predicted probability of a zero outcome; $(1 p_j) \exp\{(\mathbf{x}_j \beta) + \text{offset}_j\}$ if offset() was specified; or $(1 p_j) \{\exp(\mathbf{x}_j \beta) \times \exp(\mathbf{s}_j \beta)\}$ if exposure() was specified.
- ir calculates the incidence rate $\exp(\mathbf{x}_j\beta)$, which is the predicted number of events when exposure is 1. This is equivalent to specifying both the n and the nooffset options.
- pr calculates the probability $Pr(y_j = 0)$, where this zero was obtained from the degenerate distribution $F(\mathbf{z}_j \boldsymbol{\gamma})$. If offset() was specified within the inflate() option, then $F(\mathbf{z}_j \boldsymbol{\gamma} + \text{offset}_j^{\gamma})$ is calculated.
- pr(n) calculates the unconditional probability $Pr(y_j = n)$, where n is a nonnegative integer that may be specified as a number or a variable. Note that pr is not equivalent to pr(0).
- pr(a,b) calculates the unconditional probability $Pr(a \le y_j \le b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

b missing $(b \ge .)$ means $+\infty$; pr(20,.) calculates $Pr(y_j \ge 20)$; pr(20,*b*) calculates $Pr(y_j \ge 20)$ in observations for which $b \ge .$ and calculates $Pr(20 \le y_j \le b)$ elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable *a* causes a missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is $x_j\beta$ if neither offset() nor exposure() was specified; $x_j\beta$ + offset_j if offset() was specified; or $x_j\beta$ + ln(exposure_j) if exposure() was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $x_j\beta$ rather than as $x_j\beta$ +offset_j or $x_j\beta$ + ln(exposure_j). Specifying predict ..., nooffset is equivalent to specifying predict ..., ir.

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (\mathbf{x}_j \boldsymbol{\beta})$.

The second new variable will contain $\partial \ln L / \partial (\mathbf{z}_j \boldsymbol{\gamma})$.

The third new variable will contain $\partial \ln L / \partial \ln \alpha$.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

2

The probabilities calculated using the pr(n) option are the unconditional probability $Pr(y_i = n)$. These are calculated using

$$Pr(0|\mathbf{x}_i) = \omega_i + (1 - \omega_i) p_2(0|\mathbf{x}_i)$$
$$Pr(n|\mathbf{x}_i) = (1 - \omega_i) p_2(n|\mathbf{x}_i) \qquad \text{for } n = 1, 2, \dots$$

where ω_i is the probability of obtaining an observation from the degenerate distribution whose mass is concentrated at zero, and $p_2(n|\mathbf{x}_i)$ is the probability of $y_i = n$ from the nondegenerate, negative binomial distribution. ω_i can be obtained from the **pr** option.

See Cameron and Trivedi (1998, sec. 4.7) for further details.

Reference

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge: Cambridge University Press.

Also see

- [R] zinb Zero-inflated negative binomial regression
- [U] 20 Estimation and postestimation commands