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Disclaimer

We have solved the exercises as well as we could but there may be better solutions and we
may have made mistakes. We are grateful for any suggestions for improvement.

Please also check the errata at http://www.stata.com/bookstore/mlmus4.html for any
errors in the wording of the exercises themselves.
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1.1 High-school-and-beyond data

1. Keep only data on the five schools with the lowest values of schoolid (schoolid 1224, 1288,
1296, 1308, and 1317). Also drop the variables not listed above.

. use hsb, clear

. keep if schoolid <= 1317
(6997 observations deleted)

. keep schoolid mathach ses minority

2. Obtain the means and standard deviations for the continuous variables and frequency tables
for the categorical variables. Also obtain the mean and standard deviation of the continuous
variables for each of the five schools (by using the table or tabstat command).

. summarize mathach ses

Variable Obs Mean Std. Dev. Min Max

mathach 188 11.26894 6.874985 -2.832 24.993
ses 188 -.0567234 .7167301 -1.658 1.512

. tabulate schoolid

schoolid Freq. Percent Cum.

1224 47 25.00 25.00
1288 25 13.30 38.30
1296 48 25.53 63.83
1308 20 10.64 74.47
1317 48 25.53 100.00

Total 188 100.00

. tabulate minority

minority Freq. Percent Cum.

0 91 48.40 48.40
1 97 51.60 100.00

Total 188 100.00

(Continued on next page)
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. tabstat mathach ses, by(schoolid) statistics(mean sd)

Summary statistics: mean, sd
by categories of: schoolid

schoolid mathach ses

1224 9.715447 -.434383
7.592785 .6272834

1288 13.5108 .1216
7.021843 .6692812

1296 7.635958 -.4255
5.35107 .6470276

1308 16.2555 .528
6.114241 .479807

1317 13.17769 .3453333
5.462586 .5561583

Total 11.26894 -.0567234
6.874985 .7167301

3. Produce a histogram and a box plot of mathach.

. histogram mathach, xtitle(Math achievement) fintensity(0)

The histogram is shown in figure 1.

0
.0

2
.0

4
.0

6
D

en
si

ty

−10 0 10 20 30
Math achievement

Figure 1: Histogram of math achievement

(Continued on next page)
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. graph box mathach, ytitle(Math achievement) intensity(0)
> medline(lcolor(black) lwidth(medthick))

The boxplot is shown in figure 2.
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Figure 2: Boxplot of math achievement

4. Produce a scatterplot of mathach versus ses. Also produce a scatterplot for each school (by
using the by() option).

. twoway scatter mathach ses, xtitle(SES) ytitle(Math achievement)

The scatterplot is shown in figure 3.

. twoway scatter mathach ses, by(schoolid, note(" ") compact)
> ytitle(Math achievement) xtitle(SES)

The scatterplots by school are shown in figure 4.

(Continued on next page)
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Figure 3: Scatterplot of math achievement versus SES
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Figure 4: Scatterplot of math achievement versus SES by school
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5. Treating mathach as the response variable yi and ses as an explanatory variable xi, consider
the linear regression of yi on xi:

yi = β1 + β2xi + ǫi, ǫi|xi ∼ N(0, σ2)

a. Fit the model.

. regress mathach ses

Source SS df MS Number of obs = 188
F( 1, 186) = 25.09

Model 1050.53774 1 1050.53774 Prob > F = 0.0000
Residual 7788.09508 186 41.8714789 R-squared = 0.1189

Adj R-squared = 0.1141
Total 8838.63282 187 47.2654161 Root MSE = 6.4708

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 3.306963 .6602109 5.01 0.000 2.004499 4.609427
_cons 11.45652 .4734164 24.20 0.000 10.52257 12.39048

b. Report and interpret the estimates of the three parameters of this model.

The intercept is estimated as β̂1 = 11.46, the slope of ses is estimated as β̂2 = 3.31, and
the residual standard deviation is estimated as σ̂ = 6.47. For children with ses equal to
zero, the mean math achievement is estimated as 11.46. When ses increases one unit, the
estimated mean math achievement increases by 3.31 points. The standard deviation of
math achievement, for a given value of ses, is estimated as 6.47. This is also the residual
standard deviation.

c. Interpret the confidence interval and p-value associated with β2.

We are 95% confident that the true slope of ses lies in the range 2.00 to 4.61. (In repeated
samples, 95% of the 95% confidence intervals contain the truth.) The p-value is less than
0.001, so if the null hypothesis that β2 = 0 were true, the chances of getting an estimated
coefficient this far or further from zero (in either direction) are tiny. We therefore reject
the null hypothesis, say at the 5% or 1% level of significance.

6. Using the predict command, create a new variable yhat that is equal to the predicted values
ŷi of mathach:

ŷi = β̂1 + β̂2xi

. predict yhat, xb

7. Produce a scatterplot of mathach versus ses with the regression line (yhat versus ses) supe-
rimposed. Produce the same scatterplot by school. Does it appear as if schools differ in their
mean math achievement after controlling for ses?

. twoway (scatter mathach ses) (line yhat ses), xtitle(SES)
> ytitle(Math achievement) legend(order(1 "Observed" 2 "Fitted"))

(Continued on next page)
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The scatterplot with the fitted regression line is shown in figure 5.
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Figure 5: Scatterplot with fitted regression line

. twoway (scatter mathach ses) (line yhat ses, sort)
> (lfit mathach ses, lpatt(solid)),
> by(school, compact note(" ")) xtitle(SES) ytitle(Math achievement)
> legend(order(1 "Observed" 2 "Fitted overall" 3 "Fitted separately"))

The scatterplots with the fitted regression lines for each school are shown in figure 6. Note
that lfit combined with by() fits a separate regression line for each school whereas yhat is
the fitted regression line for all schools combined from step 5. For schools 1296 and 1308,
the estimated mean math achievement at for instance ses=0 is greater and smaller than the
estimated mean across schools, respectively.

(Continued on next page)
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Figure 6: Scatterplots with fitted regression lines by school



8 Exercise 1.1

8. Extend the regression model from step 5 by including dummy variables for four of the five
schools.

a. Fit the model with and without factor variables.

Without factor variables:

. tabulate schoolid, generate(s)

schoolid Freq. Percent Cum.

1224 47 25.00 25.00
1288 25 13.30 38.30
1296 48 25.53 63.83
1308 20 10.64 74.47
1317 48 25.53 100.00

Total 188 100.00

. regress mathach ses s2 s3 s4 s5

Source SS df MS Number of obs = 188
F( 5, 182) = 9.05

Model 1760.63146 5 352.126292 Prob > F = 0.0000
Residual 7078.00136 182 38.8901173 R-squared = 0.1992

Adj R-squared = 0.1772
Total 8838.63282 187 47.2654161 Root MSE = 6.2362

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 1.788963 .7593896 2.36 0.020 .2906238 3.287303
s2 2.80072 1.60041 1.75 0.082 -.3570241 5.958464
s3 -2.09538 1.279729 -1.64 0.103 -4.620392 .4296325
s4 4.818385 1.818257 2.65 0.009 1.230811 8.405959
s5 2.067357 1.410054 1.47 0.144 -.7147984 4.849512

_cons 10.49254 .9676057 10.84 0.000 8.583375 12.40171

With factor variables:

. regress mathach ses i.schoolid

Source SS df MS Number of obs = 188
F( 5, 182) = 9.05

Model 1760.63146 5 352.126292 Prob > F = 0.0000
Residual 7078.00136 182 38.8901173 R-squared = 0.1992

Adj R-squared = 0.1772
Total 8838.63282 187 47.2654161 Root MSE = 6.2362

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 1.788963 .7593896 2.36 0.020 .2906238 3.287303

schoolid
1288 2.80072 1.60041 1.75 0.082 -.3570241 5.958464
1296 -2.09538 1.279729 -1.64 0.103 -4.620392 .4296325
1308 4.818385 1.818257 2.65 0.009 1.230811 8.405959
1317 2.067357 1.410054 1.47 0.144 -.7147984 4.849512

_cons 10.49254 .9676057 10.84 0.000 8.583375 12.40171
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b. Describe what the coefficients of the school dummies represent.

Interpreting the output without factor variables, the coefficient of s2 is the estimated dif-
ference in mean math achievement between school 2 (number 1288) and school 1 (number
1224), for a given value of SES. Similarly, the coefficient of s3 is the estimated difference
between school 3 and school 1, the coefficient of s4 is the estimated difference between
school 4 and school 1, and the coefficient of s5 is the estimated difference between school
5 and school 1, controlling for SES.

c. Test the null hypothesis that the population coefficients of all four dummy variables are
0 (use testparm).

. testparm i.schoolid

( 1) 1288.schoolid = 0
( 2) 1296.schoolid = 0
( 3) 1308.schoolid = 0
( 4) 1317.schoolid = 0

F( 4, 182) = 4.56
Prob > F = 0.0015

After controlling for SES, there are significant differences in mean math achievement
between the schools (e.g., at the 5% level) with F (4, 182) = 4.56, p = 0.002. (If dummy
variables s2 to s5 have been used in the regress command instead of factor variables,
use testparm s2-s5.)

9. Add interactions between the school dummies and ses using factor variables, and interpret
the estimated coefficients.

. regress mathach c.ses##i.schoolid, nolstretch

Source SS df MS Number of obs = 188
F( 9, 178) = 5.13

Model 1819.07989 9 202.119987 Prob > F = 0.0000
Residual 7019.55293 178 39.4356906 R-squared = 0.2058

Adj R-squared = 0.1657
Total 8838.63282 187 47.2654161 Root MSE = 6.2798

mathach Coef. Std. Err. t P>|t| [95% Conf. Interval]

ses 2.508582 1.476053 1.70 0.091 -.4042335 5.421397

schoolid
1288 2.309805 1.697595 1.36 0.175 -1.040196 5.659806
1296 -2.711353 1.560321 -1.74 0.084 -5.790461 .3677543
1308 5.383827 2.394869 2.25 0.026 .6578391 10.10981
1317 1.932631 1.547654 1.25 0.213 -1.121481 4.986743

schoolid#
c.ses
1288 .746867 2.418057 0.31 0.758 -4.024881 5.518615
1296 -1.432623 2.045228 -0.70 0.485 -5.468636 2.60339
1308 -2.382557 3.345818 -0.71 0.477 -8.985132 4.220017
1317 -1.234669 2.211649 -0.56 0.577 -5.599094 3.129756

_cons 10.80513 1.118105 9.66 0.000 8.598685 13.01158

(Continued on next page)
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The coefficient of ses now represents the estimated slope of ses in the reference school (school
1224) and the coefficients of the school dummies represent the estimated differences in mean
achievement between each school and the reference school when ses takes the value 0. The
coefficients of the interactions between ses and the school dummies represent the estimated
differences between the slope of ses for each school and the slope of ses for the reference
school. These differences are not significant at the 5% level.
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2.7 Georgian-birthweight data

1. Fit a variance-components model to the birthweights by using mixed with the mle option,
treating children as level 1 and mothers as level 2.

. use birthwt, clear

. mixed birthwt || mother:, mle vce(robust)

Mixed-effects regression Number of obs = 4,390
Group variable: mother Number of groups = 878

Obs per group:
min = 5
avg = 5.0
max = 5

Wald chi2(0) = .
Log pseudolikelihood = -33572.321 Prob > chi2 = .

(Std. Err. adjusted for 878 clusters in mother)

Robust
birthwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 3156.304 14.07107 224.31 0.000 3128.726 3183.883

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mother: Identity
var(_cons) 135719.2 8699.054 119696.8 153886.2

var(Residual) 189613 7815.744 174896.9 205567.4

2. At the 5% level, is there significant between-mother variability in birthweights? Fully report
the method and result of the test. (Hint: If you used vce(robust), the lrtest command will
work unless you use the force option.)

The null hypothesis that the between-mother variance is zero was tested using a likelihood
ratio test. First, the model from Step 1 that has a random intercept was fit and the estimates
stored (using the estimates store command). Second, a model without a random intercept
was fit and the estimates stored. Finally, a likelihood-ratio test was performed using the
lrtest command with the force option (because lrtest must be forced to perform the test
when vce(robust) has been used):

. quietly mixed birthwt || mother:, mle vce(robust)

. estimates store vc

. quietly mixed birthwt, mle vce(robust)

. estimates store novc

. lrtest vc novc, force

Likelihood-ratio test LR chi2(1) = 1034.16
(Assumption: novc nested in vc) Prob > chi2 = 0.0000

The likelihood ratio statistic was 1034 and the p-value, based on the correct asymptotic sam-
pling distribution, is p < 0.001, so we can reject the null hypothesis and conclude that there
is significant between-mother variability.
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3. Obtain the estimated intraclass correlation by hand and interpret it.

The estimated intraclass correlation is 135719.2/(135719.2+189613) = 0.42, meaning that the
correlation between sibling’s birthweights is 0.42 and that 42% of the variance in birthweights
is shared among siblings.

4. Obtain empirical Bayes predictions of the random intercept and plot a histogram of the empi-
rical Bayes predictions.

. estimates restore vc
(results vc are active now)

. predict eb, reffects

. egen pickone = tag(mother)

. histogram eb if pickone==1

The graph in figure 7 shows that the predictions are approximately normally distributed.
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Figure 7: Histogram of empirical Bayes predictions of random intercepts
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2.8 q Teacher-expectancy meta-analysis data

1. Fit the model above by REML using the meta commands (available as of Stata 16). To declare
the variables containing the estimate and standard error, type meta set est se. To perform
random-effects meta-analysis using REML, type meta summarize, random(reml).

. use expectancy, clear

. meta set est se

Meta-analysis setting information

Study information
No. of studies: 19

Study label: Generic
Study size: N/A

Effect size
Type: <generic>
Label: Effect size

Variable: est

Precision
Std. err.: se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects
Method: REML

(Continued on next page)
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. meta summarize, random(reml)

Effect-size label: Effect size
Effect size: est

Std. err.: se

Meta-analysis summary Number of studies = 19
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0188

I2 (%) = 41.83
H2 = 1.72

Study Effect size [95% conf. interval] % weight

Study 1 0.030 -0.215 0.275 7.74
Study 2 0.120 -0.168 0.408 6.60
Study 3 -0.140 -0.467 0.187 5.71
Study 4 1.180 0.449 1.911 1.69
Study 5 0.260 -0.463 0.983 1.72
Study 6 -0.060 -0.262 0.142 9.06
Study 7 -0.020 -0.222 0.182 9.06
Study 8 -0.320 -0.751 0.111 3.97
Study 9 0.270 -0.051 0.591 5.83
Study 10 0.800 0.308 1.292 3.26
Study 11 0.540 -0.052 1.132 2.42
Study 12 0.180 -0.255 0.615 3.92
Study 13 -0.020 -0.586 0.546 2.61
Study 14 0.230 -0.338 0.798 2.59
Study 15 -0.180 -0.492 0.132 6.05
Study 16 -0.060 -0.387 0.267 5.71
Study 17 0.300 0.028 0.572 6.99
Study 18 0.070 -0.114 0.254 9.64
Study 19 -0.070 -0.411 0.271 5.43

theta 0.084 -0.018 0.185

Test of theta = 0: z = 1.62 Prob > |z| = 0.1050
Test of homogeneity: Q = chi2(18) = 35.83 Prob > Q = 0.0074

2. Find the estimated model parameters in the output and interpret them.

The estimated model parameters are β̂ = 0.084 and τ̂2 = 0.019. Hence, the population mean
intervention effect is estimated as 0.084 and the between-study variance of the effect estimated
as 0.019.
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3. Fit a common-effects meta-analysis (often called fixed-effects meta-analysis) that simply omits
ζj from the model and assumes that all true effect sizes are equal to β. This can be accom-
plished by replacing the random(reml) option with the common option in the meta summarize

command.

. meta summarize, common

Effect-size label: Effect size
Effect size: est

Std. err.: se

Meta-analysis summary Number of studies = 19
Common-effect model
Method: Inverse-variance

Study Effect size [95% conf. interval] % weight

Study 1 0.030 -0.215 0.275 8.52
Study 2 0.120 -0.168 0.408 6.16
Study 3 -0.140 -0.467 0.187 4.77
Study 4 1.180 0.449 1.911 0.96
Study 5 0.260 -0.463 0.983 0.98
Study 6 -0.060 -0.262 0.142 12.54
Study 7 -0.020 -0.222 0.182 12.54
Study 8 -0.320 -0.751 0.111 2.75
Study 9 0.270 -0.051 0.591 4.95
Study 10 0.800 0.308 1.292 2.11
Study 11 0.540 -0.052 1.132 1.46
Study 12 0.180 -0.255 0.615 2.70
Study 13 -0.020 -0.586 0.546 1.59
Study 14 0.230 -0.338 0.798 1.58
Study 15 -0.180 -0.492 0.132 5.26
Study 16 -0.060 -0.387 0.267 4.77
Study 17 0.300 0.028 0.572 6.89
Study 18 0.070 -0.114 0.254 15.06
Study 19 -0.070 -0.411 0.271 4.40

theta 0.060 -0.011 0.132

Test of theta = 0: z = 1.65 Prob > |z| = 0.0979

4. Explain how the model differs from what we have referred to as fixed-effects models in this
chapter (apart from the fact that the data are in aggregated form and the level-1 variance is
assumed known).

The model does not contain fixed effects αj for studies but assumes that the studies have no
effects, corresponding to αj = 0.

5. Compare the width of the confidence intervals for β between the random- and fixed-effects
meta-analyses, and explain why they differ the way they do.

The estimated 95% confidence intervals are (−0.018 to 0.185) for the random-effects meta-
analysis and (−0.011 to 0.132) for the fixed-effects meta-analysis. The fixed-effects confidence
interval is narrower because the random effect is omitted, leading to a smaller standard error,
analogous to the OLS standard error discussed in section 2.10.3.
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3.7 High-school-and-beyond data

1. Use mixed with the mle and vce(robust) options to fit a model for mathach with a fixed
effect for SES and a random intercept for school.

. use hsb, clear

. quietly xtset schoolid

. mixed mathach ses || schoolid:, mle vce(robust)

Mixed-effects regression Number of obs = 7,185
Group variable: schoolid Number of groups = 160

Obs per group:
min = 14
avg = 44.9
max = 67

Wald chi2(1) = 399.57
Log pseudolikelihood = -23320.502 Prob > chi2 = 0.0000

(Std. err. adjusted for 160 clusters in schoolid)

Robust
mathach Coefficient std. err. z P>|z| [95% conf. interval]

ses 2.391499 .1196396 19.99 0.000 2.15701 2.625989
_cons 12.65762 .187876 67.37 0.000 12.28939 13.02585

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

schoolid: Identity
var(_cons) 4.728519 .7058507 3.529083 6.33561

var(Residual) 37.02979 .7142258 35.65606 38.45644

2. Use xtsum to explore the between-school and within-school variability of SES.

. quietly xtset schoolid

. xtsum ses

Variable Mean Std. dev. Min Max Observations

ses overall .0001434 .7793552 -3.758 2.692 N = 7185
between .4139706 -1.193946 .8249825 n = 160
within .660588 -3.650597 2.856222 T-bar = 44.9063

3. Produce a variable, mn ses, equal to the schools’ mean SES and another variable, dev ses,
equal to the difference between the students’ SES and the mean SES for their school.

. egen mn_ses=mean(ses), by(schoolid)

. summarize mn_ses

Variable Obs Mean Std. dev. Min Max

mn_ses 7,185 .0001434 .4135432 -1.193946 .8249825

. generate dev_ses = ses - mn_ses
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4. The model in step 1 assumes that SES has the same effect within and between schools. Check
this by using the covariates mn ses and dev ses instead of ses and comparing the coefficients
by using lincom.

. quietly xtset schoolid

. mixed mathach dev_ses mn_ses || schoolid:, mle vce(robust)

Mixed-effects regression Number of obs = 7,185
Group variable: schoolid Number of groups = 160

Obs per group:
min = 14
avg = 44.9
max = 67

Wald chi2(2) = 661.55
Log pseudolikelihood = -23281.905 Prob > chi2 = 0.0000

(Std. err. adjusted for 160 clusters in schoolid)

Robust
mathach Coefficient std. err. z P>|z| [95% conf. interval]

dev_ses 2.191172 .1297731 16.88 0.000 1.936821 2.445523
mn_ses 5.865599 .3211185 18.27 0.000 5.236218 6.49498
_cons 12.68359 .1487873 85.25 0.000 12.39198 12.97521

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

schoolid: Identity
var(_cons) 2.647039 .4694711 1.869794 3.747373

var(Residual) 37.01403 .717711 35.63373 38.44779

. lincom mn_ses - dev_ses

( 1) - [mathach]dev_ses + [mathach]mn_ses = 0

mathach Coefficient Std. err. z P>|z| [95% conf. interval]

(1) 3.674427 .3540706 10.38 0.000 2.980462 4.368393

The estimated between-school effect of SES is considerably larger than the estimated within-
school effect. The difference is statistically significant at the 5% level (z = 10.38, p < 0.001).

5. Interpret the estimated coefficients of mn ses and dev ses.

The coefficient of dev ses is the estimated within-school effect of SES. It represents the mean
difference in attainment between two students from the same school who differ in their SES by
one unit. The estimate could be influenced by omitted student-level characteristics (confoun-
ders) that correlate with SES and with attainment (such as being an English language learner),
but not by omitted school-level variables.

The coefficient of mn ses is the estimated between-school effect of SES, i.e., the mean incre-
ase in school mean attainment per unit increase in school mean SES. This effect represents a
combination of student-level effects of SES on attainment (due to differences between schools
in student composition), peer effects, selection effects, and effects of omitted school-level va-
riables (e.g., higher SES schools may have better buildings, better-qualified teachers, smaller
classrooms). The difference of 3.67, often described as an estimate of the contextual effect, is
a combination of all the effects described above, except the student-level effects.
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3.9 q Small-area estimation of crop areas

1. Fit the model above by REML using mixed.

. use cropareas, clear

. mixed cornhec cornpix soypix || county:, reml stddeviations

Mixed-effects REML regression Number of obs = 36
Group variable: county Number of groups = 12

Obs per group:
min = 1
avg = 3.0
max = 5

Wald chi2(2) = 152.38
Log restricted-likelihood = -149.18332 Prob > chi2 = 0.0000

cornhec Coefficient Std. err. z P>|z| [95% conf. interval]

cornpix .3287217 .049876 6.59 0.000 .2309666 .4264769
soypix -.1345685 .0551942 -2.44 0.015 -.242747 -.0263899
_cons 51.0704 24.4097 2.09 0.036 3.228255 98.91254

Random-effects parameters Estimate Std. err. [95% conf. interval]

county: Identity
sd(_cons) 11.83317 3.680005 6.432582 21.76791

sd(Residual) 12.13543 1.79713 9.078228 16.22218

LR test vs. linear model: chibar2(01) = 7.70 Prob >= chibar2 = 0.0028

2. Obtain predictions of the number of hectares devoted to corn per segment for each of the
counties using the method described above. (The prediction for Cerro Gordo should be 122.20.)

. predict blup, reffects

. generate predicted = _b[_cons] + _b[cornpix]*mn_cornpix + _b[soypix]*mn_soypix
> + blup

3. Obtain the estimated comparative standard errors of ζ̃j .

. predict blup2, reffects reses(comp_se)

. egen pickone = tag(county)

. list name predicted comp_se if pickone==1, clean noobs

name predic~d comp_se
Cerro Gordo 122.1962 9.158494

Hamilton 126.2227 8.896266
Worth 106.6957 8.755633

Humboldt 108.4434 7.790918
Franklin 144.2812 6.830298

Pocahontas 112.1405 7.032683
Winnebago 112.8043 6.990283

Wright 121.9988 6.933561
Webster 115.3265 6.529529
Hancock 124.4203 6.084943
Kossuth 106.9044 6.001587
Hardin 143.0149 6.094162
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4. In what way are these standard errors better than those you would have obtained had you
estimated the model using mixed with the mle option?

The estimated standard errors produced by mixed with the mle option ignore uncertainty in
the parameter estimates β̂1, β̂2, β̂3, ψ̂, and θ̂, and could severely understate the uncertainty
in the small-area estimates.
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4.5 Well-being-in-the-U.S.-army data

1. Fit a random-intercept model for wbeing with fixed coefficients for hrs, cohes, and lead, and
a random intercept for grp. Use ML estimation with robust standard errors.

. use army, clear

. mixed wbeing hrs cohes lead || grp:, mle stddeviations vce(robust)

Mixed-effects regression Number of obs = 7,382
Group variable: grp Number of groups = 99

Obs per group:
min = 15
avg = 74.6
max = 226

Wald chi2(3) = 961.20
Log pseudolikelihood = -8898.2812 Prob > chi2 = 0.0000

(Std. Err. adjusted for 99 clusters in grp)

Robust
wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0296428 .0049342 -6.01 0.000 -.0393136 -.0199719
cohes .0775074 .0135014 5.74 0.000 .0510452 .1039696
lead .4646839 .0196422 23.66 0.000 .4261859 .5031819
_cons 1.530603 .0903327 16.94 0.000 1.353554 1.707652

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Identity
sd(_cons) .1404465 .0170605 .1106911 .1782005

sd(Residual) .8016577 .0065613 .7889004 .8146212
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2. Form the cluster means of the three covariates from step 1, and add them as further covariates
to the random-intercept model. Which of the cluster means have coefficients that are significant
at the 5% level?

. egen mn_hrs = mean(hrs), by(grp)

. egen mn_cohes = mean(cohes), by(grp)

. egen mn_lead = mean(lead), by(grp)

. mixed wbeing hrs mn_hrs cohes mn_cohes lead mn_lead || grp:, mle stddeviations
> vce(robust)

Mixed-effects regression Number of obs = 7,382
Group variable: grp Number of groups = 99

Obs per group:
min = 15
avg = 74.6
max = 226

Wald chi2(6) = 1016.95
Log pseudolikelihood = -8879.1148 Prob > chi2 = 0.0000

(Std. Err. adjusted for 99 clusters in grp)

Robust
wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.025597 .0053606 -4.78 0.000 -.0361036 -.0150904
mn_hrs -.1158662 .0222997 -5.20 0.000 -.1595728 -.0721595
cohes .0802213 .0136804 5.86 0.000 .0534081 .1070344

mn_cohes -.0374889 .0878394 -0.43 0.670 -.2096509 .1346731
lead .4709316 .0199062 23.66 0.000 .4319162 .509947

mn_lead -.2243689 .0582475 -3.85 0.000 -.3385319 -.1102058
_cons 3.5351 .3356045 10.53 0.000 2.877327 4.192872

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Identity
sd(_cons) .0967599 .013993 .0728782 .1284674

sd(Residual) .8018691 .0065194 .7891926 .8147492

The cluster means mn hrs and mn lead have coefficients that are significant at the 5% level.
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3. Refit the model from step 2 after removing the cluster means that have non-significant coeffi-
cient estimates at the 5% level. Interpret the remaining coefficients and obtain the estimated
intraclass correlation.

. mixed wbeing hrs mn_hrs cohes lead mn_lead || grp:, mle stddeviations vce(robust)

Mixed-effects regression Number of obs = 7,382
Group variable: grp Number of groups = 99

Obs per group:
min = 15
avg = 74.6
max = 226

Wald chi2(5) = 1012.14
Log pseudolikelihood = -8879.2068 Prob > chi2 = 0.0000

(Std. Err. adjusted for 99 clusters in grp)

Robust
wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0256169 .0053554 -4.78 0.000 -.0361133 -.0151205
mn_hrs -.1175433 .0225632 -5.21 0.000 -.1617663 -.0733203
cohes .0794989 .0133977 5.93 0.000 .0532399 .1057579
lead .4712699 .0199449 23.63 0.000 .4321786 .5103612

mn_lead -.2432672 .0479539 -5.07 0.000 -.3372552 -.1492792
_cons 3.49534 .3078316 11.35 0.000 2.892001 4.098679

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Identity
sd(_cons) .0968394 .0142561 .0725677 .1292293

sd(Residual) .8018748 .0065189 .7891992 .814754

Comparing soldiers within the same army company, each extra hour of work per day is asso-
ciated with an estimated mean decrease of .03 points in well-being, controlling for perceived
horizontal and vertical cohesion.

Comparing soldiers within the same army company, each unit increase in the horizontal cohe-
sion score is associated with an estimated mean increase of .08 points in well-being, controlling
for number of hours worked and perceived vertical cohesion.

Comparing soldiers within the same army company, each unit increase in the vertical cohesion
score is associated with an estimated mean increase of .47 points in well-being, controlling for
number of hours worked and perceived horizontal cohesion.

The contextual effects of hours worked is estimated as -0.12, meaning that, after controlling
for the soldier’s own number of hours worked per day (and the other covariates in the model),
each unit increase in the mean number of hours worked by soldiers in the company reduces
the soldier’s well-being by an estimated 0.12 points.

The contextual effect of vertical cohesion is estimated as -0.24. After controlling for a soldier’s
own perceived vertical cohesion (and the other covariates), each unit increase in average per-
ceived vertical cohesion in the soldier’s company is associated with an estimated 0.24 points
decrease in well-being.

(Continued on next page)
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The residual intraclass correlation is estimated as

. display .0968394^2/(.0968394^2+.8018748^2)

.01437483

4. We have included soldier-specific covariates xij in addition to the cluster means x
·j . The

coefficients of the cluster means represent the contextual effects (see section 3.7.6). Use lincom
to estimate the corresponding between effects.

. lincom hrs + mn_hrs

( 1) [wbeing]hrs + [wbeing]mn_hrs = 0

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -.1431602 .0206602 -6.93 0.000 -.1836534 -.1026669

. lincom lead + mn_lead

( 1) [wbeing]lead + [wbeing]mn_lead = 0

wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .2280027 .0452861 5.03 0.000 .1392436 .3167618

For cohes, the between-effect is the same as the within-effect, i.e., 0.079.
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5. Add a random slope for lead to the model in step 3, and compare this model with the model
from step 3 using a likelihood ratio test (Hint: use lrtest with the force option).

. estimates store ri

. mixed wbeing hrs mn_hrs cohes lead mn_lead || grp: lead,
> covariance(unstructured) mle stddeviations vce(robust)

Mixed-effects regression Number of obs = 7,382
Group variable: grp Number of groups = 99

Obs per group:
min = 15
avg = 74.6
max = 226

Wald chi2(5) = 1113.45
Log pseudolikelihood = -8867.4172 Prob > chi2 = 0.0000

(Std. Err. adjusted for 99 clusters in grp)

Robust
wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0258024 .0053697 -4.81 0.000 -.0363268 -.0152779
mn_hrs -.106432 .0208427 -5.11 0.000 -.147283 -.065581
cohes .0788795 .0131274 6.01 0.000 .0531502 .1046088
lead .4709406 .0188263 25.01 0.000 .4340416 .5078395

mn_lead -.2198068 .04455 -4.93 0.000 -.3071232 -.1324904
_cons 3.304784 .2861091 11.55 0.000 2.744021 3.865548

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Unstructured
sd(lead) .0987405 .0155946 .0724537 .1345643
sd(_cons) .3484683 .0464797 .2683042 .4525838

corr(lead,_cons) -.9746476 .013031 -.9907865 -.9312155

sd(Residual) .7984983 .0062581 .7863264 .8108586

. estimates store rc

. lrtest ri rc, force

Likelihood-ratio test LR chi2(2) = 23.58
(Assumption: ri nested in rc) Prob > chi2 = 0.0000

Based on the tiny p-value from the conservative likelihood-ratio test given by lrtest, we
conclude that the random-coefficient model should be retained. The p-value based on the
correct asymptotic null distribution 0.5χ2(1) + 0.5χ2(2) is even smaller.
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6. Add a random slope for cohes to the model chosen in step 5, and compare this model with
the model from step 3 using a likelihood ratio test. Retain the preferred model.

. mixed wbeing hrs mn_hrs cohes lead mn_lead || grp: lead cohes,
> covariance(unstructured) mle stddeviations vce(robust)

Mixed-effects regression Number of obs = 7,382
Group variable: grp Number of groups = 99

Obs per group:
min = 15
avg = 74.6
max = 226

Wald chi2(5) = 1124.30
Log pseudolikelihood = -8866.5774 Prob > chi2 = 0.0000

(Std. Err. adjusted for 99 clusters in grp)

Robust
wbeing Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrs -.0258458 .0053645 -4.82 0.000 -.0363601 -.0153315
mn_hrs -.1053775 .020997 -5.02 0.000 -.1465308 -.0642242
cohes .0789716 .013051 6.05 0.000 .0533921 .1045511
lead .471036 .0187577 25.11 0.000 .4342715 .5078005

mn_lead -.2195694 .0446132 -4.92 0.000 -.3070096 -.1321292
_cons 3.291717 .2859667 11.51 0.000 2.731232 3.852201

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

grp: Unstructured
sd(lead) .1031605 .0182215 .0729733 .1458355
sd(cohes) .0447645 .0228079 .0164907 .1215144
sd(_cons) .3372506 .0543184 .2459552 .4624336

corr(lead,cohes) -.3654282 .4036816 -.8607615 .4853838
corr(lead,_cons) -.9043491 .1044429 -.9894428 -.3555552

corr(cohes,_cons) -.0065123 .4139134 -.6738718 .6666991

sd(Residual) .7977671 .0062135 .7856813 .8100388

. lrtest rc ., force

Likelihood-ratio test LR chi2(3) = 1.68
(Assumption: rc nested in .) Prob > chi2 = 0.6415

Based on the conservative likelihood-ratio test we retain the random-coefficient model without
a random slope for cohes. The conclusion remains the same when using the p-value from the
correct asymptotic null distribution 0.5χ2(2) + 0.5χ2(3) which is p = 0.54.
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7. Perform residual diagnostics for the level-1 errors, random intercept, and random slope(s). Do
the model assumptions appear to be satisfied?

. estimates restore rc
(results rc are active now)

. predict slope inter, reffects

. egen pickone = tag(grp)

. histogram slope if pickone==1
(bin=9, start=-.13782126, width=.03554772)

. histogram inter if pickone==1
(bin=9, start=-.62071776, width=.13001956)

. predict resid, rstandard

. histogram resid
(bin=38, start=-3.8327911, width=.20335953)

The histograms are given in figures 8 to 10. They all look quite normal.
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Figure 8: Histogram of predicted slopes
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4.7 q Family-birthweight data

1. Produce the required dummy variables Mi, Fi, and Ki.

. use family, clear

. tabulate member, generate(mem)

member Freq. Percent Cum.

1 1,000 33.33 33.33
2 1,000 33.33 66.67
3 1,000 33.33 100.00

Total 3,000 100.00

. rename mem1 mother

. rename mem2 father

. rename mem3 child

2. Generate variables equal to the terms in parentheses in (4.5).

. generate variable1 = mother + child/2

. generate variable2 = father + child/2

. generate variable3 = child/sqrt(2)

3. Which of the correlation structures available in mixed should be specified for the random
coefficients (see the help file for details on the covariance() option)?

The identity structure.

4. Fit the model given in (4.5 )by using ML. The model does not include a random intercept, so
use the noconstant option.

. mixed bwt || family: variable1 variable2 variable3,
> covariance(identity) noconstant stddeviations vce(robust)

Mixed-effects regression Number of obs = 3,000
Group variable: family Number of groups = 1,000

Obs per group:
min = 3
avg = 3.0
max = 3

Wald chi2(0) = .
Log pseudolikelihood = -22828.531 Prob > chi2 = .

(Std. Err. adjusted for 1,000 clusters in family)

Robust
bwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 3565.257 10.06086 354.37 0.000 3545.538 3584.976

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
sd(variab~1..variab~3)(1) 322.7494 17.30489 290.5537 358.5125

sd(Residual) 376.4128 14.19958 349.5861 405.2982

(1) variable1 variable2 variable3
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5. Obtain the estimated proportion of the total variance that is attributable to additive genetic
effects.

. display 323.0093^2/(323.0093^2+376.3245^2)

.42420341

The estimated proportion of the total variance attributable to additive genetic effects is 0.42.

6. Now fit the model including all the covariates listed above and having the same random part
as the model in step 3.

. mixed bwt male first midage highage birthyr
> || family: variable1 variable2 variable3,
> covariance(identity) noconstant stddeviations vce(robust)

Mixed-effects regression Number of obs = 3,000
Group variable: family Number of groups = 1,000

Obs per group:
min = 3
avg = 3.0
max = 3

Wald chi2(5) = 161.94
Log pseudolikelihood = -22746.229 Prob > chi2 = 0.0000

(Std. Err. adjusted for 1,000 clusters in family)

Robust
bwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

male 158.4546 17.92474 8.84 0.000 123.3228 193.5865
first -139.3974 18.84312 -7.40 0.000 -176.3292 -102.4655
midage 57.05527 30.61551 1.86 0.062 -2.950033 117.0606
highage 118.8563 59.94743 1.98 0.047 1.361529 236.3511
birthyr 3.627799 .684962 5.30 0.000 2.285298 4.970299
_cons 3461.459 33.71748 102.66 0.000 3395.374 3527.544

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
sd(variab~1..variab~3)(1) 315.0616 16.42738 284.455 348.9613

sd(Residual) 365.4587 13.6215 339.7129 393.1557

(1) variable1 variable2 variable3

7. Interpret the estimated coefficients from step 6.

On average, given the other covariates, it is estimated that males weigh 158 grams more at
birth than females, first-borns weigh 139 grams less at birth than children with older siblings,
children born to older mothers have greater birthweights than children born to younger mothers
(57 grams greater for 20–25-year-old mothers than mothers below 20 and 119 grams greater
for mothers above 35 than mothers below 20) and birthweights have been increasing by an
estimated 3.6 grams per year.
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8. Conditional on the covariates, what proportion of the residual variance is estimated to be due
to additive genetic effects?

. display 315.2176^2/(315.2176^2+365.942^2)

.42594296

The estimated proportion of the residual variance due to additive genetic effects is 0.43 (about
the same as in the model without the covariates).
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5.3 Unemployment-claims data I

1. Use a “posttest-only design with nonequivalent groups”, which is based on comparing those
receiving the intervention with those not receiving the intervention at the second occasion only.

a. Use an appropriate t test to test the hypothesis of no intervention effect on the log-
transformed number of unemployment claims in 1984.

. use papke_did.dta, clear

. ttest luclms if year == 1984, by(ez)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 16 11.06366 .1565774 .6263095 10.72992 11.39739
1 6 11.14839 .2094637 .5130791 10.60995 11.68683

combined 22 11.08676 .1251106 .586821 10.82658 11.34695

diff -.0847349 .2872322 -.6838908 .514421

diff = mean(0) - mean(1) t = -0.2950
Ho: diff = 0 degrees of freedom = 20

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.3855 Pr(|T| > |t|) = 0.7710 Pr(T > t) = 0.6145

At the 5% level, there is no significant difference in the log number of unemployment
claims between treatment and control groups in 1984 (t = 0.30, d.f.=20, p = 0.77).

b. Ignore the data for 1983 and consider the model

ln(yij) = β1 + β2xij + ǫij for i = 1984

where the usual assumptions are made. Estimate the intervention effect and test the null
hypothesis that there is no intervention effect.

. regress luclms ez if year == 1984

Source SS df MS Number of obs = 22
F( 1, 20) = 0.09

Model .031330892 1 .031330892 Prob > F = 0.7710
Residual 7.20020475 20 .360010237 R-squared = 0.0043

Adj R-squared = -0.0455
Total 7.23153564 21 .34435884 Root MSE = .60001

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

ez .0847349 .2872322 0.30 0.771 -.514421 .6838908
_cons 11.06366 .1500021 73.76 0.000 10.75076 11.37655

The estimate of the difference in means between treatment and control groups in 1984
and the t-statistic are identical to the results using an independent samples t test in step
1a.

2. Use a “one-group pretest–posttest design”, which is based on comparing the second occasion
(posttest) with the first occasion (pretest) for the intervention group only. To do this, first
construct a new variable for intervention group, taking the value 1 if an unemployment claims
office is ever in an enterprise zone and 0 for the control group (consider using egen).
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. egen treatgr = max(ez), by(city)

a. Use an appropriate t test to test the hypothesis of no intervention effect on the log-
transformed number of unemployment claims. (It may be useful to reshape the data to
wide form for the t test and then reshape them to long form again for the next questions.)

. reshape wide luclms ez, i(city) j(year)
(note: j = 1983 1984)

Data long -> wide

Number of obs. 44 -> 22
Number of variables 5 -> 6
j variable (2 values) year -> (dropped)
xij variables:

luclms -> luclms1983 luclms1984
ez -> ez1983 ez1984

. ttest luclms1984=luclms1983 if treatgr==1

Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

luc~1984 6 11.14839 .2094637 .5130791 10.60995 11.68683
luc~1983 6 11.63374 .2289698 .5608592 11.04515 12.22232

diff 6 -.485349 .0585786 .1434878 -.6359302 -.3347679

mean(diff) = mean(luclms1984 - luclms1983) t = -8.2854
Ho: mean(diff) = 0 degrees of freedom = 5

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0002 Pr(|T| > |t|) = 0.0004 Pr(T > t) = 0.9998

. reshape long luclms ez, i(city) j(year)
(note: j = 1983 1984)

Data wide -> long

Number of obs. 22 -> 44
Number of variables 6 -> 5
j variable (2 values) -> year
xij variables:

luclms1983 luclms1984 -> luclms
ez1983 ez1984 -> ez

Using a paired t test, we conclude that the log number of unemployment claims in the
intervention group decreased significantly from 1983 to 1984 (t = 8.29, d.f.=5, p < 0.001).

b. For the intervention group, consider the model

ln(yij) = β1 + αj + β2xij + ǫij

where αj is an office-specific parameter (fixed effect). Estimate the intervention effect
and test the null hypothesis that there is no intervention effect.

(Continued on next page)
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. quietly xtset city

. xtreg luclms ez if treatgr==1, fe

Fixed-effects (within) regression Number of obs = 12
Group variable: city Number of groups = 6

R-sq: within = 0.9321 Obs per group: min = 2
between = . avg = 2.0
overall = 0.1965 max = 2

F(1,5) = 68.65
corr(u_i, Xb) = 0.0000 Prob > F = 0.0004

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

ez -.485349 .0585786 -8.29 0.000 -.6359302 -.3347679
_cons 11.63374 .0414213 280.86 0.000 11.52726 11.74022

sigma_u .53269074
sigma_e .10146116

rho .96499155 (fraction of variance due to u_i)

F test that all u_i=0: F(5, 5) = 55.13 Prob > F = 0.0002

The results are identical to those from the paired t test.

3. Discuss the pros and cons of the “posttest-only design with non-equivalent groups” and the
“one-group pretest–posttest design”.

In the posttest-only design, we are not controlling for pre-existing differences between the
treatment groups, so the differences we find could be due to omitted time-invariant variables.
The advantage is that we do have a control group. In the one-group pretest-posttest design,
we do not have a control group, so we cannot be sure that the change did not occur everywhere
due to other reasons or ‘secular trends’. However, we do control for omitted time-invariant
variables.

4. Use an “untreated control group design with dependent pretest and posttest samples”, which
is based on data from both occasions and both intervention groups.

a. Find the difference between the following two differences:

i. the difference in the sample means of luclms for the intervention group between 1984
and 1983

ii. the difference in the sample means of luclms for the control group between 1984 and
1983

. table year treatgr, statistic( mean luclm) nototal

treatgr
0 1

1980 to 1988
1983 11.41566 11.63374
1984 11.06366 11.14839

. display (11.14839-11.633739)-(11.063655-11.415663)
-.133341

The log number of unemployment claims decreased more in the treatment group than in
the control group.
The resulting estimator is called the difference-in-differences estimator and is commonly
used for the analysis of intervention effects in quasi-experiments and natural experiments.
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b. Consider the model
ln(yij) = β1 + αj + τzi + β2xij + ǫij

where αj is an office-specific parameter (fixed effect) and τ is the coefficient of a dummy
variable zi for 1984. Estimate the intervention effect and test the null hypothesis that
there is no intervention effect. Note that the estimate β̂2 is identical to the difference-in-
differences estimate. The advantage of using a model is that statistical inference regarding
the intervention effect is straightforward, as is extension to many occasions, several in-
tervention groups, and inclusion of extra covariates.

. quietly xtset city

. xtreg luclms i.year ez, fe

Fixed-effects (within) regression Number of obs = 44
Group variable: city Number of groups = 22

R-sq: within = 0.7297 Obs per group: min = 2
between = 0.0139 avg = 2.0
overall = 0.0892 max = 2

F(2,20) = 26.99
corr(u_i, Xb) = -0.0252 Prob > F = 0.0000

luclms Coef. Std. Err. t P>|t| [95% Conf. Interval]

year
1984 -.3520072 .0627058 -5.61 0.000 -.4828092 -.2212051

ez -.1333419 .1200725 -1.11 0.280 -.3838088 .117125
_cons 11.47514 .037813 303.47 0.000 11.39626 11.55401

sigma_u .58978041
sigma_e .17735888

rho .9170672 (fraction of variance due to u_i)

F test that all u_i=0: F(21, 20) = 21.80 Prob > F = 0.0000

The estimate of the effect of treatment, controlling for time and office, is the same as the
difference in differences. We can now see that the effect is not significant at the 5% level
(t = −1.11, d.f.=20, p = 0.28).

5. What are the advantages of using the “untreated control group design with dependent pretest
and posttest samples” compared with the “posttest-only design with non-equivalent groups”
and the “one-group pretest–posttest design”?

The difference-in difference estimator controls for both time-invariant variables and secular
trends and therefore overcomes the disadvantages of the other two methods.
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5.4 Unemployment-claims data II

1. Use the xtset command to specify the variables representing the clusters and time for this
application. This enables you to use Stata’s time-series operators, which should be used within
the estimation commands in this exercise. Interpret the output.

. use ezunem, clear

. xtset city year

Panel variable: city (strongly balanced)
Time variable: year, 1980 to 1988

Delta: 1 unit

We see that city is the cluster identifier, the data are strongly balanced (occasions occur at
the same time-points for all clusters and there are no missing data), the time variable is year
(from 1980 to 1988), and that the time between subsequent occasions (delta) is one year

2. Consider the fixed-intercept model

ln(yij) = τi + β2x2ij + αj + ǫij

where τi and αj are year-specific and office-specific parameters, respectively. (Use dummy
variables for years to include τi in the model.) This gives the difference-in-differences estimator
for more than two panel waves (see exercise 5.3).

a. Fit the model using xtreg with the fe option.

There are already dummy variables d81, d82, etc., for years in the data (you can also
create your own using the tabulate command or use factor variables, i.year). We can
fit the model using

. xtreg luclms d82-d88 ez, fe vce(robust)

Fixed-effects (within) regression Number of obs = 198
Group variable: city Number of groups = 22

R-squared: Obs per group:
Within = 0.8148 min = 9
Between = 0.0002 avg = 9.0
Overall = 0.3415 max = 9

F(8,21) = 86.13
corr(u_i, Xb) = -0.0040 Prob > F = 0.0000

(Std. err. adjusted for 22 clusters in city)

Robust
luclms Coefficient std. err. t P>|t| [95% conf. interval]

d82 .2963117 .0423406 7.00 0.000 .2082595 .3843638
d83 -.0584394 .066595 -0.88 0.390 -.1969313 .0800524
d84 -.4183358 .0843975 -4.96 0.000 -.5938499 -.2428217
d85 -.4309709 .0771333 -5.59 0.000 -.5913784 -.2705634
d86 -.4604488 .0680267 -6.77 0.000 -.6019181 -.3189795
d87 -.7281326 .0666583 -10.92 0.000 -.8667561 -.5895091
d88 -1.066817 .079957 -13.34 0.000 -1.233097 -.9005373
ez -.1044148 .0726138 -1.44 0.165 -.2554234 .0465937

_cons 11.53358 .040102 287.61 0.000 11.45018 11.61697

sigma_u .55551522
sigma_e .21619434

rho .86846297 (fraction of variance due to u_i)
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b. Fit the first-difference version of the model using OLS.

. regress D1.luclms D1.(d82-d88) D1.ez, vce(robust)

Linear regression Number of obs = 176
F(8, 167) = 48.48
Prob > F = 0.0000
R-squared = 0.6230
Root MSE = .21606

Robust
D.luclms Coefficient std. err. t P>|t| [95% conf. interval]

d82
D1. .7787595 .0595309 13.08 0.000 .6612293 .8962897

d83
D1. .7456403 .1076729 6.93 0.000 .5330649 .9582157

d84
D1. .7285021 .1625999 4.48 0.000 .4074859 1.049518

d85
D1. 1.051583 .2108168 4.99 0.000 .6353737 1.467792

d86
D1. 1.343737 .2575666 5.22 0.000 .8352308 1.852243

d87
D1. 1.397685 .3042371 4.59 0.000 .7970386 1.998332

d88
D1. 1.380633 .348744 3.96 0.000 .6921174 2.069148

ez
D1. -.1818775 .0880267 -2.07 0.040 -.3556662 -.0080889

_cons -.3216319 .0462618 -6.95 0.000 -.4129653 -.2302985

i. Do the estimates of the intervention effect differ much?

The estimated intervention effect is nearly twice as large and significant at the 5%
level using the first-difference estimator compared with the mean-centering estimator
in step 2a where the effect is not significant.

ii. Papke (1994) actually assumed a linear trend of year instead of year-specific inter-
cepts as specified above. Write down the first-difference version of Papke’s model.

The first-difference version can be written as

ln(yij)− ln(yi−1,j) = τ + β2(x2ij − x2i−1,j) + (ǫij − ǫi−1,j)

where τ is the regression coefficient of time.
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iii. q A random walk is the special case of an AR(1) process, ǫij = αǫi−1,j + uij , where
α = 1. Show that the first-difference approach accommodates a random walk for the
residuals ǫij .

The AR(1) process is described on page 308. For a random walk, we set α = 1,

ǫij = 1ǫi−1,j + eij , Cov(ǫi−1,j, eij) = 0, E(eij) = 0, Var(eij) = σ2
e ,

where the disturbances eij are uncorrelated across occasions i and offices j.
Substituting this model for ǫij into the last term of the first-difference version of
Papke’s model gives

(ǫij − ǫi−1,j) = ǫi−1,j + eij − ǫi−1,j = eij

These errors eij are uncorrelated.

3. Fit the lagged-response model

ln(yij) = τi + β2x2ij + γ ln(yi−1,j) + ǫij

where γ is the regression coefficient for the lagged response ln(yi−1,j). Compare the estimated
intervention effect with that for the fixed-intercept model. Interpret β2 in the two models.

. regress luclms d82-d88 ez L.luclms, vce(robust)

Linear regression Number of obs = 176
F(9, 166) = 297.33
Prob > F = 0.0000
R-squared = 0.9113
Root MSE = .21685

Robust
luclms Coefficient std. err. t P>|t| [95% conf. interval]

d82 .7621466 .0594689 12.82 0.000 .6447337 .8795595
d83 -.0261206 .0616671 -0.42 0.672 -.1478735 .0956324
d84 -.0622605 .0700663 -0.89 0.376 -.2005965 .0760756
d85 .28497 .0706457 4.03 0.000 .1454901 .4244499
d86 .2854784 .0726635 3.93 0.000 .1420147 .4289421
d87 .04575 .0734218 0.62 0.534 -.0992109 .1907108
d88 -.0390771 .0661455 -0.59 0.555 -.1696719 .0915178
ez -.0579542 .0423485 -1.37 0.173 -.1415653 .0256568

luclms
L1. .9483481 .0253744 37.37 0.000 .8982499 .9984463

_cons .2824057 .2976748 0.95 0.344 -.3053109 .8701223

The estimated intervention effect is smaller in the lagged-response model than in the fixed-
intercept model. In the fixed-intercept model, the parameter β2 can be interpreted as the
intervention effect when all time-constant covariates (observed or unobserved) are controlled
for. In the lagged-response model, β2 can be interpreted as the intervention effect when it is
controlled for the number of unemployment claims at the previous occasion.
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4. Consider a lagged-response model with an office-specific intercept bj:

ln(yij) = τi + β2x2ij + γ ln(yi−1,j) + bj + ǫij

a. Treat bj as a random intercept and fit a random-intercept model by ML using mixed. Are
there any problems associated with this random-intercept model?

. xtmixed luclms d82-d88 ez L.luclms || city:, mle vce(robust)

Mixed-effects regression Number of obs = 176
Group variable: city Number of groups = 22

Obs per group:
min = 8
avg = 8.0
max = 8

Wald chi2(9) = 1180.94
Log pseudolikelihood = 21.890234 Prob > chi2 = 0.0000

(Std. err. adjusted for 22 clusters in city)

Robust
luclms Coefficient std. err. z P>|z| [95% conf. interval]

d82 .623044 .0471888 13.20 0.000 .5305557 .7155323
d83 .03248 .0359039 0.90 0.366 -.0378905 .1028504
d84 -.1421624 .0578161 -2.46 0.014 -.2554799 -.0288449
d85 .0470498 .0539553 0.87 0.383 -.0587006 .1528003
d86 .0338831 .072501 0.47 0.640 -.1082163 .1759825
d87 -.2185943 .0623681 -3.50 0.000 -.3408335 -.0963551
d88 -.4191919 .0845456 -4.96 0.000 -.5848982 -.2534856
ez -.1126751 .0535177 -2.11 0.035 -.2175678 -.0077824

luclms
L1. .515858 .0774443 6.66 0.000 .36407 .667646

_cons 5.340115 .8653247 6.17 0.000 3.644109 7.03612

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

city: Identity
sd(_cons) .2714653 .1818945 .0730078 1.009391

sd(Residual) .1773275 .0203581 .1415969 .2220743

It seems unreasonable to assume (as implicitly in the above model) that the random
intercept only affects the response in 1981-1988 but not the response at the first occasion
in 1980. If the random intercept also affects the response in 1980, the estimate of the
intervention effect given above will be inconsistent due to this initial-conditions problem.
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b. Fit the model using the Anderson-Hsiao approach with the second lag of the response as
instrumental variable. Compare the estimated intervention effect with that from step 4a.

. ivregress 2sls D1.luclms D1.(ez d82-d87) (L1D1.luclms = L2.luclms), vce(robust)

Instrumental variables 2SLS regression Number of obs = 154
Wald chi2(8) = 325.70
Prob > chi2 = 0.0000
R-squared = 0.5466
Root MSE = .23672

Robust
D.luclms Coefficient std. err. z P>|z| [95% conf. interval]

luclms
LD. .3553236 .520257 0.68 0.495 -.6643614 1.375009

ez
D1. -.2613231 .1394823 -1.87 0.061 -.5347033 .0120571

d82
D1. .6431183 .0972054 6.62 0.000 .4525992 .8336373

d83
D1. .1976462 .2372092 0.83 0.405 -.2672752 .6625676

d84
D1. .0783017 .109749 0.71 0.476 -.1368024 .2934057

d85
D1. .3039007 .09795 3.10 0.002 .1119224 .4958791

d86
D1. .3573652 .0602397 5.93 0.000 .2392975 .4754329

d87
D1. .1718629 .0664926 2.58 0.010 .0415397 .302186

_cons -.0717072 .0826444 -0.87 0.386 -.2336873 .0902728

Instrumented: LD.luclms
Instruments: D.ez D.d82 D.d83 D.d84 D.d85 D.d86 D.d87 L2.luclms

The estimated intervention effect is much larger (in absolute value) using the Anderson-

Hsiao approach (β̂2 = −0.26) than using näıve ML estimation of the random-intercept

model (β̂2 = −0.11). However, note the wide confidence intervals.
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c. Papke (1994) used the Anderson-Hsiao approach with the second lag of the first-difference
of the response as instrumental variable. Does the choice of instruments make a difference
in this case?

. ivregress 2sls D1.luclms D1.(d82-d88) D1.ez (L1D1.luclms = L2D1.luclms), vce(robust)
note: D.d87 omitted because of collinearity.
note: D.d88 omitted because of collinearity.

Instrumental variables 2SLS regression Number of obs = 132
Wald chi2(7) = 73.61
Prob > chi2 = 0.0000
R-squared = 0.2805
Root MSE = .22579

Robust
D.luclms Coefficient std. err. z P>|z| [95% conf. interval]

luclms
LD. .1646991 .3029438 0.54 0.587 -.4290598 .758458

d82
D1. -.5576565 .3067638 -1.82 0.069 -1.158902 .0435894

d83
D1. -.6930989 .168876 -4.10 0.000 -1.02409 -.362108

d84
D1. -.6688016 .1514251 -4.42 0.000 -.9655894 -.3720139

d85
D1. -.3020953 .1622788 -1.86 0.063 -.6201559 .0159652

d86
D1. -.0317684 .0864126 -0.37 0.713 -.201134 .1375973

d87
D1. 0 (omitted)

d88
D1. 0 (omitted)

ez
D1. -.218702 .110628 -1.98 0.048 -.435529 -.0018751

_cons -.2945972 .0849809 -3.47 0.001 -.4611568 -.1280376

Instrumented: LD.luclms
Instruments: D.d82 D.d83 D.d84 D.d85 D.d86 D.ez L2D.luclms

We could alternatively have obtained identical point estimates by using the xtivreg

command with the fd option:

xtivreg luclms d82-d88 ez (L.luclms = L2.luclms), fd vce(robust)

The choice of instruments matters somewhat in this case with estimates β̂2 = −0.26 in
step 4b and β̂2 = −0.22 in step 4c.
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6.2 Postnatal-depression data

1. Start by preparing the data for analysis.

a. Reshape the data to long form.

. use postnatal, clear

. reshape long dep, i(subj) j(month)
(note: j = 1 2 3 4 5 6)

Data wide -> long

Number of obs. 61 -> 366
Number of variables 9 -> 5
j variable (6 values) -> month
xij variables:

dep1 dep2 ... dep6 -> dep

b. Missing values for the depression scores are coded as −9 in the dataset. Recode these to
Stata’s missing-value code. (You may want to use the mvdecode command.)

. mvdecode dep pre, mv(-9)
dep: 71 missing values generated

c. Use the xtdescribe command to investigate missingness patterns. Is there any intermit-
tent missingness?

. xtset subj month
panel variable: subj (strongly balanced)
time variable: month, 1 to 6

delta: 1 unit

. xtdescribe if dep<.

subj: 1, 2, ..., 61 n = 61
month: 1, 2, ..., 6 T = 6

Delta(month) = 1 unit
Span(month) = 6 periods
(subj*month uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 1 3 6 6 6 6

Freq. Percent Cum. Pattern

45 73.77 73.77 111111
8 13.11 86.89 1.....
7 11.48 98.36 11....
1 1.64 100.00 111...

61 100.00 XXXXXX

The missingness patterns are monotone. There is only dropout and no intermittent
missing data.
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2. Fit a model with an unstructured residual covariance matrix. Store the estimates (also store
estimates for each of the models below).

. generate time = month - 1

. mixed dep pre group time || subj:, noconstant
> residuals(unstructured, t(month)) mle stddeviations

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 88.84
Log likelihood = -782.69058 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .364077 .1292085 2.82 0.005 .110833 .6173209
group -4.120617 .9739702 -4.23 0.000 -6.029564 -2.211671
time -1.109057 .1426088 -7.78 0.000 -1.388565 -.8295483
_cons 9.254284 2.800598 3.30 0.001 3.765214 14.74335

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: (empty)

Residual: Unstructured
sd(e1) 5.222534 .4750711 4.369696 6.241822
sd(e2) 5.842693 .5710984 4.824049 7.076433
sd(e3) 4.974276 .5362913 4.026794 6.144696
sd(e4) 5.075864 .5392724 4.121698 6.250917
sd(e5) 5.080505 .5458162 4.115848 6.271254
sd(e6) 4.447325 .4795071 3.60017 5.493824

corr(e1,e2) .3934899 .1131534 .1523219 .5904318
corr(e1,e3) .3566393 .1204059 .1022897 .567218
corr(e1,e4) .2899307 .1291728 .0220782 .5189484
corr(e1,e5) .2188728 .13378 -.0528758 .4604396
corr(e1,e6) .1050079 .1396652 -.1697357 .3646055
corr(e2,e3) .8261353 .0469085 .7095459 .8986984
corr(e2,e4) .6820919 .079932 .4930252 .8096396
corr(e2,e5) .6890688 .0791 .5012564 .8148776
corr(e2,e6) .6059245 .0960699 .384156 .7615884
corr(e3,e4) .7310068 .0699298 .5625337 .8411931
corr(e3,e5) .8123314 .0515131 .6842147 .8918091
corr(e3,e6) .7182257 .0755132 .5358208 .8365794
corr(e4,e5) .8212047 .0488118 .6996945 .8965419
corr(e4,e6) .7553889 .0647875 .5977648 .8567815
corr(e5,e6) .8759585 .0356153 .784954 .9299622

LR test vs. linear regression: chi2(20) = 226.63 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. estimates store un
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3. Fit a model with an exchangeable residual covariance matrix. Use a likelihood-ratio test to
compare this model with the unstructured model.

. mixed dep pre group time || subj:, noconstant
> residuals(exchangeable) mle stddeviations

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 136.05
Log likelihood = -832.36607 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4597672 .1451945 3.17 0.002 .1751913 .7443431
group -4.021599 1.088742 -3.69 0.000 -6.155495 -1.887704
time -1.225857 .1166946 -10.50 0.000 -1.454574 -.9971399
_cons 7.208144 3.132268 2.30 0.021 1.069012 13.34728

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: (empty)

Residual: Exchangeable
sd(e) 5.068143 .3206934 4.477009 5.737329

corr(e) .5638883 .0600349 .4349557 .6701634

LR test vs. linear regression: chi2(1) = 127.28 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. estimates store exch

. lrtest exch un

Likelihood-ratio test LR chi2(19) = 99.35
(Assumption: exch nested in un) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of
the parameter space. If this is not true, then the reported test is conservative.

The constraints that all variances are equal and all correlations are equal are rejected using a
likelihood ratio test (L = 99.35, df = 19, p < 0.001).
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4. Fit a random-intercept model and compare it with the model with an exchangeable covariance
matrix.

. mixed dep pre group time || subj:, mle variance

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 136.05
Log likelihood = -832.36607 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4597672 .1451945 3.17 0.002 .1751912 .7443431
group -4.021599 1.088742 -3.69 0.000 -6.155495 -1.887703
time -1.225857 .1166946 -10.50 0.000 -1.454574 -.9971399
_cons 7.208144 3.132269 2.30 0.021 1.06901 13.34728

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Identity
var(_cons) 14.48409 3.167154 9.435473 22.23405

var(Residual) 11.20199 1.033171 9.349497 13.42154

LR test vs. linear regression: chibar2(01) = 127.28 Prob >= chibar2 = 0.0000

. estimates store ri

The models are equivalent (since the covariance is estimated as positive in the model with an
exchangeable covariance matrix) and the log-likelihoods are therefore identical. The estimated
model-implied standard deviation and correlations of the total residuals are:

. display sqrt(14.48409 +11.20199)
5.0681436

. display 14.48409/(14.48409 +11.20199)

.56388869

As expected, these estimates are the same as for the model with an exchangeable structure.
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5. Fit a random-intercept model with AR(1) level-1 residuals. Compare this model with the
ordinary random-intercept model using a likelihood ratio test.

. mixed dep pre group time || subj:,
> residuals(ar 1, t(month)) mle stddeviations

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 82.10
Log likelihood = -822.1805 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4392681 .1384597 3.17 0.002 .1678921 .7106441
group -4.020073 1.040008 -3.87 0.000 -6.058451 -1.981695
time -1.222442 .1644953 -7.43 0.000 -1.544847 -.9000371
_cons 7.680401 2.994547 2.56 0.010 1.811196 13.54961

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Identity
sd(_cons) 2.682982 .9731191 1.317912 5.461967

Residual: AR(1)
rho .5435037 .1385216 .2201329 .7592467

sd(e) 4.237522 .6026892 3.206626 5.59984

LR test vs. linear regression: chi2(2) = 147.65 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store ri_ar1

. lrtest ri_ar1 ri

Likelihood-ratio test LR chi2(1) = 20.37
(Assumption: ri nested in ri_ar1) Prob > chi2 = 0.0000

The hypothesis that an AR(1) process is not required for the level-1 residuals in the random-
intercept model is rejected using a likelihood ratio test (L = 20.37, df = 1, p < 0.0001).
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6. Fit a model with a Toeplitz(5) covariance structure (without a random intercept). Use likeli-
hood ratio tests to compare this model with each of the models fit above that are either nested
within this model or in which this model is nested. (Stata may refuse to perform a test if it
thinks the models are not nested. If you are sure the models are nested, use the force option.)

. mixed dep pre group time || subj:, noconstant
> residuals(toeplitz 5, t(month)) mle stddeviations

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 72.56
Log likelihood = -816.69365 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4237327 .1350386 3.14 0.002 .1590619 .6884036
group -3.929828 1.015461 -3.87 0.000 -5.920094 -1.939561
time -1.208944 .1784112 -6.78 0.000 -1.558624 -.859265
_cons 8.061919 2.924753 2.76 0.006 2.329509 13.79433

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: (empty)

Residual: Toeplitz(5)
rho1 .667223 .0473245 .5639046 .7499768
rho2 .5785609 .0577728 .4542883 .6807461
rho3 .4688658 .0784476 .301834 .6079701
rho4 .2958404 .1080509 .0727374 .4907468
rho5 .1356471 .1501327 -.1618465 .4105387
sd(e) 4.995393 .3022521 4.436768 5.624353

LR test vs. linear regression: chi2(5) = 158.63 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. estimates store toep

The random-intercept model sets all correlations equal and is hence nested in the Toeplitz. The
random-intercept model with AR(1) level-1 residuals imposes a structure on the correlations,
but also has equal correlations on each off-diagonal and is hence nested in the Toeplitz. For
balanced longitudinal data, all covariance structures, including the Toeplitz structure, are
nested in the unstructured covariance structure.

. estimates store toep

. lrtest toep ri_ar1, force

Likelihood-ratio test LR chi2(3) = 10.97
(Assumption: ri_ar1 nested in toep) Prob > chi2 = 0.0119

. lrtest toep ri, force /* or exchangeable */

Likelihood-ratio test LR chi2(4) = 31.34
(Assumption: ri nested in toep) Prob > chi2 = 0.0000

(Continued on next page)
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. lrtest toep un

Likelihood-ratio test LR chi2(15) = 68.01
(Assumption: toep nested in un) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The two restricted models are rejected and the Toeplitz is rejected in favor of the unstructured
model.

7. Fit a random-coefficient model with a random slope of time. Use a likelihood-ratio test to
compare the random-intercept and random-coefficient models.

. mixed dep pre group time || subj: time,
> covariance(unstructured) mle stddeviations

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 79.01
Log likelihood = -821.41091 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4682251 .1455653 3.22 0.001 .1829223 .7535279
group -4.039641 1.092187 -3.70 0.000 -6.180287 -1.898994
time -1.209707 .1651196 -7.33 0.000 -1.533336 -.886079
_cons 7.040006 3.144358 2.24 0.025 .8771775 13.20283

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Unstructured
sd(time) .9139199 .1547795 .6557684 1.273696
sd(_cons) 4.2606 .4922395 3.397261 5.343337

corr(time,_cons) -.427028 .1613791 -.6874447 -.0693066

sd(Residual) 2.89236 .1503267 2.612235 3.202525

LR test vs. linear regression: chi2(3) = 149.19 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store rc

. lrtest rc ri

Likelihood-ratio test LR chi2(2) = 21.91
(Assumption: ri nested in rc) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The random-intercept model is rejected in favor of the random-coefficient model.
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8. Specify an AR(1) process for the level-1 residuals in the random-coefficientmodel. Use likelihood-
ratio tests to compare this model with the models you previously fit that are nested within
it.

. mixed dep pre group time || subj: time, covariance(unstructured)
> residuals(ar 1, t(time)) mle stddeviations

Mixed-effects ML regression Number of obs = 295
Group variable: subj Number of groups = 61

Obs per group: min = 1
avg = 4.8
max = 6

Wald chi2(3) = 77.84
Log likelihood = -820.67875 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

pre .4598446 .1435466 3.20 0.001 .1784985 .7411907
group -4.030029 1.077137 -3.74 0.000 -6.14118 -1.918879
time -1.21093 .1676028 -7.22 0.000 -1.539425 -.8824345
_cons 7.222646 3.101391 2.33 0.020 1.144032 13.30126

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Unstructured
sd(time) .8353954 .1998681 .5226878 1.335186
sd(_cons) 4.004369 .6025937 2.981549 5.378069

corr(time,_cons) -.4024283 .1943641 -.7069727 .028012

Residual: AR(1)
rho .1942238 .1767778 -.1619006 .505587

sd(e) 3.13792 .3416971 2.534849 3.884469

LR test vs. linear regression: chi2(4) = 150.66 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store rc_ar1

. lrtest rc_ar1 rc

Likelihood-ratio test LR chi2(1) = 1.46
(Assumption: rc nested in rc_ar1) Prob > chi2 = 0.2262

. lrtest rc_ar1 ri_ar1

Likelihood-ratio test LR chi2(2) = 3.00
(Assumption: ri_ar1 nested in rc_ar1) Prob > chi2 = 0.2227

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

. lrtest rc_ar1 ri

Likelihood-ratio test LR chi2(3) = 23.37
(Assumption: ri nested in rc_ar1) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

It seems that the AR(1) process is not needed after a random coefficient has been introduced
and that the random coefficient is not needed after the AR(1) process has been introduced.



MLMUS4 (Vol. I) – Rabe-Hesketh and Skrondal 51

9. Use the estimates stats command to obtain a table including the AIC and BIC for the fitted
models. Which models are best and second best according to the AIC and BIC?

. estimates stats un exch ri ri_ar1 toep rc rc_ar1

Model Obs ll(null) ll(model) df AIC BIC

un 295 . -782.6906 25 1615.381 1707.556
exch 295 . -832.3661 6 1676.732 1698.854

ri 295 . -832.3661 6 1676.732 1698.854
ri_ar1 295 . -822.1805 7 1658.361 1684.17
toep 295 . -816.6937 10 1653.387 1690.257

rc 295 . -821.4109 8 1658.822 1688.318
rc_ar1 295 . -820.6787 9 1659.357 1692.54

Note: N=Obs used in calculating BIC; see [R] BIC note

According to the AIC, the unstructured covariance matrix is best, followed by the Toeplitz. Ac-
cording to the BIC, the random-intercept model with the AR(1) process for the level-1 residuals
is best, followed by the random-coefficient model.

Below is a table summarizing the likelihood ratio tests - the arrows point from the model that is
rejected to the model it was compared with.

# param
Model ll(model) for cov AIC BIC

un -782.6906 21 1615.381 1707.556
exch -832.3661 2 1676.732 1698.854
ri -832.3661 2 1676.732 1698.854

ri ar1 -822.1805 3 1658.361 1684.17
toep -816.6937 6 1653.387 1690.257
rc -821.4109 4 1658.822 1688.318
rc ar1 -820.6787 5 1659.357 1692.54
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7.1 Growth-in-math-achievement data

1. Reshape the data to long form, and plot the mean math trajectory over time by minority
status.

use reading, clear

. reshape long read math age, i(id) j(grade)
(note: j = 0 1 2 3)

Data wide -> long

Number of obs. 1767 -> 7068
Number of variables 15 -> 7
j variable (4 values) -> grade
xij variables:

read0 read1 ... read3 -> read
math0 math1 ... math3 -> math

age0 age1 ... age3 -> age

. egen mn_math = mean(math), by(grade minority)

. twoway (connected mn_math grade if minority==1, sort lpatt(solid))
> (connected mn_math grade if minority==0, sort lpatt(dash)), xtitle(Grade)
> ytitle(Mean math score) legend(order(1 "Minority" 2 "Majority"))

See figure 11.
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Figure 11: Mean growth by minority status
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2. Fit a linear growth curve model by maximum likelihood using mixed with minority, a dummy
variable for being a minority, as a covariate. The fixed part should include an intercept and a
slope for grade, and the random part should include random intercepts and random slopes of
grade. Allow the residual variances to differ between grades. Use robust standard errors.

Fitting the model with ML, we obtain

. mixed math minority grade || id: grade, covariance(unstructured) mle
> variance residual(independent, by(grade)) vce(robust)

Mixed-effects regression Number of obs = 2,676
Group variable: id Number of groups = 1,677

Obs per group:
min = 1
avg = 1.6
max = 3

Wald chi2(2) = 5294.01
Log pseudolikelihood = -9398.376 Prob > chi2 = 0.0000

(Std. Err. adjusted for 1,677 clusters in id)

Robust
math Coef. Std. Err. z P>|z| [95% Conf. Interval]

minority -3.900024 .3215042 -12.13 0.000 -4.530161 -3.269887
grade 9.456502 .1347224 70.19 0.000 9.192451 9.720553
_cons 19.21837 .2597392 73.99 0.000 18.70929 19.72745

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(grade) 6.234861 1.711512 3.640543 10.67794
var(_cons) 9.594577 4.593748 3.753898 24.52275

cov(grade,_cons) 2.400433 2.175627 -1.863718 6.664584

Residual: Independent,
by grade

0: var(e) 25.56491 4.866423 17.60408 37.12575
1: var(e) 56.30599 4.217525 48.61793 65.20978
2: var(e) 65.79614 6.177182 54.73769 79.08868
3: var(e) 26.36981 10.0308 12.51177 55.577
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3. By extending the model from step 2, test whether there is any evidence for a narrowing or
widening of the minority gap over time.

. mixed math i.minority##c.grade || id: grade , covariance(unstructured) mle
> variance residual(independent, by(grade)) vce(robust)

Mixed-effects regression Number of obs = 2,676
Group variable: id Number of groups = 1,677

Obs per group:
min = 1
avg = 1.6
max = 3

Wald chi2(3) = 5340.80
Log pseudolikelihood = -9392.0728 Prob > chi2 = 0.0000

(Std. Err. adjusted for 1,677 clusters in id)

Robust
math Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.minority -3.264258 .3634048 -8.98 0.000 -3.976518 -2.551998
grade 9.92356 .1834012 54.11 0.000 9.5641 10.28302

minority#c.grade
1 -.9612353 .2694344 -3.57 0.000 -1.489317 -.4331536

_cons 18.91507 .2759515 68.54 0.000 18.37421 19.45592

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(grade) 6.385398 1.680949 3.811625 10.6971
var(_cons) 10.82039 4.56967 4.728936 24.7584

cov(grade,_cons) 1.940931 2.14501 -2.26321 6.145073

Residual: Independent,
by grade

0: var(e) 24.07512 4.785363 16.3071 35.54349
1: var(e) 55.91734 4.181558 48.29396 64.74411
2: var(e) 65.02604 6.144886 54.03184 78.2573
3: var(e) 26.52268 9.910455 12.75139 55.16671

There is a significant interaction between grade and minority, suggesting a widening of the
achievement gap (0.96 units wider per year, z = 3.57, p < 0.001).

4. Plot the mean fitted trajectories for minority and nonminority students.

. predict fixed, xb

. twoway (connected fixed grade if minority==1, sort lpatt(solid))
> (connected fixed grade if minority==0, sort lpatt(dash)), xtitle(Grade)
> ytitle(Fitted mean math score) legend(order(1 "Minority" 2 "Majority"))

See figure 12.

(Continued on next page)
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Figure 12: Estimated model-implied mean math achievement versus grade by minority status
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5. Plot fitted and observed growth trajectories for the first 20 children (id less than 15900).

. predict traj, fitted
(4392 missing values generated)

. twoway (line traj grade, sort) (connected math grade, sort lpatt(dash))
> if id<15900, by(id, legend(off))

See figure 13.
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Figure 13: Observed data and predicted individual growth curves
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6. Fit the model from step 2, but without minority as covariate, by using sem, again with robust
standard errors.

. use reading, clear

. sem (math0 <- L1@1 L2@0 _cons@0)
> (math1 <- L1@1 L2@1 _cons@0)
> (math2 <- L1@1 L2@2 _cons@0)
> (math3 <- L1@1 L2@3 _cons@0),
> means(L1 L2) method(mlmv) vce(robust)
(90 all-missing observations excluded)

Endogenous variables

Measurement: math0 math1 math2 math3

Exogenous variables

Latent: L1 L2

Structural equation model Number of obs = 1,677
Estimation method = mlmv
Log pseudolikelihood= -9465.8763

( 1) [math0]L1 = 1
( 2) [math1]L1 = 1
( 3) [math1]L2 = 1
( 4) [math2]L1 = 1
( 5) [math2]L2 = 2
( 6) [math3]L1 = 1
( 7) [math3]L2 = 3
( 8) [math0]_cons = 0
( 9) [math1]_cons = 0
(10) [math2]_cons = 0
(11) [math3]_cons = 0

(Continued on next page)
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Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Measurement
math0 <-

L1 1 (constrained)
_cons 0 (constrained)

math1 <-
L1 1 (constrained)
L2 1 (constrained)

_cons 0 (constrained)

math2 <-
L1 1 (constrained)
L2 2 (constrained)

_cons 0 (constrained)

math3 <-
L1 1 (constrained)
L2 3 (constrained)

_cons 0 (constrained)

mean(L1) 17.39718 .1932765 90.01 0.000 17.01837 17.776
mean(L2) 9.475525 .1384919 68.42 0.000 9.204086 9.746964

var(e.math0) 20.85221 4.918087 13.13386 33.10638
var(e.math1) 57.9486 4.445613 49.85879 67.35102
var(e.math2) 64.88453 6.097478 53.96971 78.00676
var(e.math3) 23.17358 10.10076 9.86226 54.4515

var(L1) 16.1155 4.503779 9.318791 27.86943
var(L2) 7.34103 1.720645 4.637095 11.62165

cov(L1,L2) 1.416933 2.22961 0.64 0.525 -2.953022 5.786888
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8.1 Math-achievement data

1. Substitute the level-3 models into the level-2 models and then the resulting level-2 models into
the level-1 model. Rewrite the final reduced-form model using the notation of this book.

πpjk = γp00 + γp01W1k + up0k
︸ ︷︷ ︸

βp0k

+βp1X1jk + βp2X2jk + rpjk

= γp00 + γp01W1k + up0k + βp1X1jk + βp2X2jk + rpjk, p = 0, 1

Yijk = γ000 + γ001W1k + u00k + β01X1jk + β02X2jk + r0jk
︸ ︷︷ ︸

π0jk

+ (γ100 + γ101W1k + u10k + β11X1jk + β12X2jk + r1jk)
︸ ︷︷ ︸

π1jk

a1ijk + eijk

= γ000 + γ001W1k + β01X1jk + β02X2jk

+ γ100a1ijk + γ101W1ka1ijk + β11X1jka1ijk + β12X2jka1ijk

+ r0jk + r1jka1ijk + u00k + u10ka1ijk + eijk

In the notation of this book:

Yijk = β1 + β2W1k + β3X1jk + β4X2jk

+ β5a1ijk + β6W1ka1ijk + β7X1jka1ijk + β8X2jka1ijk

+ ζ
(2)
1jk + ζ

(2)
2jka1ijk + ζ

(3)
1k + ζ

(3)
2k a1ijk + ǫijk
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2. Fit the model with ML using mixed with robust standard errors and interpret the estimates.

. use achievement, clear

. generate low_y = lowinc*year

. generate black_y = black*year

. generate hisp_y = hispanic*year

Here we fit the model using ML and obtain

. mixed math lowinc black hispanic year low_y black_y hisp_y
> || school: year, covariance(unstructured)
> || child: year, covariance(unstructured) mle vce(robust)

Mixed-effects regression Number of obs = 7,230

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

school 60 18 120.5 387
child 1,721 2 4.2 6

Wald chi2(7) = 3394.48
Log pseudolikelihood = -8119.6035 Prob > chi2 = 0.0000

(Std. Err. adjusted for 60 clusters in school)

Robust
math Coef. Std. Err. z P>|z| [95% Conf. Interval]

lowinc -.0075778 .0014076 -5.38 0.000 -.0103367 -.0048189
black -.5021085 .0774862 -6.48 0.000 -.6539786 -.3502384

hispanic -.3193816 .0826101 -3.87 0.000 -.4812945 -.1574687
year .8745122 .037601 23.26 0.000 .8008156 .9482087
low_y -.0013689 .0005031 -2.72 0.007 -.002355 -.0003828

black_y -.0309253 .0224603 -1.38 0.169 -.0749467 .0130962
hisp_y .0430865 .0245736 1.75 0.080 -.0050769 .0912499
_cons .1406379 .1147658 1.23 0.220 -.084299 .3655747

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Unstructured
var(year) .0079801 .0021322 .0047269 .0134722

var(_cons) .0780901 .0217667 .0452203 .1348524
cov(year,_cons) .0008172 .0044148 -.0078357 .0094701

child: Unstructured
var(year) .0110938 .0025079 .0071228 .0172785

var(_cons) .6222512 .0274383 .5707315 .6784216
cov(year,_cons) .0466258 .0059811 .034903 .0583486

var(Residual) .3015912 .0123929 .2782539 .3268858

(Continued on next page)
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For each percentage point increase in the proportion of low-income students per school, mean
achievement for white (strictly, not African American or Hispanic) students in the middle of
primary school is estimated to decrease by 0.0076 points. In the middle of primary school,
mean math scores are estimated to be 0.50 points lower for African American students and
0.32 points lower for Hispanic students than for white students.

Math scores increase on average by 0.87 units per year for white children from schools with
no low-income children. For each percentage point increase in the proportion of low-income
children in the school, the mean increase in math scores per year goes down by −0.0014.
African American and Hispanic children do not differ significantly from other children in their
mean rate of growth.

The level of achievement in the middle of primary school varies between children within
schools and between schools, as does the rate of growth. The between-student variability in
achievement, after controlling for covariates, increases over time (due to a positive estimated
intercept–slope correlation at level 2).

3. Include some of the other covariates in the model and interpret the estimates.

This step is up to you!
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9.5 Neighborhood-effects data

1. Fit a model for student educational attainment without covariates but with random intercepts
of neighborhood and school by REML. Here and below, do not use the dfmethod(kroger)

option because it takes a long time.

. use neighborhood, clear

. egen pickn = tag(neighid)

. summarize pickn

Variable Obs Mean Std. Dev. Min Max

pickn 2310 .2268398 .4188788 0 1

. display r(sum)
524

. egen picks = tag(schid)

. summarize picks

Variable Obs Mean Std. Dev. Min Max

picks 2310 .0073593 .0854887 0 1

. display r(sum)
17

. mixed attain || _all: R.schid || neighid:, reml

Mixed-effects REML regression Number of obs = 2,310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2,310 2,310.0 2,310
neighid 524 1 4.4 16

Wald chi2(0) = .
Log restricted-likelihood = -3180.0484 Prob > chi2 = .

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .0748585 .074656 1.00 0.316 -.0714646 .2211817

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.schid) .08149 .0348397 .0352522 .1883744

neighid: Identity
var(_cons) .1410982 .0218534 .1041566 .191142

var(Residual) .7990432 .0263663 .7490018 .8524278

LR test vs. linear model: chi2(2) = 209.95 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.



66 Exercise 9.5

2. Include a random interaction between neighborhood and school, and use a likelihood-ratio test
to decide whether the interaction should be retained (use a 5% level of significance).

. estimates store model1

. mixed attain || _all: R.schid || neighid: || schid:, reml

Mixed-effects REML regression Number of obs = 2,310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2,310 2,310.0 2,310
neighid 524 1 4.4 16

schid 784 1 2.9 14

Wald chi2(0) = .
Log restricted-likelihood = -3177.9771 Prob > chi2 = .

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .0744393 .0748152 0.99 0.320 -.0721959 .2210744

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.schid) .0819288 .0352785 .0352297 .19053

neighid: Identity
var(_cons) .0906067 .0335769 .0438252 .1873255

schid: Identity
var(_cons) .0684128 .0365625 .0240005 .1950085

var(Residual) .7819341 .0271391 .7305114 .8369767

LR test vs. linear model: chi2(3) = 214.10 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store model2

. lrtest model1 model2

Likelihood-ratio test LR chi2(1) = 4.14
(Assumption: model1 nested in model2) Prob > chi2 = 0.0418

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Note: LR tests based on REML are valid only when the fixed-effects
specification is identical for both models.

There is evidence for an interaction between neighborhood and school at the 5% level of sig-
nificance since the conservative test gives a p-value smaller than 0.05. The correct asymptotic
null distribution for comparing a model with k uncorrelated random effects with a model with
k+1 uncorrelated random effects is given in display 8.1 as a 50:50 mixture of a spike at 0 and
a χ2(1), so we should divide the p-value above by 2, giving 0.021.
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3. Include the neighborhood-level covariate deprive in the model with the random interaction.
Discuss both the estimated coefficient of deprive and the changes in the estimated standard
deviations of the random effects due to including this covariate.

. mixed attain deprive || _all: R.schid || neighid: || schid:, reml

Mixed-effects REML regression Number of obs = 2,310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2,310 2,310.0 2,310
neighid 524 1 4.4 16

schid 784 1 2.9 14

Wald chi2(1) = 144.55
Log restricted-likelihood = -3120.3248 Prob > chi2 = 0.0000

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

deprive -.4620465 .038431 -12.02 0.000 -.5373698 -.3867231
_cons .0947763 .0559951 1.69 0.091 -.0149721 .2045248

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.schid) .0433886 .0207318 .0170082 .1106861

neighid: Identity
var(_cons) .0391088 .0264004 .0104153 .1468517

schid: Identity
var(_cons) .0319424 .0304145 .0049417 .2064689

var(Residual) .7974906 .0276547 .7450894 .8535771

LR test vs. linear model: chi2(3) = 70.32 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

More deprived neighborhoods are associated with lower mean attainment. All residual stan-
dard deviations have gone down, except the level-1 standard deviation. In particular, the
neighborhood standard deviation has gone down because some of the between-neighborhood
variability has been explained by deprive. Since children from deprived neighborhoods will
often end up in schools that attract other children from deprived neighborhoods, it is not sur-
prising that controlling for deprive has also reduced the between-school standard deviation
and the standard deviation of the school by neighborhood interaction.
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4. Remove the neighborhood-by-school random interaction (which is no longer significant at the
5% level) and include all student-level covariates. Interpret the estimated coefficients and the
change in the estimated standard deviations.

. mixed attain deprive p7vrq p7read dadocc dadunemp
> daded momed male || _all: R.schid || neighid:, reml

Mixed-effects REML regression Number of obs = 2,310

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 2,310 2,310.0 2,310
neighid 524 1 4.4 16

Wald chi2(8) = 2504.87
Log restricted-likelihood = -2416.7336 Prob > chi2 = 0.0000

attain Coef. Std. Err. z P>|z| [95% Conf. Interval]

deprive -.1565115 .0257023 -6.09 0.000 -.2068871 -.1061359
p7vrq .0275499 .0022678 12.15 0.000 .023105 .0319948
p7read .0262531 .0017537 14.97 0.000 .022816 .0296903
dadocc .0080982 .0013631 5.94 0.000 .0054267 .0107698

dadunemp -.1210332 .0468652 -2.58 0.010 -.2128874 -.029179
daded .1436937 .0408658 3.52 0.000 .0635982 .2237892
momed .0593024 .0374486 1.58 0.113 -.0140956 .1327003
male -.0559831 .028443 -1.97 0.049 -.1117304 -.0002357
_cons .0858849 .0282789 3.04 0.002 .0304592 .1413105

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.schid) .0043361 .0028664 .0011869 .0158411

neighid: Identity
var(_cons) .0038204 .0067428 .0001202 .121464

var(Residual) .4569292 .014911 .4286191 .4871091

LR test vs. linear model: chi2(2) = 7.55 Prob > chi2 = 0.0230

Note: LR test is conservative and provided only for reference.

Even after controlling for student-level variables, the level of deprivation of the neighborhood
still has a negative, but smaller, effect on attainment. Previous performance (p7vrq and
p7read) has a positive effect on attainment, as does father’s occupation status and father’s
education (after controlling for the other covariates). Having an unemployed father is associ-
ated with lower mean attainment, and males have lower mean attainment than females (after
controlling for the other covariates).

The estimated standard deviations of the random effects of neighborhood and school have both
decreased a lot compared to the model without covariates in step 1.
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5. For the final model, estimate residual intraclass correlations due to being in

a. the same neighborhood but not the same school

b. the same school but not the same neighborhood

c. both the same neighborhood and the same school

ρ̂(neighborhood) =
0.0038204

0.0038204+ 0.0043361+ 0.4569292
= 0.008

ρ̂(school) =
0.0043361

0.0038204+ 0.0043361+ 0.4569292
= 0.009

ρ̂(school,neighborhood) =
0.0038204+ 0.0043361

0.0038204+ 0.0043361+ 0.4569292
= 0.018

6. q Use the supclust command to see if estimation can be simplified by defining a virtual
level-3 identifier.

. supclust neighid schid, gen(region)
2 clusters in 2310 observarions

. sort region schid

. tabulate schid if region==1

schid Freq. Percent Cum.

0 146 6.58 6.58
1 22 0.99 7.57
2 146 6.58 14.16
3 159 7.17 21.33
5 155 6.99 28.31
6 101 4.55 32.87
7 286 12.89 45.76
8 112 5.05 50.81
9 136 6.13 56.94
10 133 6.00 62.94
15 190 8.57 71.51
16 111 5.00 76.51
17 154 6.94 83.45
18 91 4.10 87.56
19 102 4.60 92.16
20 174 7.84 100.00

Total 2,218 100.00

. tabulate schid if region==2

schid Freq. Percent Cum.

13 92 100.00 100.00

Total 92 100.00

There are two regions, but one only contains a single high school so the number of random
effects for high schools can be reduced from 17 to 16. Not a large saving in this case.


