Solutions to selected exercises

Rabe-Hesketh, S. and Skrondal, A. (2021). Multilevel and Longitudinal Modeling Using Stata (4th Edition). College Station, TX: Stata Press.

Volume I: Continuous Responses

Contents

1.1	High-school-and-beyond data1
2.7	Georgian-birthweight data11
2.8	✤ Teacher expectancy meta-analysis data
3.7	High-school-and-beyond data17
3.9	◆ Small-area estimation of crop areas
4.5	Well-being in the U.S. army data
4.7	✤ Family-birthweight data
5.3	Unemployment-claims data I
5.4	Unemployment-claims data II
6.2	Postnatal-depression data
7.1	Growth-in-math-achievement data53
8.1	Math-achievement data
9.5	Neighborhood-effects data

Disclaimer

We have solved the exercises as well as we could but there may be better solutions and we may have made mistakes. We are grateful for any suggestions for improvement.

Please also check the errata at http://www.stata.com/bookstore/mlmus4.html for any errors in the wording of the exercises themselves.

1.1 High-school-and-beyond data

- 1. Keep only data on the five schools with the lowest values of schoolid (schoolid 1224, 1288, 1296, 1308, and 1317). Also drop the variables not listed above.
 - . use hsb, clear
 . keep if schoolid <= 1317
 (6997 observations deleted)
 . keep schoolid mathach ses minority</pre>
- 2. Obtain the means and standard deviations for the continuous variables and frequency tables for the categorical variables. Also obtain the mean and standard deviation of the continuous variables for each of the five schools (by using the table or tabstat command).

. summarize m	athach ses				
Variable	Obs	Mean	Std. Dev.	Min	Max
mathach ses	188 188	11.26894 0567234	6.874985 .7167301	-2.832 -1.658	24.993 1.512
. tabulate sc	hoolid				
schoolid	Freq.	Percent	Cum.		
1224	47	25.00	25.00		
1288	25	13.30	38.30		
1296	48	25.53	63.83		
1308	20	10.64	74.47		
1317	48	25.53	100.00		
Total	188	100.00			
. tabulate mi	nority				
minority	Freq.	Percent	Cum.		
0	91	48.40	48.40		
1	97	51.60	100.00		
Total	188	100.00			

Exercise 1.1

. tabstat	mathach ses	, by(school	lid)	statisti	.cs(mean	sd)
Summary st by categ	catistics: m gories of: s	ean, sd choolid				
schoolid	mathach	ses				
1224	9.715447 7.592785	434383 .6272834				
1288	13.5108 7.021843	.1216 .6692812				
1296	7.635958 5.35107	4255 .6470276				
1308	16.2555 6.114241	.528 .479807				
1317	13.17769 5.462586	.3453333 .5561583				
Total	11.26894 6.874985	0567234 .7167301				

3. Produce a histogram and a box plot of mathach.

. histogram mathach, xtitle(Math achievement) fintensity(0)

The histogram is shown in figure 1.

Figure 1: Histogram of math achievement

medline(lcolor(black) lwidth(medthick))

The boxplot is shown in figure 2.

Figure 2: Boxplot of math achievement

- 4. Produce a scatterplot of mathach versus ses. Also produce a scatterplot for each school (by using the by() option).
 - . twoway scatter mathach ses, xtitle(SES) ytitle(Math achievement)

The scatterplot is shown in figure 3.

. twoway scatter mathach ses, by(schoolid, note(" ") compact) > ytitle(Math achievement) xtitle(SES)

The scatterplots by school are shown in figure 4.

Figure 3: Scatterplot of math achievement versus SES

Figure 4: Scatterplot of math achievement versus SES by school

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

5. Treating mathach as the response variable y_i and ses as an explanatory variable x_i , consider the linear regression of y_i on x_i :

$$y_i = \beta_1 + \beta_2 x_i + \epsilon_i, \quad \epsilon_i | x_i \sim N(0, \sigma^2)$$

a. Fit the model.

. regress math	hach ses					
Source	SS	df	MS		Number of obs	= 188
Model Residual	1050.53774 7788.09508	1 1 186 4	.050.53774 1.8714789		F(1, 186) Prob > F R-squared Adi R-squared	= 25.09 = 0.0000 = 0.1189 = 0.1141
Total	8838.63282	187 4	7.2654161		Root MSE	= 6.4708
mathach	Coef.	Std. Er	rr. t	P> t	[95% Conf.	Interval]
ses _cons	3.306963 11.45652	.660210 .473416	9 5.01 64 24.20	0.000 0.000	2.004499 10.52257	4.609427 12.39048

b. Report and interpret the estimates of the three parameters of this model.

The intercept is estimated as $\hat{\beta}_1 = 11.46$, the slope of **ses** is estimated as $\hat{\beta}_2 = 3.31$, and the residual standard deviation is estimated as $\hat{\sigma} = 6.47$. For children with **ses** equal to zero, the mean math achievement is estimated as 11.46. When **ses** increases one unit, the estimated mean math achievement increases by 3.31 points. The standard deviation of math achievement, for a given value of **ses**, is estimated as 6.47. This is also the residual standard deviation.

c. Interpret the confidence interval and p-value associated with β_2 .

We are 95% confident that the true slope of **ses** lies in the range 2.00 to 4.61. (In repeated samples, 95% of the 95% confidence intervals contain the truth.) The *p*-value is less than 0.001, so if the null hypothesis that $\beta_2 = 0$ were true, the chances of getting an estimated coefficient this far or further from zero (in either direction) are tiny. We therefore reject the null hypothesis, say at the 5% or 1% level of significance.

6. Using the predict command, create a new variable yhat that is equal to the predicted values \hat{y}_i of mathach:

$$\widehat{y}_i = \widehat{\beta}_1 + \widehat{\beta}_2 x_i$$

. predict yhat, xb

- 7. Produce a scatterplot of mathach versus ses with the regression line (yhat versus ses) superimposed. Produce the same scatterplot by school. Does it appear as if schools differ in their mean math achievement after controlling for ses?
 - . twoway (scatter mathach ses) (line yhat ses), xtitle(SES)
 > ytitle(Math achievement) legend(order(1 "Observed" 2 "Fitted"))

The scatterplot with the fitted regression line is shown in figure 5.

Figure 5: Scatterplot with fitted regression line

twoway (scatter mathach ses) (line yhat ses, sort)

- > (lfit mathach ses, lpatt(solid)),
- >
- by(school, compact note(" ")) xtitle(SES) ytitle(Math achievement) legend(order(1 "Observed" 2 "Fitted overall" 3 "Fitted separately")) >

The scatterplots with the fitted regression lines for each school are shown in figure 6. Note that lfit combined with by() fits a separate regression line for each school whereas yhat is the fitted regression line for all schools combined from step 5. For schools 1296 and 1308, the estimated mean math achievement at for instance ses=0 is greater and smaller than the estimated mean across schools, respectively.

Figure 6: Scatterplots with fitted regression lines by school

- 8. Extend the regression model from step 5 by including dummy variables for four of the five schools.
 - a. Fit the model with and without factor variables.

Without factor variables:

. tabulate schoolid, generate(s)

schoolid	Freq.	Percent	Cur	1.		
1224 1288 1296 1308 1317	47 25 48 20 48	25.00 13.30 25.53 10.64 25.53	25.0 38.3 63.8 74.4 100.0	00 30 33 47 00		
Total	188	100.00				
. regress math	hach ses s2 s3	s4 s5				
Source	SS	df	MS		Number of obs	= 188 = 9.05
Model Residual	1760.63146 7078.00136	5 352.1 182 38.89	126292 901173		Prob > F R-squared	= 0.0000 = 0.1992 = 0.1772
Total	8838.63282	187 47.26	354161		Root MSE	= 6.2362
mathach	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ses s2	1.788963 2.80072	.7593896 1.60041	2.36 1.75	0.020	.2906238 3570241	3.287303 5.958464
s3	-2.09538	1.279729	-1.64	0.103	-4.620392	.4296325
s4	4.818385	1.818257	2.65	0.009	1.230811	8.405959
s5	2.067357	1.410054	1.47	0.144	7147984	4.849512
_cons	10.49254	.9676057	10.84	0.000	8.583375	12.40171

With factor variables:

. regi	ess r	nathach	ses	i.	schoolid	
--------	-------	---------	-----	----	----------	--

Source	SS	df	MS		Number of obs	= 188 = 9.05
Model Residual	1760.63146 7078.00136	5 35 182 38	52.126292 8.8901173		Prob > F R-squared	= 0.0000 = 0.1992 = 0.1772
Total	8838.63282	187 47	.2654161		Root MSE	= 6.2362
mathach	Coef.	Std. Err	:. t	P> t	[95% Conf.	Interval]
ses	1.788963	.7593896	2.36	0.020	.2906238	3.287303
schoolid						
1288	2.80072	1.60041	1.75	0.082	3570241	5.958464
1296	-2.09538	1.279729	-1.64	0.103	-4.620392	.4296325
1308	4.818385	1.818257	2.65	0.009	1.230811	8.405959
1317	2.067357	1.410054	1.47	0.144	7147984	4.849512
_cons	10.49254	.9676057	10.84	0.000	8.583375	12.40171

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

b. Describe what the coefficients of the school dummies represent.

Interpreting the output without factor variables, the coefficient of s2 is the estimated difference in mean math achievement between school 2 (number 1288) and school 1 (number 1224), for a given value of SES. Similarly, the coefficient of s3 is the estimated difference between school 3 and school 1, the coefficient of s4 is the estimated difference between school 4 and school 1, and the coefficient of s5 is the estimated difference between school 5 and school 1, controlling for SES.

c. Test the null hypothesis that the population coefficients of all four dummy variables are 0 (use testparm).

. testparm i.schoolid
(1) 1288.schoolid = 0
(2) 1296.schoolid = 0
(3) 1308.schoolid = 0
(4) 1317.schoolid = 0
F(4, 182) = 4.56
Prob > F = 0.0015

After controlling for SES, there are significant differences in mean math achievement between the schools (e.g., at the 5% level) with F(4, 182) = 4.56, p = 0.002. (If dummy variables s2 to s5 have been used in the regress command instead of factor variables, use testparm s2-s5.)

9. Add interactions between the school dummies and **ses** using factor variables, and interpret the estimated coefficients.

Source	SS	df	MS		Number of obs	= 188 - 5.13
Model Residual	1819.07989 7019.55293	9 202 178 39.	2.119987 4356906		Prob > F R-squared	= 0.0000 = 0.2058 = 0.1657
Total	8838.63282	187 47.	2654161		Root MSE	= 6.2798
mathach	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ses	2.508582	1.476053	1.70	0.091	4042335	5.421397
schoolid						
1288	2,309805	1.697595	1.36	0.175	-1.040196	5,659806
1296	-2.711353	1.560321	-1.74	0.084	-5.790461	.3677543
1308	5.383827	2.394869	2.25	0.026	.6578391	10.10981
1317	1.932631	1.547654	1.25	0.213	-1.121481	4.986743
schoolid#						
c.ses						
1288	.746867	2.418057	0.31	0.758	-4.024881	5.518615
1296	-1.432623	2.045228	-0.70	0.485	-5.468636	2.60339
1308	-2.382557	3.345818	-0.71	0.477	-8.985132	4.220017
1317	-1.234669	2.211649	-0.56	0.577	-5.599094	3.129756
_cons	10.80513	1.118105	9.66	0.000	8.598685	13.01158

regress mathacl	c.ses##i.schoolid,	nolstretch
-----------------	--------------------	------------

The coefficient of ses now represents the estimated slope of ses in the reference school (school 1224) and the coefficients of the school dummies represent the estimated differences in mean achievement between each school and the reference school when ses takes the value 0. The coefficients of the interactions between ses and the school dummies represent the estimated differences between the slope of ses for each school and the slope of ses for the reference school. These differences are not significant at the 5% level.

2.7 Georgian-birthweight data

1. Fit a variance-components model to the birthweights by using mixed with the mle option, treating children as level 1 and mothers as level 2.

. use birthwt, . mixed birthw	, clear vt mother:, mi	le vce(robus	t)				
Mixed-effects	regression			Number	of obs	=	4,390
Group variable	e: motner			Number	or grou	ips =	878
				Obs per	r group:		
						min =	5
						avg =	5.0
						max =	5
				Wald ch	ni2(0)	=	
Log pseudolike	elihood = -33572	.321		Prob >	chi2	=	•
		(Std. Err.	adjust	ted for	878 clı	isters	in mother)
	1	Robust					
birthwt	Coef. S	td. Err.	z	P> z	[95%	¿ Conf.	Interval]
_cons	3156.304 14	4.07107 22	4.31	0.000	3128	3.726	3183.883
			Rol	oust			
Random-effec	Estimate	Std	. Err.	[95%	Conf.	Interval]	
mother: Identi	itv						
	var(_cons)	135719.2	8699	9.054	1196	396.8	153886.2
	var(Residual)	189613	781	5.744	1748	396.9	205567.4

2. At the 5% level, is there significant between-mother variability in birthweights? Fully report the method and result of the test. (Hint: If you used vce(robust), the lrtest command will work unless you use the force option.)

The null hypothesis that the between-mother variance is zero was tested using a likelihood ratio test. First, the model from Step 1 that has a random intercept was fit and the estimates stored (using the estimates store command). Second, a model without a random intercept was fit and the estimates stored. Finally, a likelihood-ratio test was performed using the lrtest command with the force option (because lrtest must be forced to perform the test when vce(robust) has been used):

. quietly mixed birthwt mother:, mle vce(robust)			
. estimates store vc			
. quietly mixed birthwt, mle vce(robust)			
. estimates store novc			
. lrtest vc novc, force			
Likelihood-ratio test (Assumption: novc nested in vc)	LR chi2(1) Prob > chi2	=	1034.16 0.0000

The likelihood ratio statistic was 1034 and the *p*-value, based on the correct asymptotic sampling distribution, is p < 0.001, so we can reject the null hypothesis and conclude that there is significant between-mother variability.

3. Obtain the estimated intraclass correlation by hand and interpret it.

The estimated intraclass correlation is 135719.2/(135719.2+189613) = 0.42, meaning that the correlation between sibling's birthweights is 0.42 and that 42% of the variance in birthweights is shared among siblings.

4. Obtain empirical Bayes predictions of the random intercept and plot a histogram of the empirical Bayes predictions.

```
. estimates restore vc
(results vc are active now)
. predict eb, reffects
. egen pickone = tag(mother)
. histogram eb if pickone==1
```

The graph in figure 7 shows that the predictions are approximately normally distributed.

Figure 7: Histogram of empirical Bayes predictions of random intercepts

2.8 \clubsuit Teacher-expectancy meta-analysis data

1. Fit the model above by REML using the meta commands (available as of Stata 16). To declare the variables containing the estimate and standard error, type meta set est se. To perform random-effects meta-analysis using REML, type meta summarize, random(reml).

```
. use expectancy, clear
. meta set est se
Meta-analysis setting information
Study information
   No. of studies: 19
      Study label: Generic
       Study size: N/A
      Effect size
             Type: <generic>
             Label: Effect size
          Variable: est
        Precision
        Std. err.: se
               CI: [_meta_cil, _meta_ciu]
          CI level: 95%
 Model and method
            Model: Random effects
            Method: REML
```

. meta summarize, random(reml) Effect-size label: Effect size Effect size: est Std. err.: se Meta-analysis summary

Random-effects model Method: REML

Number	of	stu	dies	s =	19
Heterog	gene	eity	:		
		t	au2	=	0.0188
		12	(%)	=	41.83
			H2	=	1.72

Study	Effect size	[95% conf.	interval]	% weight
Study 1	0.030	-0.215	0.275	7.74
Study 2	0.120	-0.168	0.408	6.60
Study 3	-0.140	-0.467	0.187	5.71
Study 4	1.180	0.449	1.911	1.69
Study 5	0.260	-0.463	0.983	1.72
Study 6	-0.060	-0.262	0.142	9.06
Study 7	-0.020	-0.222	0.182	9.06
Study 8	-0.320	-0.751	0.111	3.97
Study 9	0.270	-0.051	0.591	5.83
Study 10	0.800	0.308	1.292	3.26
Study 11	0.540	-0.052	1.132	2.42
Study 12	0.180	-0.255	0.615	3.92
Study 13	-0.020	-0.586	0.546	2.61
Study 14	0.230	-0.338	0.798	2.59
Study 15	-0.180	-0.492	0.132	6.05
Study 16	-0.060	-0.387	0.267	5.71
Study 17	0.300	0.028	0.572	6.99
Study 18	0.070	-0.114	0.254	9.64
Study 19	-0.070	-0.411	0.271	5.43
theta	0.084	-0.018	0.185	
Test of theta = 0:	z = 1.62		Prob > z	= 0.1050
Test of homogeneity	Prob > Q	= 0.0074		

2. Find the estimated model parameters in the output and interpret them.

The estimated model parameters are $\hat{\beta} = 0.084$ and $\hat{\tau}^2 = 0.019$. Hence, the population mean intervention effect is estimated as 0.084 and the between-study variance of the effect estimated as 0.019.

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

3. Fit a common-effects meta-analysis (often called fixed-effects meta-analysis) that simply omits ζ_j from the model and assumes that all true effect sizes are equal to β . This can be accomplished by replacing the random(reml) option with the common option in the meta summarize command.

```
. meta summarize, common
Effect-size label: Effect size
Effect size: est
Std. err.: se
Meta-analysis summary
Common-effect model
Method: Inverse-variance
```

Study	Effect size	[95% conf.	interval]	% weight
Study 1	0.030	-0.215	0.275	8.52
Study 2	0.120	-0.168	0.408	6.16
Study 3	-0.140	-0.467	0.187	4.77
Study 4	1.180	0.449	1.911	0.96
Study 5	0.260	-0.463	0.983	0.98
Study 6	-0.060	-0.262	0.142	12.54
Study 7	-0.020	-0.222	0.182	12.54
Study 8	-0.320	-0.751	0.111	2.75
Study 9	0.270	-0.051	0.591	4.95
Study 10	0.800	0.308	1.292	2.11
Study 11	0.540	-0.052	1.132	1.46
Study 12	0.180	-0.255	0.615	2.70
Study 13	-0.020	-0.586	0.546	1.59
Study 14	0.230	-0.338	0.798	1.58
Study 15	-0.180	-0.492	0.132	5.26
Study 16	-0.060	-0.387	0.267	4.77
Study 17	0.300	0.028	0.572	6.89
Study 18	0.070	-0.114	0.254	15.06
Study 19	-0.070	-0.411	0.271	4.40
theta	0.060	-0.011	0.132	
Test of theta = 0:	z = 1.65		Prob > z	= 0.0979

4. Explain how the model differs from what we have referred to as fixed-effects models in this chapter (apart from the fact that the data are in aggregated form and the level-1 variance is assumed known).

The model does not contain fixed effects α_j for studies but assumes that the studies have no effects, corresponding to $\alpha_j = 0$.

5. Compare the width of the confidence intervals for β between the random- and fixed-effects meta-analyses, and explain why they differ the way they do.

The estimated 95% confidence intervals are (-0.018 to 0.185) for the random-effects metaanalysis and (-0.011 to 0.132) for the fixed-effects meta-analysis. The fixed-effects confidence interval is narrower because the random effect is omitted, leading to a smaller standard error, analogous to the OLS standard error discussed in section 2.10.3.

Exercise 2.8

3.7 High-school-and-beyond data

1. Use mixed with the mle and vce(robust) options to fit a model for mathach with a fixed effect for SES and a random intercept for school.

. use hsb, clear										
. quietly xtse	. quietly xtset schoolid									
. mixed mathac	. mixed mathach ses schoolid:, mle vce(robust)									
Mixed-effects	regression			Number of	obs	=	7,185			
Group variable	e: schoolid			Number of	groups	=	160			
				Obs per g	roup:		1.0			
					min	-	14			
					avg	_	44.9			
				Wald chi2	(1)	=	399 57			
Log pseudolike	elihood = -23320	.502		Prob > ch	i2	=	0.0000			
01		(Std. err.	adjuste	d for 160	clusters	in	schoolid)			
	1	Robust								
mathach	Coefficient st	td. err.	z	P> z	[95% cor	nf.	interval]			
ses	2.391499 .:	1196396	19.99	0.000	2.15701	L	2.625989			
_cons	12.65762	.187876	67.37	0.000	12.28939	9	13.02585			
			Ro	bust						
Random-effec	cts parameters	Estimat	te std	. err.	[95% cor	nf.	interval]			
schoolid: Ider	ntity									
	var(_cons)	4.72851	L9 .70	58507	3.529083	3	6.33561			
	var(Residual)	37.0297	79 .71	42258	35.65606	3	38.45644			

2. Use xtsum to explore the between-school and within-school variability of SES.

. quietl	. quietly xtset schoolid									
. xtsum ses										
Variable		Mean	Std. dev.	Min	Max	Observations				
ses	overall between within	.0001434	.7793552 .4139706 .660588	-3.758 -1.193946 -3.650597	2.692 .8249825 2.856222	N = 7185 n = 160 T-bar = 44.9063				

3. Produce a variable, mn_ses, equal to the schools' mean SES and another variable, dev_ses, equal to the difference between the students' SES and the mean SES for their school.

. egen mn_ses	. egen mn_ses=mean(ses), by(schoolid)									
. summarize m	n_ses									
Variable	Obs	Mean	Std. dev.	Min	Max					
mn_ses	7,185	.0001434	.4135432	-1.193946	.8249825					
. generate de	v_ses = ses -	mn_ses								

4. The model in step 1 assumes that SES has the same effect within and between schools. Check this by using the covariates mn_ses and dev_ses instead of ses and comparing the coefficients by using lincom.

. quietly xtse	. quietly xtset schoolid							
. mixed mathach dev_ses mn_ses schoolid:, mle vce(robust)								
Mixed-effects Group variable	Number o: Number o: Obs per y	f obs = f groups = group:	7,185 160					
min = avg = 44 max =								
Log pseudolik	libood = -23281	905	Wald chi:	2(2) =	661.55			
Log pseudolike	===23201	. 905 (0. 1			0.0000			
		(Std. err. adju	sted for 160	clusters in	schoolid)			
mathach	l Coefficient st	Robust td. err. z	P> z	[95% conf.	interval]			
dev ses	2.191172 .:	1297731 16.8	8 0.000	1.936821	2.445523			
mn_ses	5.865599 .3	3211185 18.2	7 0.000	5.236218	6.49498			
_cons	12.68359 .:	1487873 85.2	5 0.000	12.39198	12.97521			
Random-effec	ts parameters	Estimate	Robust std. err.	[95% conf.	interval]			
schoolid: Iden	ntity var(_cons)	2.647039	.4694711	1.869794	3.747373			
	var(Residual)	37.01403	.717711	35.63373	38.44779			
<pre>. lincom mn_ses - dev_ses (1) - [mathach]dev_ses + [mathach]mn_ses = 0</pre>								
mathach	Coefficient St	td. err. z	P> z	[95% conf.	interval]			
(1)	3.674427 .3	3540706 10.3	8 0.000	2.980462	4.368393			

The estimated between-school effect of SES is considerably larger than the estimated withinschool effect. The difference is statistically significant at the 5% level (z = 10.38, p < 0.001).

5. Interpret the estimated coefficients of mn_ses and dev_ses.

The coefficient of dev_ses is the estimated within-school effect of SES. It represents the mean difference in attainment between two students from the same school who differ in their SES by one unit. The estimate could be influenced by omitted student-level characteristics (confounders) that correlate with SES and with attainment (such as being an English language learner), but not by omitted school-level variables.

The coefficient of mn_ses is the estimated between-school effect of SES, i.e., the mean increase in school mean attainment per unit increase in school mean SES. This effect represents a combination of student-level effects of SES on attainment (due to differences between schools in student composition), peer effects, selection effects, and effects of omitted school-level variables (e.g., higher SES schools may have better buildings, better-qualified teachers, smaller classrooms). The difference of 3.67, often described as an estimate of the contextual effect, is a combination of all the effects described above, except the student-level effects.

3.9 ***** Small-area estimation of crop areas

1. Fit the model above by REML using mixed.

. use croparea	as, clear					
. mixed cornhe	ec cornpix soypix	<pre>x county:, reml</pre>	stddeviat	ions		
Mixed-effects	Mixed-effects REML regression				36	
Group variable	e: county		Number of	groups =	12	
			Obs per g	roup:		
				min =	1	
				avg =	3.0	
				max =	5	
			Wald chi2	(2) =	152.38	
Log restricted	l-likelihood = -1	149.18332	Prob > ch	i2 =	0.0000	
cornhec	Coefficient St	zd. err. z	P> z	[95% conf.	interval]	
cornpix	.3287217	.049876 6.59	0.000	.2309666	.4264769	
soypix	1345685 .0)551942 -2.44	0.015	242747	0263899	
_cons	51.0704 2	24.4097 2.09	0.036	3.228255	98.91254	
Random-effec	ts parameters	Estimate Std	. err.	[95% conf.	interval]	
county: Identi	tv					
j	sd(_cons)	11.83317 3.6	80005	6.432582	21.76791	
	sd(Residual) 12.13543 1.79713 9.078228 16.22218					
LR test vs. linear model: chibar2(01) = 7.70 Prob >= chibar2 = 0.0028						

2. Obtain predictions of the number of hectares devoted to corn per segment for each of the counties using the method described above. (The prediction for Cerro Gordo should be 122.20.)

. predict blup, reffects
. generate predicted = _b[_cons] + _b[cornpix]*mn_cornpix + _b[soypix]*mn_soypix
> + blup

3. Obtain the estimated comparative standard errors of $\tilde{\zeta}_i$.

```
. predict blup2, reffects reses(comp_se)
```

```
. egen pickone = tag(county)
```

. list name predicted comp_se if pickone==1, clean noobs

-	-	-	
name	predic~d	comp_se	
Cerro Gordo	122.1962	9.158494	
Hamilton	126.2227	8.896266	
Worth	106.6957	8.755633	
Humboldt	108.4434	7.790918	
Franklin	144.2812	6.830298	
Pocahontas	112.1405	7.032683	
Winnebago	112.8043	6.990283	
Wright	121.9988	6.933561	
Webster	115.3265	6.529529	
Hancock	124.4203	6.084943	
Kossuth	106.9044	6.001587	
Hardin	143.0149	6.094162	

4. In what way are these standard errors better than those you would have obtained had you estimated the model using mixed with the mle option?

The estimated standard errors produced by mixed with the mle option ignore uncertainty in the parameter estimates $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\psi}$, and $\hat{\theta}$, and could severely understate the uncertainty in the small-area estimates.

4.5 Well-being-in-the-U.S.-army data

1. Fit a random-intercept model for wbeing with fixed coefficients for hrs, cohes, and lead, and a random intercept for grp. Use ML estimation with robust standard errors.

. use army, cl	. use army, clear								
. mixed wbeing	. mixed wbeing hrs cohes lead grp:, mle stddeviations vce(robust)								
Mixed-effects	Mixed-effects regression Number of obs = 7.382								
Group variable	e: grp			Number	of groups	= 99			
				Obs per	group:				
				obb por	min	= 15			
					avg	= 74.6			
					max	= 226			
				Wald ch	i2(3)	= 961.20			
Log pseudolike	elihood = -8898.2	2812		Prob >	chi2	= 0.0000			
01		(9+2)	l Frr a	diustod	for 99 clus	stors in grn)			
		(500	1. LII. 6	lajustea	101 33 014	sters in grp)			
	I	Robust							
wbeing	Coef. St	td. Err.	z	P> z	[95% Cor	nf. Interval]			
						<u> </u>			
hrs	0296428 .0	0049342	-6.01	0.000	0393136	50199719			
cohes	.0775074 .0	0135014	5.74	0.000	.0510452	.1039696			
lead	.4646839 .0	0196422	23.66	0.000	.4261859	.5031819			
_cons	1.530603 .0	0903327	16.94	0.000	1.353554	4 1.707652			
			Rc	obust					
Random-effec	ts Parameters	Estima	ate Std	l. Err.	[95% Cor	nf. Interval]			
grp. Identity									
grp. Identity	sd(cons)	.14044	465 .01	70605	.1106911	1, 1782005			
	sd(Residual)	.80165	577 .00	65613	.7889004	.8146212			

- 2. Form the cluster means of the three covariates from step 1, and add them as further covariates to the random-intercept model. Which of the cluster means have coefficients that are significant at the 5% level?
 - . egen mn_hrs = mean(hrs), by(grp)
 - . egen mn_cohes = mean(cohes), by(grp)
 - . egen mn_lead = mean(lead), by(grp)
 - . mixed wbeing hrs mn_hrs cohes mn_cohes lead mn_lead || grp:, mle stddeviations
 > vce(robust)

Mixed-effects regression		Number	of obs	=	7,382
Group variable: grp		Number	of grou	ips =	99
		Obs pe	r group:	:	
				min =	15
				avg =	74.6
				max =	226
		Wald c	hi2(6)	=	1016.95
Log pseudolikelihood = -8879.1148		Prob >	chi2	=	0.0000
	(Std. Err	. adjusted	for 99	cluster	s in grp)

wbeing	Coef. S	Robust td. Err.	z	P> z	[95% Conf.	Interval]
hrs mn hrs	025597 . 1158662 .	0053606 0222997	-4.78 -5.20	0.000	0361036 1595728	0150904 0721595
cohes	.0802213 .	0136804	5.86	0.000	.0534081	.1070344
mn_cohes	0374889 .	0878394	-0.43	0.670	2096509	.1346731
lead	.4709316 .	0199062	23.66	0.000	.4319162	.509947
mn_lead	2243689 .	0582475	-3.85	0.000	3385319	1102058
_cons	3.5351 .	3356045	10.53	0.000	2.877327	4.192872
			Ro	obust		
Random-effe	cts Parameters	Estimat	e Sto	d. Err.	[95% Conf.	Interval]
grp: Identity						
01	sd(_cons)	.096759	9.0	013993	.0728782	.1284674
	sd(Residual)	.801869	1 .00	065194	.7891926	.8147492

The cluster means mm_hrs and mm_lead have coefficients that are significant at the 5% level.

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

3. Refit the model from step 2 after removing the cluster means that have non-significant coefficient estimates at the 5% level. Interpret the remaining coefficients and obtain the estimated intraclass correlation.

. mixed wbeing	g hrs mn_hrs coh	es lead mn	_lead	grp:, m	le stddeviati	ons vce(robust)
Mixed-effects	regression			Number	of obs =	7,382
Group variable	e: grp			Number	of groups =	99
				Obs per	group:	
				-	min =	15
					avg =	74.6
					max =	226
				Wald ch	.i2(5) =	1012.14
Log pseudolike	elihood = -8879.3	2068		Prob >	chi2 =	0.0000
		(Std	. Err. a	adjusted	for 99 cluste	ers in grp)
		Robust				
wbeing	Coef. S	d. Err.	Z	P> z	[95% Conf.	Interval]
hrs	0256169 .0	053554	-4.78	0.000	0361133	0151205
mn_hrs	1175433 .0	0225632	-5.21	0.000	1617663	0733203
cohes	.0794989 .0	0133977	5.93	0.000	.0532399	.1057579
lead	.4712699 .0	0199449	23.63	0.000	.4321786	.5103612
mn_lead	2432672 .0	0479539	-5.07	0.000	3372552	1492792
_cons	3.49534 .3	3078316	11.35	0.000	2.892001	4.098679
			Ro	obust		
Random-effec	cts Parameters	Estima	te Sto	d. Err.	[95% Conf.	Interval]
grp. Identity						
5-p. 1400010y	sd(_cons)	.09683	94 .01	142561	.0725677	.1292293
	sd(Residual)	.80187	48 .00	065189	.7891992	.814754

Comparing soldiers within the same army company, each extra hour of work per day is associated with an estimated mean decrease of .03 points in well-being, controlling for perceived horizontal and vertical cohesion.

Comparing soldiers within the same army company, each unit increase in the horizontal cohesion score is associated with an estimated mean increase of .08 points in well-being, controlling for number of hours worked and perceived vertical cohesion.

Comparing soldiers within the same army company, each unit increase in the vertical cohesion score is associated with an estimated mean increase of .47 points in well-being, controlling for number of hours worked and perceived horizontal cohesion.

The contextual effects of hours worked is estimated as -0.12, meaning that, after controlling for the soldier's own number of hours worked per day (and the other covariates in the model), each unit increase in the mean number of hours worked by soldiers in the company reduces the soldier's well-being by an estimated 0.12 points.

The contextual effect of vertical cohesion is estimated as -0.24. After controlling for a soldier's own perceived vertical cohesion (and the other covariates), each unit increase in average perceived vertical cohesion in the soldier's company is associated with an estimated 0.24 points decrease in well-being.

The residual intraclass correlation is estimated as

```
. display .0968394^2/(.0968394^2+.8018748^2) .01437483
```

4. We have included soldier-specific covariates x_{ij} in addition to the cluster means $\overline{x}_{.j}$. The coefficients of the cluster means represent the contextual effects (see section 3.7.6). Use lincom to estimate the corresponding between effects.

<pre>. lincom hrs + mn_hrs (1) [wheing]hrs + [wheing]mn hrs = 0</pre>													
wbeing	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]							
(1)	1431602	.0206602	-6.93	0.000	1836534	1026669							
. lincom lead (1) [wbeing	+ mn_lead g]lead + [wbe:	ing]mn_lead :	= 0										
wbeing	[95% Conf.	Interval]											
(1)	.2280027	.0452861	5.03	0.000	.1392436	.3167618							

For cohes, the between-effect is the same as the within-effect, i.e., 0.079.

MLMUS4 (Vol. I) - Rabe-Hesketh and Skrondal

5. Add a random slope for lead to the model in step 3, and compare this model with the model from step 3 using a likelihood ratio test (Hint: use lrtest with the force option).

<pre>. estimates store ri . mixed wbeing hrs mn_hrs cohes lead mn_lead grp: lead, > covariance(unstructured) mle stddeviations vce(robust)</pre>												
Mixed-effects	regression			Number	of obs =	7,382						
Group variable	e: grp			Number	of groups =	99						
				Obs per	group:							
					min =	15						
					avg =	74.6						
					max =	226						
				Wald ch	i2(5) =	1113.45						
Log pseudolike	elihood = -88	67.4172		Prob >	chi2 =	0.0000						
		(St	d. Err. a	djusted	for 99 cluste	ers in grp)						
wbeing	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]						
hrs	0258024	.0053697	-4.81	0.000	0363268	0152779						
mn_hrs	106432	.0208427	-5.11	0.000	147283	065581						
cohes	.0788795	0.000	.0531502	.1046088								
lead	.4709406	0.000	.4340416	.5078395								
mn_lead	2198068	0.000	3071232	1324904								
_cons	3.304784	.2861091	11.55	0.000	2.744021	3.865548						

Random-effects Parameters	Estimate	Robust Std. Err.	[95% Conf.	Interval]
grp: Unstructured sd(lead) sd(_cons) corr(lead,_cons)	.0987405 .3484683 9746476	.0155946 .0464797 .013031	.0724537 .2683042 9907865	.1345643 .4525838 9312155
sd(Residual)	.7984983	.0062581	.7863264	.8108586

. estimates store rc

. lrtest ri rc, force

-		
Likelihood-ratio test	LR chi2(2) =	23.58
(Assumption: ri nested in rc)	Prob > chi2 =	0.0000

Based on the tiny *p*-value from the conservative likelihood-ratio test given by **lrtest**, we conclude that the random-coefficient model should be retained. The *p*-value based on the correct asymptotic null distribution $0.5\chi^2(1) + 0.5\chi^2(2)$ is even smaller.

6. Add a random slope for cohes to the model chosen in step 5, and compare this model with the model from step 3 using a likelihood ratio test. Retain the preferred model.

	mixed wbeing hrs mn_hrs cohes lead mn_lead grp: lead cohes,	
>	<pre>covariance(unstructured) mle stddeviations vce(robust)</pre>	
Mi	xed-effects regression Number of obs	=
Gi	oup variable: grp Number of groups	=

Mixed-effects Group variabl	regression e: grp	Number Number	of obs = of groups =	= 7,382 = 99		
				Obs pe:	r group: min = avg =	= 15 = 74.6
					max =	= 226
Log pseudolik	elihood = -8866	.5774		Wald c Prob >	hi2(5) = chi2 =	= 1124.30 = 0.0000
		(Ste	d. Err.	adjusted	for 99 clust	ters in grp)
		Robust				
wbeing	Coef.	Std. Err.	z	P> z	[95% Cont	f. Interval]
hrs	0258458	.0053645	-4.82	0.000	0363601	0153315
mn_hrs	1053775	.020997	-5.02	0.000	1465308	0642242
cohes	.0789716	.013051	6.05	0.000	.0533921	.1045511
lead	.471036	.0187577	25.11	0.000	.4342715	.5078005
mn_lead	2195694	.0446132	-4.92	0.000	3070096	1321292
_cons	3.291717	.2859667	11.51	0.000	2.731232	3.852201
Random-effe	cts Parameters	Estim	R ate St	obust d. Err.	[95% Cont	f. Interval]
grp: Unstruct	ured					
01	sd(lead)	.1031	605 .0	182215	.0729733	.1458355
	sd(cohes)	.0447	645 .0	228079	.0164907	.1215144
	sd(_cons)	.3372	506 .0	543184	.2459552	.4624336
c	orr(lead,cohes)	3654	282 .4	036816	8607615	.4853838
c	orr(lead,_cons)	9043	491 .1	044429	9894428	3555552
co	<pre>orr(cohes,_cons)</pre>	0065	123 .4	139134	6738718	.6666991
	sd(Residual)	.7977	671 .0	062135	.7856813	.8100388
. lrtest rc .	, force					
Likelihood-ra	tio test			1	LR chi2(3) =	= 1.68

(Assumption: rc nested in .) Prob > chi2 = 0.6415

Based on the conservative likelihood-ratio test we retain the random-coefficient model without a random slope for **cohes**. The conclusion remains the same when using the *p*-value from the correct asymptotic null distribution $0.5\chi^2(2) + 0.5\chi^2(3)$ which is p = 0.54.

7. Perform residual diagnostics for the level-1 errors, random intercept, and random slope(s). Do the model assumptions appear to be satisfied?

```
. estimates restore rc
(results rc are active now)
. predict slope inter, reffects
. egen pickone = tag(grp)
. histogram slope if pickone==1
(bin=9, start=-.13782126, width=.03554772)
. histogram inter if pickone==1
(bin=9, start=-.62071776, width=.13001956)
. predict resid, rstandard
. histogram resid
(bin=38, start=-3.8327911, width=.20335953)
```

The histograms are given in figures 8 to 10. They all look quite normal.

Figure 8: Histogram of predicted slopes

Exercise 4.5

Figure 9: Histogram of predicted intercepts

Figure 10: Histogram of predicted, standardized level-1 residuals

4.7 Family-birthweight data

1. Produce the required dummy variables M_i , F_i , and K_i .

. use family, clear											
. tabulate member, generate(mem)											
member	Freq.	Percent	Cum.								
1	1,000	33.33	33.33								
2	1,000	33.33	66.67								
3	1,000	33.33	100.00								
Total	3,000	100.00									
. rename mem1	mother										
. rename mem2 father											
. rename mem3 child											

- 2. Generate variables equal to the terms in parentheses in (4.5).
 - . generate variable1 = mother + child/2
 . generate variable2 = father + child/2
 . generate variable3 = child/sqrt(2)
- 3. Which of the correlation structures available in mixed should be specified for the random coefficients (see the help file for details on the covariance() option)?

The identity structure.

4. Fit the model given in (4.5)by using ML. The model does not include a random intercept, so use the noconstant option.

<pre>. mixed bwt family: variable1 variable2 variable3, > covariance(identity) noconstant stddeviations vce(robust)</pre>										
Mixed-effects Group variable	regression e: family		Numb Numb	er of obs = er of groups =	= 3,000 = 1,000					
			Obs	per group: min =	= 3					
				avg = max =	= 3.0 = 3					
Log pseudolike	elihood = -22828.	.531	Wald Prob	chi2(0) = > chi2 =	· ·					
		(Std. Err. a	djusted for	1,000 clusters	in family)					
bwt	I Coef. Si	Robust td. Err.	z P> z	[95% Conf	. Interval]					
_cons	3565.257 10	0.06086 35	4.37 0.00	0 3545.538	3584.976					
Random-effec	ts Parameters	Estimate	Robust Std. Err	. [95% Conf	. Interval]					
family: Identi sd(variab~1	ity Lvariab~3)(1)	322.7494	17.30489	290.5537	358.5125					
	sd(Residual)	376.4128	14.19958	349.5861	405.2982					

(1) variable1 variable2 variable3

5. Obtain the estimated proportion of the total variance that is attributable to additive genetic effects.

. display 323.0093²/(323.0093²+376.3245²) .42420341

The estimated proportion of the total variance attributable to additive genetic effects is 0.42.

6. Now fit the model including all the covariates listed above and having the same random part as the model in step 3.

 mixed bwt male first midage highage birthyr family: variable1 variable2 variable3, covariance(identity) noconstant stddeviations vce(robust) 												
Mixed-effects Group variable	regression e: family			Number o Number o	of obs of group:	= s =	3,000 1,000					
	group: m a m	in = vg = ax =	3 3.0 3									
Log pseudolike	Wald chi2(5) = 161.94 Log pseudolikelihood = -22746.229 Prob > chi2 = 0.0000 (Std. Err. adjusted for 1,000 clusters in family)											
bwt	Coef. S	Robust td. Err.	z	P> z	[95%	Conf.	Interval]					
male first midage highage birthyr _cons	7.92474 8.84312 0.61551 9.94743 .684962 3.71748	8.84 -7.40 1.86 1.98 5.30 102.66	0.000 0.000 0.062 0.047 0.000 0.000	123.3 -176.3 -2.950 1.361 2.285 3395.3	228 292 033 529 298 374	193.5865 -102.4655 117.0606 236.3511 4.970299 3527.544						
Robust Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]												
family: Identi sd(variab~1	ty variab~3)(1)	315.06	16 16.	42738	284.	455	348.9613					
	sd(Residual)	365.45	87 13	.6215	339.7	129	393.1557					

(1) variable1 variable2 variable3

7. Interpret the estimated coefficients from step 6.

On average, given the other covariates, it is estimated that males weigh 158 grams more at birth than females, first-borns weigh 139 grams less at birth than children with older siblings, children born to older mothers have greater birthweights than children born to younger mothers (57 grams greater for 20-25-year-old mothers than mothers below 20 and 119 grams greater for mothers above 35 than mothers below 20) and birthweights have been increasing by an estimated 3.6 grams per year.

8. Conditional on the covariates, what proportion of the residual variance is estimated to be due to additive genetic effects?

. display 315.2176^2/(315.2176^2+365.942^2) .42594296

The estimated proportion of the residual variance due to additive genetic effects is 0.43 (about the same as in the model without the covariates).

Exercise 4.7

. use papke_did.dta, clear

5.3 Unemployment-claims data I

- 1. Use a "posttest-only design with nonequivalent groups", which is based on comparing those receiving the intervention with those not receiving the intervention at the second occasion only.
 - a. Use an appropriate t test to test the hypothesis of no intervention effect on the logtransformed number of unemployment claims in 1984.

. ttest luclms if year == 1984, by(ez) Two-sample t test with equal variances												
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]						
0 1	16 6	11.06366 11.14839	.1565774 .2094637	.6263095 .5130791	10.72992 10.60995	11.39739 11.68683						
combined	22	11.08676	.1251106	.586821	10.82658	11.34695						
diff		0847349	.2872322		6838908	.514421						
diff = Ho: diff =	= mean(0) = 0	degrees	t of freedom	= -0.2950 = 20								
Ha: di Pr(T < t)	iff < 0) = 0.3855	Pr(Ha: diff !: T > t) =	= 0 0.7710	Ha: d Pr(T > t	liff > 0 ;) = 0.6145						

At the 5% level, there is no significant difference in the log number of unemployment claims between treatment and control groups in 1984 (t = 0.30, d.f.=20, p = 0.77).

b. Ignore the data for 1983 and consider the model

$$\ln(y_{ij}) = \beta_1 + \beta_2 x_{ij} + \epsilon_{ij}$$
 for $i = 1984$

where the usual assumptions are made. Estimate the intervention effect and test the null hypothesis that there is no intervention effect.

•	regress luclms ez if year == 1984											
	Source	SS	df		MS		Number of obs	=	22			
_	Model Residual	.031330892 7.20020475	1 20	.031	1330892		F(1, 20) Prob > F R-squared Adj R-squared	= = =	0.09 0.7710 0.0043 -0.0455			
	Iotal	7.23153564	21	. 34	435884		ROOT MSE	=	.60001			
	luclms	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]			
	ez _cons	.0847349 11.06366	.2872	2322 0021	0.30 73.76	0.771 0.000	514421 10.75076	1	6838908 1.37655			

The estimate of the difference in means between treatment and control groups in 1984 and the t-statistic are identical to the results using an independent samples t test in step 1a.

2. Use a "one-group pretest-posttest design", which is based on comparing the second occasion (posttest) with the first occasion (pretest) for the intervention group only. To do this, first construct a new variable for intervention group, taking the value 1 if an unemployment claims office is ever in an enterprise zone and 0 for the control group (consider using egen).

```
. egen treatgr = max(ez), by(city)
```

a. Use an appropriate t test to test the hypothesis of no intervention effect on the logtransformed number of unemployment claims. (It may be useful to reshape the data to wide form for the t test and then reshape them to long form again for the next questions.)

. reshape (note: j =	wide luclms = 1983 1984)	ez, i(city)) j(year)			
Data			long	->	wide		
Number of	obs.		44	->	22		
Number of	variables		5	->	6		
j variable xij variab	e (2 values) ples:		year	->	(dropped)		
0			luclms	->	luclms198	3 luclms1984	
			ez	->	ez1983 ez	1984	
. ttest lu	ıclms1984=lu	clms1983 if	treatgr	==1			
Paired t t	cest		0				
Variable	Obs	Mean	Std. E	err.	Std. Dev.	[95% Conf.	Interval]
luc~1984	6	11.14839	.20946	37	.5130791	10.60995	11.68683
luc~1983	6	11.63374	.22896	98	.5608592	11.04515	12.22232
diff	6	485349	.05857	'86	.1434878	6359302	3347679
mean(Ho: mean((diff) = mean (diff) = 0	n(luclms1984	4 - lucl	ms198	3) degrees	t = of freedom =	= -8.2854 = 5
Ha: mean(Pr(T < t)	(diff) < 0 = 0.0002	Ha Pr(1	: mean(d T > t	liff)) = 0	!= 0 .0004	Ha: mean Pr(T > t)	(diff) > 0) = 0.9998
. reshape (note: j =	long luclms = 1983 1984)	ez, i(city)) j(year)			
Data			wide	->	long		
Number of	obs.		22	->	44		
Number of	variables		6	->	5		
j variable xij variab	e (2 values)			->	year		
	luc	lms1983 luci	lms1984	->	luclms		
		ez1983	ez1984	->	ez		

Using a paired t test, we conclude that the log number of unemployment claims in the intervention group decreased significantly from 1983 to 1984 (t = 8.29, d.f.=5, p < 0.001).

b. For the intervention group, consider the model

$$\ln(y_{ij}) = \beta_1 + \alpha_j + \beta_2 x_{ij} + \epsilon_{ij}$$

where α_j is an office-specific parameter (fixed effect). Estimate the intervention effect and test the null hypothesis that there is no intervention effect.

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

. quietly xtse	et city					
. xtreg luclms	s ez if treatg	gr==1, fe				
Fixed-effects (within) regression Group variable: city				Number Number	of obs = of groups =	= 12 = 6
R-sq: within between overall	= 0.9321 n = . L = 0.1965			Obs per	group: min = avg = max =	= 2 = 2.0 = 2
corr(u_i, Xb)	= 0.0000			F(1,5) Prob > 1	= F =	= 68.65 = 0.0004
luclms	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ez _cons	485349 11.63374	.0585786 .0414213	-8.29 280.86	0.000 0.000	6359302 11.52726	3347679 11.74022
sigma_u sigma_e rho	.53269074 .10146116 .96499155	(fraction	of varia	nce due t	o u_i)	

F test that all u_i=0: F(5, 5) = 55.13 Prob > F = 0.0002 The results are identical to those from the paired t test.

3. Discuss the pros and cons of the "posttest-only design with non-equivalent groups" and the "one-group pretest-posttest design".

In the posttest-only design, we are not controlling for pre-existing differences between the treatment groups, so the differences we find could be due to omitted time-invariant variables. The advantage is that we do have a control group. In the one-group pretest-posttest design, we do not have a control group, so we cannot be sure that the change did not occur everywhere due to other reasons or 'secular trends'. However, we do control for omitted time-invariant variables.

- 4. Use an "untreated control group design with dependent pretest and posttest samples", which is based on data from both occasions and both intervention groups.
 - a. Find the difference between the following two differences:
 - i. the difference in the sample means of luclms for the intervention group between 1984 and 1983
 - ii. the difference in the sample means of luclms for the control group between 1984 and 1983

	treatgr O					
1980 to 1988 1983 1984	11.41566 11.06366	11.63374 11.14839				

. table year treatgr, statistic(mean luclm) nototal

. display (11.14839-11.633739)-(11.063655-11.415663) -.133341

The log number of unemployment claims decreased more in the treatment group than in the control group.

The resulting estimator is called the difference-in-differences estimator and is commonly used for the analysis of intervention effects in quasi-experiments and natural experiments.

b. Consider the model

$\ln(y_{ij}) = \beta_1 + \alpha_j + \tau z_i + \beta_2 x_{ij} + \epsilon_{ij}$

where α_j is an office-specific parameter (fixed effect) and τ is the coefficient of a dummy variable z_i for 1984. Estimate the intervention effect and test the null hypothesis that there is no intervention effect. Note that the estimate $\hat{\beta}_2$ is identical to the difference-indifferences estimate. The advantage of using a model is that statistical inference regarding the intervention effect is straightforward, as is extension to many occasions, several intervention groups, and inclusion of extra covariates.

. quietly xtse	et city						
. xtreg luclms	s i.year ez, :	fe					
Fixed-effects Group variable	(within) reg e: city	ression		Number Number	of obs of groups	=	44 22
R-sq: within betweer overall	= 0.7297 n = 0.0139 n = 0.0892			Obs per	group: min avg max	. = ; = : =	2 2.0 2
corr(u_i, Xb)	= -0.0252			F(2,20) Prob >	F	=	26.99 0.0000
luclms	Coef.	Std. Err.	t	P> t	[95% Con	ıf.	Interval]
year 1984	3520072	.0627058	-5.61	0.000	4828092	2	2212051
ez _cons	1333419 11.47514	.1200725 .037813	-1.11 303.47	0.280 0.000	3838088 11.39626	;	.117125 11.55401
sigma_u sigma_e rho	.58978041 .17735888 .9170672	(fraction	of varia	nce due t	o u_i)		
F test that al	ll u_i=0:	F(21, 20) =	21.80)	Prob	> 1	F = 0.0000

The estimate of the effect of treatment, controlling for time and office, is the same as the difference in differences. We can now see that the effect is not significant at the 5% level (t = -1.11, d.f.=20, p = 0.28).

5. What are the advantages of using the "untreated control group design with dependent pretest and posttest samples" compared with the "posttest-only design with non-equivalent groups" and the "one-group pretest-posttest design"?

The difference-in difference estimator controls for both time-invariant variables and secular trends and therefore overcomes the disadvantages of the other two methods.

5.4 Unemployment-claims data II

1. Use the **xtset** command to specify the variables representing the clusters and time for this application. This enables you to use Stata's time-series operators, which should be used within the estimation commands in this exercise. Interpret the output.

We see that city is the cluster identifier, the data are strongly balanced (occasions occur at the same time-points for all clusters and there are no missing data), the time variable is year (from 1980 to 1988), and that the time between subsequent occasions (delta) is one year

2. Consider the fixed-intercept model

$$\ln(y_{ij}) = \tau_i + \beta_2 x_{2ij} + \alpha_j + \epsilon_{ij}$$

where τ_i and α_j are year-specific and office-specific parameters, respectively. (Use dummy variables for years to include τ_i in the model.) This gives the difference-in-differences estimator for more than two panel waves (see exercise 5.3).

a. Fit the model using xtreg with the fe option.

There are already dummy variables d81, d82, etc., for years in the data (you can also create your own using the tabulate command or use factor variables, i.year). We can fit the model using

. xtreg luclms	s d82-d88 ez,	fe vce(robu	ist)			
Fixed-effects	(within) regr	ession		Number	of obs	= 198
Group variable	Group variable: city				of groups	= 22
R-squared:				Obs per	group:	
- Within =	= 0.8148			-	min	= 9
Between =	= 0.0002				avg	= 9.0
Overall =	= 0.3415				max	= 9
				F(8,21)		= 86.13
<pre>corr(u_i, Xb)</pre>	= -0.0040			Prob >	F	= 0.0000
		(Sto	l. err. ad	djusted f	or 22 clust	cers in city)
		Robust				
luclms	Coefficient	std. err.	t	P> t	[95% cor	nf. interval]
d82	.2963117	.0423406	7.00	0.000	.2082595	. 3843638
d83	0584394	.066595	-0.88	0.390	1969313	.0800524
d84	4183358	.0843975	-4.96	0.000	5938499	2428217
d85	4309709	.0771333	-5.59	0.000	5913784	2705634
d86	4604488	.0680267	-6.77	0.000	6019181	3189795
d87	7281326	.0666583	-10.92	0.000	8667561	5895091
d88	-1.066817	.079957	-13.34	0.000	-1.233097	9005373
ez	1044148	.0726138	-1.44	0.165	2554234	.0465937
_cons	11.53358	.040102	287.61	0.000	11.45018	3 11.61697
sigma_u	.55551522					
sigma_e	.21619434					
rho	.86846297	(fraction	of variar	nce due t	o u_i)	

b.	Fit th	he first-	difference	version	of th	he model	using	OLS.

. regress D1.luclms D1.(d82-d88) D1.ez, vce(robust)

Linear regress	sion			Number of F(8, 167) Prob > F R-squared Root MSE	obs = = = = =	176 48.48 0.0000 0.6230 .21606
D.luclms	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
d82 D1.	.7787595	.0595309	13.08	0.000	.6612293	.8962897
d83 D1.	.7456403	.1076729	6.93	0.000	.5330649	.9582157
d84 D1.	.7285021	.1625999	4.48	0.000	.4074859	1.049518
d85 D1.	1.051583	.2108168	4.99	0.000	.6353737	1.467792
d86 D1.	1.343737	.2575666	5.22	0.000	.8352308	1.852243
d87 D1.	1.397685	.3042371	4.59	0.000	.7970386	1.998332
d88 D1.	1.380633	.348744	3.96	0.000	.6921174	2.069148
ez D1.	1818775	.0880267	-2.07	0.040	3556662	0080889
_cons	3216319	.0462618	-6.95	0.000	4129653	2302985

i. Do the estimates of the intervention effect differ much?

The estimated intervention effect is nearly twice as large and significant at the 5% level using the first-difference estimator compared with the mean-centering estimator in step 2a where the effect is not significant.

ii. Papke (1994) actually assumed a linear trend of year instead of year-specific intercepts as specified above. Write down the first-difference version of Papke's model.

The first-difference version can be written as

 $\ln(y_{ij}) - \ln(y_{i-1,j}) = \tau + \beta_2(x_{2ij} - x_{2i-1,j}) + (\epsilon_{ij} - \epsilon_{i-1,j})$

where τ is the regression coefficient of time.

The AR(1) process is described on page 308. For a random walk, we set $\alpha = 1$,

$$\epsilon_{ij} = 1\epsilon_{i-1,j} + e_{ij}, \quad Cov(\epsilon_{i-1,j}, e_{ij}) = 0, \quad E(e_{ij}) = 0, \quad Var(e_{ij}) = \sigma_e^2$$

where the disturbances e_{ij} are uncorrelated across occasions *i* and offices *j*. Substituting this model for ϵ_{ij} into the last term of the first-difference version of Papke's model gives

$$(\epsilon_{ij} - \epsilon_{i-1,j}) = \epsilon_{i-1,j} + e_{ij} - \epsilon_{i-1,j} = e_{ij}$$

These errors e_{ij} are uncorrelated.

3. Fit the lagged-response model

$$\ln(y_{ij}) = \tau_i + \beta_2 x_{2ij} + \gamma \ln(y_{i-1,j}) + \epsilon_{ij}$$

where γ is the regression coefficient for the lagged response $\ln(y_{i-1,j})$. Compare the estimated intervention effect with that for the fixed-intercept model. Interpret β_2 in the two models.

. regress luclms d82-d88 ez L.luclms, vce(robust)

Linear regress	sion			Number o F(9, 166 Prob > F R-square Root MSE	f obs) d	= = = =	176 297.33 0.0000 0.9113 .21685
luclms	Coefficient	Robust std. err.	t	P> t	[95%	conf.	interval]
d82	.7621466	.0594689	12.82	0.000	.6447	337	.8795595
d83	0261206	.0616671	-0.42	0.672	1478	735	.0956324
d84	0622605	.0700663	-0.89	0.376	2005	965	.0760756
d85	.28497	.0706457	4.03	0.000	.1454	901	.4244499
d86	.2854784	.0726635	3.93	0.000	.1420	147	.4289421
d87	.04575	.0734218	0.62	0.534	0992	109	.1907108
d88	0390771	.0661455	-0.59	0.555	1696	719	.0915178
ez	0579542	.0423485	-1.37	0.173	1415	653	.0256568
luclms							
L1.	.9483481	.0253744	37.37	0.000	.8982	499	.9984463
_cons	.2824057	.2976748	0.95	0.344	3053	109	.8701223

The estimated intervention effect is smaller in the lagged-response model than in the fixedintercept model. In the fixed-intercept model, the parameter β_2 can be interpreted as the intervention effect when all time-constant covariates (observed or unobserved) are controlled for. In the lagged-response model, β_2 can be interpreted as the intervention effect when it is controlled for the number of unemployment claims at the previous occasion. 4. Consider a lagged-response model with an office-specific intercept b_j :

$$\ln(y_{ij}) = \tau_i + \beta_2 x_{2ij} + \gamma \ln(y_{i-1,j}) + b_j + \epsilon_{ij}$$

a. Treat b_j as a random intercept and fit a random-intercept model by ML using mixed. Are there any problems associated with this random-intercept model?

. xtmixed luc	lms d82-d88 ez	L.luclms	city:,	mle vce(robust)	
Mixed-effects Group variable	regression e: city			Number Number Obs per	of obs = of groups = group:	176 22
					min =	8
					avg =	8.0
					max =	8
				Wald ch	12(9) =	1180.94
Log pseudolik	elihood = 21.8	90234		Prob >	ch12 =	0.0000
		(Std.	err. ad	justed f	or 22 cluster	s in city)
		Robust				
luclms	Coefficient	std. err.	z	P> z	[95% conf.	interval]
d82	.623044	.0471888	13.20	0.000	.5305557	.7155323
d83	.03248	.0359039	0.90	0.366	0378905	.1028504
d84	1421624	.0578161	-2.46	0.014	2554799	0288449
d85	.0470498	.0539553	0.87	0.383	0587006	.1528003
d86	.0338831	.072501	0.47	0.640	1082163	.1759825
d87	2185943	.0623681	-3.50	0.000	3408335	0963551
d88	4191919	.0845456	-4.96	0.000	5848982	2534856
ez	1126751	.0535177	-2.11	0.035	2175678	0077824
luclms						
L1.	.515858	.0774443	6.66	0.000	.36407	.667646
_cons	5.340115	.8653247	6.17	0.000	3.644109	7.03612
Random-effe	cts parameters	Estimat	Ro ze std	bust . err.	[95% conf.	intervall
	1					
city: Identit	y sd(_cons)	.271465	53 .18	18945	.0730078	1.009391
	sd(Residual)	.177327	.02	03581	.1415969	.2220743

It seems unreasonable to assume (as implicitly in the above model) that the random intercept only affects the response in 1981-1988 but not the response at the first occasion in 1980. If the random intercept also affects the response in 1980, the estimate of the intervention effect given above will be inconsistent due to this initial-conditions problem.

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

b. Fit the model using the Anderson-Hsiao approach with the second lag of the response as instrumental variable. Compare the estimated intervention effect with that from step 4a.

Instrumental	variables 2SLS	regression		Numbe Wald Prob R-squ Root	er of obs = chi2(8) = > chi2 = lared = MSE =	154 325.70 0.0000 0.5466 .23672
D.luclms	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
luclms LD.	.3553236	.520257	0.68	0.495	6643614	1.375009
ez D1.	2613231	.1394823	-1.87	0.061	5347033	.0120571
d82 D1.	.6431183	.0972054	6.62	0.000	.4525992	.8336373
d83 D1.	.1976462	.2372092	0.83	0.405	2672752	.6625676
d84 D1.	.0783017	.109749	0.71	0.476	1368024	.2934057
d85 D1.	.3039007	.09795	3.10	0.002	.1119224	.4958791
d86 D1.	.3573652	.0602397	5.93	0.000	.2392975	.4754329
d87 D1.	.1718629	.0664926	2.58	0.010	.0415397	.302186
_cons	0717072	.0826444	-0.87	0.386	2336873	.0902728

. ivregress 2sls D1.luclms D1.(ez d82-d87) (L1D1.luclms = L2.luclms), vce(robust)

Instrumented: LD.luclms

Instruments: D.ez D.d82 D.d83 D.d84 D.d85 D.d86 D.d87 L2.luclms

The estimated intervention effect is much larger (in absolute value) using the Anderson-Hsiao approach ($\hat{\beta}_2 = -0.26$) than using naïve ML estimation of the random-intercept model ($\hat{\beta}_2 = -0.11$). However, note the wide confidence intervals.

c. Papke (1994) used the Anderson-Hsiao approach with the second lag of the first-difference of the response as instrumental variable. Does the choice of instruments make a difference in this case?

. ivregress 2sls D1.luclms D1.(d82-d88) D1.ez (L1D1.luclms = L2D1.luclms), vce(robust) note: D.d87 omitted because of collinearity. note: D.d88 omitted because of collinearity.

Instrumental	variables 2SLS	5 regression		Numb Wald Prob R-sq Root	er of obs = chi2(7) = > chi2 = uared = MSE =	132 73.61 0.0000 0.2805 .22579
D.luclms	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
luclms LD.	.1646991	.3029438	0.54	0.587	4290598	.758458
d82 D1.	5576565	.3067638	-1.82	0.069	-1.158902	.0435894
d83 D1.	6930989	.168876	-4.10	0.000	-1.02409	362108
d84 D1.	6688016	.1514251	-4.42	0.000	9655894	3720139
d85 D1.	3020953	.1622788	-1.86	0.063	6201559	.0159652
d86 D1.	0317684	.0864126	-0.37	0.713	201134	.1375973
d87 D1.	0	(omitted)				
d88 D1.	0	(omitted)				
ez D1.	218702	.110628	-1.98	0.048	435529	0018751
_cons	2945972	.0849809	-3.47	0.001	4611568	1280376

Instrumented: LD.luclms

Instruments: D.d82 D.d83 D.d84 D.d85 D.d86 D.ez L2D.luclms

We could alternatively have obtained identical point estimates by using the **xtivreg** command with the **fd** option:

xtivreg luclms d82-d88 ez (L.luclms = L2.luclms), fd vce(robust)

The choice of instruments matters somewhat in this case with estimates $\hat{\beta}_2 = -0.26$ in step 4b and $\hat{\beta}_2 = -0.22$ in step 4c.

6.2 Postnatal-depression data

- 1. Start by preparing the data for analysis.
 - a. Reshape the data to long form.

. use postnatal, clear				
. reshape long dep, i(subj) (note: j = 1 2 3 4 5 6)	j(month)			
Data	wide	->	long	
Number of obs.	61	->	366	
Number of variables	9	->	5	
			0	
j variable (6 values)		->	month	
j variable (6 values) xij variables:		->	month	

b. Missing values for the depression scores are coded as -9 in the dataset. Recode these to Stata's missing-value code. (You may want to use the mvdecode command.)

```
. mvdecode dep pre, mv(-9)
dep: 71 missing values generated
```

c. Use the **xtdescribe** command to investigate missingness patterns. Is there any intermittent missingness?

```
. xtset subj month
      panel variable: subj (strongly balanced)
        time variable: month, 1 to 6
                delta:
                        1 unit
. xtdescribe if dep<.
    subj: 1, 2, ..., 61
                                                                           61
                                                              n =
  month:
           1, 2, ..., 6
                                                              Т =
                                                                            6
           Delta(month) = 1 unit
           Span(month) = 6 periods
           (subj*month uniquely identifies each observation)
                                 5%
                                        25%
Distribution of T_i:
                       min
                                                  50%
                                                            75%
                                                                     95%
                                                                             max
                                          3
                                                    6
                                                              6
                                                                      6
                                                                               6
                         1
                                 1
     Freq.
           Percent
                       Cum.
                               Pattern
                               111111
       45
              73.77
                      73.77
                      86.89
        8
              13.11
                                1....
        7
                      98.36
                                11....
              11.48
        1
               1.64
                     100.00
                                111...
       61
                               XXXXXX
             100.00
```

The missingness patterns are monotone. There is only dropout and no intermittent missing data.

2. Fit a model with an unstructured residual covariance matrix. Store the estimates (also store estimates for each of the models below).

. generate tim	ne = month -	1					
. mixed dep pr > residuals(u	re group time instructured,	subj:, r t(month)) m	loconstant le stddev	iations			
Mixed-effects	Mixed-effects ML regression				of obs	=	295
Group variable: subj				Number	of group	os =	61
				Obs per	group:	min = avg = max =	1 4.8 6
Log likelihood	l = −782.6905	8		Wald ch Prob >	ii2(3) chi2	=	88.84 0.0000
dep	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
pre group	.364077 -4.120617	.1292085 .9739702	2.82 -4.23	0.005	.110)833 9564	.6173209 -2.211671

Random-effects	Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
subj:	(empty)				
Residual: Unstru	ctured				
	sd(e1)	5.222534	.4750711	4.369696	6.241822
	sd(e2)	5.842693	.5710984	4.824049	7.076433
	sd(e3)	4.974276	.5362913	4.026794	6.144696
	sd(e4)	5.075864	.5392724	4.121698	6.250917
	sd(e5)	5.080505	.5458162	4.115848	6.271254
	sd(e6)	4.447325	.4795071	3.60017	5.493824
	corr(e1,e2)	.3934899	.1131534	.1523219	.5904318
	corr(e1,e3)	.3566393	.1204059	.1022897	.567218
	corr(e1,e4)	.2899307	.1291728	.0220782	.5189484
	corr(e1,e5)	.2188728	.13378	0528758	.4604396
	corr(e1,e6)	.1050079	.1396652	1697357	.3646055
	corr(e2,e3)	.8261353	.0469085	.7095459	.8986984
	corr(e2,e4)	.6820919	.079932	.4930252	.8096396
	corr(e2,e5)	.6890688	.0791	.5012564	.8148776
	corr(e2,e6)	.6059245	.0960699	.384156	.7615884
	corr(e3,e4)	.7310068	.0699298	.5625337	.8411931
	corr(e3,e5)	.8123314	.0515131	.6842147	.8918091
	corr(e3,e6)	.7182257	.0755132	.5358208	.8365794
	corr(e4,e5)	.8212047	.0488118	.6996945	.8965419
	corr(e4,e6)	.7553889	.0647875	.5977648	.8567815
	corr(e5,e6)	.8759585	.0356153	.784954	.9299622

LR test vs. linear regression:

chi2(20) = 226.63 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.

. estimates store un

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

3. Fit a model with an exchangeable residual covariance matrix. Use a likelihood-ratio test to compare this model with the unstructured model.

<pre>. mixed dep pre group time subj:, noconstant > residuals(exchangeable) mle stddeviations</pre>							
Mixed-effects Group variable	ML regression : subj	1		Number Number	of obs of groups	=	295 61
				Obs per	group: min avg max	=	1 4.8 6
Log likelihood	1 = -832.36607	7		Wald ch Prob >	i2(3) chi2	=	136.05 0.0000
dep	Coef.	Std. Err.	z	P> z	[95% Con	f.	Interval]
pre group time _cons	.4597672 -4.021599 -1.225857 7.208144	.1451945 1.088742 .1166946 3.132268	3.17 -3.69 -10.50 2.30	0.002 0.000 0.000 0.021	.1751913 -6.155495 -1.454574 1.069012		.7443431 -1.887704 9971399 13.34728

Random-effects	Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
subj:	(empty)				
Residual: Exchan	geable sd(e) corr(e)	5.068143 .5638883	.3206934 .0600349	4.477009 .4349557	5.737329 .6701634

LR test vs. linear regression: chi2(1) = 127.28 Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on
 the boundary of the parameter space. If this is not true, then the
 reported test is conservative.
. estimates store exch
. lrtest exch un
Likelihood-ratio test LR chi2(19) = 99.35

LIKellhood-latio test	LK CHIZ(19) =	99.35
(Assumption: exch nested in un)	Prob > chi2 =	0.0000
Note: The reported degrees of freedom accumes the r	wll hypothogic ic m	ot on the

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.

The constraints that all variances are equal and all correlations are equal are rejected using a likelihood ratio test (L = 99.35, df = 19, p < 0.001).

4. Fit a random-intercept model and compare it with the model with an exchangeable covariance matrix.

. mixed dep pr	e group time	subj:, m	le varian	ce			
Mixed-effects Group variable	ML regression : subj			Number o Number o	f obs f grou	= ps =	295 61
				Obs per	group:	min = avg = max =	1 4.8 6
Log likelihood	= -832.36607			Wald chi Prob > c	2(3) hi2	=	136.05 0.0000
dep	Coef. S	Std. Err.	z	P> z	[95%	Conf.	Interval]
pre group time _cons	.4597672 . -4.021599 1 -1.225857 . 7.208144 3	.1451945 L.088742 .1166946 3.132269	3.17 -3.69 -10.50 2.30	0.002 0.000 0.000 0.021	.175: -6.155 -1.454 1.06	1912 5495 1574 3901	.7443431 -1.887703 9971399 13.34728
Random-effec	ts Parameters	Estim	ate Std	. Err.	[95%	Conf.	Interval]
subj: Identity	var(_cons)	14.48	409 3.1	67154	9.43	5473	22.23405
	var(Residual)	11.20	199 1.0	33171	9.349	9497	13.42154
LR test vs. li . estimates st	near regression	n: chibar2	(01) =	127.28 Pr	ob >= 0	chibar2	2 = 0.0000

The models are equivalent (since the covariance is estimated as positive in the model with an exchangeable covariance matrix) and the log-likelihoods are therefore identical. The estimated model-implied standard deviation and correlations of the total residuals are:

```
. display sqrt(14.48409 +11.20199)
5.0681436
. display 14.48409/(14.48409 +11.20199)
.56388869
```

As expected, these estimates are the same as for the model with an exchangeable structure.

5. Fit a random-intercept model with AR(1) level-1 residuals. Compare this model with the ordinary random-intercept model using a likelihood ratio test.

. mixed dep pre group time subj:, > residuals(ar 1, t(month)) mle stddeviations							
Mixed-effects Group variable	ML regression e: subj		Number Number	of obs =	295 61		
			Obs pe	er group: min = avg = max =	1 4.8 6		
Log likelihood = -822.1805 Wald chi2(3) =							
dep	Coef. S	td. Err.	z P> z	[95% Conf.	Interval]		
pre group time _cons	.4392681 . -4.020073 1 -1.222442 . 7.680401 2	1384597 3 .040008 -3 1644953 -7 .994547 2	.17 0.002 .87 0.000 .43 0.000 .56 0.010	.1678921 -6.058451 -1.544847 1.811196	.7106441 -1.981695 9000371 13.54961		
Random-effec	ts Parameters	Estimate	Std. Err.	[95% Conf.	Interval]		
subj: Identity	sd(_cons)	2.682982	.9731191	1.317912	5.461967		
Residual: AR(1	l) rho sd(e)	.5435037 4.237522	.1385216 .6026892	.2201329 3.206626	.7592467 5.59984		

LR test vs. linear regression: chi2(2) = 147.65 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.

. estimates store ri_ar1
. lrtest ri_ar1 ri
Likelihood-ratio test LR chi2(1) =
(Assumption: ri nested in ri_ar1) Prob > chi2 =

The hypothesis that an AR(1) process is not required for the level-1 residuals in the randomintercept model is rejected using a likelihood ratio test (L = 20.37, df = 1, p < 0.0001).

20.37

0.0000

6. Fit a model with a Toeplitz(5) covariance structure (without a random intercept). Use likelihood ratio tests to compare this model with each of the models fit above that are either nested within this model or in which this model is nested. (Stata may refuse to perform a test if it thinks the models are not nested. If you are sure the models are nested, use the force option.)

<pre>. mixed dep pre group time subj:, noconstant > residuals(toeplitz 5, t(month)) mle stddeviations</pre>						
Mixed-effects Group variable	ML regression e: subj			Number o Number o	of obs = of groups =	295 61
				Obs per	group: min = avg = max =	1 4.8 6
Log likelihood	l = -816.69365			Wald chi Prob > c	2(3) = hi2 =	72.56 0.0000
dep	Coef. S	td. Err.	z	P> z	[95% Conf.	Interval]
pre group time _cons	.4237327 . -3.929828 1 -1.208944 . 8.061919 2	1350386 .015461 1784112 .924753	3.14 -3.87 -6.78 2.76	0.002 0.000 0.000 0.006	.1590619 -5.920094 -1.558624 2.329509	.6884036 -1.939561 859265 13.79433
Random-effec	Estima	te Std	. Err.	[95% Conf.	Interval]	
subj:	(empty)					
Residual: Toep	.6672	.04	73245	.5639046	.7499768	

rho3	.4688658	.0784476	.301834	.6079701		
rho4	.2958404	.1080509	.0727374	.4907468		
rho5	.1356471	.1501327	1618465	.4105387		
sd(e)	4.995393	.3022521	4.436768	5.624353		
LR test vs. linear regression:	chi2(5) = 158.63	Prob > chi2	2 = 0.0000		
Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.						

.5785609

.0577728

rho2

.4542883

.6807461

. estimates store toep

The random-intercept model sets all correlations equal and is hence nested in the Toeplitz. The random-intercept model with AR(1) level-1 residuals imposes a structure on the correlations, but also has equal correlations on each off-diagonal and is hence nested in the Toeplitz. For balanced longitudinal data, all covariance structures, including the Toeplitz structure, are nested in the unstructured covariance structure.

. estimates store toep		
. lrtest toep ri_ar1, force		
Likelihood-ratio test	LR chi2(3) =	10.97
(Assumption: ri_ar1 nested in toep)	Prob > chi2 =	0.0119
. lrtest toep ri, force $\ /*$ or exchangeable $*/$		
Likelihood-ratio test	LR chi2(4) =	31.34
(Assumption: ri nested in toep)	Prob > chi2 =	0.0000

(Continued on next page)

. lrtest toep un	
Likelihood-ratio test	LR chi2(15) = 68.01
(Assumption: toep nested in un)	Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null	hypothesis is not on
the boundary of the parameter space. If this is	not true, then the
reported test is conservative.	

The two restricted models are rejected and the Toeplitz is rejected in favor of the unstructured model.

7. Fit a random-coefficient model with a random slope of time. Use a likelihood-ratio test to compare the random-intercept and random-coefficient models.

<pre>. mixed dep pr > covariance(</pre>	re group time (unstructured) mi	subj: time, le stddeviatio	ons		
Mixed-effects Group variable	ML regression e: subj		Numbe Numbe	r of obs r of groups	= 295 = 61
			Obs p	er group: min avg max	= 1 = 4.8 = 6
Log likelihood	a = −821.41091		Wald Prob	chi2(3) > chi2	= 79.01 = 0.0000
dep	Coef. St	td. Err.	z P> z	[95% Conf	. Interval]
pre group time _cons	.4682251 -4.039641 1 -1.209707 7.040006 3	1455653 3 .092187 -3 1651196 -7 .144358 2	22 0.001 70 0.000 33 0.000 24 0.025	.1829223 -6.180287 -1.533336 .8771775	.7535279 -1.898994 886079 13.20283
Random-effec	ts Parameters	Estimate	Std. Err.	[95% Conf	. Interval]
subj: Unstruct	sured sd(time) sd(_cons) prr(time,_cons) sd(Residual)	.9139199 4.2606 427028 2.89236	.1547795 .4922395 .1613791 .1503267	.6557684 3.397261 6874447 2.612235	1.273696 5.343337 0693066 3.202525
LR test vs. li Note: LR test . estimates st	inear regression is conservative core rc	chi2(; and provided	3) = 149. only for r	19 Prob > ch eference.	i2 = 0.0000

Likelihood-ratio test LR chi2(2) = 21.91 (Assumption: ri nested in rc) Prob > chi2 = 0.0000 Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.

The random-intercept model is rejected in favor of the random-coefficient model.

8. Specify an AR(1) process for the level-1 residuals in the random-coefficient model. Use likelihoodratio tests to compare this model with the models you previously fit that are nested within it.

. mixed dep pr > residuals(a	re group time ar 1, t(time)	subj: ti) mle stddev	me, cova iations	riance(u	nstructured)	
Mixed-effects	ML regression	n		Number	of obs =	295
Group variable	e: subj			Number	of groups =	61
				Obs per	group: min =	1
					avg =	4.8
					max =	6
				Wald ch	i2(3) =	77.84
Log likelihood	1 = -820.6787	5		Prob >	chi2 =	0.0000
dep	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
pre	.4598446	.1435466	3.20	0.001	.1784985	.7411907
group	-4.030029	1.077137	-3.74	0.000	-6.14118	-1.918879
time	-1.21093	.1676028	-7.22	0.000	-1.539425	8824345
_cons	7.222646	3.101391	2.33	0.020	1.144032	13.30126

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
subj: Unstructured				
sd(time)	.8353954	.1998681	.5226878	1.335186
sd(cons)	4.004369	.6025937	2.981549	5.378069
	4004002	1042641	7060707	000010
corr(time,_cons)	4024283	.1943641	7069727	.028012
Residual: AR(1)				
rho	.1942238	.1767778	1619006	.505587
	2 12700	2416071	0 534840	2 004460
sd(e)	3.13/92	.34169/1	2.534849	3.084469

LR tes	st v	rs. 1:	inea	r regression:		chi2(4	1) =	150	0.66	Prob	>	chi2	=	0.00	000
Note:	LR	test	is	conservative	and	provided	only	for	refere	ence.					

. estimates store rc_ar1	
. lrtest rc_ar1 rc	
Likelihood-ratio test	LR chi2(1) = 1.46
(Assumption: rc nested in rc_ar1)	Prob > chi2 = 0.2262
. lrtest rc_ar1 ri_ar1	
Likelihood-ratio test	LR chi2(2) = 3.00
(Assumption: ri_ar1 nested in rc_ar1)	Prob > chi2 = 0.2227
Note: The reported degrees of freedom assumes the nul the boundary of the parameter space. If this i reported test is conservative.	l hypothesis is not on s not true, then the
. lrtest rc_ar1 ri	
Likelihood-ratio test (Assumption: ri nested in rc_ar1)	LR chi2(3) = 23.37 Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the nul the boundary of the parameter space. If this i reported test is conservative.	l hypothesis is not on s not true, then the

It seems that the AR(1) process is not needed after a random coefficient has been introduced and that the random coefficient is not needed after the AR(1) process has been introduced.

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

9. Use the estimates stats command to obtain a table including the AIC and BIC for the fitted models. Which models are best and second best according to the AIC and BIC?

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
un	295		-782.6906	25	1615.381	1707.556
exch	295		-832.3661	6	1676.732	1698.854
ri	295	•	-832.3661	6	1676.732	1698.854
ri_ar1	295	•	-822.1805	7	1658.361	1684.17
toep	295	•	-816.6937	10	1653.387	1690.257
rc	295	•	-821.4109	8	1658.822	1688.318
rc_ar1	295	•	-820.6787	9	1659.357	1692.54

. estimates stats un exch ri ri_ar1 toep rc rc_ar1

Note: N=Obs used in calculating BIC; see [R] BIC note

According to the AIC, the unstructured covariance matrix is best, followed by the Toeplitz. According to the BIC, the random-intercept model with the AR(1) process for the level-1 residuals is best, followed by the random-coefficient model.

Below is a table summarizing the likelihood ratio tests - the arrows point from the model that is rejected to the model it was compared with.

		# param		
Model	ll(model)	for cov	AIC	BIC
un	-782.6906	21	1615.381	1707.556
exch	-832.3661	2	1676.732	1698.854
ri	-832.3661	2	1676.732	1698.854
ri_ar1	-822.1805	3	1658.361	1684.17
toep	-816.6937	6	1653.387	1690.257
rc	-821.4109	4	1658.822	1688.318
rc_ar1	-820.6787	5	1659.357	1692.54

Exercise 6.2

7.1 Growth-in-math-achievement data

1. Reshape the data to long form, and plot the mean math trajectory over time by minority status.

use reading, clear								
. reshape long read m (note: j = 0 1 2 3)	ath age, i(id) j(gra	ade)						
Data	wide	->	long					
Number of obs.	1767	->	7068					
Number of variables	15	->	7					
j variable (4 values) xij variables:		->	grade					
rea	d0 read1 read3	->	read					
mat	ch0 math1 math3	->	math					
	age0 age1 age3	->	age					

. egen mn_math = mean(math), by(grade minority)

.

- twoway (connected mn_math grade if minority==1, sort lpatt(solid))
 (connected mn_math grade if minority==0, sort lpatt(dash)), xtitle(Grade)
 ytitle(Mean math score) legend(order(1 "Minority" 2 "Majority")) >
- >

See figure 11.

Figure 11: Mean growth by minority status

2. Fit a linear growth curve model by maximum likelihood using mixed with minority, a dummy variable for being a minority, as a covariate. The fixed part should include an intercept and a slope for grade, and the random part should include random intercepts and random slopes of grade. Allow the residual variances to differ between grades. Use robust standard errors.

Fitting the model with ML, we obtain

<pre>. mixed math minority grade id: grade, covariance(unstructured) mle > variance residual(independent, by(grade)) vce(robust)</pre>							
Mixed-effects Group variable	regression e: id		Number Number	of obs = of groups =	2,676 1,677		
1			Obs ne	r group.			
			obs pe	min =	1		
				avg =	1.6		
				max =	3		
			Wald c	hi2(2) =	5294.01		
Log pseudolike	elihood = -9398.	.376	Prob >	chi2 =	0.0000		
		(Std. Err	. adjusted f	or 1,677 clust	ers in id)		
	I	Robust					
math	Coef. St	td. Err.	z P> z	[95% Conf.	Interval]		
minority	-3.900024 .3	3215042 -12	.13 0.000	-4.530161	-3.269887		
grade	9.456502 .1	1347224 70	.19 0.000	9.192451	9.720553		
_cons	19.21837 .2	2597392 73	.99 0.000	18.70929	19.72745		
			Robust				
Random-effec	ts Parameters	Estimate	Std. Err.	[95% Conf.	Interval]		
id: Unstructur	red						
	var(grade)	6.234861	1.711512	3.640543	10.67794		
	<pre>var(_cons)</pre>	9.594577	4.593748	3.753898	24.52275		
cc	ov(grade,_cons)	2.400433	2.175627	-1.863718	6.664584		
Residual: Inde	ependent,						
by grade	0: var(e)	25,56491	4.866423	17,60408	37,12575		
	1: var(e)	56.30599	4.217525	48.61793	65.20978		
	2: var(e)	65.79614	6.177182	54.73769	79.08868		
	3: var(e)	26.36981	10.0308	12.51177	55.577		

3. By extending the model from step 2, test whether there is any evidence for a narrowing or widening of the minority gap over time.

<pre>. mixed math i.min > variance rest</pre>	nority##c.gra idual(indeper	de id: gra dent, by(grad	ade , cou le)) vce(variance (robust)	(unstructu	red) mle	
Mixed-effects reg	ression		Num	nber of	obs =	2,676	
Group variable: id	đ	Num	nber of	groups =	1,677		
			Obs	s per gr	oup:		
				1 0	min =	1	
					avg =	1.6	
					max =	3	
			Wal	d chi2(3) =	5340.80	
Log pseudolikeliho	pod = -9392.0	0728	Pro	b > chi	2 =	0.0000	
(Std. Err. adjusted for 1,677 clusters in id)							
		Pobuat					
math	Coef	Std Err	7	P> 7	[95% C	onf Intervall	
math	0001.	btu: hii.	2	17 2	[30% 0		
1.minority	-3.264258	.3634048	-8.98	0.000	-3.9765	18 -2.551998	
grade	9.92356	.1834012	54.11	0.000	9.56	41 10.28302	
0							
minority#c.grade							
1	9612353	.2694344	-3.57	0.000	-1.4893	174331536	
_cons	18.91507	.2759515	68.54	0.000	18.374	21 19.45592	
			Robust	;			
Random-effects H	Parameters	Estimate	Std. Er	r.	[95% Conf.	Interval]	
id: Unstructured							
	var(grade)	6.385398	1.68094	19	3.811625	10.6971	
	<pre>var(_cons)</pre>	10.82039	4.5696	57	4.728936	24.7584	
cov(gi	rade,_cons)	1.940931	2.1450	01	-2.26321	6.145073	
Residual: Independ	dent,						
by grade							
	0: var(e)	24.07512	4.78536	33	16.3071	35.54349	
	1: var(e)	55.91734	4.18155	58	48.29396	64.74411	
	2: var(e)	65.02604	6.14488	36	54.03184	78.2573	
	3: var(e)	26.52268	9.91045	55	12.75139	55.16671	

There is a significant interaction between grade and minority, suggesting a widening of the achievement gap (0.96 units wider per year, z = 3.57, p < 0.001).

4. Plot the mean fitted trajectories for minority and nonminority students.

```
. predict fixed, xb
```

- . twoway (connected fixed grade if minority==1, sort lpatt(solid))
- > (connected fixed grade if minority==0, sort lpatt(dash)), xtitle(Grade)
- > ytitle(Fitted mean math score) legend(order(1 "Minority" 2 "Majority"))

See figure 12.

Figure 12: Estimated model-implied mean math achievement versus grade by minority status

5. Plot fitted and observed growth trajectories for the first 20 children (id less than 15900).

```
. predict traj, fitted
(4392 missing values generated)
. twoway (line traj grade, sort) (connected math grade, sort lpatt(dash))
> if id<15900, by(id, legend(off))</pre>
```

See figure 13.

Figure 13: Observed data and predicted individual growth curves

6. Fit the model from step 2, but without minority as covariate, by using sem, again with robust standard errors.

```
. use reading, clear
. sem (math0 <- L1@1 L2@0 _cons@0)
>
      (math1 <- L1@1 L2@1 _cons@0)
      (math2 <- L1@1 L2@2 _cons@0)
>
      (math3 <- L1@1 L2@3 _cons@0),
>
>
     means(L1 L2) method(mlmv) vce(robust)
(90 all-missing observations excluded)
Endogenous variables
Measurement: math0 math1 math2 math3
Exogenous variables
Latent:
             L1 L2
Structural equation model
                                                Number of obs
                                                                          1,677
                                                                   =
Estimation method = mlmv
Log pseudolikelihood= -9465.8763
 (1) [math0]L1 = 1
 (2) [math1]L1 = 1
 (3)
       [math1]L2 = 1
 (4)
      [math2]L1 = 1
 (5) [math2]L2 = 2
      [math3]L1 = 1
 (6)
       [math3]L2 = 3
 (7)
 (8) [math0]_cons = 0
 (9) [math1]_cons = 0
(10) [math2]_cons = 0
 (11) [math3]_cons = 0
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
Measurement						
math0 <-						
L1	1	(constraine	(d)			
_cons	0	(constraine	a)			
math1 <-						
L1	1	(constraine	d)			
L2	1	(constraine	d)			
_cons	0	(constraine	d)			
math2 <-						
L1	1	(constraine	d)			
L2	2	(constraine	d)			
_cons	0	(constraine	d)			
math3 <-						
L1	1	(constraine	d)			
L2	3	(constraine	d)			
_cons	0	(constraine	d)			
mean(L1)	17.39718	. 1932765	90.01	0.000	17.01837	17.776
mean(L2)	9.475525	.1384919	68.42	0.000	9.204086	9.746964
var(e.math0)	20.85221	4.918087			13.13386	33.10638
var(e.math1)	57.9486	4.445613			49.85879	67.35102
var(e.math2)	64.88453	6.097478			53.96971	78.00676
var(e.math3)	23.17358	10.10076			9.86226	54.4515
var(L1)	16.1155	4.503779			9.318791	27.86943
var(L2)	7.34103	1.720645			4.637095	11.62165
cov(L1,L2)	1.416933	2.22961	0.64	0.525	-2.953022	5.786888

Exercise 7.1

8.1 Math-achievement data

1. Substitute the level-3 models into the level-2 models and then the resulting level-2 models into the level-1 model. Rewrite the final reduced-form model using the notation of this book.

$$\pi_{pjk} = \underbrace{\gamma_{p00} + \gamma_{p01}W_{1k} + u_{p0k}}_{\beta_{p0k}} + \beta_{p1}X_{1jk} + \beta_{p2}X_{2jk} + r_{pjk}$$
$$= \gamma_{p00} + \gamma_{p01}W_{1k} + u_{p0k} + \beta_{p1}X_{1jk} + \beta_{p2}X_{2jk} + r_{pjk}, \quad p = 0, 1$$

$$Y_{ijk} = \underbrace{\gamma_{000} + \gamma_{001}W_{1k} + u_{00k} + \beta_{01}X_{1jk} + \beta_{02}X_{2jk} + r_{0jk}}_{\pi_{0jk}} \\ + \underbrace{(\gamma_{100} + \gamma_{101}W_{1k} + u_{10k} + \beta_{11}X_{1jk} + \beta_{12}X_{2jk} + r_{1jk})}_{\pi_{1jk}} a_{1ijk} + e_{ijk}$$

$$= \gamma_{000} + \gamma_{001}W_{1k} + \beta_{01}X_{1jk} + \beta_{02}X_{2jk} \\ + \gamma_{100}a_{1ijk} + \gamma_{101}W_{1k}a_{1ijk} + \beta_{11}X_{1jk}a_{1ijk} + \beta_{12}X_{2jk}a_{1ijk} \\ + r_{0jk} + r_{1jk}a_{1ijk} + u_{00k} + u_{10k}a_{1ijk} + e_{ijk}$$

In the notation of this book:

$$Y_{ijk} = \beta_1 + \beta_2 W_{1k} + \beta_3 X_{1jk} + \beta_4 X_{2jk} + \beta_5 a_{1ijk} + \beta_6 W_{1k} a_{1ijk} + \beta_7 X_{1jk} a_{1ijk} + \beta_8 X_{2jk} a_{1ijk} + \zeta_{1jk}^{(2)} + \zeta_{2jk}^{(2)} a_{1ijk} + \zeta_{1k}^{(3)} + \zeta_{2k}^{(3)} a_{1ijk} + \epsilon_{ijk}$$

7,230

.48

2. Fit the model with ML using mixed with robust standard errors and interpret the estimates.

Number of obs

- . use achievement, clear
- . generate low_y = lowinc*year
- . generate black_y = black*year
- . generate hisp_y = hispanic*year

Here we fit the model using ML and obtain

. mixed math lowinc black hispanic year low_y black_y hisp_y

>

|| school: year, covariance(unstructured)
|| child: year, covariance(unstructured) mle vce(robust) >

Mixed-effects regression

No. of Observations per Group Group Variable Minimum Groups Average Maximum 18 120.5 387 school 60 child 1,721 2 4.2 6

					Wald	l ch	i2(7	7) =		3394.48
Log	${\tt pseudolikelihood}$	= -8119.603	35		Prob	>	chi	2 =		0.0000
			(Std.	Err.	adjusted	for	60	clusters	in	school)

math	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lowinc	0075778	.0014076	-5.38	0.000	0103367	0048189
black	5021085	.0774862	-6.48	0.000	6539786	3502384
hispanic	3193816	.0826101	-3.87	0.000	4812945	1574687
year	.8745122	.037601	23.26	0.000	.8008156	.9482087
low_y	0013689	.0005031	-2.72	0.007	002355	0003828
black_y	0309253	.0224603	-1.38	0.169	0749467	.0130962
hisp_y	.0430865	.0245736	1.75	0.080	0050769	.0912499
_cons	.1406379	.1147658	1.23	0.220	084299	.3655747

Random-effects Parameters	Estimate	Robust Std. Err.	[95% Conf.	Interval]
school: Unstructured				
var(year)	.0079801	.0021322	.0047269	.0134722
var(_cons)	.0780901	.0217667	.0452203	.1348524
<pre>cov(year,_cons)</pre>	.0008172	.0044148	0078357	.0094701
child: Unstructured				
var(year)	.0110938	.0025079	.0071228	.0172785
var(_cons)	.6222512	.0274383	.5707315	.6784216
<pre>cov(year,_cons)</pre>	.0466258	.0059811	.034903	.0583486
var(Residual)	.3015912	.0123929	.2782539	.3268858

For each percentage point increase in the proportion of low-income students per school, mean achievement for white (strictly, not African American or Hispanic) students in the middle of primary school is estimated to decrease by 0.0076 points. In the middle of primary school, mean math scores are estimated to be 0.50 points lower for African American students and 0.32 points lower for Hispanic students than for white students.

Math scores increase on average by 0.87 units per year for white children from schools with no low-income children. For each percentage point increase in the proportion of low-income children in the school, the mean increase in math scores per year goes down by -0.0014. African American and Hispanic children do not differ significantly from other children in their mean rate of growth.

The level of achievement in the middle of primary school varies between children within schools and between schools, as does the rate of growth. The between-student variability in achievement, after controlling for covariates, increases over time (due to a positive estimated intercept–slope correlation at level 2).

3. Include some of the other covariates in the model and interpret the estimates.

This step is up to you!

Exercise 8.1

9.5 Neighborhood-effects data

1. Fit a model for student educational attainment without covariates but with random intercepts of neighborhood and school by REML. Here and below, do not use the dfmethod(kroger) option because it takes a long time.

. egen pickn = tag(neighid) . summarize pickn Variable Obs Mean Std. Dev. Min Max pickn 2310 .2268398 .4188788 0 1 . display r(sum) 524 . egen picks = tag(schid) . summarize picks Variable Obs Mean Std. Dev. Min Max picks 2310 .0073593 .0854887 0 1 . display r(sum) 17 . mixed attain _all: R.schid neighid:, reml Mixed-effects REML regression Number of obs = 2,310 Group Variable Observations per Group Group Variable Croups Minimum Average Maximum all 1 2,310 2,310.0 2,310 Mald chi2(0) = . Log restricted-likelihood = -3180.0484 Prob > chi2 = . 1 attain Coef. Std. Err. z P> z [95% Conf. Interval] cons .0748585 .074656 1.00 0.3160714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] all: Identity var(R.schid) .08149 .0348397 .0352522 .1883744 neighid: Identity var(Residual) .7990432 .0263663 .7490018 .8524278	. use neighbor	rhoo	d, clear										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$. egen pickn =	= ta	g(neighid)										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$. summarize pi	ickn	L										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Variable		Obs		Mean	Std.	Dev	·.	Mi	in	М	ax	
. display r(sum) 524 . egen picks = tag(schid) . summarize picks Variable Obs Mean Std. Dev. Min Max picks 2310 .0073593 .0854887 0 1 . display r(sum) 17 . mixed attain _all: R.schid neighid:, reml Mixed-effects REML regression Number of obs = 2,310 Group Variable Groups Minimum Average Maximum 	pickn		2310	.226	8398	.418	8788	3		0		1	
. egen picks = tag(schid) . summarize picks Variable Obs Mean Std. Dev. Min Max picks 2310 .0073593 .0854887 0 1 . display r(sum) 17 . mixed attain _all: R.schid neighid:, reml Mixed-effects REML regression Number of obs = 2,310 Croup Variable Roor Observations per Group Group Variable Groups Minimum Average Maximum 	. display r(su 524	um)											
variable Obs Mean Std. Dev. Min Max picks 2310 .0073593 .0854887 0 1 . display r(sum) 17 . mixed attain _all: R.schid neighid:, reml .	. egen picks =	= ta	g(schid)										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$. summarize pi	icks											
picks 2310 .0073593 .0854887 0 1 . display r(sum) . <td>Variable</td> <td></td> <td>Obs</td> <td></td> <td>Mean</td> <td>Std.</td> <td>Dev</td> <td>·.</td> <td>M</td> <td>in</td> <td>М</td> <td>ax</td> <td></td>	Variable		Obs		Mean	Std.	Dev	·.	M	in	М	ax	
<pre>. mixed attain _all: R.schid neighid:, reml Mixed-effects REML regression Number of obs = 2,310 Group Variable Groups Minimum Average Maximum all 1 2,310 2,310.0 2,310 neighid 524 1 4.4 16 Log restricted-likelihood = -3180.0484 Prob > chi2 = . attain Coef. Std. Err. z P> z [95% Conf. Interval] cons .0748585 .074656 1.00 0.3160714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] all: Identity var(R.schid) .08149 .0348397 .0352522 .1883744 neighid: Identity var(_cons) .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278</pre>	picks . display r(su 17	1m)	2310	.007	3593	.085	4887			0		1	
Mixed-effects REML regression No. of Observations per Group Group Variable Groups Minimum Average Maximum all 1 2,310 2,310.0 2,310 Log restricted-likelihood = -3180.0484 Prob > chi2 = . attain Coef. Std. Err. z P> z [95% Conf. Interval] cons .0748585 .074656 1.00 0.316 0714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] all: Identity .08149 .0348397 .0352522 .1883744 neighid: Identity .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	mixed attair	. 11	all· B sc	hid	ll neid	Thid.	rem	1					
Group Variable No. of Groups Observations per Group Minimum Average Maximum Maximum all 1 2,310 2,310.0 2,310 neighid 524 1 4.4 16 Log restricted-likelihood = -3180.0484 Prob > chi2 = . attain Coef. Std. Err. z P> z [95% Conf. Interval] cons .0748585 .074656 1.00 0.316 0714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity .08149 .0348397 .0352522 .1883744 neighid: Identity .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	Mixed-effects	REM	L regressio	n	11 1101	51114.,	101	Number	of	obs	=		2,310
_all 1 2,310 2,310.0 2,310 neighid 524 1 4.4 16 Log restricted-likelihood = -3180.0484 Prob > chi2 = . attain Coef. Std. Err. z P> z [95% Conf. Interval] _cons .0748585 .074656 1.00 0.316 0714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity .08149 .0348397 .0352522 .1883744 neighid: Identity .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	Group Variabl	Le	No. of Groups		Obse Minimur	ervati n A	ons vera	per Gro uge 1	oup Maxi	imum			
Log restricted-likelihood = -3180.0484 Wald chi2(0) = . attain Coef. Std. Err. z Prob > chi2 = . cons .0748585 .074656 1.00 0.316 0714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] all: Identity .08149 .0348397 .0352522 .1883744 neighid: Identity .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	_al neighi	ll id	1 524		2,310	D 2 1	,310 4	0.0 1.4	2	,310 16			
attain Coef. Std. Err. z P> z [95% Conf. Interval] _cons .0748585 .074656 1.00 0.316 0714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity var(R.schid) .08149 .0348397 .0352522 .1883744 neighid: Identity var(_cons) .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	Log restricted	l-li	kelihood =	-318	0.0484			Wald cł Prob >	hi2) chi	(0) i2	=		•
_cons .0748585 .074656 1.00 0.316 0714646 .2211817 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity .08149 .0348397 .0352522 .1883744 neighid: Identity .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	attain		Coef.	Std.	Err.	z		P> z		[95%	Conf.	In	terval]
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity var(R.schid) .08149 .0348397 .0352522 .1883744 neighid: Identity var(_cons) .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	_cons		.0748585	.07	4656	1.0	0	0.316	-	0714	4646		2211817
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity .08149 .0348397 .0352522 .1883744 neighid: Identity .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278													
_all: Identity .08149 .0348397 .0352522 .1883744 neighid: Identity .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	Random-effec	cts	Parameters		Estima	ate	Std.	Err.		[95%	Conf.	In	terval]
neighid: Identity var(_cons) .1410982 .0218534 .1041566 .191142 var(Residual) .7990432 .0263663 .7490018 .8524278	_all: Identity	v v	ar(R.schid)		.08	149	.034	8397		.035	2522	•	1883744
var(Residual) .7990432 .0263663 .7490018 .8524278	neighid: Ident	tity	var(_cons)		. 14109	982	.021	.8534		.104	1566		.191142
		va	r(Residual)		.79904	432	.026	3663		.749	0018	.:	8524278

LR test vs. linear model: chi2(2) = 209.95 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. 2. Include a random interaction between neighborhood and school, and use a likelihood-ratio test to decide whether the interaction should be retained (use a 5% level of significance).

. estimates st . mixed attair Mixed-effects	core 1 REN	e model1 _all: R.schi ML regression	id neighid	: schid: Numbe	;, reml er of obs	=	2,310
Group Variabl	.e	No. of Groups	Observa Minimum	tions per (Average	Group Maximum		
_al neighi schi	1 .d .d	1 524 784	2,310 1 1	2,310.0 4.4 2.9	2,310 16 14		
Log restricted	chi2(0) > chi2	=					
attain		Coef. St	d. Err.	z P> z	[95%	Conf.	Interval]
_cons		.0744393 .0	0748152 0	0.99 0.320)072	1959	.2210744
Random-effec	ts	Parameters	Estimate	Std. Err	. [95%	Conf.	Interval]
_all: Identity	, ,	var(R.schid)	.0819288	.0352785	.035	2297	. 19053
neighid: Ident	ity	var(_cons)	.0906067	.0335769	.043	8252	.1873255
schid: Identit	у	var(_cons)	.0684128	.0365625	.024	0005	.1950085
	va	ar(Residual)	.7819341	.0271391	.730	5114	.8369767
LR test vs. li Note: LR test . estimates st . lrtest model	inea is core	ar model: chi2 conservative model2 model2	2(3) = 214.10 and provided	only for 1	Prob reference.	> chi	2 = 0.0000

Likelihood-ratio test (Assumption: model1 nested in model2)	LR chi2(1) Prob > chi2	= 4.14 = 0.0418
Note: The reported degrees of freedom assumes the nul the boundary of the parameter space. If this i reported test is conservative.	l hypothesis s not true, t	is not on then the
Note: LR tests based on REML are valid only when the specification is identical for both models.	fixed-effect:	3

There is evidence for an interaction between neighborhood and school at the 5% level of significance since the conservative test gives a *p*-value smaller than 0.05. The correct asymptotic null distribution for comparing a model with *k* uncorrelated random effects with a model with k + 1 uncorrelated random effects is given in display 8.1 as a 50:50 mixture of a spike at 0 and a $\chi^2(1)$, so we should divide the *p*-value above by 2, giving 0.021.

MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal

3. Include the neighborhood-level covariate deprive in the model with the random interaction. Discuss both the estimated coefficient of deprive and the changes in the estimated standard deviations of the random effects due to including this covariate.

Mixed-effects	r of obs	=	2,310			
Group Variable Groups		Observa Minimum	tions per G Average	roup Maximum		
_al neighi schi	l 1 d 524 d 784	2,310 1 1	2,310.0 4.4 2.9	2,310 16 14		
Log restricted	-likelihood = -	3120.3248	Wald & Prob >	chi2(1) > chi2	=	144.55 0.0000
attain	Coef. S	Std. Err.	z P> z	[95% C	onf.	Interval]
deprive _cons	4620465 .0947763 .	.038431 -12 0559951 1	2.02 0.000 69 0.091	53736 01497	98 21	3867231 .2045248
Random-effec	ts Parameters	Estimate	Std. Err.	[95% C	onf.	Interval]
_all: Identity	var(R.schid)	.0433886	.0207318	.01700	82	.1106861
neighid: Ident	ity var(_cons)	.0391088	.0264004	.01041	53	.1468517
schid: Identit	y var(_cons)	.0319424	.0304145	.00494	17	.2064689
	var(Residual)	.7974906	.0276547	.74508	94	.8535771
LR test vs. li	near model: chi	.2(3) = 70.32		Prob >	chi	2 = 0.0000

. mixed attain deprive || _all: R.schid || neighid: || schid:, reml Mixed-effects REML regression Number of obs =

Note: LR test is conservative and provided only for reference.

More deprived neighborhoods are associated with lower mean attainment. All residual standard deviations have gone down, except the level-1 standard deviation. In particular, the neighborhood standard deviation has gone down because some of the between-neighborhood variability has been explained by **deprive**. Since children from deprived neighborhoods will often end up in schools that attract other children from deprived neighborhoods, it is not surprising that controlling for **deprive** has also reduced the between-school standard deviation and the standard deviation of the school by neighborhood interaction. 4. Remove the neighborhood-by-school random interaction (which is no longer significant at the 5% level) and include all student-level covariates. Interpret the estimated coefficients and the change in the estimated standard deviations.

	mixed at	tain deprive	p7vrq p7re	ad dadocc dad	unemp
>	daded	momed male	_all: R.	schid neig	hid:, reml

Mixed-effects REML regression

Number of obs = 2,310

Group Variab	le	No. of Groups	N	Obse (inimum	ervat 1	ions Avera	per Gi age	roup Maximum		
_al neighi	ll id	1 524		2,310 1)	2,31	0.0 4.4	2,310 16		
Log restricted	l-likeliho	ood =	-2416	6.7336			Wald o Prob >	chi2(8) ≻ chi2	= =	2504.87 0.0000
attain	Co	ef.	Std.	Err.		Z	P> z	[95%	Conf.	Interval]
deprive p7vrq p7read dadocc dadunemp daded momed male _cons	1565 . 0275. . 0262 . 0080 1210 . 1436 . 0593 0559 . 0858	115 499 531 982 332 937 024 831 849	.0257 .0022 .0017 .0013 .0468 .0468 .0468 .0374 .028	7023 2678 7537 3631 3652 3658 4486 3443 2789	-6. 12. 14. 5. -2. 3. 1. -1. 3.	09 15 97 94 58 52 58 97 04	0.000 0.000 0.000 0.010 0.010 0.113 0.049 0.002	206 .02 .005 212 .063 014 111 .030	8871 3105 2816 4267 8874 5982 0956 7304 4592	1061359 .0319948 .0296903 .0107698 029179 .2237892 .1327003 0002357 .1413105
Random-effec	ts Param	eters		Estima	ite	Std	. Err.	[95%	Conf.	Interval]
_all: Identity	var(R.	schid)		.00433	861	.00	28664	.001	1869	.0158411
neighid: Ident	tity var(_cons)		.00382	204	.00	67428	.000	1202	.121464
	var(Res	idual)		.45692	92	.0	14911	.428	6191	.4871091

LR test vs. linear model: chi2(2) = 7.55 Prob > chi2 = 0.0230

Note: LR test is conservative and provided only for reference.

Even after controlling for student-level variables, the level of deprivation of the neighborhood still has a negative, but smaller, effect on attainment. Previous performance (p7vrq and p7read) has a positive effect on attainment, as does father's occupation status and father's education (after controlling for the other covariates). Having an unemployed father is associated with lower mean attainment, and males have lower mean attainment than females (after controlling for the other covariates).

The estimated standard deviations of the random effects of neighborhood and school have both decreased a lot compared to the model without covariates in step 1.

5. For the final model, estimate residual intraclass correlations due to being in

- a. the same neighborhood but not the same school
- b. the same school but not the same neighborhood
- c. both the same neighborhood and the same school

$$\widehat{\rho}(\text{neighborhood}) = \frac{0.0038204}{0.0038204 + 0.0043361 + 0.4569292} = 0.008$$
$$\widehat{\rho}(\text{school}) = \frac{0.0043361}{0.0038204 + 0.0043361 + 0.4569292} = 0.009$$
$$\widehat{\rho}(\text{school,neighborhood}) = \frac{0.0038204 + 0.0043361}{0.0038204 + 0.0043361 + 0.4569292} = 0.018$$

- - . supclust neighid schid, gen(region)
 - 2 clusters in 2310 observarions
 - . sort region schid
 - . tabulate schid if region==1

· tabalate Senia II region I									
schid	Freq.	Percent	Cum.						
0	146	6.58	6.58						
1	22	0.99	7.57						
2	146	6.58	14.16						
3	159	7.17	21.33						
5	155	6.99	28.31						
6	101	4.55	32.87						
7	286	12.89	45.76						
8	112	5.05	50.81						
9	136	6.13	56.94						
10	133	6.00	62.94						
15	190	8.57	71.51						
16	111	5.00	76.51						
17	154	6.94	83.45						
18	91	4.10	87.56						
19	102	4.60	92.16						
20	174	7.84	100.00						
Total	2,218	100.00							
. tabulate so	chid if regio	n==2							
schid	Freq.	Percent	Cum.						
13	92	100.00	100.00						
Total	92	100.00							

There are two regions, but one only contains a single high school so the number of random effects for high schools can be reduced from 17 to 16. Not a large saving in this case.