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Disclaimer

We have solved the exercises as well as we could but there may be better solutions and we
may have made mistakes. We are grateful for any suggestions for improvement.

Please also check the errata at http://www.stata.com/bookstore/mlmus4.html for any
errors in the wording of the exercises themselves.
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10.3 Vaginal-bleeding data

1. Produce an identifier variable for women, and reshape the data to long form, stacking the
responses y1–y4 into one variable and creating a new variable, occasion, taking the values
1–4 for each woman.

. use amenorrhea, clear

. generate id = _n

. reshape long y, i(id) j(occasion)
(note: j = 1 2 3 4)

Data wide -> long

Number of obs. 57 -> 228
Number of variables 7 -> 5
j variable (4 values) -> occasion
xij variables:

y1 y2 ... y4 -> y

2. Fit the following model considered by Fitzmaurice, Laird, and Ware (2011):

logit{Pr(yij = 1|xj , tij , ζj)} = β1 + β2tij + β3t
2
ij + β4xjtij + β5xjt

2
ij + ζj

where tij = 1, 2, 3, 4 is the time interval and xj is dose. It is assumed that ζj ∼ N(0, ψ), and
that ζj is independent across women and independent of xj and tij . Use melogit with the
fweight(wt2) option to specify that wt2 are level-2 frequency weights.

. generate time = occasion

. generate dose_time = dose*time

. generate time2 = time^2

. generate dose_time2 = dose*time2

. melogit y time time2 dose_time dose_time2 || id:, intpoints(30) fweight(wt2)

Mixed-effects logistic regression Number of obs = 3,616
Group variable: id Number of groups = 1,151

Obs per group:
min = 1
avg = 3.1
max = 4

Integration method: mvaghermite Integration pts. = 30

Wald chi2(4) = 291.00
Log likelihood = -1934.465 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

time 1.133202 .2682216 4.22 0.000 .6074974 1.658907
time2 -.0419232 .0548099 -0.76 0.444 -.1493486 .0655022

dose_time .5644407 .1922395 2.94 0.003 .1876583 .9412231
dose_time2 -.1095528 .0496097 -2.21 0.027 -.206786 -.0123195

_cons -3.805677 .3049807 -12.48 0.000 -4.403428 -3.207926

id
var(_cons) 5.064584 .5840171 4.040065 6.34891

LR test vs. logistic model: chibar2(01) = 500.52 Prob >= chibar2 = 0.0000
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3. Write down the above model, adding a random slope of tij , and fit the model. (See section
11.7.1 for an example of a random-coefficient model for ordinal responses fit in meologit.)

logit{Pr(yij = 1|xj , tij , ζj)} = β1 + β2tij + β3t
2
ij + β4xjtij + β5xjt

2
ij + ζ1j + ζ2jtij ,

where ζ1j and ζ2j are a random intercept and random slope of time, and are assumed to have
a bivariate normal distribution with zero means, variances ψ1 and ψ2 and correlation ρ.

. melogit y time time2 dose_time dose_time2 || id: time,
> covariance(unstructured) intpoints(30) fweight(wt2)

Mixed-effects logistic regression Number of obs = 3,616
Group variable: id Number of groups = 1,151

Obs per group:
min = 1
avg = 3.1
max = 4

Integration method: mvaghermite Integration pts. = 30

Wald chi2(4) = 147.49
Log likelihood = -1927.0875 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .8161103 .34782 2.35 0.019 .1343956 1.497825
time2 .0175889 .0662461 0.27 0.791 -.112251 .1474288

dose_time .5479068 .197515 2.77 0.006 .1607846 .9350291
dose_time2 -.0989771 .0534594 -1.85 0.064 -.2037555 .0058013

_cons -3.448329 .4566772 -7.55 0.000 -4.3434 -2.553258

id
var(time) .5104948 .2012609 .2357262 1.105541
var(_cons) 4.656183 1.710134 2.266724 9.564482

id
cov(time,_cons) -.335804 .4233619 -0.79 0.428 -1.165578 .49397

LR test vs. logistic model: chi2(3) = 515.27 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

4. Interpret the estimated coefficients.

The model assumes that there is no difference in the log-odds of amenorrhea between the
groups at time 0 (baseline). In the low-dose group, the log-odds increase approximately by
the same amount of 0.82 in each 3-month interval (since the estimated coefficient of time2
is small and nonsignificant), corresponding to an odds ratio of about 2.3. The interaction
between dose and time2 is not quite significant, so we could assume a linear relationship for
both group by removing the terms dose time2 and time2. However, keeping the terms in, the
high-dose group initially has a larger slope than the low-dose group, and the slope decreases
over time because time-squared has a negative coefficient (.0176− .0990).
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5. Plot marginal predicted probabilities as a function of time, separately for women in the two
treatment groups.

. predict prob, pr marginal
(using 30 quadrature points)

. sort dose id time

. twoway (line prob time if dose==0, sort) (line prob time if dose==1, sort),
> ytitle(Predicted marginal probability) xtitle(Time in 90 day intervals)
> legend(order(1 "Low dose" 2 "High dose"))

The graph is shown in figure 1.
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Figure 1: Predicted marginal probabilities over time by dose level



4 Exercise 10.3



MLMUS4 (Vol. II) – Rabe-Hesketh and Skrondal 5

10.8 PISA data

1. Fit a logistic regressionmodel with pass read as the response variable and the variables female
to both for above as covariates and with a random intercept for schools using melogit. (Use
the default seven quadrature points.)

. use pisaUSA2000, clear

. melogit pass_read female isei high_school college test_lang
> one_for both_for || id_school:

Mixed-effects logistic regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(7) = 116.85
Log likelihood = -1252.8108 Prob > chi2 = 0.0000

pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .5422162 .103192 5.25 0.000 .3399635 .7444688
isei .0206763 .003284 6.30 0.000 .0142398 .0271129

high_school .4447944 .2565114 1.73 0.083 -.0579586 .9475475
college .796881 .255052 3.12 0.002 .2969883 1.296774

test_lang .7825093 .2834799 2.76 0.006 .2268988 1.33812
one_for .0112567 .2244283 0.05 0.960 -.4286147 .4511282

both_for .150784 .2376408 0.63 0.526 -.3149834 .6165514
_cons -3.279323 .3811204 -8.60 0.000 -4.026305 -2.532341

id_school
var(_cons) .5134392 .1283984 .3145029 .8382111

LR test vs. logistic model: chibar2(01) = 58.35 Prob >= chibar2 = 0.0000

2. Fit the model from step 1 with the school mean of isei as an additional covariate.

. egen mn_isei = mean(isei), by(id_school)

(Continued on next page)
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. melogit pass_read female isei mn_isei high_school college test_lang
> one_for both_for || id_school:

Mixed-effects logistic regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(8) = 171.58
Log likelihood = -1225.4697 Prob > chi2 = 0.0000

pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .5552102 .102912 5.39 0.000 .3535063 .7569141
isei .0143423 .003335 4.30 0.000 .0078058 .0208787

mn_isei .0690722 .0092476 7.47 0.000 .0509472 .0871971
high_school .3999543 .2561423 1.56 0.118 -.1020754 .9019839

college .7207869 .254843 2.83 0.005 .2213038 1.22027
test_lang .6951881 .2849896 2.44 0.015 .1366188 1.253757

one_for -.0199176 .2239413 -0.09 0.929 -.4588344 .4189992
both_for .0986699 .2359626 0.42 0.676 -.3638082 .561148

_cons -6.03362 .5387266 -11.20 0.000 -7.089505 -4.977736

id_school
var(_cons) .2714333 .0857003 .1461878 .5039822

LR test vs. logistic model: chibar2(01) = 25.15 Prob >= chibar2 = 0.0000

3. Interpret the estimated coefficients of isei and school mean isei and comment on the change
in the other parameter estimates due to adding school mean isei.

Within a school, student’s ISEI score has an estimated effect of 0.014 on the log-odds scale
and between schools there is an additional effect of 0.069. Considering a 10-unit change in
ISEI, the corresponding odds ratios are 1.15 (= exp(0.14)) and 2.00 (= exp(0.69)). Comparing
two students from the same school, one of whom has ISEI 10 points higher than the other
(with all other covariates being the same), the higher ISEI student has a 15% greater odds
of passing the reading test. Comparing two students with the same ISEI score (and other
covariate values) from schools that differ in their mean ISEI score by 10 units (but have the
same random intercept), the student from the higher mean ISEI school has twice the odds of
passing the reading test as the other student.

The estimated random intercept variance has nearly halved due to adding school mean ISEI.
The estimates of the effects of parent’s education on test language spoken at home have
decreased a little.

4. From the estimates in step 2, obtain an estimate of the between-school effect of socioeconomic
status.

The total between-school effect on the log-odds scale is the sum of the coefficient of isei and
mn isei, giving 0.083 (= 0.014 + 0.069).
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5. Rerun the command but this time with robust standard errors.

. melogit pass_read female isei mn_isei high_school college test_lang
> one_for both_for || id_school:, vce(robust)

Mixed-effects logistic regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(8) = 188.38
Log pseudolikelihood = -1225.4697 Prob > chi2 = 0.0000

(Std. Err. adjusted for 148 clusters in id_school)

Robust
pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .5552102 .1024602 5.42 0.000 .354392 .7560285
isei .0143423 .0029873 4.80 0.000 .0084873 .0201973

mn_isei .0690722 .0090417 7.64 0.000 .0513507 .0867936
high_school .3999543 .2619124 1.53 0.127 -.1133846 .9132932

college .7207869 .2574594 2.80 0.005 .2161757 1.225398
test_lang .6951881 .2694431 2.58 0.010 .1670892 1.223287

one_for -.0199176 .1998362 -0.10 0.921 -.4115894 .3717542
both_for .0986699 .2452363 0.40 0.687 -.3819845 .5793243

_cons -6.03362 .5471279 -11.03 0.000 -7.105971 -4.961269

id_school
var(_cons) .2714333 .0815196 .1506682 .4889951

The robust and model-based standard errors are quite similar in this case.
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6. q In this survey, schools were sampled with unequal probabilities, πj , and given that a
school was sampled, students were sampled from the school with unequal probabilities πi|j .
The reciprocals of these probabilities are given as school- and student-level survey weights,
wnrschbg (wj = 1/πj) and w fstuwt (wi|j = 1/πi|j), respectively. As discussed in Rabe-
Hesketh and Skrondal (2006), incorporating survey weights in multilevel models using a so-
called pseudolikelihood approach can lead to biased estimates, particularly if the level-1 weights
wi|j are very different from 1 and if the cluster sizes are small. Neither of these issues arise
here, so implement pseudo ML estimation as follows:

a. Rescale the student-level weights by dividing them by their cluster means [this is scaling
method 2 in Rabe-Hesketh and Skrondal (2006)].

. egen mnw = mean(w_fstuwt), by(id_school)

. generate wt1 = w_fstuwt/mnw

b. Rename the level-2 weights and rescaled level-1 weights to wt2 and wt1, respectively.

. rename wnrschbw wt2

c. Run the melogit command from step 2 above, adding [pw=wt1] before || to specify
level-1 weights and giving the additional option pweight(wt2) to specify level-2 weights.

. melogit pass_read female isei mn_isei high_school college test_lang
> one_for both_for [pw=wt1] || id_school:, pweight(wt2)

Mixed-effects logistic regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(8) = 88.21
Log pseudolikelihood = -197964.36 Prob > chi2 = 0.0000

(Std. Err. adjusted for 148 clusters in id_school)

Robust
pass_read Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .6218815 .1540693 4.04 0.000 .3199113 .9238518
isei .0182009 .0048055 3.79 0.000 .0087823 .0276194

mn_isei .0682412 .0164298 4.15 0.000 .0360394 .1004431
high_school .1019583 .4766682 0.21 0.831 -.8322941 1.036211

college .4528053 .5050718 0.90 0.370 -.5371173 1.442728
test_lang .6245946 .3825914 1.63 0.103 -.1252707 1.37446

one_for -.1086342 .274045 -0.40 0.692 -.6457526 .4284843
both_for -.2811825 .3265266 -0.86 0.389 -.9211629 .3587979

_cons -5.875258 .9545544 -6.15 0.000 -7.74615 -4.004366

id_school
var(_cons) .2962084 .124311 .1301279 .6742557
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d. Compare the estimates with those from step 2. Robust standard errors are computed by
melogit because model-based standard errors are not appropriate with survey weights.

Some of the estimates are quite different, especially the coefficients of high school and
college.
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11.7 Recovery-after-surgery data

1. Reshape the data to long form, stacking the recovery scores at the four occasions into a
single variable and generating an identifier, occ, for the four occasions. (You can specify
several variables in the i() option of the reshape command if one variable does not uniquely
identify the individuals.) Recode the recovery score to four categories (to simplify some of the
commands below), by merging {0,1}, {2,3}, and {4,5} and calling the new categories 1, 2, 3,
and 4.

. use recovery, clear

. reshape long score, i(id dosage) j(occ)
(note: j = 1 2 3 4)

Data wide -> long

Number of obs. 60 -> 240
Number of variables 8 -> 6
j variable (4 values) -> occ
xij variables:

score1 score2 ... score4 -> score

Before we forget, let us construct a unique person identifier

. egen id2 = group(id dosage)

Now recode the response variable:

. recode score 0/1=1 2/3=2 4/5=3 6=4
(score: 164 changes made)

2. Construct a variable, time, taking the values 0, 5, 15, and 30 at the four occasions. Fit a
random-intercept proportional-odds model meologit with dummy variables for the dosage
groups and the continuous variables age, duration, and time as covariates. (Make sure there
are 60 level-2 clusters.)

. recode occ 1=0 2=5 3=15 4=30, generate(time)
(240 differences between occ and time)

. tabulate dosage, generate(dose)

dosage Freq. Percent Cum.

15 60 25.00 25.00
20 60 25.00 50.00
25 60 25.00 75.00
30 60 25.00 100.00

Total 240 100.00

(Continued on next page)
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. meologit score dose2 dose3 dose4 age duration time || id2:

Mixed-effects ologit regression Number of obs = 240
Group variable: id2 Number of groups = 60

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 78.05
Log likelihood = -221.62222 Prob > chi2 = 0.0000

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

dose2 -.2077786 1.49336 -0.14 0.889 -3.134709 2.719152
dose3 -1.227845 1.453444 -0.84 0.398 -4.076543 1.620854
dose4 -1.802505 1.445967 -1.25 0.213 -4.636549 1.031539

age -.0524312 .0346835 -1.51 0.131 -.1204095 .0155472
duration -.0223472 .0147845 -1.51 0.131 -.0513242 .0066299

time .235031 .0266534 8.82 0.000 .1827913 .2872707

/cut1 -4.058966 2.130342 -8.23436 .1164289
/cut2 -1.285731 2.100772 -5.403169 2.831706
/cut3 1.416124 2.098766 -2.697381 5.52963

id2
var(_cons) 13.36943 4.113677 7.314834 24.43551

LR test vs. ologit model: chibar2(01) = 123.68 Prob >= chibar2 = 0.0000
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3. Compare the model from step 2 with a model including dosage as a continuous covariate
instead of the dummy variables for dosage groups, using a likelihood ratio test at the 5%
significance level.

. estimates store model1

. meologit score dosage age duration time || id2:

Mixed-effects ologit regression Number of obs = 240
Group variable: id2 Number of groups = 60

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 78.01
Log likelihood = -221.67293 Prob > chi2 = 0.0000

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

dosage -.1277912 .09199 -1.39 0.165 -.3080882 .0525058
age -.0558598 .0329918 -1.69 0.090 -.1205225 .0088029

duration -.0220667 .0147112 -1.50 0.134 -.0509001 .0067666
time .2349185 .0266471 8.82 0.000 .1826911 .2871459

/cut1 -6.231995 2.860294 -11.83807 -.6259222
/cut2 -3.459762 2.816057 -8.979132 2.059609
/cut3 -.7598798 2.791079 -6.230294 4.710534

id2
var(_cons) 13.35747 4.11182 7.306337 24.42019

LR test vs. ologit model: chibar2(01) = 123.61 Prob >= chibar2 = 0.0000

. estimates store model2

. lrtest model1 .

Likelihood-ratio test LR chi2(2) = 0.10
(Assumption: . nested in model1) Prob > chi2 = 0.9506

Linearity of the log-odds for the covariate dosage is not rejected at the 5% level (L = 0.10, df
= 2, p = 0.95).
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4. Extend the model chosen in step 3 to include an interaction between dosage and time. Test
the interaction using a Wald test at the 5% level of significance.

. generate dosage_time = dosage*time

. meologit score dosage age duration time dosage_time || id2:

Mixed-effects ologit regression Number of obs = 240
Group variable: id2 Number of groups = 60

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 77.50
Log likelihood = -221.49881 Prob > chi2 = 0.0000

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

dosage -.1505731 .1008403 -1.49 0.135 -.3482165 .0470704
age -.0556903 .0333188 -1.67 0.095 -.1209939 .0096133

duration -.0222267 .0148576 -1.50 0.135 -.0513471 .0068938
time .1981749 .0669428 2.96 0.003 .0669694 .3293803

dosage_time .0017006 .0028829 0.59 0.555 -.0039497 .0073509

/cut1 -6.729309 3.012843 -12.63437 -.8242448
/cut2 -3.951823 2.966103 -9.765279 1.861632
/cut3 -1.23639 2.932581 -6.984144 4.511364

id2
var(_cons) 13.62838 4.229277 7.418091 25.03782

LR test vs. ologit model: chibar2(01) = 123.87 Prob >= chibar2 = 0.0000

The dosage by time interaction is not significant at the 5% level (z = 0.59, p = 0.56).
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5. For the model selected in step 4, interpret the estimated ORs and random-intercept variance.

. meologit score dosage age duration time || id2:, or

Mixed-effects ologit regression Number of obs = 240
Group variable: id2 Number of groups = 60

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 78.01
Log likelihood = -221.67293 Prob > chi2 = 0.0000

score Odds ratio Std. err. z P>|z| [95% conf. interval]

dosage .8800371 .0809546 -1.39 0.165 .7348505 1.053909
age .9456717 .0311994 -1.69 0.090 .8864571 1.008842

duration .978175 .0143901 -1.50 0.134 .9503736 1.00679
time 1.264806 .0337034 8.82 0.000 1.200444 1.332619

/cut1 -6.231995 2.860294 -11.83807 -.6259222
/cut2 -3.459762 2.816057 -8.979132 2.059609
/cut3 -.7598798 2.791079 -6.230294 4.710534

id2
var(_cons) 13.35747 4.11182 7.306337 24.42019

Note: Estimates are transformed only in the first equation to odds ratios.
LR test vs. ologit model: chibar2(01) = 123.61 Prob >= chibar2 = 0.0000

Each extra gram of anesthetic per kilogram of weight is associated with an estimated 12%
reduction in the odds of having a recovery score above a given cut-point, after controlling for
covariates. This translates to a 72% (−72 = 100(0.880037110 − 1)) reduction in the odds for
a 10grams/kilogram increase. Each extra month of age is associated with an estimated 4%
decrease in the odds of a high recovery score after controlling for the other covariates. For a one-
year increase in age, the odds are estimated to decrease by 49% (−20 = 100(0.945671712− 1)).
Each extra minute of surgery reduces the estimated odds of a high recovery score by 2%,
corresponding to a 36% decrease (−36 = 100(0.97817520 − 1)) every 20 minutes. Finally, the
estimated odds of a high recovery score increase over time after admission to the recovery
room, by 26% per minute, after controlling for the other covariates.

The estimated random-intercept variance is large, giving an estimated residual intraclass cor-
relation of the latent responses of 0.81 (= 13.62838/(13.62838+ π2/3)).
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6. q Extend the model selected in step 4 by relaxing the proportional-odds assumption for
dosage (see section 11.2 on using the thresh() option in gllamm to relax proportional odds).
Test whether the odds are proportional using a likelihood ratio test. To compare models fit
by different commands, use the force option.

First store the estimates for the selected model:

. estimates store model2

Then fit the model relaxing the proportional odds assumption in gllamm:

. eq thr: dosage

. gllamm score age duration time, i(id2)
> link(ologit) thresh(thr) adapt

number of level 1 units = 240
number of level 2 units = 60

Condition Number = 919.91442

gllamm model

log likelihood = -217.9239

score Coefficient Std. err. z P>|z| [95% conf. interval]

score
age -.0591689 .0332862 -1.78 0.075 -.1244087 .0060709

duration -.0222001 .0144823 -1.53 0.125 -.0505849 .0061847
time .2428621 .0280665 8.65 0.000 .1878528 .2978715

_cut11
dosage .1970886 .1005634 1.96 0.050 -.000012 .3941892
_cons -7.890947 3.003838 -2.63 0.009 -13.77836 -2.003532

_cut12
dosage .0501222 .0972455 0.52 0.606 -.1404754 .2407198
_cons -1.732089 2.864999 -0.60 0.545 -7.347385 3.883207

_cut13
dosage .1317483 .1013735 1.30 0.194 -.0669401 .3304367
_cons -.797635 2.891275 -0.28 0.783 -6.46443 4.86916

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id2)

var(1): 13.834367 (4.3019654)
------------------------------------------------------------------------------
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Now perfom the LR test with the force option because different commands were used for the
two models:

. estimates store model3

. lrtest model2 model3, force

Likelihood-ratio test LR chi2(2) = 7.50
(Assumption: model2 nested in model3) Prob > chi2 = 0.0235

We reject the proportional odds assumption for dosage group at the 5% level (L = 7.50, df
= 2, p = 0.02).

7. For age equal to 37 months, duration equal to 80 minutes, and time in recovery room equal
to 15 minutes, produce a graph of predicted marginal probabilities similar to figure 11.13 for
the model selected in step 6 or for the model selected in step 4. Also produce a corresponding
stacked bar chart, treating dosage group as categorical.

First we set the explanatory variables equal to the required values:

. replace age=37
(232 real changes made)

. replace duration=80
(240 real changes made)

. replace time=15
(180 real changes made)

Then we show how to make the graphs for the proportional odds model from step 4, which
was estimated using melogit and stored as model2

. estimates restore model2
(results model2 are active now)

Then we obtain the marginal probabilties and plot them:

. predict pr1-pr4, pr marginal
(using 7 quadrature points)

. graph bar (mean) pr1 pr2 pr3 pr4, over(dosage) stack
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))

The graph is given in the left panel of figure 2. Note that the boundaries on the graph are not
exactly parallel, but the logit transformation of the boundaries is. For the figure resembling
figure 11.12, we need the cumulative probabilities that y is anything from 1 up to category s,
for s = 1, 2, 3, 4:

. generate pr12 = pr1+pr2

. generate pr123 = pr12+pr3

. generate pr1234 = 1

. twoway (area pr1 dosage, sort fintensity(inten10))
> (rarea pr12 pr1 dosage, sort fintensity(inten50))
> (rarea pr123 pr12 dosage, sort fintensity(inten70))
> (rarea pr1234 pr123 dosage, sort fintensity(inten90)),
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
> title("dosage")

The graph is given in the left panel of figure 3.

Now, we plot the same kinds of graphs for the model from step 6 which was estimated using
gllamm and stored as model3. First, we delete the predicted probabilities for the proportional
odds model so that we can use the same variable names again:



18 Exercise 11.7

0
.2

.4
.6

.8
1

15 20 25 30

Prob(y=1) Prob(y=2)
Prob(y=3) Prob(y=4)

0
.2

.4
.6

.8
1

15 20 25 30

Prob(y=1) Prob(y=2)
Prob(y=3) Prob(y=4)

Figure 2: Area graphs of predicted marginal probabilities versus dosage groups, when age is 37
months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is proportional
odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)
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Figure 3: Stacked bar chart of predicted marginal probabilities for the dosage groups, when age
is 37 months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is
proportional odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)
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. drop pr*

We can predict marginal cumulative probabilities using gllapred:

. estimates restore model3
(results model3 are active now)

. gllapred pr234, marg mu above(1) fsample
(mu will be stored in pr234)

. gllapred pr34, marg mu above(2) fsample
(mu will be stored in pr34)

. gllapred pr4, marg mu above(3) fsample
(mu will be stored in pr4)

These are converted to probabilities for each category as follows:

. generate pr1 = 1 - pr234

. generate pr2 = pr234 - pr34

. generate pr3 = pr34 - pr4

And the graph in the right panel of figure 2 is obtained using

. graph bar (mean) pr1 pr2 pr3 pr4, over(dosage) stack
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))

Again, for the figure resembling figure 11.12, we need the cumulative probabilities that y is
anything from 1 up to category s, for s = 1, 2, 3, 4:

. generate pr12 = 1-pr34

. generate pr123 = 1-pr4

. generate pr1234 = 1

. twoway (area pr1 dosage, sort fintensity(inten10))
> (rarea pr12 pr1 dosage, sort fintensity(inten50))
> (rarea pr123 pr12 dosage, sort fintensity(inten70))
> (rarea pr1234 pr123 dosage, sort fintensity(inten90)),
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
> xtitle("dosage")

The graph is given in the right panel of figure 3.
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12.4 British-election data

1. Create a variable, chosen, equal to 1 for the party voted for (rank equal to 1) and 0 for the
other parties.

. use elections, clear

. generate chosen = rank == 1

2. Standardize lrdist and inflation to have mean 0 and variance 1. Produce all the dummy
variables and interactions necessary to fit a conditional logistic regression model (using clogit)
for chosen, with the following covariates: the standardized versions of lrdist and inflation,
and the dummy varibles yr87, yr92, male, and manual. All variables except the standardized
version of lrdist should have party-specific coefficients. There is no need for alternative-
specific intercepts because interactions with both yr87 and yr92 are included.

. egen inflat = std(inflation)

. egen dist = std(rldist)

. tabulate party, generate(p)

party Freq. Percent Cum.

1 2,458 33.33 33.33
2 2,458 33.33 66.67
3 2,458 33.33 100.00

Total 7,374 100.00

. rename p1 cons

. rename p2 lab

. rename p3 lib

. foreach var of varlist male inflat manual yr87 yr92 {
2. generate lab_‘var’ = lab*‘var’
3. generate lib_‘var’ = lib*‘var’
4. }

3. Fit the model using clogit and either gllamm or cmxtmixlogit, with Conservatives as the
base outcome.

. clogit chosen dist lab_* lib_* , group(occ)

Conditional (fixed-effects) logistic regression Number of obs = 7374
LR chi2(11) = 1434.69
Prob > chi2 = 0.0000

Log likelihood = -1983.0429 Pseudo R2 = 0.2656

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -1.134582 .0463711 -24.47 0.000 -1.225468 -1.043696
lab_male -.7170468 .1247135 -5.75 0.000 -.9614808 -.4726129

lab_inflat .40281 .0665768 6.05 0.000 .2723219 .533298
lab_manual .5855308 .1298537 4.51 0.000 .3310223 .8400393
lab_yr87 -.9940042 .1434858 -6.93 0.000 -1.275231 -.7127771
lab_yr92 -.9786174 .1346003 -7.27 0.000 -1.242429 -.7148056
lib_male -.6562548 .1194879 -5.49 0.000 -.8904468 -.4220627

lib_inflat .3102374 .0623362 4.98 0.000 .1880607 .4324142
lib_manual -.1422657 .1191864 -1.19 0.233 -.3758667 .0913353
lib_yr87 -.785426 .1258898 -6.24 0.000 -1.032166 -.5386865
lib_yr92 -1.068714 .1228379 -8.70 0.000 -1.309472 -.8279564

(Continued on next page)
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Using gllamm:

. gllamm party dist lab_* lib_*, nocons i(occ) link(mlogit)
> expanded(occ chosen o) init

number of level 1 units = 7374

Condition Number = 7.2688994

gllamm model

log likelihood = -1983.0429

party Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -1.134582 .0463711 -24.47 0.000 -1.225468 -1.043696
lab_male -.7170468 .1247135 -5.75 0.000 -.9614807 -.4726128

lab_inflat .40281 .0665768 6.05 0.000 .272322 .5332981
lab_manual .585531 .1298537 4.51 0.000 .3310225 .8400395
lab_yr87 -.9940045 .1434858 -6.93 0.000 -1.275232 -.7127774
lab_yr92 -.9786177 .1346003 -7.27 0.000 -1.24243 -.7148059
lib_male -.6562546 .1194879 -5.49 0.000 -.8904466 -.4220626

lib_inflat .3102375 .0623362 4.98 0.000 .1880608 .4324142
lib_manual -.1422654 .1191864 -1.19 0.233 -.3758663 .0913356
lib_yr87 -.7854264 .1258898 -6.24 0.000 -1.032166 -.5386869
lib_yr92 -1.068715 .1228379 -8.70 0.000 -1.309473 -.8279569

(Continued on next page)
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Using cmxtmixlogit:

. cmset serialno occ party
panel data: panels serialno and time occ
note: case identifier _caseid generated from serialno occ
note: panel by alternatives identifier _panelaltid generated from serialno party

caseid variable: _caseid
alternatives variable: party

panel by alternatives variable: _panelaltid (unbalanced)
time variable: occ, 1 to 2784

delta: 1 unit

note: data have been xtset

. cmxtmixlogit chosen dist lab_* lib_*, noconstant

Mixed logit choice model Number of obs = 7,374
Number of cases = 2,458

Panel variable: serialno Number of panels = 1,344

Time variable: occ Cases per panel: min = 1
avg = 1.9
max = 2

Alts per case: min = 3
avg = 3.0
max = 3

Integration points: 0 Wald chi2(11) = 857.30
Log likelihood = -1983.0429 Prob > chi2 = 0.0000

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

party
dist -1.134582 .0463711 -24.47 0.000 -1.225468 -1.043696

lab_male -.7170469 .1247135 -5.75 0.000 -.9614808 -.4726129
lab_inflat .40281 .0665768 6.05 0.000 .2723219 .533298
lab_manual .5855308 .1298537 4.51 0.000 .3310223 .8400393
lab_yr87 -.9940042 .1434858 -6.93 0.000 -1.275231 -.7127771
lab_yr92 -.9786174 .1346003 -7.27 0.000 -1.242429 -.7148056
lib_male -.6562548 .1194879 -5.49 0.000 -.8904468 -.4220627

lib_inflat .3102374 .0623362 4.98 0.000 .1880607 .4324142
lib_manual -.1422657 .1191864 -1.19 0.233 -.3758667 .0913353
lib_yr87 -.785426 .1258898 -6.24 0.000 -1.032166 -.5386865
lib_yr92 -1.068714 .1228379 -8.70 0.000 -1.309472 -.8279564
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4. Extend the model to include a person-level random slope for lrdist, and fit the extended
model in gllamm with 12-point adaptive quadrature or cmxtmixlogit with the default number
of integration points (the latter will take considerably longer).

We first fit the model in gllamm:

. eq slope: dist

. gllamm party dist lab_* lib_*, nocons i(serialno) eqs(slope)
> link(mlogit) expanded(occ chosen o) adapt

number of level 1 units = 7374
number of level 2 units = 1344

Condition Number = 8.2098824

gllamm model

log likelihood = -1940.8731

party Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -1.667974 .0950608 -17.55 0.000 -1.854289 -1.481658
lab_male -.8029514 .1462798 -5.49 0.000 -1.089655 -.5162482

lab_inflat .4829104 .0792102 6.10 0.000 .3276613 .6381595
lab_manual .6980803 .1539755 4.53 0.000 .3962939 .9998668
lab_yr87 -1.09047 .1663477 -6.56 0.000 -1.416505 -.7644342
lab_yr92 -1.118557 .1568355 -7.13 0.000 -1.425949 -.8111654
lib_male -.7209999 .1358186 -5.31 0.000 -.9871995 -.4548003

lib_inflat .3926299 .0720597 5.45 0.000 .2513955 .5338644
lib_manual -.0870119 .1367104 -0.64 0.524 -.3549594 .1809355
lib_yr87 -.8387357 .1429854 -5.87 0.000 -1.118982 -.5584894
lib_yr92 -1.177546 .1389775 -8.47 0.000 -1.449937 -.9051555

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (serialno)

var(1): 1.0594742 (.21654741)
------------------------------------------------------------------------------

(Continued on next page)



MLMUS4 (Vol. II) – Rabe-Hesketh and Skrondal 25

Now we fit the same model in cmxtmixlogit:

. cmxtmixlogit chosen lab_* lib_*, noconstant random(dist)

Mixed logit choice model Number of obs = 7,374
Number of cases = 2,458

Panel variable: serialno Number of panels = 1,344

Time variable: occ Cases per panel: min = 1
avg = 1.9
max = 2

Alts per case: min = 3
avg = 3.0
max = 3

Integration sequence: Hammersley
Integration points: 654 Wald chi2(11) = 601.09
Log simulated likelihood = -1940.8473 Prob > chi2 = 0.0000

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

party
lab_male -.8029082 .1461815 -5.49 0.000 -1.089419 -.5163977

lab_inflat .4827921 .0791922 6.10 0.000 .3275782 .638006
lab_manual .6979731 .1538849 4.54 0.000 .3963642 .9995821
lab_yr87 -1.090001 .1662027 -6.56 0.000 -1.415753 -.7642502
lab_yr92 -1.118178 .1567131 -7.14 0.000 -1.42533 -.8110255
lib_male -.720856 .1357229 -5.31 0.000 -.986868 -.454844

lib_inflat .3924501 .0720178 5.45 0.000 .2512977 .5336024
lib_manual -.0868981 .1366305 -0.64 0.525 -.354689 .1808927
lib_yr87 -.838884 .1428815 -5.87 0.000 -1.118927 -.5588414
lib_yr92 -1.177561 .1388967 -8.48 0.000 -1.449793 -.9053282

dist -1.667532 .0946464 -17.62 0.000 -1.853036 -1.482029

/Normal
sd(dist) 1.026139 .1024326 .8437935 1.247889
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5. Write down the model and interpret the estimates.

The following model is specified for the conditional probability that party s is chosen by
respondent j at occasion i, given the covariates and the random coefficient ζ2j for lrdist:

Pr(yij=s|x[s]2ij ,xij , ζ2j)

=
exp

{

(β2+ζ2j)x
[s]
2ij + β

[s]
3 x3j + β

[s]
4 x4ij + β

[s]
5 x5j + β

[s]
6 x6i + β

[s]
7 x7i

}

∑3
c=1 exp

{

(β2+ζ2j)x
[c]
2ij + β

[c]
3 x3j + β

[c]
4 x4ij + β

[c]
5 x5j + β

[c]
6 x6i + β

[c]
7 x7i

}

Here x
[s]
2ij represents lrdist for party s, x3j represents male, x4ij represents inflation, x5j

represents manual, x6i represents yr87, and x7i represents yr92. It is assumed that the random
coefficient ζ2j has a normal distribution with zero mean and variance ψ, and that the covariates
are independent of the random coefficient.

We now turn to the interpretation of the estimates. Controlling for the other covariates,
the conditional or respondent-specific odds of choosing a party decreases by 81% (-81% =
100% × exp(−1.668452) − 1) as the distance between the party and the respondent on the
left-right political dimension increases by one unit. The variance of the respondent-specific
effects β2+ζ2j is estimated as 1.0384731 so a 95% range of the odds ratio is (exp(−1.668452−
1.96

√
1.0384731, exp(−1.668452− 1.96

√
1.0384731) = (0.03, 1.39).

The following interpretations are all in terms of conditional odds with Conservatives as base-
category and given the other covariates.

We first consider the odds of choosing Labour. The odds of choosing Labour in 1987 is
estimated as 0.34=exp(−1.088198) when all covariates are zero. The odds of choosing Labour
in 1992 is estimated as 0.33=exp(−1.11707) when all covariates are zero. The odds of choosing
Labour is estimated as 55% (-55% = 100% (exp(−0.8026911)− 1)) lower for males than for
females. The odds of choosing Labour is estimated as 62% (62% = 100% (exp(0.4823476)−1))
higher when the perceived inflation rating increases by one unit (which might be explained by
the fact that Conservatives were the incumbents). The odds of choosing Labour is estimated as
100% (100% = 100% (exp(0.6978195)− 1)) higher for respondents whose father was a manual
worker compared to the father not being a manual worker.

We then consider the odds of choosing Liberals. The odds of choosing Liberals in 1987 is
estimated as 0.43=exp(−0.8391223) when all covariates are zero. The odds of choosing Liberals
in 1992 is estimated as 0.31=exp(−1.177754) when all covariates are zero. The odds of choosing
Liberals is estimated as 51% (-51% = 100% (exp(−0.720465)− 1)) lower for males than for
females. The odds of choosing Liberals is estimated as 34% (34% = 100% (exp(0.2920127)−1))
higher when the perceived inflation rating increases by one unit (which might be explained by
the fact that Conservatives were the incumbents). The odds of choosing Liberals is estimated
as 8% (-8% = 100% (exp(−0.0866056)− 1)) lower for respondents whose father was a manual
worker compared to the father not being a manual worker.
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6. Instead of including a random slope for lrdist, include correlated person-level random in-
tercepts for Labour and Liberal. Either use gllamm with 9-point adaptive quadrature or
cmxtmixlogit with the default number of integration points (the latter will take considerably
longer). cmxtmixlogit automatically includes fixed coefficients for Labour and Liberal, so the
model is not identified unless you remove, for instance, the interactions between yr87 and the
Labour and Liberal dummy variables.

We start with gllamm:

. gllamm party dist lab_* lib_*, nocons i(serialno) nrf(2) eqs(lab lib)
> link(mlogit) expanded(occ chosen o) nip(9) adapt

number of level 1 units = 7374
number of level 2 units = 1344

Condition Number = 10.937832

gllamm model

log likelihood = -1788.3248

party Coef. Std. Err. z P>|z| [95% Conf. Interval]

dist -2.088836 .1409049 -14.82 0.000 -2.365004 -1.812667
lab_male -1.250304 .315439 -3.96 0.000 -1.868553 -.6320545

lab_inflat .7647105 .1418849 5.39 0.000 .4866213 1.0428
lab_manual 1.494767 .3402737 4.39 0.000 .827843 2.161692
lab_yr87 -2.001023 .3610284 -5.54 0.000 -2.708626 -1.29342
lab_yr92 -1.842304 .3375043 -5.46 0.000 -2.5038 -1.180808
lib_male -1.129491 .3065094 -3.69 0.000 -1.730239 -.5287439

lib_inflat .6435229 .1329496 4.84 0.000 .3829465 .9040992
lib_manual .126338 .3187767 0.40 0.692 -.4984528 .7511288
lib_yr87 -1.584461 .3239303 -4.89 0.000 -2.219352 -.9495688
lib_yr92 -2.044765 .3265231 -6.26 0.000 -2.684738 -1.404791

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (serialno)

var(1): 14.318181 (3.0102436)
cov(2,1): 11.308938 (2.4086857) cor(2,1): .79114588

var(2): 14.270613 (2.3786588)
------------------------------------------------------------------------------

(Continued on next page)
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Now we fit the same model with cmxtmixlogit:

. cmxtmixlogit chosen dist lab_male lab_inflat lab_manual lab_yr92 lib_male
> lib_inflat lib_manual lib_yr92, noconstant random(lab lib, correlated)

Mixed logit choice model Number of obs = 7,374
Number of cases = 2,458

Panel variable: serialno Number of panels = 1,344

Time variable: occ Cases per panel: min = 1
avg = 1.9
max = 2

Alts per case: min = 3
avg = 3.0
max = 3

Integration sequence: Hammersley
Integration points: 704 Wald chi2(11) = 319.07
Log simulated likelihood = -1788.6669 Prob > chi2 = 0.0000

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

party
dist -2.075754 .1378129 -15.06 0.000 -2.345863 -1.805646

lab_male -1.237107 .3129861 -3.95 0.000 -1.850549 -.6236655
lab_inflat .7558056 .1404104 5.38 0.000 .4806063 1.031005
lab_manual 1.476726 .3375285 4.38 0.000 .8151818 2.138269

lab_yr92 .1538816 .2122281 0.73 0.468 -.2620779 .5698411
lib_male -1.119151 .304987 -3.67 0.000 -1.716915 -.5213878

lib_inflat .6365243 .1317774 4.83 0.000 .3782455 .8948032
lib_manual .1154523 .3173066 0.36 0.716 -.5064572 .7373618

lib_yr92 -.4634786 .200367 -2.31 0.021 -.8561907 -.0707665
lab -1.98754 .3588781 -5.54 0.000 -2.690928 -1.284152
lib -1.587364 .3204624 -4.95 0.000 -2.215459 -.9592695

/Normal
sd(lab) 3.697475 .3581382 3.058143 4.470467

corr(lab,lib) .783795 .0501663 15.62 0.000 .6641424 .8642963
sd(lib) 3.706856 .2962614 3.169388 4.335467

Here the coefficient of lab corresponds to lab yr87 in the previous model and the sum of the
coefficients of lab and lab yr92 corresponds to lab yr92 in the previous model (similarly for
the Liberal party). We can use lincom to translate between the different parameterizations:

. lincom lab+lab_yr92

( 1) [party]lab_yr92 + [party]lab = 0

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -1.833658 .335719 -5.46 0.000 -2.491655 -1.175661

. lincom lib+lib_yr92

( 1) [party]lib_yr92 + [party]lib = 0

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -2.050843 .3225191 -6.36 0.000 -2.682969 -1.418717

The gllamm and cmxtmixlogit estimates are not identical to two decimal places. Try using
gllamm with more quadrature points to make the estimates closer to those from cmxtmixlogit.
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13.1 Epileptic-fit data

1. Model II in Breslow and Clayton is a log-linear (Poisson regression) model with covariates lbas,
treat, lbas trt, lage, and v4, and a normally distributed random intercept for subjects. Fit
this model using mepoisson

. use epilep, clear

. mepoisson y lbas treat lbas_trt lage v4 || subj:

Mixed-effects Poisson regression Number of obs = 236
Group variable: subj Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 121.70
Log likelihood = -665.29067 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .8844225 .1312033 6.74 0.000 .6272689 1.141576
treat -.9330306 .4007512 -2.33 0.020 -1.718489 -.1475727

lbas_trt .3382561 .2033021 1.66 0.096 -.0602087 .736721
lage .4842226 .3471905 1.39 0.163 -.1962582 1.164703

v4 -.1610871 .0545758 -2.95 0.003 -.2680536 -.0541206
_cons 2.114306 .2196676 9.63 0.000 1.683766 2.544847

subj
var(_cons) .2528664 .0589844 .1600801 .399434

LR test vs. Poisson model: chibar2(01) = 304.74 Prob >= chibar2 = 0.0000

The corresponding gllamm command is

gllamm y lbas treat lbas_trt lage v4, i(subj) link(log) family(poisson) adapt
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2. Breslow and Clayton also considered a random-coefficient model (Model IV) using the variable
visit instead of v4. The effect of visit zij varies randomly between subjects. The model
can be written as

log(µij) = β1 + β2x2j + · · ·+ β5x5j + β6zij + ζ1j + ζ2jzij

where the subject-specific random intercept ζ1j and slope ζ2j have a bivariate normal distri-
bution, given the covariates. Fit this model using mepoisson or gllamm (the latter is required
for step 3 of this exercise).

The mepoisson command produces the following output (corresponding output from gllamm

is given under step 3):

. mepoisson y lbas treat lbas_trt lage visit || subj: visit, covariance(unstructured)

Mixed-effects Poisson regression Number of obs = 236
Group variable: subj Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 115.60
Log likelihood = -655.68095 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .8849666 .1312244 6.74 0.000 .6277715 1.142162
treat -.9286531 .4020804 -2.31 0.021 -1.716716 -.1405901

lbas_trt .3379723 .2044067 1.65 0.098 -.0626574 .738602
lage .4767056 .353527 1.35 0.178 -.2161946 1.169606

visit -.2664103 .1646967 -1.62 0.106 -.5892098 .0563893
_cons 2.099559 .2203214 9.53 0.000 1.667737 2.531381

subj
var(visit) .5314793 .229384 .2280929 1.2384
var(_cons) .2515327 .0588175 .1590569 .3977741

subj
cov(visit,_cons) .002872 .0886268 0.03 0.974 -.1708334 .1765774

LR test vs. Poisson model: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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3. q Plot the posterior mean counts versus time for 12 patients in each treatment group based
on the model from Step 2. This requires fitting the model from step 2 in gllamm.

We first fit the model in the previous step using gllamm (if you used mepoisson there):

. eq int: cons

. eq slope: visit

. gllamm y lbas treat lbas_trt lage visit, i(subj)
> link(log) family(poisson) nrf(2) eqs(int slope)
> nip(15) adapt

number of level 1 units = 236
number of level 2 units = 59

Condition Number = 9.3160203

gllamm model

log likelihood = -655.68102

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .8849767 .1312521 6.74 0.000 .6277273 1.142226
treat -.9286588 .4021646 -2.31 0.021 -1.716887 -.1404307

lbas_trt .3379757 .2044446 1.65 0.098 -.0627284 .7386798
lage .4767191 .3536223 1.35 0.178 -.216368 1.169806
visit -.2664098 .1647096 -1.62 0.106 -.5892346 .056415
_cons 2.099555 .2203713 9.53 0.000 1.667635 2.531474

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): .25149332 (.05878944)
cov(2,1): .00287152 (.08870194) cor(2,1): .00785426

var(2): .53148073 (.22938513)
------------------------------------------------------------------------------

We can then obtain posterior mean counts by using gllapred:

. gllapred pred, mu
(mu will be stored in pred)
Non-adaptive log-likelihood: -659.19989
-658.7592 -656.0947 -655.6810 -655.6810 -655.6810
log-likelihood:-655.68102

. sort treat subj

. by treat subj: generate f=_n==1

. by treat: generate id=sum(f)

. twoway line pred visit if id<13 & treat==0, by(id)

. twoway line pred visit if id<13 & treat==1, by(id)

The graphs are shown in figures 4 and 5.
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Figure 4: Posterior mean number of epileptic fits versus time for placebo group
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Figure 5: Posterior mean number of epileptic fits versus time for treatment group
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14.7 Cigarette data

1. Expand the data to person–period data.

. use cigarette, clear

. generate id=_n

. expand time
(1670 observations created)

. by id, sort: gen t = _n

. generate y=0

. by id (t), sort: replace y = event if _n==_N
(634 real changes made)

2. Estimate the discrete-time model that assumes the continuous-time hazards to be proportional.
Include cc, tv, and their interaction as explanatory variables and specify a random intercept
for classes. Use dummy variables for periods.

. tabulate t, generate(occ)

t Freq. Percent Cum.

1 1,556 48.23 48.23
2 1,082 33.54 81.77
3 588 18.23 100.00

Total 3,226 100.00

. mecloglog y male cc tv cc_tv occ2 occ3 || class:

Mixed-effects cloglog regression Number of obs = 3,226
Group variable: class Number of groups = 134

Obs per group:
min = 3
avg = 24.1
max = 54

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 12.09
Log likelihood = -1592.3537 Prob > chi2 = 0.0599

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

male .0594819 .0804729 0.74 0.460 -.0982421 .2172058
cc .129357 .1216004 1.06 0.287 -.1089754 .3676895
tv .0914655 .1222319 0.75 0.454 -.1481046 .3310356

cc_tv -.1605053 .1747716 -0.92 0.358 -.5030515 .1820408
occ2 .0462722 .0918315 0.50 0.614 -.1337142 .2262586
occ3 .32482 .1042103 3.12 0.002 .1205716 .5290685
_cons -1.707058 .1068043 -15.98 0.000 -1.91639 -1.497725

class
var(_cons) .0348174 .0300665 .0064083 .1891694

LR test vs. cloglog model: chibar2(01) = 1.76 Prob >= chibar2 = 0.0924
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3. Interpret the exponentials of the estimated regression coefficients.

. mecloglog, eform

Mixed-effects cloglog regression Number of obs = 3,226
Group variable: class Number of groups = 134

Obs per group:
min = 3
avg = 24.1
max = 54

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 12.09
Log likelihood = -1592.3537 Prob > chi2 = 0.0599

y exp(b) Std. Err. z P>|z| [95% Conf. Interval]

male 1.061287 .0854048 0.74 0.460 .9064294 1.2426
cc 1.138096 .138393 1.06 0.287 .8967524 1.444393
tv 1.095779 .1339392 0.75 0.454 .8623409 1.392409

cc_tv .8517133 .1488553 -0.92 0.358 .6046827 1.199663
occ2 1.047359 .0961806 0.50 0.614 .87484 1.2539
occ3 1.383782 .1442043 3.12 0.002 1.128141 1.69735
_cons .1813988 .0193742 -15.98 0.000 .1471371 .2236384

class
var(_cons) .0348174 .0300665 .0064083 .1891694

Note: Estimates are transformed only in the first equation.
LR test vs. cloglog model: chibar2(01) = 1.76 Prob >= chibar2 = 0.0924

At the 5% level of significance there is not sufficient evidence to conclude that the interventions
had any effects.

Specifically, for each intervention on its own (when the other intervention is not used), the
hazard ratio does not differ significantly from 1. When combined with the other intervention,
the hazard ratio for each intervention decreases by an estimated 15% (since the hazard ratio
for the interaction is 0.85).

The hazards of smoking are estimated as 38% greater in 9th grade than in 7th grade after
controlling for the other variables.

4. Obtain the estimated residual intraclass correlation of the latent responses.

You can calculate the estimated intraclass correlation using

. display .0348174/(.0348174+_pi^2/6)

.02072771

This is a very small correlation, and we also see from the last line of the mecloglog output
that we cannot reject the null hypothesis (at the 5% level) that the true intraclass correlation
is 0.
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15.4 Bladder-cancer data

1. Wei, Lin, and Weissfeld (1989) specify a marginal Cox regression model based on total time
and semirestricted risk sets, where the risk set for a kth event includes risk intervals for all
previous events (< k). They specify event-specific baseline hazards and allow the effects of
treat, number, and size to differ between events. Fit this model.

. use bladder, clear

. egen obs = group(enum id)

. stset stop, failure(event=1) id(obs)

id: obs
failure event: event == 1

obs. time interval: (stop[_n-1], stop]
exit on or before: failure

340 total observations
0 exclusions

340 observations remaining, representing
340 subjects
112 failures in single-failure-per-subject data

8,522 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 59

. sort id enum

. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)

id enum start stop event _t0 _t _d _st

25. 7 1 0 18 0 0 18 0 1
26. 7 2 18 18 0 0 18 0 1
27. 7 3 18 18 0 0 18 0 1
28. 7 4 18 18 0 0 18 0 1

29. 8 1 0 5 1 0 5 1 1
30. 8 2 5 18 0 0 18 0 1
31. 8 3 18 18 0 0 18 0 1
32. 8 4 18 18 0 0 18 0 1

33. 9 1 0 12 1 0 12 1 1
34. 9 2 12 16 1 0 16 1 1
35. 9 3 16 18 0 0 18 0 1
36. 9 4 18 18 0 0 18 0 1

The model could be parameterized by having a coefficient for treat, number, and size, as well
as coefficients for interactions of each of these variables with dummy variables for the second,
third and fourth events. Instead, we will include interactions between dummy variables for
each event, including the first, and treat, number, and size. We must then omit “main
effects” for treat, number, and size:

(Continued on next page)
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. stcox ibn.enum#(c.treat c.number c.size), strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 340 Number of obs = 340
No. of failures = 112
Time at risk = 8522

Wald chi2(12) = 34.32
Log pseudolikelihood = -423.73286 Prob > chi2 = 0.0006

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

enum#c.treat
1 .5909733 .1874038 -1.66 0.097 .3174264 1.100253
2 .5313625 .1968685 -1.71 0.088 .2570531 1.098396
3 .4973349 .2103116 -1.65 0.099 .2171177 1.139207
4 .5297029 .2649767 -1.27 0.204 .1987149 1.411999

enum#c.number
1 1.268937 .0952058 3.17 0.002 1.095409 1.469955
2 1.146744 .1012115 1.55 0.121 .9645825 1.363306
3 1.18947 .1264058 1.63 0.103 .9658189 1.464911
4 1.394411 .1621041 2.86 0.004 1.11029 1.751238

enum#c.size
1 1.072094 .0955849 0.78 0.435 .900206 1.276802
2 .9251941 .1106043 -0.65 0.515 .7319378 1.169477
3 .8074792 .1409972 -1.22 0.221 .5734553 1.137007
4 .8134582 .1585875 -1.06 0.290 .5551233 1.192013

Stratified by enum

2. Use testparm to test whether the coefficients of treat differ significantly between events (at
the 5% level) and similarly for number and size.

In order to use testparm, it is better to use the more standard way of including interactions,
where the dummy variable for event 1 is excluded and treat, number, and size are included:

(Continued on next page)
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. stcox i.enum#(c.treat c.number c.size) c.treat c.number c.size,
> strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 340 Number of obs = 340
No. of failures = 112
Time at risk = 8522

Wald chi2(12) = 34.32
Log pseudolikelihood = -423.73286 Prob > chi2 = 0.0006

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

enum#c.treat
2 .899131 .3020539 -0.32 0.752 .4654473 1.736903
3 .8415522 .337499 -0.43 0.667 .3834531 1.846928
4 .8963229 .4565585 -0.21 0.830 .3302854 2.432426

enum#c.number
2 .9037042 .1068984 -0.86 0.392 .7167016 1.1395
3 .9373751 .11348 -0.53 0.593 .7393767 1.188396
4 1.098881 .1323528 0.78 0.434 .8678191 1.391464

enum#c.size
2 .8629789 .0990377 -1.28 0.199 .6891505 1.080653
3 .7531798 .1153141 -1.85 0.064 .5579266 1.016764
4 .7587567 .1442884 -1.45 0.147 .5226783 1.101465

treat .5909733 .1874038 -1.66 0.097 .3174264 1.100253
number 1.268937 .0952058 3.17 0.002 1.095409 1.469955

size 1.072094 .0955849 0.78 0.435 .900206 1.276802

Stratified by enum

. testparm enum#c.treat

( 1) 2.enum#c.treat = 0
( 2) 3.enum#c.treat = 0
( 3) 4.enum#c.treat = 0

chi2( 3) = 0.24
Prob > chi2 = 0.9715

. testparm enum#c.number

( 1) 2.enum#c.number = 0
( 2) 3.enum#c.number = 0
( 3) 4.enum#c.number = 0

chi2( 3) = 5.86
Prob > chi2 = 0.1186

. testparm enum#c.size

( 1) 2.enum#c.size = 0
( 2) 3.enum#c.size = 0
( 3) 4.enum#c.size = 0

chi2( 3) = 3.61
Prob > chi2 = 0.3065

None of the interactions are significant at the 5% level
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3. Fit the model by Wei, Lin, and Weissfeld (1989) but constraining all coefficients to be the
same across events.

. stcox treat number size, strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 340 Number of obs = 340
No. of failures = 112
Time at risk = 8522

Wald chi2(3) = 15.35
Log pseudolikelihood = -426.14683 Prob > chi2 = 0.0015

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .5572209 .1726125 -1.89 0.059 .3036319 1.022604
number 1.23404 .0827266 3.14 0.002 1.0821 1.407316
size .9496925 .0903613 -0.54 0.587 .788121 1.144388

Stratified by enum

4. In their model (2), Prentice, Williams, and Peterson (1981) use counting process risk intervals
with restricted risk sets and event-specific baseline hazards. Fit this model, assuming that
treat, number, and size have the same coefficients across events.

. stset stop, enter(start) failure(event=1) id(obs)

id: obs
failure event: event == 1

obs. time interval: (stop[_n-1], stop]
enter on or after: time start
exit on or before: failure

340 total obs.
162 obs. end on or before enter()

178 obs. remaining, representing
178 subjects
112 failures in single failure-per-subject data
2480 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0
last observed exit t = 59

. sort id enum

. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)

id enum start stop event _t0 _t _d _st

25. 7 1 0 18 0 0 18 0 1

29. 8 1 0 5 1 0 5 1 1
30. 8 2 5 18 0 5 18 0 1

33. 9 1 0 12 1 0 12 1 1
34. 9 2 12 16 1 12 16 1 1
35. 9 3 16 18 0 16 18 0 1
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. stcox treat number size, strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop
enter on or after: time start

id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 178 Number of obs = 178
No. of failures = 112
Time at risk = 2480

Wald chi2(3) = 7.17
Log pseudolikelihood = -315.99082 Prob > chi2 = 0.0665

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .71642 .147584 -1.62 0.105 .4784299 1.072796
number 1.127065 .0582599 2.31 0.021 1.018472 1.247238
size .9915413 .0614766 -0.14 0.891 .8780828 1.11966

Stratified by enum

5. Andersen and Gill (1982) also use counting process risk intervals, but they use unrestricted
risk sets and assume that all events have a common baseline hazard function. Fit this model,
again assuming that treat, number, and size have the same coefficients across events.

. stcox c.treat c.number c.size, vce(cluster id) efron

failure _d: event == 1
analysis time _t: stop
enter on or after: time start

id: obs

Cox regression -- Efron method for ties

No. of subjects = 178 Number of obs = 178
No. of failures = 112
Time at risk = 2480

Wald chi2(3) = 11.41
Log pseudolikelihood = -449.98064 Prob > chi2 = 0.0097

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .6283318 .1678506 -1.74 0.082 .3722217 1.06066
number 1.191199 .0755395 2.76 0.006 1.051976 1.348848
size .9572791 .0747412 -0.56 0.576 .821447 1.115572
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6. In their model (3), Prentice, Williams, and Peterson (1981) use gap time with restricted risk
sets and event-specific baseline hazards. Fit this model, assuming that treat, number, and
size have the same coefficients across events.

. stset stop, origin(start) failure(event=1) id(obs)

id: obs
failure event: event == 1

obs. time interval: (stop[_n-1], stop]
exit on or before: failure

t for analysis: (time-origin)
origin: time start

340 total obs.
162 obs. end on or before enter()

178 obs. remaining, representing
178 subjects
112 failures in single failure-per-subject data
2480 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0
last observed exit t = 59

. sort id enum

. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)

id enum start stop event _t0 _t _d _st

25. 7 1 0 18 0 0 18 0 1

29. 8 1 0 5 1 0 5 1 1
30. 8 2 5 18 0 0 13 0 1

33. 9 1 0 12 1 0 12 1 1
34. 9 2 12 16 1 0 4 1 1
35. 9 3 16 18 0 0 2 0 1

. stcox treat number size, strata(enum) vce(cluster id) efron

failure _d: event == 1
analysis time _t: (stop-origin)

origin: time start
id: obs

Stratified Cox regr. -- Efron method for ties

No. of subjects = 178 Number of obs = 178
No. of failures = 112
Time at risk = 2480

Wald chi2(3) = 11.70
Log pseudolikelihood = -358.96849 Prob > chi2 = 0.0085

(Std. Err. adjusted for 85 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat .7565365 .1640954 -1.29 0.198 .4945398 1.157333
number 1.17122 .0600157 3.08 0.002 1.059305 1.294958
size 1.007443 .065196 0.11 0.909 .8874327 1.143682

Stratified by enum
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7. Compare and interpret the treatment-effect estimates from steps 3 to 6.

The estimated hazard ratios are 0.56 for total time semi-restricted, 0.72 for counting process,
restricted, 0.63 for counting process unrestricted, and 0.76 for gap times, restricted. Only the
total time semi-restricted estimate is nearly significant at the 5% level. The estimates can
be interpreted as a 54% reduction in the hazard (largest effect size estimate) down to a 24%
reduction in the hazard (smallest effect size estimate), controlling for number and maximum
size of initial tumors.
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16.2 Tower-of-London data

1. Fit the two-level random-intercept model (random intercept for persons):

logit{Pr(yijk=1 | xijk, ζ
(2)
jk )} = β0 + β1xijk + β2g2ijk + β3g3ijk + ζ

(2)
jk

where g2ijk and g3ijk are dummy variables for groups 2 and 3, respectively, and ζ
(2)
jk ∼

N(0, ψ(2)) is independent of the covariates xijk. Here and throughout the exercise, level
is treated as continuous.

. use towerl, clear

. tabulate group, generate(g)

GROUP Freq. Percent Cum.

1 194 28.66 28.66
2 294 43.43 72.08
3 189 27.92 100.00

Total 677 100.00

. rename g2 relatives

. rename g3 schizo

. melogit dtlm level relatives schizo || id:

Mixed-effects logistic regression Number of obs = 677
Group variable: id Number of groups = 226

Obs per group:
min = 2
avg = 3.0
max = 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 74.77
Log likelihood = -305.95965 Prob > chi2 = 0.0000

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

level -1.648715 .1932597 -8.53 0.000 -2.027497 -1.269933
relatives -.1690655 .3342397 -0.51 0.613 -.8241632 .4860322

schizo -1.02274 .3938351 -2.60 0.009 -1.794642 -.2508373
_cons -1.482555 .2834946 -5.23 0.000 -2.038194 -.9269154

id
var(_cons) 1.674663 .6609173 .7726717 3.62961

LR test vs. logistic model: chibar2(01) = 15.86 Prob >= chibar2 = 0.0000

. estimates store mod0

The syntax for gllamm is

gllamm dtlm level relatives schizo, i(id) link(logit) family(binomial) adapt
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2. Fit the three-level random-intercept model (random intercepts for subjects and families):

logit{Pr(yijk=1 | xijk, ζ
(2)
jk , ζ

(3)
k )} = β0 + β1xijk + β2g2ijk + β3g3ijk + ζ

(2)
jk + ζ

(3)
k

where ζ
(2)
jk ∼ N(0, ψ(2)) is independent of ζ

(3)
k ∼ N(0, ψ(3)) and both random effects are

assumed independent of xijk.

. melogit dtlm level relatives schizo || famnum: || id:

Mixed-effects logistic regression Number of obs = 677

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

famnum 118 2 5.7 27
id 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 74.90
Log likelihood = -305.12041 Prob > chi2 = 0.0000

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

level -1.648505 .1932075 -8.53 0.000 -2.027185 -1.269826
relatives -.2486841 .3544076 -0.70 0.483 -.9433102 .445942

schizo -1.052306 .3999921 -2.63 0.009 -1.836276 -.2683357
_cons -1.485863 .2848455 -5.22 0.000 -2.04415 -.9275762

famnum
var(_cons) .5692105 .5215654 .0944757 3.429459

famnum>id
var(_cons) 1.137917 .6854853 .3494165 3.705762

LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.
. estimates store mod1

Subjects with schizophrenia perform significantly worse than unrelated healthy control sub-
jects, whereas the healthy relatives of the subjects with schizophrenia do perform significantly
worse than unrelated healthy control subjects (at the 5% level). Performance declines as the
level of difficulty increases. There is more variability between subjects within families than
between families after controlling for covariates.

The syntax for gllamm is

gllamm dtlm level relatives schizo, i(id famnum) link(logit) family(binomial) adapt

3. Compare the models in steps 1 and 2 by using a likelihood-ratio test, but retain the three-level
model even if the null hypothesis is not rejected at the 5% level.

. lrtest mod0 mod1

Likelihood-ratio test LR chi2(1) = 1.68
(Assumption: mod0 nested in mod1) Prob > chi2 = 0.1951

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Since the random intercepts at the different levels are uncorrelated, we can divide the näıve
p-value by 2 (see display 8.1, page 397) to obtain the correct asymptotic p-value of 0.10.
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4. Include a group (controls, relatives, schizophrenics) by level of difficulty interaction in the
three-level model. Test the interaction by using both a Wald test and a likelihood-ratio test.

. generate lev_rel = level*relatives

. generate lev_sch = level*schizo

. melogit dtlm level relatives schizo lev_rel lev_sch
> || famnum: || id:

Mixed-effects logistic regression Number of obs = 677

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

famnum 118 2 5.7 27
id 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 72.08
Log likelihood = -301.88298 Prob > chi2 = 0.0000

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

level -1.180708 .2643882 -4.47 0.000 -1.6989 -.662517
relatives -.4365397 .3705962 -1.18 0.239 -1.162895 .2898156

schizo -1.611146 .5116061 -3.15 0.002 -2.613876 -.6084166
lev_rel -.6126014 .3527997 -1.74 0.082 -1.304076 .0788733
lev_sch -1.176491 .5209267 -2.26 0.024 -2.197489 -.1554935
_cons -1.356806 .279781 -4.85 0.000 -1.905167 -.8084453

famnum
var(_cons) .5378161 .4857528 .0915868 3.158164

famnum>id
var(_cons) 1.208996 .6959634 .3912255 3.736134

LR test vs. logistic model: chi2(2) = 17.83 Prob > chi2 = 0.0001

Note: LR test is conservative and provided only for reference.

We obtain a Wald test by using testparm

. testparm lev_rel lev_sch

( 1) [dtlm]lev_rel = 0
( 2) [dtlm]lev_sch = 0

chi2( 2) = 6.08
Prob > chi2 = 0.0478

The interaction is significant at the 5% level according to the Wald test (w = 6.09, df = 2,
p = 0.048). The corresponding likelihood-ratio test can be obtained using lrtest

. lrtest mod1 .

Likelihood-ratio test LR chi2(2) = 6.47
(Assumption: mod1 nested in .) Prob > chi2 = 0.0393

The likelihood-ratio statistic is 6.47 with two degrees of freedom, giving a p-value of 0.04.

For schizophrenics, performance declines faster with increasing level of difficulty than for con-
trols (z = −2.26, p = 0.024).



46 Exercise 16.2

5. For the model in step 4, obtain predicted marginal or population-averaged probabilities. Plot
the probabilities against the levels of difficulty with different curves for the three groups.
To obtain predicted marginal or population-averaged probabilities we can use predict (after
fitting with melogit)

. predict prob, pr marginal
(using 7 quadrature points)

or gllapred (after fitting with gllamm)

. gllapred prob, mu marg
(mu will be stored in prob)

The plot can now be obtained as

. twoway (line prob level if group==1, sort)
> (line prob level if group==2, sort lpatt(longdash))
> (line prob level if group==3, sort lpatt(shortdash)),
> xtitle(Level of difficulty) ytitle(Probability)
> legend(order(1 "Controls" 2 "Relatives" 3 "Schizophrenics") row(1))
> xlabel(-1 "Low" 0 "Medium" 1 "High")
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Figure 6: Predicted marginal probabilities as a function of level of difficulty for the three groups.


