Interpreting and Visualizing Regression Models Using Stata

Second Edition

Michael N. Mitchell

A Stata Press Publication StataCorp LLC College Station, Texas

Copyright © 2012, 2021 by StataCorp LLC All rights reserved. First edition 2012 Second edition 2021

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in $\rm IAT_{E}X\,2_{\mathcal{E}}$ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

Print ISBN-10: 1-59718-321-0 Print ISBN-13: 978-1-59718-321-5 ePub ISBN-10: 1-59718-322-9 ePub ISBN-13: 978-1-59718-322-2 Mobi ISBN-10: 1-59718-323-7 Mobi ISBN-13: 978-1-59718-323-9

Library of Congress Control Number: 2020950108

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LLC.

Stata, **STATA**, Stata Press, Mata, **MATA**, and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

 $\operatorname{{\rm I\!AT}\!E\!X} 2_{\mathcal{E}}$ is a trademark of the American Mathematical Society.

List	of tables	xv		
	List of tables			
\mathbf{List}	List of figures			
Preface to the Second Edition				
Prefa	ace to the First Edition x	xix		
Ackr	nowledgments x	xxi		
Intro	oduction	1		
1.1	Read me first \ldots	1		
1.2	The GSS dataset	4		
	1.2.1 Income	5		
	1.2.2 Age	6		
	1.2.3 Education	10		
	1.2.4 Gender	12		
1.3	The pain datasets	12		
1.4	The optimism datasets	13		
1.5	The school datasets	13		
1.6	The sleep datasets	13		
1.7	Overview of the book	13		
Con	tinuous predictors	17		
Cont	inuous predictors: Linear	19		
2.1	Chapter overview	19		
2.2	Simple linear regression	19		
	$2.2.1 \qquad {\rm Computing \ predicted \ means \ using \ the \ margins \ command \ .} \ .$	22		
	2.2.2 Graphing predicted means using the marginsplot command	24		
2.3	Multiple regression	27		
	Prefa Ackr Intro 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Cont 2.1 2.2	Preface to the First Edition x Acknowledgments x Introduction x 1.1 Readments x 1.2 The GSS dataset x 1.2 The GSS dataset x 1.2.1 Income x 1.2.2 Age x 1.2.3 Education x 1.2.4 Gender x 1.3 The pain datasets x 1.4 The optimism datasets x 1.5 The school datasets x 1.6 The sleep datasets x 1.7 Overview of the book x Continuous predictors: Linear 2.1 Chapter overview x 2.2 Simple linear regression x 2.2.1 Computing predicted means using the margins command . x 2.2.2 Graphing predicted means using the marginsplot command . x		

		2.3.1	Computing adjusted means using the margins command	28
		2.3.2	Some technical details about adjusted means	30
		2.3.3	Graphing adjusted means using the marginsplot command .	31
	2.4	Checki	ng for nonlinearity graphically	32
		2.4.1	Using scatter plots to check for nonlinearity	33
		2.4.2	Checking for nonlinearity using residuals	33
		2.4.3	Checking for nonlinearity using locally weighted smoother $% \mathcal{L}^{(n)}$.	35
		2.4.4	Graphing outcome mean at each level of predictor	36
		2.4.5	Summary	39
	2.5	Checki	ng for nonlinearity analytically	39
		2.5.1	Adding power terms	40
		2.5.2	Using factor variables	42
	2.6	Summa	ary	46
3	Con	tinuous	predictors: Polynomials	49
	3.1	Chapte	er overview	49
	3.2	Quadra	atic (squared) terms	49
		3.2.1	Overview	49
		3.2.2	Examples	53
	3.3	Cubic	(third power) terms $\ldots \ldots \ldots$	59
		3.3.1	Overview	59
		3.3.2	Examples	60
	3.4	Fractic	onal polynomial regression	66
		3.4.1	Overview	66
		3.4.2	Example using fractional polynomial regression $\ldots \ldots \ldots$	70
	3.5	Main e	effects with polynomial terms	79
	3.6	Summa	ary	81
4	Con	tinuous	predictors: Piecewise models	83
	4.1	Chapte	er overview	83
	4.2	Introdu	uction to piecewise regression models	84
	4.3	Piecew	rise with one known knot	86

vi

 $\mathbf{5}$

	4.3.1	Overview	86
	4.3.2	Examples using the GSS	87
4.4	Piecew	rise with two known knots	95
	4.4.1	Overview	95
	4.4.2	Examples using the GSS	95
4.5	Piecew	rise with one knot and one jump $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	100
	4.5.1	Overview	100
	4.5.2	Examples using the GSS	101
4.6	Piecew	rise with two knots and two jumps	106
	4.6.1	Overview	106
	4.6.2	Examples using the GSS	106
4.7	Piecew	rise with an unknown knot	113
4.8	Piecew	rise model with multiple unknown knots	117
4.9	Piecew	vise models and the marginsplot command $\ldots \ldots \ldots \ldots$	124
4.10	Autom	nating graphs of piecewise models	127
4.11	Summ	ary	130
Con	tinuous	by continuous interactions	131
5.1	Chapte	er overview	131
5.2	Linear	by linear interactions	131
	5.2.1	Overview	131
	5.2.2	Example using GSS data	136
	5.2.3	Interpreting the interaction in terms of age	137
	5.2.4	Interpreting the interaction in terms of education $\ . \ . \ .$	139
	5.2.5	Interpreting the interaction in terms of age slope $\ . \ . \ .$.	141
	5.2.6	Interpreting the interaction in terms of the educ slope $\ . \ . \ .$	142
5.3	Linear	by quadratic interactions	144
	5.3.1	Overview	144
	5.3.2	Example using GSS data	147
5.4	Summ	ary	152

vii

6	Cont	inuous by continuous by continuous interactions 153	;
	6.1	Chapter overview	
	6.2	Overview	
	6.3	Examples using the GSS data	,
		6.3.1 A model without a three-way interaction	,
		6.3.2 A three-way interaction model $\ldots \ldots \ldots$;
	6.4	Summary)
II	Cat	gorical predictors 171	
7	Cate	gorical predictors 173	;
	7.1	Chapter overview	;
	7.2	Comparing two groups using a t test	-
	7.3	More groups and more predictors)
	7.4	Overview of contrast operators	
	7.5	Compare each group against a reference group	,
		7.5.1 Selecting a specific contrast	;
		7.5.2 Selecting a different reference group	:
		7.5.3 Selecting a contrast and reference group 185)
	7.6 Compare each group against the grand mean)
		7.6.1 Selecting a specific contrast	,
	7.7	Compare adjacent means	,
		7.7.1 Reverse adjacent contrasts $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 192$)
		7.7.2 Selecting a specific contrast 193	;
	7.8	Comparing the mean of subsequent or previous levels	:
		7.8.1 Comparing the mean of previous levels	,
		7.8.2 Selecting a specific contrast)
	7.9	Polynomial contrasts)
	7.10	Custom contrasts	!
	7.11	Weighted contrasts	;
	7.12	Pairwise comparisons	,

viii

	7.13	Interpre	eting confidence intervals	210
	7.14	Testing	categorical variables using regression	212
	7.15	Summa	ry	215
8	Cate	gorical	by categorical interactions	217
	8.1	Chapter	r overview	217
	8.2	Two by	two models: Example 1 \ldots	219
		8.2.1	Simple effects	224
		8.2.2	Estimating the size of the interaction	225
		8.2.3	More about interaction	226
		8.2.4	Summary	227
	8.3	Two by	three models	227
		8.3.1	Example 2	227
		8.3.2	Example 3	232
		8.3.3	Summary	237
	8.4	Three b	y three models: Example 4	237
		8.4.1	Simple effects	240
		8.4.2	Simple contrasts	240
		8.4.3	Partial interaction	242
		8.4.4	Interaction contrasts	243
		8.4.5	Summary	245
	8.5	Unbalar	nced designs	245
	8.6	Main ef	fects with interactions: anova versus regress	250
	8.7	Interpre	eting confidence intervals	253
	8.8	Summa	ry	255
9	Cate	gorical	by categorical by categorical interactions	257
	9.1	Chapter	r overview	257
	9.2	Two by	two by two models	258
		9.2.1	Simple interactions by season	260
		9.2.2	Simple interactions by depression status	261
		9.2.3	Simple effects	263

ix

	9.3	Two by	two by three models	263
		9.3.1	Simple interactions by depression status $\ldots \ldots \ldots$	266
		9.3.2	Simple partial interaction by depression status	266
		9.3.3	Simple contrasts	268
		9.3.4	Partial interactions	268
	9.4	Three by	y three by three models and beyond \ldots	270
		9.4.1	Partial interactions and interaction contrasts $\ldots \ldots \ldots$	272
		9.4.2	Simple interactions	276
		9.4.3	Simple effects and simple comparisons $\hdots \ldots \ldots \ldots$.	279
	9.5	Summar	ry	280
III	Con	tinuou	s and categorical predictors	281
10	Linea	ar by ca	tegorical interactions	283
	10.1	Chapter	• overview	283
	10.2	Linear a	and two-level categorical: No interaction	283
		10.2.1	Overview	283
		10.2.2	Examples using the GSS	286
	10.3	Linear b	by two-level categorical interactions	291
		10.3.1	Overview	291
		10.3.2	Examples using the GSS	294
	10.4	Linear b	by three-level categorical interactions	299
		10.4.1	Overview	299
		10.4.2	Examples using the GSS	301
	10.5	Summar	ry	308
11	Poly	nomial l	by categorical interactions	311
	11.1	Chapter	• overview	311
	11.2	Quadrat	tic by categorical interactions	311
		11.2.1	Overview	312
		11.2.2	Quadratic by two-level categorical	315
		11.2.3	Quadratic by three-level categorical	323

х

	11.3	Cubic b	by categorical interactions	329
	11.4	Summa	ry	334
12	Piece	ewise by	y categorical interactions	335
	12.1	Chapte	r overview	335
	12.2	One kn	ot and one jump \ldots	338
		12.2.1	Comparing slopes across gender	342
		12.2.2	Comparing slopes across education $\ldots \ldots \ldots \ldots \ldots$	343
		12.2.3	Difference in differences of slopes	343
		12.2.4	Comparing changes in intercepts	344
		12.2.5	Computing and comparing adjusted means	344
		12.2.6	Graphing adjusted means	347
	12.3	Two kn	ots and two jumps	351
		12.3.1	Comparing slopes across gender	356
		12.3.2	Comparing slopes across education	357
		12.3.3	Difference in differences of slopes	358
		12.3.4	Comparing changes in intercepts by gender	359
		12.3.5	Comparing changes in intercepts by education	360
		12.3.6	Computing and comparing adjusted means	361
		12.3.7	Graphing adjusted means	364
	12.4	Compa	ring coding schemes	366
		12.4.1	Coding scheme #1 \ldots	367
		12.4.2	Coding scheme $#2$	368
		12.4.3	Coding scheme #3 \ldots	370
		12.4.4	Coding scheme #4 \ldots	372
		12.4.5	Choosing coding schemes	373
	12.5	Summa	ry	374
13	Cont	inuous	by continuous by categorical interactions	375
	13.1	Chapte	r overview	375
	13.2	Linear	by linear by categorical interactions	376
		13.2.1	Fitting separate models for males and females	376

xi

		13.2.2 Fitting a combined model for males and females	
		13.2.3 Interpreting the interaction focusing in the age slope \ldots 380	
		13.2.4 Interpreting the interaction focusing on the educ slope \ldots 382	
		13.2.5 Estimating and comparing adjusted means by gender 384	
	13.3	Linear by quadratic by categorical interactions	
		13.3.1 Fitting separate models for males and females	
		13.3.2 Fitting a common model for males and females 388	
		13.3.3 Interpreting the interaction	
		13.3.4 Estimating and comparing adjusted means by gender 390	
	13.4	Summary 392	
14	Cont	tinuous by categorical by categorical interactions 393	
	14.1	Chapter overview	
	14.2	Simple effects of gender on the age slope	
	14.3	Simple effects of education on the age slope	
	14.4	Simple contrasts on education for the age slope $\ldots \ldots \ldots \ldots \ldots 400$	
	14.5	Partial interaction on education for the age slope $\ldots \ldots \ldots \ldots \ldots 400$	
	14.6	Summary 401	
IV	Bey	ond ordinary linear regression 403	
15	Mult	tilevel models 405	
	15.1	Chapter overview	
	15.2	Example 1: Continuous by continuous interaction	
	15.3	Example 2: Continuous by categorical interaction	
	15.4	Example 3: Categorical by continuous interaction	
	15.5	Example 4: Categorical by categorical interaction	
	15.6	Summary 421	
16	Time	e as a continuous predictor 423	
	16.1	Chapter overview	
	16.2	Example 1: Linear effect of time	
	16.3	Example 2: Linear effect of time by a categorical predictor 428	

xii

	16.4	Example	3: Piecewise modeling of time	433
	16.5	Example	4: Piecewise effects of time by a categorical predictor $\ . \ .$	438
		16.5.1	Baseline slopes	443
		16.5.2	Change in slopes: Treatment versus baseline	444
		16.5.3	Jump at treatment	445
		16.5.4	Comparisons among groups	446
	16.6	Summary	y	448
17	Time	e as a cat	segorical predictor	449
	17.1	Chapter	overview	449
	17.2	Example	1: Time treated as a categorical variable	450
	17.3	Example	2: Time (categorical) by two groups $\ldots \ldots \ldots \ldots \ldots$	455
	17.4	Example	3: Time (categorical) by three groups	459
	17.5	Compari	ng models with different residual covariance structures $\ . \ .$	464
	17.6	Analyses	with small samples	466
	17.7	Summary	y	474
18	Nonl	inear mo	odels	475
18	Nonl 18.1		odels overview	475 475
18		Chapter		
18	18.1	Chapter Binary lo	overview	475
18	18.1	Chapter Binary lo 18.2.1	overview	475 476
18	18.1	Chapter Binary lo 18.2.1 18.2.2	overview	475 476 476
18	18.1	Chapter Binary lo 18.2.1 18.2.2 18.2.3	overview	475 476 476 484
18	18.1 18.2	Chapter Binary lo 18.2.1 18.2.2 18.2.3 Multinor	overview	475 476 476 484 486
18	18.1 18.2 18.3	Chapter Binary lo 18.2.1 18.2.2 18.2.3 Multinon Ordinal l	overview	475 476 476 484 486 491
18	18.1 18.2 18.3 18.4	Chapter Binary lo 18.2.1 18.2.2 18.2.3 Multinon Ordinal l Poisson r	overview	475 476 484 486 491 497 500
18	18.1 18.2 18.3 18.4 18.5	Chapter Binary lo 18.2.1 18.2.2 18.2.3 Multinon Ordinal l Poisson r More app	overview	475 476 484 486 491 497 500
18	18.1 18.2 18.3 18.4 18.5	Chapter Binary lo 18.2.1 18.2.2 18.2.3 Multinon Ordinal l Poisson r More app 18.6.1	overview	475 476 476 484 486 491 497 500 503
18	18.1 18.2 18.3 18.4 18.5	Chapter Binary lo 18.2.1 18.2.2 18.2.3 Multinon Ordinal I Poisson r More app 18.6.1 18.6.2	overview	475 476 476 484 486 491 497 500 503 503
18	18.1 18.2 18.3 18.4 18.5	Chapter Binary lo 18.2.1 18.2.2 18.2.3 Multinon Ordinal l Poisson r More app 18.6.1 18.6.2 18.6.3	overview	475 476 484 486 491 497 500 503 503 510

xiii

\mathbf{V}	Appendices		
\mathbf{A}	Cust	comizing output from estimation commands	531
	A.1	Omission of output	531
	A.2	Specifying the confidence level	533
	A.3	Customizing the formatting of columns in the coefficient table	534
	A.4	Customizing the display of factor variables	536
В	The	margins command	545
	B.1	The predict() and expression() options $\ldots \ldots \ldots \ldots \ldots \ldots$	545
	B.2	The at() option $\ldots \ldots \ldots$	548
	B.3	Margins with factor variables	551
	B.4	Margins with factor variables and the at() option $\hdots \ldots \hdots \ldots \hdots$.	557
	B.5	The dydx() and related options $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	559
	B.6	Specifying the confidence level	563
	B.7	Customizing column formatting	564
\mathbf{C}	The	marginsplot command	567
D	The	contrast command	583
	D.1	Inclusion and omission of output $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	584
	D.2	Customizing the display of factor variables	586
	D.3	Adjustments for multiple comparisons	588
	D.4	Specifying the confidence level	588
	D.5	Customizing column formatting	589
\mathbf{E}	The	pwcompare command	591
	Refe	rences	597
	Auth	nor index	601
	Subj	ect index	603

 xiv

Tables

5.1	The age slope at each level of education $\hdots \ldots \ldots \ldots \ldots \ldots$	135
5.2	The educ slope at 25, 35, 45, and 55 years of age $\ldots \ldots \ldots \ldots$	136
7.1	Summary of contrast operators	182
12.1	Summary of piecewise regression results with one knot $\ . \ . \ . \ .$.	341
12.2	Summary of piecewise regression results with two knots $\hfill\hf$	355
12.3	Summary of regression results and meaning of coefficients for coding schemes $\#1$ and $\#2$	370
12.4	Summary of regression results and meaning of coefficients for coding schemes #3 and #4	373
14.1	The age slope by level of education and gender $\hdots \ldots \hdots \hdddt \hdots \hdots$	394
14.2	The age slope by level of education and gender	398

(Pages omitted)

Preface to the Second Edition

It was back in March of 2012 that I penned the preface for the first edition of this book. That was over eight years and four Stata versions ago (using Stata 12.1). The techniques illustrated in this book are as relevant today as they were back in 2012. Over this time, Stata has grown considerably. A key change that impacts the interpretation of statistical results (a focus of this book) is that the levels of factor variables are now labeled using value labels (instead of group numbers). For example, a two-level version of marital status might be labeled as Married and Unmarried instead of using numeric values such as 1 and 2. All the output in this new edition capitalizes on this feature, emphasizing the interpretation of results based on variables labeled using intuitive value labels. Stata now includes features that allow you to customize output in ways that increase the clarity of the results, aiding interpretation. This new edition includes a new appendix (appendix A) that illustrates how you can customize the output of estimation commands for maximum clarity.

The margins, contrast, and pwcompare commands also reflect this new output style, defaulting to labeling groups according to their value labels. Results of these commands are easier to interpret than ever. For instance, a contrast regarding marital status might be labeled as widowed vs. married, making it very clear which groups are being compared. This new edition uses this labeling style and also includes appendices that describe how to customize such output. Appendix B is on the margins command, appendix D is on the contrast command, and appendix E is on the pwcompare command—each illustrate how you can customize the display of output produced by these commands. Additionally, appendix C on the marginsplot command illustrates new graphical features that have been recently introduced, including using transparency to more clearly visualize overlapping confidence intervals.

Among the other new features introduced since the last edition of this book, the **mixed** and **contrast** commands now include options for computing estimates for small-sample sizes. Chapter 17 describes these techniques and illustrates how the **mixed** and **contrast** commands can use small-sample size methods to analyze a longitudinal dataset with a small-sample size.

As with the first edition, I hope the examples shown in this book help you understand the results of your regression models so you can interpret and present them with clarity and confidence.

Ventura, California November 2020 Michael N. Mitchell

Preface to the First Edition

Think back to the first time you learned about simple linear regression. You probably learned about the underlying theory of linear regression, the meaning of the regression coefficients, and how to create a graph of the regression line. The graph of the regression line provided a visual representation of the intercept and slope coefficients. Using such a graph, you could see that as the intercept increased, so did the overall height of the regression line, and as the slope increased, so did the tilt of the regression line. Within Stata, the graph twoway lfit command can be used to easily visualize the results of a simple linear regression.

Over time, we learn about and use fancier and more abstract regression models models that include covariates, polynomial terms, piecewise terms, categorical predictors, interactions, and nonlinear models such as logistic. Compared with a simple linear regression model, it can be challenging to visualize the results of such models. The utility of these fancier models diminishes if we have greater difficulty interpreting and visualizing the results.

With the introduction of the marginsplot command in Stata 12, visualizing the results of a regression model, even complex models, is a snap. As implied by the name, the marginsplot command works in tandem with the margins command by plotting (graphing) the results computed by the margins command. For example, after fitting a linear model, the margins command can be used to compute adjusted means as a function of one or more predictors. The marginsplot command graphs the adjusted means, allowing you to visually interpret the results.

The margins and marginsplot commands can be used following nearly all Stata estimation commands (including regress, anova, logit, ologit, and mlogit). Furthermore, these commands work with continuous linear predictors, categorical predictors, polynomial (power) terms, as well as interactions (for example, two-way interactions, three-way interactions). This book uses the marginsplot command not only as an interpretive tool but also as an instructive tool to help you understand the results of regression models by visualizing them.

Categorical predictors pose special difficulties with respect to interpreting regression models, especially models that involve interactions of categorical predictors. Categorical predictors are traditionally coded using dummy (indicator) coding. Many research questions cannot be answered directly in terms of dummy variables. Furthermore, interactions involving dummy categorical variables can be confusing and even misleading. Stata 12 introduces the contrast command, a general-purpose command that can be used to precisely test the effects of categorical variables by forming contrasts among the levels of the categorical predictors. For example, you can compare adjacent groups, compare each group with the overall mean, or compare each group with the mean of the previous groups. The **contrast** command allows you to easily focus on the comparisons that are of interest to you.

The contrast command works with interactions as well. You can test the simple effect of one predictor at specific levels of another predictor or form interactions that involve comparisons of your choosing. In the parlance of analysis of variance, you can test simple effects, simple contrasts, partial interactions, and interaction contrasts. These kinds of tests allow you to precisely understand and dissect interactions with surgical precision. The contrast command works not only with the regress command but also with commands such as logit, ologit, mlogit, as well as random-effects models like xtmixed.

As you can see, the scope of the application of the margins, marginsplot, and contrast commands is broad. Likewise, so is the scope of this book. It covers continuous variables (modeled linearly, using polynomials, and piecewise), interactions of continuous variables, categorical predictors, interactions of categorical predictors, as well as interactions of continuous and categorical predictors. The book also illustrates how the margins, marginsplot, and contrast commands can be used to interpret results from multilevel models, models where time is a continuous predictor, models with time as a categorical predictor, nonlinear models (such as logistic regression or ordinal logistic regression), and analyses that involve complex survey data. However, this book does not contain information about the theory of these statistical models, how to perform diagnostics for the models, the formulas for the models, and so forth. The summary section concluding each chapter includes references to books and articles that provide background for the techniques illustrated in the chapter.

My goal for this book is to provide simple and clear examples that illustrate how to interpret and visualize the results of regression models. To that end, I have selected examples that illustrate large effects generally combined with large sample sizes to create patterns of effects that are easy to visualize. Most of the examples are based on real data, but some are based on hypothetical data. In either case, I hope the examples help you understand the results of your regression models so you can interpret and present them with clarity and confidence.

Simi Valley, California March 2012 Michael N. Mitchell

(Pages omitted)

14 Continuous by categorical by categorical interactions

14.1	Chapter overview	393
14.2	Simple effects of gender on the age slope	398
14.3	Simple effects of education on the age slope $\ldots \ldots \ldots \ldots$	399
14.4	Simple contrasts on education for the age slope $\ldots \ldots \ldots$	400
14.5	Partial interaction on education for the age slope $\ldots \ldots \ldots$	400
14.6	Summary	401

14.1 Chapter overview

This chapter considers models that involve the interaction of two categorical predictors with a linear continuous predictor. Such models blend ideas from chapter 10 on categorical by continuous interactions and ideas from chapter 8 on categorical by categorical interactions. As we saw in chapter 10, interactions of categorical and continuous predictors describe how the slope of the continuous variable differs as a function of the categorical variable. In chapter 8, we saw models that involve the interaction of two categorical variables. This chapter blends these two modeling techniques by exploring how the slope of the continuous variable varies as a function of the interaction of the two categorical variables.

Let's consider a hypothetical example of a model with income as the outcome variable. The predictors include gender (a two-level categorical variable), education (treated as a three-level categorical variable), and age (a continuous variable). Income can be modeled as a function of each of the predictors, as well as the interactions of all the predictors. A three-way interaction of age by gender by education would imply that the effect of age interacts with gender by education. One way to visualize such an interaction would be to graph age on the x axis, with separate lines for the levels of education and separate graphs for gender. Figure 14.1 shows such an example, illustrating how the slope of the relationship between income and age varies as a function of education and gender.

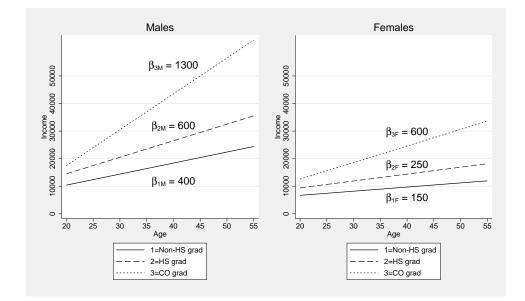


Figure 14.1. Fitted values of income as a function of age, education, and gender

The graph can be augmented by a table that shows the **age** slope broken down by education and gender. Such a table is shown in 14.1. The **age** slope shown in each cell of table 14.1 reflects the slope of the relationship between income and age for each of the lines illustrated in figure 14.1. For example, β_{3M} represents the **age** slope for male college graduates, and this slope is 1,300.

	Non-HS grad	HS grad	CO grad
Male	$\beta_{1M} = 400$	$\beta_{2M}=600$	$\beta_{3M}=1{,}300$
Female	$\beta_{1F}=150$	$\beta_{2F}=250$	$\beta_{3F} = 600$

Table 14.1. The age slope by level of education and gender

The age by education by gender interaction described in table 14.1 can be understood and dissected like the two by three interactions illustrated in chapter 8. The key difference is that table 14.1 is displaying the slope of the relationship between income and age, and the three-way interaction refers to the way that the slope varies as a function of education and gender.¹

If there were no three-way interaction of age by gender by education, we would expect (for example) that the gender difference in the **age** slope would be approximately the

^{1.} More precisely, how the slope varies as a function of the interaction of age and gender.

14.1 Chapter overview

same at each level of education. But consider the differences in the **age** slopes between females and males at each level of education. This difference is -250 (150 - 400) for non-high school graduates, whereas this difference is -350 (250 - 600) for high school graduates, and the difference is -700 (600-1300) for college graduates. The difference in the **age** slopes between females and males seems to be much larger for college graduates than for high school graduates and non-high school graduates. This pattern of results appears consistent with a three-way interaction of age by education by gender.

Let's explore this in more detail with an example using the GSS dataset. To focus on the linear effect of **age**, we will keep those who are 22 to 55 years old.

. use gss_ivrm
. keep if age>=22 & age<=55
(18,936 observations deleted)</pre>

In this example, let's predict income as a function of gender² (gender), a three-level version of education (educ3), and age. The regress command below predicts realrinc from i.gender, i.educ3, and c.age (as well as all interactions of the predictors). The variable i.race is also included as a covariate.³

^{2.} I use the variable gender (coded: 1 = Male and 2 = Female), because it leads to output that clearly distinguishes the variable name (that is, gender) and its values (that is, Male, and Female).

^{3.} The noci option is included to make the output more readable for this example. See the callout titled Using the noci option for clearer output in section 2.5.1 for more details.

Linear regression		6	F(13 Prob R-squ	Number of obs F(13, 25704) Prob > F R-squared Root MSE		25,718 411.30 0.0000 0.1839 23556
realrinc	Coef.	Robust Std. Err.	t	P> t		
gender Male Female	0 1337.125	(base) 1693.694	0.79	0.430		
educ3 not hs HS Coll	0 550.476 -11156.1	(base) 1782.192 2618.976	0.31 -4.26	0.757		
gender#educ3 Female#HS Female#Coll	783.0991 7657.907	2021.654 3164.299	0.39 2.42	0.698 0.016		
age	413.8695	45.62015	9.07	0.000		
gender#c.age Female	-264.9842	50.65695	-5.23	0.000		
educ3#c.age HS Coll	175.8497 897.3326	54.7504 77.47101	3.21 11.58	0.001 0.000		
gender#educ3#c.age Female#HS Female#Coll	-80.30545 -414.6562	60.94575 93.26714	-1.32 -4.45	0.188 0.000		
race white black other	0 -2935.138 185.3956	(base) 273.3294 956.338	-10.74 0.19	0.000 0.846		

. regress realrinc i.gender##i.educ3##c.age i.race, vce(robust) noci

Let's test the interaction of gender, education, and age using the **contrast** command below. The three-way interaction is significant.

1495.778

1.80 0.072

. contrast i.gender#i.educ3#c.age Contrasts of marginal linear predictions Margins : asbalanced df F P>F gender#educ3#c.age 2 10.17 0.0000 Denominator 25704

2691.23

_cons

14.1 Chapter overview

To begin the process of interpreting the three-way interaction, let's create a graph of the adjusted means as a function of age, education, and gender. First, the margins command below is used to compute the adjusted means by gender and education for ages 22 and 55 (the output is omitted to save space). Then, the marginsplot command is used to graph the adjusted means, as shown in figure 14.2.

- . margins gender#educ3, at(age=(22 55))
 (output omitted)
- . marginsplot, bydimension(gender) noci Variables that uniquely identify margins: age gender educ3

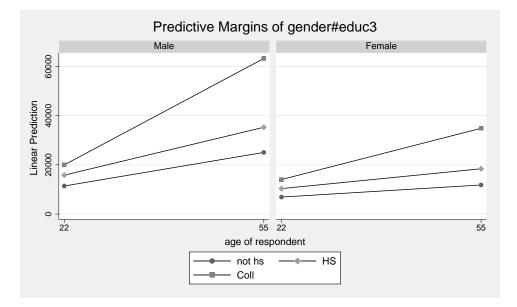


Figure 14.2. Fitted values of income as a function of age, education, and gender

The graph in figure 14.2 illustrates how the age slope varies as a function of gender and education. Let's compute the age slope for each of the lines shown in this graph. The margins command is used with the dydx(age) and over() options to compute the age slopes separately for each combination of gender and education.

. margins, noci	dydx(age) ove	er(gender ed	uc3)				
Average marginal Model VCE : F	effects Nobust			Number of	obs	=	25,718
Expression : I dy/dx w.r.t. : a over : g	-	ion, predic	t()				
	I)elta-method					
	dy/dx	Std. Err.	t	P> t			
age							
gender#educ3							
Male#not hs	413.8695	45.62015	9.07	0.000			
Male#HS	589.7192	30.37993	19.41	0.000			
Male#Coll	1311.202	62.88374	20.85	0.000			
Female#not hs	148.8854	22.09037	6.74	0.000			
Female#HS	244.4296	15.25412	16.02	0.000			
Female#Coll	631.5618	46.90854	13.46	0.000			

Let's reformat the output of the margins command to emphasize how the age slope varies as a function of the interaction of gender and education (see table 14.2). Each cell of table 14.2 shows the age slope for the particular combination of gender and education. For example, the age slope for males with a college degree is 1,311.20 and is labeled as β_{3M} .

Table 14.2. The age slope by level of education and gender

	Non-HS grad	HS grad	CO grad
Male	$\beta_{1M}=413.87$	$\beta_{2M}=589.72$	$\beta_{3M} = 1,311.20$
Female	$\beta_{1F}=148.89$	$\beta_{2F}=244.43$	$\beta_{3F}=631.56$

We can dissect the three-way interaction illustrated in table 14.2 using the techniques from section 8.3 on two by three models. Specifically, we can use simple effects analysis, simple contrasts, and partial interactions.

14.2 Simple effects of gender on the age slope

We can use the **contrast** command to test the simple effect of gender on the **age** slope. This is illustrated below.

14.3 Simple effects of education on the age slope

. contrast gender#c.age@educ3, nowald pveffects
Contrasts of marginal linear predictions
Margins : asbalanced

	Contrast	Std. Err.	t	P> t
gender@educ3#c.age (Female vs base) not hs (Female vs base) HS (Female vs base) Coll	-264.9842 -345.2896 -679.6404	50.65695 33.98931 78.4498	-5.23 -10.16 -8.66	0.000 0.000 0.000

Each of these tests represents the comparison of females versus males in terms of the **age** slope. The first test compares the **age** slope for females versus males among non–high school graduates. Referring to table 14.2, this test compares β_{1F} with β_{1M} . The difference in these **age** slopes is -264.98 (148.89 - 413.87), and this difference is significant. The **age** slope for females who did not graduate high school is 264.98 units smaller than the **age** slope for males who did not graduate high school. The second test is similar to the first, except the comparison is made among high school graduates, comparing β_{2F} with β_{2M} from table 14.2. This test is also significant. The third test compares the **age** slope between females and males among college graduates (that is, comparing β_{3F} with β_{3M}). This test is also significant. In summary, the comparison of the **age** slope for females versus males is significant at each level of education.

14.3 Simple effects of education on the age slope

We can also look at the simple effects of education on the **age** slope at each level of gender. This test is performed using the **contrast** command below.

. contrast educ3#c.ag	e@gender		
Contrasts of marginal	linear predic	ctions	
Margins : asbala	nced		
	df	F	P>F
educ3@gender#c.age			
Male	2	70.96	0.0000
Female	2	43.37	0.0000
Joint	4	57.21	0.0000
Denominator	25704		

The first test compares the **age** slope among the three levels of education for males. Referring to table 14.2, this tests the following null hypothesis.

 $H_0:\ \beta_{1M}=\beta_{2M}=\beta_{3M}$

This test is significant. The **age** slope significantly differs as a function of education among males.

The second test is like the first test, except that the comparisons are made for females. This tests the following null hypothesis.

 $H_0\colon \ \beta_{1F}=\beta_{2F}=\beta_{3F}$

This test is also significant. Among females, the **age** slope significantly differs among the three levels of education.

14.4 Simple contrasts on education for the age slope

We can further dissect the simple effects tested above by applying contrast coefficients to the education factor. For example, say that we used the **ar**. contrast operator to form reverse adjacent group comparisons. This would yield comparisons of group 2 versus 1 (high school graduates with non-high school graduates) and group 3 versus 2 (college graduates with high school graduates). Applying this contrast operator yields simple contrasts on education at each level of gender, as shown below.

. contrast ar.educ3#c.age@gender, nowald pveffects
Contrasts of marginal linear predictions
Margins : asbalanced

	Contrast	Std. Err.	t	P> t
educ3@gender#c.age (HS vs not hs) Male (HS vs not hs) Female (Coll vs HS) Male (Coll vs HS) Female	175.8497 95.54426 721.4829 387.1322	54.7504 26.83611 69.74939 49.38976	3.21 3.56 10.34 7.84	0.001 0.000 0.000 0.000

The first test compares the **age** slope for male high school graduates with the **age** slope for males who did not graduate high school. In terms of table 14.2, this is the comparison of β_{2M} with β_{1M} . The difference in these **age** slopes is 175.85 and is significant. The second test is the same as the first test, except the comparison is made for females, comparing β_{2F} with β_{1F} . The difference is 95.54 and is significant. The third and fourth tests compare college graduates with high school graduates. The third test forms this comparison among males and is significant, and the fourth test forms this comparison among females and is also significant.

14.5 Partial interaction on education for the age slope

The three-way interaction can be dissected by forming contrasts on the three-level categorical variable. Say that we use reverse adjacent group comparisons on education, which compares high school graduates with non-high school graduates and college graduates with high school graduates. We can interact that contrast with gender and age, as shown in the **contrast** command below.

400

14.6 Summary

```
. contrast ar.educ3#r.gender#c.age, nowald pveffects
Contrasts of marginal linear predictions
Margins : asbalanced
```

	Contrast	Std. Err.	t	P> t
educ3#gender#c.age (HS vs not hs) (Female vs Male) (Coll vs HS) (Female vs Male)	-80.30545 -334.3507	60.94575 85.48932	-1.32 -3.91	0.188 0.000

The first comparison tests the interaction of the contrast of high school graduates versus non-high school graduates by gender by age. The difference in the age slope between high school graduates and non-high school graduates for females is 244.43 minus 148.89 (95.54). For males, this difference is 589.72 minus 413.87 (175.85). The difference in these differences is -80.31, which is not significant (see the first comparison from the margins command). The difference in the age slope comparing high school graduates with non-high school graduates is not significantly different for males and females.

The second test forms the same kind of comparison, but compares college graduates with high school graduates. The difference in the **age** slope comparing female college graduates with female high school graduates is 631.56 minus 244.43 (387.13). This difference for males is 1,311.20 minus 589.72 (721.48). The difference of these differences is -334.35 and is statistically significant (see the second comparison from the **margins** output). The increase in the **age** slope comparing college graduates with high school graduates is greater for males than it is for females.

14.6 Summary

This chapter has illustrated models that involve the interaction of a continuous variable with two categorical variables. When such an interaction is significant, the slope associated with the continuous variable varies as a function of the interaction of the two categorical variables. As we saw, the interaction can be dissected and understood using the methods covered in chapter 8 on categorical by categorical interactions, forming contrasts with respect to the slope term.

I am not aware of any books that directly cover this kind of interaction, so I recommend the references provided in chapter 10 (linear by categorical interactions) and chapter 8 (categorical by categorical interactions). (Pages omitted)