Solutions to selected exercises

Rabe-Hesketh, S. and Skrondal, A. (2021). Multilevel and Longitudinal Modeling Using Stata (4th Edition). College Station, TX: Stata Press.

Volume II: Categorical Responses, Counts, and Survival

Contents

10.3	Vaginal-bleeding data	1
10.8	PISA data	5
11.7	Recovery after surgery data	.1
12.4	British election data	21
13.1	Epileptic-fit data	29
14.7	Cigarette data	33
15.4	Bladder cancer data	35
16.2	Tower-of-London data	13

Disclaimer

We have solved the exercises as well as we could but there may be better solutions and we may have made mistakes. We are grateful for any suggestions for improvement.

Please also check the errata at http://www.stata.com/bookstore/mlmus4.html for any errors in the wording of the exercises themselves.

10.3 Vaginal-bleeding data

1. Produce an identifier variable for women, and reshape the data to long form, stacking the responses y1-y4 into one variable and creating a new variable, occasion, taking the values 1-4 for each woman.

. use amenorrhea, clear				
. generate id = _n				
. reshape long y, i(id) (note: j = 1 2 3 4)	j(occasion)			
Data	wide	->	long	
Number of obs.	57	->	228	
Number of variables	7	->	5	
j variable (4 values) xij variables:		->	occasion	
	y1 y2 y4	->	У	

2. Fit the following model considered by Fitzmaurice, Laird, and Ware (2011):

$$logit\{Pr(y_{ij} = 1 | x_j, t_{ij}, \zeta_j)\} = \beta_1 + \beta_2 t_{ij} + \beta_3 t_{ij}^2 + \beta_4 x_j t_{ij} + \beta_5 x_j t_{ij}^2 + \zeta_j$$

where $t_{ij} = 1, 2, 3, 4$ is the time interval and x_j is dose. It is assumed that $\zeta_j \sim N(0, \psi)$, and that ζ_j is independent across women and independent of x_j and t_{ij} . Use melogit with the fweight(wt2) option to specify that wt2 are level-2 frequency weights.

```
. generate time = occasion
. generate dose_time = dose*time
. generate time2 = time<sup>2</sup>
. generate dose_time2 = dose*time2
. melogit y time time2 dose_time dose_time2 || id:, intpoints(30) fweight(wt2)
Mixed-effects logistic regression
                                                   Number of obs
                                                                              3,616
Group variable:
                                                   Number of groups
                                                                              1,151
                               id
                                                   Obs per group:
                                                                  min =
                                                                                  1
                                                                                3.1
                                                                  avg =
                                                                  max
                                                                       =
                                                                                  4
Integration method: mvaghermite
                                                   Integration pts.
                                                                                 30
                                                                       =
                                                   Wald chi2(4)
                                                                             291.00
                                                                       =
Log likelihood =
                  -1934.465
                                                   Prob > chi2
                                                                             0.0000
                     Coef.
                             Std. Err.
                                                   P>|z|
                                                              [95% Conf. Interval]
                                              z
           у
        time
                  1.133202
                              .2682216
                                            4.22
                                                   0.000
                                                              .6074974
                                                                           1.658907
                 -.0419232
                              .0548099
                                           -0.76
                                                   0.444
                                                             -.1493486
                                                                           .0655022
       time2
                              .1922395
   dose_time
                  .5644407
                                           2.94
                                                   0.003
                                                              .1876583
                                                                           .9412231
                 -.1095528
                              .0496097
                                           -2.21
                                                              -.206786
                                                                          -.0123195
 dose_time2
                                                   0.027
                 -3.805677
                              .3049807
                                          -12.48
                                                   0.000
                                                             -4.403428
                                                                          -3.207926
       _cons
id
   var(_cons)
                  5.064584
                              .5840171
                                                              4.040065
                                                                            6.34891
LR test vs. logistic model: chibar2(01) = 500.52
                                                          Prob >= chibar2 = 0.0000
```

3. Write down the above model, adding a random slope of t_{ij} , and fit the model. (See section 11.7.1 for an example of a random-coefficient model for ordinal responses fit in meologit.)

 $\text{logit}\{\Pr(y_{ij} = 1 | x_j, t_{ij}, \zeta_j)\} = \beta_1 + \beta_2 t_{ij} + \beta_3 t_{ij}^2 + \beta_4 x_j t_{ij} + \beta_5 x_j t_{ij}^2 + \zeta_{1j} + \zeta_{2j} t_{ij},$

where ζ_{1j} and ζ_{2j} are a random intercept and random slope of time, and are assumed to have a bivariate normal distribution with zero means, variances ψ_1 and ψ_2 and correlation ρ .

<pre>. melogit y time > covariance(uns</pre>	time2 dose_t: structured) in	ime dose_tim htpoints(30)	e2 i fweigh	d: time, t(wt2)		
Mixed-effects log	istic regress	sion		Number of	obs =	3,616
Group variable:	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	id		Number of	groups =	1,151
				Obs per gr		
				600 Por 81	min =	1
					avg =	3.1
					max =	4
Integration metho	d: mvaghermit	te		Integratio	n pts. =	30
				Wald chi2(4) =	147.49
Log likelihood =	-1927.0875			Prob > chi	2 =	0.0000
У	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
time	.8161103	.34782	2.35	0.019	.1343956	1.497825
time2	.0175889	.0662461	0.27	0.791	112251	.1474288
dose_time	.5479068	.197515	2.77	0.006	.1607846	.9350291
dose_time2	0989771	.0534594	-1.85	0.064	2037555	.0058013
_cons	-3.448329	.4566772	-7.55	0.000	-4.3434	-2.553258
id						
var(time)	.5104948	.2012609			.2357262	1.105541
<pre>var(_cons)</pre>	4.656183	1.710134			2.266724	9.564482
id						
<pre>cov(time,_cons)</pre>	335804	.4233619	-0.79	0.428	-1.165578	.49397

LR test vs. logistic model: chi2(3) = 515.27 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.

4. Interpret the estimated coefficients.

The model assumes that there is no difference in the log-odds of amenorrhea between the groups at time 0 (baseline). In the low-dose group, the log-odds increase approximately by the same amount of 0.82 in each 3-month interval (since the estimated coefficient of time2 is small and nonsignificant), corresponding to an odds ratio of about 2.3. The interaction between dose and time2 is not quite significant, so we could assume a linear relationship for both group by removing the terms dose_time2 and time2. However, keeping the terms in, the high-dose group initially has a larger slope than the low-dose group, and the slope decreases over time because time-squared has a negative coefficient (.0176 - .0990).

5. Plot marginal predicted probabilities as a function of time, separately for women in the two treatment groups.

```
. predict prob, pr marginal
(using 30 quadrature points)
. sort dose id time
. twoway (line prob time if dose==0, sort) (line prob time if dose==1, sort),
> ytitle(Predicted marginal probability) xtitle(Time in 90 day intervals)
> legend(order(1 "Low dose" 2 "High dose"))
```

The graph is shown in figure 1.

Figure 1: Predicted marginal probabilities over time by dose level

Exercise 10.3

. use pisaUSA2000, clear

10.8 PISA data

1. Fit a logistic regression model with pass_read as the response variable and the variables female to both_for above as covariates and with a random intercept for schools using melogit. (Use the default seven quadrature points.)

. melogit pass > one_for b	s_read female ooth_for id	isei high_sc _school:	chool col	lege te	est_lang	
Mixed-effects	logistic regr	ession		Number	of obs =	2,069
Group variable	e: id_sc	hool		Number	of groups =	148
				Obs pe	er group:	
				-	min =	1
					avg =	14.0
					max =	28
Integration me	ethod: mvagher	mite		Integr	ation pts. =	7
				Wald d	:hi2(7) =	116.85
Log likelihood	1 = -1252.8108			Prob >	chi2 =	0.0000
pass_read	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
female	.5422162	.103192	5.25	0.000	.3399635	.7444688
isei	.0206763	.003284	6.30	0.000	.0142398	.0271129
high_school	.4447944	.2565114	1.73	0.083	0579586	.9475475
college	.796881	.255052	3.12	0.002	.2969883	1.296774
test_lang	.7825093	.2834799	2.76	0.006	.2268988	1.33812
one_for	.0112567	.2244283	0.05	0.960	4286147	.4511282
both_for	.150784	.2376408	0.63	0.526	3149834	.6165514
_cons	-3.279323	.3811204	-8.60	0.000	-4.026305	-2.532341
id_school						
<pre>var(_cons)</pre>	.5134392	.1283984			.3145029	.8382111
LR test vs. lo	ogistic model:	chibar2(01)	= 58.35		Prob >= chibar	2 = 0.0000

2. Fit the model from step 1 with the school mean of isei as an additional covariate.

. egen mn_isei = mean(isei), by(id_school)

(Continued on next page)

> one_ior i	20 CH 101 11 10	_school:				
Mixed-effects Group variable	logistic regr e: id_sc	ession hool		Number Number	of obs = of groups =	2,069 148
				Obs per	group: min = avg =	1 14.0
					max =	28
Integration me	ethod: mvagher	mite		Integra	tion pts. =	7
Log likelihood	d = −1225.4697			Wald ch Prob >	ni2(8) = chi2 =	171.58 0.0000
pass_read	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
female	.5552102	.102912	5.39	0.000	.3535063	.7569141
isei	.0143423	.003335	4.30	0.000	.0078058	.0208787
mn_isei	.0690722	.0092476	7.47	0.000	.0509472	.0871971
high_school	.3999543	.2561423	1.56	0.118	1020754	.9019839
college	.7207869	.254843	2.83	0.005	.2213038	1.22027
test_lang	.6951881	.2849896	2.44	0.015	.1366188	1.253757
one_for	0199176	.2239413	-0.09	0.929	4588344	.4189992
both_for	.0986699	.2359626	0.42	0.676	3638082	.561148
_cons	-6.03362	.5387266	-11.20	0.000	-7.089505	-4.977736
id_school	0714000	0057000			1461070	500000
var(_cons)	.2/14333	.0857003			.1461878	.5039822
LR test vs. lo	ogistic model:	chibar2(01) = 25.15	5 F	rob >= chibar	2 = 0.0000

. melogit pass_read female isei mn_isei high_school college test_lang
> one_for both_for || id_school:

3. Interpret the estimated coefficients of isei and school mean isei and comment on the change in the other parameter estimates due to adding school mean isei.

Within a school, student's ISEI score has an estimated effect of 0.014 on the log-odds scale and between schools there is an additional effect of 0.069. Considering a 10-unit change in ISEI, the corresponding odds ratios are $1.15 (= \exp(0.14))$ and $2.00 (= \exp(0.69))$. Comparing two students from the same school, one of whom has ISEI 10 points higher than the other (with all other covariates being the same), the higher ISEI student has a 15% greater odds of passing the reading test. Comparing two students with the same ISEI score (and other covariate values) from schools that differ in their mean ISEI score by 10 units (but have the same random intercept), the student from the higher mean ISEI school has twice the odds of passing the reading test as the other student.

The estimated random intercept variance has nearly halved due to adding school mean ISEI. The estimates of the effects of parent's education on test language spoken at home have decreased a little.

4. From the estimates in step 2, obtain an estimate of the between-school effect of socioeconomic status.

The total between-school effect on the log-odds scale is the sum of the coefficient of isei and mn_isei, giving 0.083 (= 0.014 + 0.069).

MLMUS4 (Vol. II) – Rabe-Hesketh and Skrondal

5. Rerun the command but this time with robust standard errors.

<pre>. melogit pass > one_for b</pre>	s_read female poth_for id	isei mn_ise l_school:, v	i high_scl ce(robust)	hool col)	lege test_la	ng
Mixed-effects	logistic regr	ression		Number	of obs =	2,069
Group variable	e: id_so	chool		Number	of groups =	148
				Obs per	group:	
				-	min =	1
					avg =	14.0
					max =	28
Integration me	ethod: mvagher	rmite		Integra	tion pts. =	7
				Wald ch	i2(8) =	188.38
Log pseudolike	elihood = -122	25.4697		Prob >	chi2 =	0.0000
		(Std. Err.	adjusted	for 148	clusters in	id_school)
		Robust				
nass read	Coof	Std Err	7	DNIAL		T
pass_read	COEI.	Stu. EII.	2	F7 2	[95% Coni	. Intervalj
female	.5552102	.1024602	5.42	0.000	.354392	. Intervalj .7560285
female isei	.5552102	.1024602	5.42 4.80	0.000	.354392 .0084873	. 1ntervalj .7560285 .0201973
female isei mn_isei	.5552102 .0143423 .0690722	.1024602 .0029873 .0090417	5.42 4.80 7.64	0.000 0.000 0.000	.354392 .0084873 .0513507	. 1ntervalj .7560285 .0201973 .0867936
female isei mn_isei high_school	.5552102 .0143423 .0690722 .3999543	.1024602 .0029873 .0090417 .2619124	5.42 4.80 7.64 1.53	0.000 0.000 0.000 0.127	.354392 .0084873 .0513507 1133846	. 1nterval] .7560285 .0201973 .0867936 .9132932
female isei mn_isei high_school college	.5552102 .0143423 .0690722 .3999543 .7207869	.1024602 .0029873 .0090417 .2619124 .2574594	5.42 4.80 7.64 1.53 2.80	0.000 0.000 0.000 0.127 0.005	.354392 .0084873 .0513507 1133846 .2161757	. 1ntervalj .7560285 .0201973 .0867936 .9132932 1.225398
female isei mn_isei high_school college test_lang	.5552102 .0143423 .0690722 .3999543 .7207869 .6951881	.1024602 .0029873 .0090417 .2619124 .2574594 .2694431	5.42 4.80 7.64 1.53 2.80 2.58	0.000 0.000 0.000 0.127 0.005 0.010	.354392 .0084873 .0513507 1133846 .2161757 .1670892	. Interval] .7560285 .0201973 .0867936 .9132932 1.225398 1.223287
female isei mn_isei high_school college test_lang one_for	.5552102 .0143423 .0690722 .3999543 .7207869 .6951881 0199176	.1024602 .0029873 .0090417 .2619124 .2574594 .2694431 .1998362	5.42 4.80 7.64 1.53 2.80 2.58 -0.10	0.000 0.000 0.000 0.127 0.005 0.010 0.921	.354392 .0084873 .0513507 1133846 .2161757 .1670892 4115894	. 1nterval] .7560285 .0201973 .0867936 .9132932 1.225398 1.223287 .3717542
female isei mn_isei high_school college test_lang one_for both_for	.5552102 .0143423 .0690722 .3999543 .7207869 .6951881 0199176 .0986699	.1024602 .0029873 .0090417 .2619124 .2574594 .2694431 .1998362 .2452363	5.42 4.80 7.64 1.53 2.80 2.58 -0.10 0.40	0.000 0.000 0.000 0.127 0.005 0.010 0.921 0.687	.354392 .0084873 .0513507 1133846 .2161757 .1670892 4115894 3819845	. Interval] .7560285 .0201973 .0867936 .9132932 1.225398 1.223287 .3717542 .5793243
female isei mn_isei high_school college test_lang one_for both_for cons	.5552102 .0143423 .0690722 .3999543 .7207869 .6951881 0199176 .0986699 -6.03362	.1024602 .0029873 .0090417 .2619124 .2574594 .2694431 .1998362 .2452363 .5471279	5.42 4.80 7.64 1.53 2.80 2.58 -0.10 0.40 -11.03	0.000 0.000 0.127 0.005 0.010 0.921 0.687 0.000	.354392 .0084873 .0513507 1133846 .2161757 .1670892 4115894 3819845 -7.105971	. Interval] .7560285 .0201973 .0867936 .9132932 1.225398 1.223287 .3717542 .5793243 -4.961269
female isei mn_isei high_school college test_lang one_for both_for _cons id_school var(_cons)	.5552102 .0143423 .0690722 .3999543 .7207869 .6951881 0199176 .0986699 -6.03362	.1024602 .0029873 .0090417 .2619124 .2574594 .2694431 .1998362 .2452363 .5471279	5.42 4.80 7.64 1.53 2.80 2.58 -0.10 0.40 -11.03	0.000 0.000 0.000 0.127 0.005 0.010 0.921 0.687 0.000	.354392 .0084873 .0513507 1133846 .2161757 .1670892 4115894 3819845 -7.105971 .1506682	. Interval] .7560285 .0201973 .0867936 .9132932 1.225398 1.223287 .3717542 .5793243 -4.961269 .4889951

The robust and model-based standard errors are quite similar in this case.

- 6. • In this survey, schools were sampled with unequal probabilities, π_j , and given that a school was sampled, students were sampled from the school with unequal probabilities $\pi_{i|j}$. The reciprocals of these probabilities are given as school- and student-level survey weights, wnrschbg $(w_j = 1/\pi_j)$ and w_fstuwt $(w_{i|j} = 1/\pi_{i|j})$, respectively. As discussed in Rabe-Hesketh and Skrondal (2006), incorporating survey weights in multilevel models using a so-called pseudolikelihood approach can lead to biased estimates, particularly if the level-1 weights $w_{i|j}$ are very different from 1 and if the cluster sizes are small. Neither of these issues arise here, so implement pseudo ML estimation as follows:
 - a. Rescale the student-level weights by dividing them by their cluster means [this is scaling method 2 in Rabe-Hesketh and Skrondal (2006)].
 - . egen mnw = mean(w_fstuwt), by(id_school)
 - . generate wt1 = w_fstuwt/mnw
 - b. Rename the level-2 weights and rescaled level-1 weights to wt2 and wt1, respectively.
 - . rename wnrschbw wt2
 - c. Run the melogit command from step 2 above, adding [pw=wt1] before || to specify level-1 weights and giving the additional option pweight(wt2) to specify level-2 weights.

. melogit pass_read female isei mn_isei high_school college test_lang > one_for both_for [pw=wt1] || id_school:, pweight(wt2)

Mixed-effects Group variable	logistic regr e: id_sc	ession hool		Number o Number o	of obs = of groups =	2,069 148
				Obs per	group:	
				-	min =	1
					avg =	14.0
					max =	28
Integration me	thod: mvagher	mite		Integrat	tion pts. =	7
				Wald chi	i2(8) =	88.21
Log pseudolike	elihood = -197	964.36		Prob > c	chi2 =	0.0000
		(Std. Err.	adjusted	for 148	clusters in	<pre>id_school)</pre>
		Robust				
pass_read	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
female	.6218815	.1540693	4.04	0.000	.3199113	.9238518
isei	.0182009	.0048055	3.79	0.000	.0087823	.0276194
mn_isei	.0682412	.0164298	4.15	0.000	.0360394	.1004431
high_school	.1019583	.4766682	0.21	0.831	8322941	1.036211
college	.4528053	.5050718	0.90	0.370	5371173	1.442728
test_lang	.6245946	.3825914	1.63	0.103	1252707	1.37446
one_for	1086342	.274045	-0.40	0.692	6457526	.4284843
both_for	2811825	.3265266	-0.86	0.389	9211629	.3587979
_cons	-5.875258	.9545544	-6.15	0.000	-7.74615	-4.004366
id_school						
<pre>var(_cons)</pre>	.2962084	.124311			.1301279	.6742557

MLMUS4 (Vol. II) - Rabe-Hesketh and Skrondal

d. Compare the estimates with those from step 2. Robust standard errors are computed by melogit because model-based standard errors are not appropriate with survey weights.

Some of the estimates are quite different, especially the coefficients of high_school and college.

Exercise 10.8

11.7 Recovery-after-surgery data

1. Reshape the data to long form, stacking the recovery scores at the four occasions into a single variable and generating an identifier, occ, for the four occasions. (You can specify several variables in the i() option of the reshape command if one variable does not uniquely identify the individuals.) Recode the recovery score to four categories (to simplify some of the commands below), by merging {0,1}, {2,3}, and {4,5} and calling the new categories 1, 2, 3, and 4.

. use recovery,	clear				
. reshape long so (note: j = 1 2 3	core, i(id dosag 4)	e) j(occ)			
Data		wide	->	long	
Number of obs.		60	->	240	
Number of variab	1	•		-	
Hambor of Harras.	Les	8	->	6	
j variable (4 va xij variables:	lues)	8	-> ->	6 occ	

Before we forget, let us construct a unique person identifier

. egen id2 = group(id dosage)

Now recode the response variable:

. recode score 0/1=1 2/3=2 4/5=3 6=4 (score: 164 changes made)

2. Construct a variable, time, taking the values 0, 5, 15, and 30 at the four occasions. Fit a random-intercept proportional-odds model meologit with dummy variables for the dosage groups and the continuous variables age, duration, and time as covariates. (Make sure there are 60 level-2 clusters.)

. recode occ	1=0 2=5 3=15	5 4=30, gener	ate(time)
(240 differen	nces between	occ and time	
. tabulate do	osage, genera	te(dose)	
dosage	Freq.	Percent	Cum.
15	60	25.00	25.00
20	60	25.00	50.00
25	60	25.00	75.00
30	60	25.00	100.00
Total	240	100.00	

(Continued on next page)

. meologit sco	ore dose2 dos	se3 dose4 age	e duration	time	id2:	
Mixed-effects	ologit regre	ession		Number	of obs =	240
Group variable	e:	id2		Number	of groups =	60
				Obs per	group:	
				-	min =	4
					avg =	4.0
					max =	4
Integration me	thod: mvaghe	ermite		Integra	tion pts. =	7
				Wald ch	i2(6) =	78.05
Log likelihood	l = -221.6222	22		Prob >	chi2 =	0.0000
score	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
dose2	2077786	1.49336	-0.14	0.889	-3.134709	2.719152
dose3	-1.227845	1.453444	-0.84	0.398	-4.076543	1.620854
dose4	-1.802505	1.445967	-1.25	0.213	-4.636549	1.031539
age	0524312	.0346835	-1.51	0.131	1204095	.0155472
duration	0223472	.0147845	-1.51	0.131	0513242	.0066299
time	.235031	.0266534	8.82	0.000	.1827913	.2872707
/cut1	-4.058966	2.130342			-8.23436	.1164289
/cut2	-1.285731	2.100772			-5.403169	2.831706
/cut3	1.416124	2.098766			-2.697381	5.52963
id2						
<pre>var(_cons)</pre>	13.36943	4.113677			7.314834	24.43551
LR test vs. ol	logit model:	chibar2(01)	= 123.68	P	rob >= chibar	2 = 0.0000

MLMUS4 (Vol. II) - Rabe-Hesketh and Skrondal

. estimates store model1

3. Compare the model from step 2 with a model including dosage as a continuous covariate instead of the dummy variables for dosage groups, using a likelihood ratio test at the 5% significance level.

. meologit sco	ore dosage ag	e duration 1	time id	2:			
Mixed-effects Group variable	ologit regrea	ssion id2		Number Number	· of obs · of groups	= =	240 60
-				Obs pe	er group:		
				1	min	L =	4
					avg	; =	4.0
					max	: =	4
Integration me	ethod: mvaghe:	rmite		Integr	ation pts.	=	7
				Wald c	:hi2(4)	=	78.01
Log likelihood	1 = -221.67293	3		Prob >	chi2	=	0.0000
score	Coef.	Std. Err.	z	P> z	[95% Co	onf.	Interval]
dosage	1277912	.09199	-1.39	0.165	308088	2	.0525058
age	0558598	.0329918	-1.69	0.090	120522	5	.0088029
duration	0220667	.0147112	-1.50	0.134	050900	1	.0067666
time	.2349185	.0266471	8.82	0.000	.182691	.1	.2871459
/cut1	-6.231995	2.860294			-11.8380	7	6259222
/cut2	-3.459762	2.816057			-8.97913	2	2.059609
/cut3	7598798	2.791079			-6.23029	4	4.710534
id2							
<pre>var(_cons)</pre>	13.35747	4.11182			7.30633	37	24.42019
LR test vs. ol	logit model:	chibar2(01)	= 123.61		Prob >= chi	bar	2 = 0.0000
. estimates st	core model2						
. lrtest model	L1 .						
Likelihood-rat	io test				LR chi2(2)	=	0.10
(Assumption: .	nested in m	odel1)			Prob > chi2	2 =	0.9506
							-~

Linearity of the log-odds for the covariate dosage is not rejected at the 5% level (L = 0.10, df = 2, p = 0.95).

4. Extend the model chosen in step 3 to include an interaction between dosage and time. Test the interaction using a Wald test at the 5% level of significance.

· · · · · · · · · · · · · · · · · · ·		generate	dosage_	time =	dosage*tim
---------------------------------------	--	----------	---------	--------	------------

. meologit sco	ore dosage age	e duration t	ime dosag	e_time	id2:	
Mixed-effects	ologit regres	ssion		Number o	of obs =	240
Group variable	e:	id2		Number o	of groups =	60
				Obs per	group:	
				1	min =	4
					avg =	4.0
					max =	4
Integration me	thod: mvaghe	rmite		Integrat	tion pts. =	7
				Wald ch	i2(5) =	77.50
Log likelihood	l = -221.49883	L		Prob > o	chi2 =	0.0000
score	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
dosage	1505731	.1008403	-1.49	0.135	3482165	.0470704
age	0556903	.0333188	-1.67	0.095	1209939	.0096133
duration	0222267	.0148576	-1.50	0.135	0513471	.0068938
time	.1981749	.0669428	2.96	0.003	.0669694	.3293803
dosage_time	.0017006	.0028829	0.59	0.555	0039497	.0073509
/cut1	-6.729309	3.012843			-12.63437	8242448
/cut2	-3.951823	2.966103			-9.765279	1.861632
/cut3	-1.23639	2.932581			-6.984144	4.511364
id2						
<pre>var(_cons)</pre>	13.62838	4.229277			7.418091	25.03782
LR test vs. ol	logit model: (chibar2(01)	= 123.87	P1	rob >= chibar	$c^2 = 0.0000$

The dosage by time interaction is not significant at the 5% level (z = 0.59, p = 0.56).

5. For the model selected in step 4, interpret the estimated ORs and random-intercept variance.

. meologit sco	ore dosage age	e duration t	ime id	l2:, or		
Mixed-effects ologit regression Group variable: id2				Number o Number o	of obs = of groups =	240 60
				Obs per	group:	
					min =	4
					avg =	4.0
					max =	4
Integration me	thod: mvagher	rmite		Integrat	ion pts. =	7
				Wald chi	2(4) =	78.01
Log likelihood	= -221.67293	3		Prob > c	:hi2 =	0.0000
score	Odds ratio	Std. err.	Z	P> z	[95% conf.	interval]
dosage	.8800371	.0809546	-1.39	0.165	.7348505	1.053909
age	.9456717	.0311994	-1.69	0.090	.8864571	1.008842
duration	.978175	.0143901	-1.50	0.134	.9503736	1.00679
time	1.264806	.0337034	8.82	0.000	1.200444	1.332619
/cut1	-6.231995	2.860294			-11.83807	6259222
/cut2	-3.459762	2.816057			-8.979132	2.059609
/cut3	7598798	2.791079			-6.230294	4.710534
id2						
<pre>var(_cons)</pre>	13.35747	4.11182			7.306337	24.42019

Note: Estimates are transformed only in the first equation to odds ratios. LR test vs. ologit model: chibar2(01) = 123.61 Prob >= chibar2 = 0.0000

Each extra gram of anesthetic per kilogram of weight is associated with an estimated 12% reduction in the odds of having a recovery score above a given cut-point, after controlling for covariates. This translates to a 72% ($-72 = 100(0.8800371^{10} - 1)$) reduction in the odds for a 10grams/kilogram increase. Each extra month of age is associated with an estimated 4% decrease in the odds of a high recovery score after controlling for the other covariates. For a one-year increase in age, the odds are estimated to decrease by 49% ($-20 = 100(0.9456717^{12} - 1)$). Each extra minute of surgery reduces the estimated odds of a high recovery score by 2%, corresponding to a 36% decrease ($-36 = 100(0.978175^{20} - 1)$) every 20 minutes. Finally, the estimated odds of a high recovery score increase over time after admission to the recovery room, by 26% per minute, after controlling for the other covariates.

The estimated random-intercept variance is large, giving an estimated residual intraclass correlation of the latent responses of 0.81 (= $13.62838/(13.62838 + \pi^2/3)$).

6. ★ Extend the model selected in step 4 by relaxing the proportional-odds assumption for dosage (see section 11.2 on using the thresh() option in gllamm to relax proportional odds). Test whether the odds are proportional using a likelihood ratio test. To compare models fit by different commands, use the force option.

First store the estimates for the selected model:

. estimates store model2

Then fit the model relaxing the proportional odds assumption in gllamm:

```
. eq thr: dosage
. gllamm score age duration time, i(id2)
> link(ologit) thresh(thr) adapt
number of level 1 units = 240
number of level 2 units = 60
Condition Number = 919.91442
```

gllamm model

log likelihood = -217.9239

score	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
score						
age	0591689	.0332862	-1.78	0.075	1244087	.0060709
duration	0222001	.0144823	-1.53	0.125	0505849	.0061847
time	.2428621	.0280665	8.65	0.000	.1878528	.2978715
_cut11						
dosage	.1970886	.1005634	1.96	0.050	000012	.3941892
_cons	-7.890947	3.003838	-2.63	0.009	-13.77836	-2.003532
_cut12						
dosage	.0501222	.0972455	0.52	0.606	1404754	.2407198
_cons	-1.732089	2.864999	-0.60	0.545	-7.347385	3.883207
_cut13						
dosage	.1317483	.1013735	1.30	0.194	0669401	.3304367
_cons	797635	2.891275	-0.28	0.783	-6.46443	4.86916

Variances and covariances of random effects

***level 2 (id2)

var(1): 13.834367 (4.3019654)

Now perfom the LR test with the **force** option because different commands were used for the two models:

. estimates store model3		
. lrtest model2 model3, force		
Likelihood-ratio test (Assumption: model2 nested in model3)	LR chi2(2) = Prob > chi2 =	7.50 0.0235

We reject the proportional odds assumption for dosage group at the 5% level (L = 7.50, df = 2, p = 0.02).

7. For age equal to 37 months, duration equal to 80 minutes, and time in recovery room equal to 15 minutes, produce a graph of predicted marginal probabilities similar to figure 11.13 for the model selected in step 6 or for the model selected in step 4. Also produce a corresponding stacked bar chart, treating dosage group as categorical.

First we set the explanatory variables equal to the required values:

```
. replace age=37
(232 real changes made)
. replace duration=80
(240 real changes made)
. replace time=15
(180 real changes made)
```

Then we show how to make the graphs for the proportional odds model from step 4, which was estimated using melogit and stored as model2

. estimates restore model2 (results model2 are active now)

Then we obtain the marginal probabilities and plot them:

```
. predict pr1-pr4, pr marginal
(using 7 quadrature points)
. graph bar (mean) pr1 pr2 pr3 pr4, over(dosage) stack
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
```

The graph is given in the left panel of figure 2. Note that the boundaries on the graph are not exactly parallel, but the logit transformation of the boundaries is. For the figure resembling figure 11.12, we need the cumulative probabilities that y is anything from 1 up to category s, for s = 1, 2, 3, 4:

```
. generate pr12 = pr1+pr2
. generate pr123 = pr12+pr3
. generate pr1234 = 1
. twoway (area pr1 dosage, sort fintensity(inten10))
> (rarea pr12 pr1 dosage, sort fintensity(inten50))
> (rarea pr123 pr12 dosage, sort fintensity(inten70))
> (rarea pr1234 pr123 dosage, sort fintensity(inten90)),
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
> title("dosage")
```

The graph is given in the left panel of figure 3.

Now, we plot the same kinds of graphs for the model from step 6 which was estimated using gllamm and stored as model3. First, we delete the predicted probabilities for the proportional odds model so that we can use the same variable names again:

Figure 2: Area graphs of predicted marginal probabilities versus dosage groups, when age is 37 months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is proportional odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)

Figure 3: Stacked bar chart of predicted marginal probabilities for the dosage groups, when age is 37 months, duration of surgery is 80 minutes, and recovery time is 15 minutes. Left panel is proportional odds model (model 2) and right panel relaxes proportional odds for dosage (model 3)

. drop pr*

We can predict marginal cumulative probabilities using gllapred:

```
. estimates restore model3
(results model3 are active now)
. gllapred pr234, marg mu above(1) fsample
(mu will be stored in pr234)
. gllapred pr34, marg mu above(2) fsample
(mu will be stored in pr34)
. gllapred pr4, marg mu above(3) fsample
(mu will be stored in pr4)
```

These are converted to probabilities for each category as follows:

```
. generate pr1 = 1 - pr234
. generate pr2 = pr234 - pr34
. generate pr3 = pr34 - pr4
```

And the graph in the right panel of figure 2 is obtained using

```
. graph bar (mean) pr1 pr2 pr3 pr4, over(dosage) stack
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
```

Again, for the figure resembling figure 11.12, we need the cumulative probabilities that y is anything from 1 up to category s, for s = 1, 2, 3, 4:

```
. generate pr12 = 1-pr34
. generate pr123 = 1-pr4
. generate pr1234 = 1
. twoway (area pr1 dosage, sort fintensity(inten10))
> (rarea pr12 pr1 dosage, sort fintensity(inten50))
> (rarea pr123 pr12 dosage, sort fintensity(inten70))
> (rarea pr1234 pr123 dosage, sort fintensity(inten90)),
> legend(order(1 "Prob(y=1)" 2 "Prob(y=2)" 3 "Prob(y=3)" 4 "Prob(y=4)"))
> xtitle("dosage")
```

The graph is given in the right panel of figure 3.

Exercise 11.7

12.4 British-election data

1. Create a variable, chosen, equal to 1 for the party voted for (rank equal to 1) and 0 for the other parties.

```
. use elections, clear
```

- . generate chosen = rank == 1
- 2. Standardize lrdist and inflation to have mean 0 and variance 1. Produce all the dummy variables and interactions necessary to fit a conditional logistic regression model (using clogit) for chosen, with the following covariates: the standardized versions of lrdist and inflation, and the dummy variables yr87, yr92, male, and manual. All variables except the standardized version of lrdist should have party-specific coefficients. There is no need for alternative-specific intercepts because interactions with both yr87 and yr92 are included.

. egen inflat = std(inflation)								
. egen dist = std(rldist)								
. tabulate party, generate(p)								
party	Freq.	Percent	Cum.					
1	2,458	33.33	33.33					
2	2,458	33.33	66.67					
3	2,458	33.33	100.00					
Total	7,374	100.00						
. rename p1	cons							
. rename p2 1	lab							
. rename p3	lib							
. foreach va: 2. 3. 4. }	r of varlist ma generate lab_' generate lib_'	ale inflat ma var' = lab*' var' = lib*'	nual yr87 var' var'	yr92 {				

3. Fit the model using clogit and either gllamm or cmxtmixlogit, with Conservatives as the base outcome.

. clogit chose	en dist lab_*	lib_* , g	group(occ)				
Conditional (1	fixed-effects) d = -1983.0429	logistic	regression	Number LR chi: Prob > Pseudo	of obs 2(11) chi2 R2	s = = = =	7374 1434.69 0.0000 0.2656
chosen	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
dist lab_male lab_inflat lab_yr87 lab_yr92 lib_male lib_inflat lib_manual lib_yr87 lib_yr87	-1.134582 7170468 .40281 .5855308 9940042 9786174 6562548 .3102374 1422657 785426 -1.068714	.0463711 .1247135 .0665768 .1298537 .1434858 .1346003 .1194879 .0623362 .1191864 .1258898 1228379	-24.47 -5.75 6.05 4.51 -6.93 -7.27 -5.49 4.98 -1.19 -6.24 -8 70	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.000 0.000	-1.225 9614 .2723 .3310 -1.275 -1.242 8904 .1880 3755 -1.032 -1.032	5468 1808 3219 0223 5231 2429 1468 0607 3667 2166 4472	-1.043696 4726129 .533298 .8400393 7127771 7148056 4220627 .4324142 .091335 5386865 8279564

(Continued on next page)

Using gllamm:

```
. gllamm party dist lab_* lib_*, nocons i(occ) link(mlogit)
> expanded(occ chosen o) init
number of level 1 units = 7374
Condition Number = 7.2688994
gllamm model
log likelihood = -1983.0429
```

(Continued on next page)

Using cmxtmixlogit:

<pre>. cmset serialno occ party panel data: panels serialno and time occ note: case identifier _caseid generated from serialno occ note: panel by alternatives identifier _panelaltid generated from serialno party</pre>									
		delta:	1 unit						
note: data hav	ve been xtset								
. cmxtmixlogit	: chosen dist	lab_* lib_*	, nocons	tant					
Mixed logit ch Panel variable	Mixed logit choice modelNumber of obs=7,374Number of cases=2,458Panel variable: serialnoNumber of panels=1,344								
Time variable:	occ		С	ases per	panel: min = avg = max =	1 1.9 2			
			A	lts per c	ase: min = avg = max =	3 3.0 3			
Integration po Log likelihood	oints: l = -19	0 983.0429		Wald Prob	chi2(11) = > chi2 =	857.30 0.0000			
chosen	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
party									
dist lab_male lab_inflat lab_yr87 lab_yr97 lib_male lib_inflat lib_manual lib_yr87	-1.134582 7170469 .40281 .5855308 9940042 9786174 6562548 .3102374 1422657 785426	.0463711 .1247135 .0665768 .1298537 .1434858 .1346003 .1194879 .0623362 .1191864 .1258898	-24.47 -5.75 6.05 4.51 -6.93 -7.27 -5.49 4.98 -1.19 -6.24	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.000	-1.225468 9614808 .2723219 .3310223 -1.275231 -1.242429 8904468 .1880607 3758667 -1.032166	-1.043696 4726129 .533298 .8400393 7127771 7148056 4220627 .4324142 .0913353 5386865			
TTD_AT85	-1.000/14	.1220319	-0.70	0.000	-1.309412	0219004			

4. Extend the model to include a person-level random slope for lrdist, and fit the extended model in gllamm with 12-point adaptive quadrature or cmxtmixlogit with the default number of integration points (the latter will take considerably longer).

We first fit the model in gllamm:

```
. eq slope: dist
. gllamm party dist lab_* lib_*, nocons i(serialno) eqs(slope)
> link(mlogit) expanded(occ chosen o) adapt
number of level 1 units = 7374
number of level 2 units = 1344
Condition Number = 8.2098824
```

gllamm model

log likelihood = -1940.8731

party	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
dist lab_male lab_inflat lab_manual lab_yr87 lab_yr92	-1.667974 8029514 .4829104 .6980803 -1.09047 -1 118557	.0950608 .1462798 .0792102 .1539755 .1663477 1568355	-17.55 -5.49 6.10 4.53 -6.56 -7.13	0.000 0.000 0.000 0.000 0.000	-1.854289 -1.089655 .3276613 .3962939 -1.416505 -1.425049	-1.481658 5162482 .6381595 .9998668 7644342 - 8111654
lib_male lib_inflat lib_manual lib_yr87 lib_yr92	7209999 .3926299 0870119 8387357 -1.177546	.1358186 .0720597 .1367104 .1429854 .1389775	-5.31 5.45 -0.64 -5.87 -8.47	0.000 0.000 0.524 0.000 0.000	9871995 .2513955 3549594 -1.118982 -1.449937	4548003 .5338644 .1809355 5584894 9051555

Variances and covariances of random effects

***level 2 (serialno)

var(1): 1.0594742 (.21654741)

(Continued on next page)

Now we fit the same model in cmxtmixlogit:

. cmxtmixlogit chosen lab_* lib_*, noconstant random(dist)							
Mixed logit ch	noice model			Number of	obs =	7,374	
				Number of	cases =	2,458	
Panel variable	e: serialno			Number of	panels =	1,344	
Time variable:	occ			Cases per	panel: min =	1	
				1	avg =	1.9	
					max =	2	
				Alts per	case: min =	3	
					avg =	3.0	
					max =	3	
Integration se	equence:	Hammersley					
Integration po	oints:	654		Wald	chi2(11) =	601.09	
Log simulated	likelihood =	-1940.8473		Prob	> chi2 =	0.0000	
chosen	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
party							
lab_male	8029082	.1461815	-5.49	0.000	-1.089419	5163977	
lab_inflat	.4827921	.0791922	6.10	0.000	.3275782	.638006	
lab_manual	.6979731	.1538849	4.54	0.000	.3963642	.9995821	
lab_yr87	-1.090001	.1662027	-6.56	0.000	-1.415753	7642502	
lab_yr92	-1.118178	.1567131	-7.14	0.000	-1.42533	8110255	
lib_male	720856	.1357229	-5.31	0.000	986868	454844	
lib_inflat	.3924501	.0720178	5.45	0.000	.2512977	.5336024	
lib_manual	0868981	.1366305	-0.64	0.525	354689	.1808927	
lib_yr87	838884	.1428815	-5.87	0.000	-1.118927	5588414	
lib_yr92	-1.177561	.1388967	-8.48	0.000	-1.449793	9053282	
dist	-1.667532	.0946464	-17.62	0.000	-1.853036	-1.482029	
()]							
/Normal	1 006120	1004206			0407005	1 047000	
sa(aist)	1.026139	.1024326			.8431935	1.24/889	

5. Write down the model and interpret the estimates.

The following model is specified for the conditional probability that party s is chosen by respondent j at occasion i, given the covariates and the random coefficient ζ_{2j} for lrdist:

$$\Pr(y_{ij} = s | x_{2ij}^{[s]}, \mathbf{x}_{ij}, \zeta_{2j}) = \frac{\exp\left\{ (\beta_2 + \zeta_{2j}) x_{2ij}^{[s]} + \beta_3^{[s]} x_{3j} + \beta_4^{[s]} x_{4ij} + \beta_5^{[s]} x_{5j} + \beta_6^{[s]} x_{6i} + \beta_7^{[s]} x_{7i} \right\}}{\sum_{c=1}^3 \exp\left\{ (\beta_2 + \zeta_{2j}) x_{2ij}^{[c]} + \beta_3^{[c]} x_{3j} + \beta_4^{[c]} x_{4ij} + \beta_5^{[c]} x_{5j} + \beta_6^{[c]} x_{6i} + \beta_7^{[c]} x_{7i} \right\}}$$

Here $x_{2ij}^{[s]}$ represents lrdist for party s, x_{3j} represents male, x_{4ij} represents inflation, x_{5j} represents manual, x_{6i} represents yr87, and x_{7i} represents yr92. It is assumed that the random coefficient ζ_{2j} has a normal distribution with zero mean and variance ψ , and that the covariates are independent of the random coefficient.

We now turn to the interpretation of the estimates. Controlling for the other covariates, the conditional or respondent-specific odds of choosing a party decreases by 81% (- $81\% = 100\% \times \exp(-1.668452) - 1$) as the distance between the party and the respondent on the left-right political dimension increases by one unit. The variance of the respondent-specific effects $\beta_2 + \zeta_{2j}$ is estimated as 1.0384731 so a 95% range of the odds ratio is $(\exp(-1.668452) - 1.96\sqrt{1.0384731}, \exp(-1.668452 - 1.96\sqrt{1.0384731}) = (0.03, 1.39).$

The following interpretations are all in terms of conditional odds with Conservatives as basecategory and given the other covariates.

We first consider the odds of choosing Labour. The odds of choosing Labour in 1987 is estimated as $0.34=\exp(-1.088198)$ when all covariates are zero. The odds of choosing Labour in 1992 is estimated as $0.33=\exp(-1.11707)$ when all covariates are zero. The odds of choosing Labour is estimated as 55% (-55% = 100% ($\exp(-0.8026911) - 1$)) lower for males than for females. The odds of choosing Labour is estimated as 62% (62% = 100% ($\exp(0.4823476) - 1$)) higher when the perceived inflation rating increases by one unit (which might be explained by the fact that Conservatives were the incumbents). The odds of choosing Labour is estimated as 100% (100% = 100% ($\exp(0.6978195) - 1$)) higher for respondents whose father was a manual worker compared to the father not being a manual worker.

We then consider the odds of choosing Liberals. The odds of choosing Liberals in 1987 is estimated as $0.43 = \exp(-0.8391223)$ when all covariates are zero. The odds of choosing Liberals in 1992 is estimated as $0.31 = \exp(-1.177754)$ when all covariates are zero. The odds of choosing Liberals is estimated as 51% (-51% = 100% ($\exp(-0.720465) - 1$)) lower for males than for females. The odds of choosing Liberals is estimated as 34% (34% = 100% ($\exp(0.2920127) - 1$)) higher when the perceived inflation rating increases by one unit (which might be explained by the fact that Conservatives were the incumbents). The odds of choosing Liberals is estimated as 8% (-8% = 100% ($\exp(-0.0866056) - 1$)) lower for respondents whose father was a manual worker compared to the father not being a manual worker.

MLMUS4 (Vol. II) – Rabe-Hesketh and Skrondal

6. Instead of including a random slope for lrdist, include correlated person-level random intercepts for Labour and Liberal. Either use gllamm with 9-point adaptive quadrature or cmxtmixlogit with the default number of integration points (the latter will take considerably longer). cmxtmixlogit automatically includes fixed coefficients for Labour and Liberal, so the model is not identified unless you remove, for instance, the interactions between yr87 and the Labour and Liberal dummy variables.

We start with gllamm:

```
. gllamm party dist lab_* lib_*, nocons i(serialno) nrf(2) eqs(lab lib)
> link(mlogit) expanded(occ chosen o) nip(9) adapt
number of level 1 units = 7374
number of level 2 units = 1344
Condition Number = 10.937832
```

gllamm model

log likelihood = -1788.3248

party	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
dist	-2.088836	.1409049	-14.82	0.000	-2.365004	-1.812667
lab_male	-1.250304	.315439	-3.96	0.000	-1.868553	6320545
lab_inflat	.7647105	.1418849	5.39	0.000	.4866213	1.0428
lab_manual	1.494767	.3402737	4.39	0.000	.827843	2.161692
lab_yr87	-2.001023	.3610284	-5.54	0.000	-2.708626	-1.29342
lab_yr92	-1.842304	.3375043	-5.46	0.000	-2.5038	-1.180808
lib_male	-1.129491	.3065094	-3.69	0.000	-1.730239	5287439
lib_inflat	.6435229	.1329496	4.84	0.000	.3829465	.9040992
lib_manual	.126338	.3187767	0.40	0.692	4984528	.7511288
lib_yr87	-1.584461	.3239303	-4.89	0.000	-2.219352	9495688
lib_yr92	-2.044765	.3265231	-6.26	0.000	-2.684738	-1.404791

Variances and covariances of random effects

***level 2 (serialno)

```
var(1): 14.318181 (3.0102436)
cov(2,1): 11.308938 (2.4086857) cor(2,1): .79114588
```

var(2): 14.270613 (2.3786588)

(Continued on next page)

Now we fit the same model with cmxtmixlogit:

<pre>. cmxtmixlogit > lib_inflat</pre>	<pre>cmxtmixlogit chosen dist lab_male lab_inflat lab_manual lab_yr92 lib_male</pre>							
Mixed logit cho	pice model		Nu	mber of	obs =	7,374		
			Nu	mber of	cases =	2,458		
Panel variable:	: serialno		Nu	mber of	panels =	1,344		
Time variable:	occ		Ca	ses per	<pre>panel: min =</pre>	1		
				-	- avg =	1.9		
					max =	2		
			Al	ts per o	case: min =	3		
				1	avg =	3.0		
					max =	3		
Integration sec	quence:	Hammersley						
Integration poi	ints:	704		Wald	chi2(11) =	319.07		
Log simulated 1	likelihood =	-1788.6669		Prob	> chi2 =	0.0000		
chosen	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]		
party								
dist	-2.075754	.1378129	-15.06	0.000	-2.345863	-1.805646		
lab_male	-1.237107	.3129861	-3.95	0.000	-1.850549	6236655		
lab_inflat	.7558056	.1404104	5.38	0.000	.4806063	1.031005		
lab_manual	1.476726	.3375285	4.38	0.000	.8151818	2.138269		
lab_yr92	.1538816	.2122281	0.73	0.468	2620779	.5698411		
lib_male	-1.119151	.304987	-3.67	0.000	-1.716915	5213878		
lib_inflat	.6365243	.1317774	4.83	0.000	.3782455	.8948032		
lib_manual	.1154523	.3173066	0.36	0.716	5064572	.7373618		
lib_yr92	4634786	.200367	-2.31	0.021	8561907	0707665		
lab	-1.98754	.3588781	-5.54	0.000	-2.690928	-1.284152		
lib	-1.587364	.3204624	-4.95	0.000	-2.215459	9592695		
/Normal								
sd(lab)	3.697475	.3581382			3.058143	4.470467		
corr(lab,lib)	.783795	.0501663	15.62	0.000	.6641424	.8642963		
sd(lib)	3.706856	.2962614			3.169388	4.335467		

Here the coefficient of lab corresponds to lab_yr87 in the previous model and the sum of the coefficients of lab and lab_yr92 corresponds to lab_yr92 in the previous model (similarly for the Liberal party). We can use lincom to translate between the different parameterizations:

```
. lincom lab+lab_yr92
```

```
( 1) [party]lab_yr92 + [party]lab = 0
```

chosen	Coef.	Std. Err.	z	P> z	[95% Conf. I	nterval]
(1)	-1.833658	.335719	-5.46	0.000	-2.491655 -	1.175661
. lincom lib+ (1) [party]	Lib_yr92 lib_yr92 + []	party]lib =	0			
chosen	Coef.	Std. Err.	z	P> z	[95% Conf. I	nterval]
(1)	-2.050843	.3225191	-6.36	0.000	-2.682969 -	1.418717

The gllamm and cmxtmixlogit estimates are not identical to two decimal places. Try using gllamm with more quadrature points to make the estimates closer to those from cmxtmixlogit.

13.1 Epileptic-fit data

1. Model II in Breslow and Clayton is a log-linear (Poisson regression) model with covariates lbas, treat, lbas_trt, lage, and v4, and a normally distributed random intercept for subjects. Fit this model using mepoisson

. use epilep,	clear					
. mepoisson y	lbas treat ll	bas_trt lage	v4 su	ıbj:		
Mixed-effects	Poisson regre	ession		Number	of obs =	236
Group variable	e:	subj		Number	of groups =	59
				Obs per	group:	
				- · · 1 ·	min =	4
					avg =	4.0
					max =	4
Integration me	ethod: mvagher	rmite		Integra	tion pts. =	7
				Wald ch	i2(5) =	121.70
Log likelihood	1 = -665.29067	7		Prob >	chi2 =	0.0000
у	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
	0044005	1010000	0.74	0.000	2070200	4 4 4 4 5 7 0
Ibas	.8844225	.1312033	6.74	0.000	.6272689	1.141576
treat	9330306	.4007512	-2.33	0.020	-1./18489	14/5/2/
IDas_trt	.3362501	.2033021	1.00	0.096	0602087	./30/21
Lage	.4042220	.34/1905	-2.05	0.103	1902002	1.104703
V4	1010071	.0545756	-2.95	0.003	1 602766	0541200
_cons	2.114300	.2190070	9.03	0.000	1.003700	2.544047
subj						
var(_cons)	.2528664	.0589844			.1600801	.399434

LR test vs. Poisson model: chibar2(01) = 304.74 Prob >= chibar2 = 0.0000

The corresponding gllamm command is

gllamm y lbas treat lbas_trt lage v4, i(subj) link(log) family(poisson) adapt

2. Breslow and Clayton also considered a random-coefficient model (Model IV) using the variable visit instead of v4. The effect of visit z_{ij} varies randomly between subjects. The model can be written as

$$\log(\mu_{ij}) = \beta_1 + \beta_2 x_{2j} + \dots + \beta_5 x_{5j} + \beta_6 z_{ij} + \zeta_{1j} + \zeta_{2j} z_{ij}$$

where the subject-specific random intercept ζ_{1j} and slope ζ_{2j} have a bivariate normal distribution, given the covariates. Fit this model using mepoisson or gllamm (the latter is required for step 3 of this exercise).

The mepoisson command produces the following output (corresponding output from gllamm is given under step 3):

. mepoisson y lbas	s treat lbas_t	rt lage visi	t	subj: visi	it, cova	riance	(unstructured)
Mixed-effects Pois	sson regressio	n		Number of	obs	=	236
Group variable:	subj			Number of	groups	=	59
				Obs per gi	coup:		
				1 0	min	=	4
					avg	=	4.0
					max	=	4
Integration method	l: mvaghermite	•		Integratio	on pts.	=	7
			,	Wald chi2	(5)	=	115.60
Log likelihood = -	-655.68095			Prob > chi	12	=	0.0000
У	Coef.	Std. Err.	z	P> z	[95	% Conf	. Interval]
lbas	.8849666	.1312244	6.7	4 0.000	.62	77715	1.142162
treat	9286531	.4020804	-2.3	1 0.021	-1.7	16716	1405901
lbas_trt	.3379723	.2044067	1.6	5 0.098	06	26574	.738602
lage	.4767056	.353527	1.3	5 0.178	21	61946	1.169606
visit	2664103	.1646967	-1.6	2 0.106	58	92098	.0563893
_cons	2.099559	.2203214	9.5	3 0.000	1.6	67737	2.531381
subj							
var(visit)	.5314793	.229384			.22	80929	1.2384
<pre>var(_cons)</pre>	.2515327	.0588175			.15	90569	.3977741
subj							
<pre>cov(visit,_cons)</pre>	.002872	.0886268	0.0	3 0.974	17	08334	.1765774
LR test vs. Poisso	on model: chi2	2(3) = 324.54	-		Prob >	chi2 =	0.0000

Note: LR test is conservative and provided only for reference.

3. Plot the posterior mean counts versus time for 12 patients in each treatment group based on the model from Step 2. This requires fitting the model from step 2 in gllamm.

We first fit the model in the previous step using gllamm (if you used mepoisson there):

```
. eq int: cons
. eq slope: visit
. gllamm y lbas treat lbas_trt lage visit, i(subj)
> link(log) family(poisson) nrf(2) eqs(int slope)
> nip(15) adapt
number of level 1 units = 236
number of level 2 units = 59
Condition Number = 9.3160203
```

gllamm model

log likelihood = -655.68102

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lbas	.8849767	.1312521	6.74	0.000	.6277273	1.142226
treat	9286588	.4021646	-2.31	0.021	-1.716887	1404307
lbas_trt	.3379757	.2044446	1.65	0.098	0627284	.7386798
lage	.4767191	.3536223	1.35	0.178	216368	1.169806
visit	2664098	.1647096	-1.62	0.106	5892346	.056415
_cons	2.099555	.2203713	9.53	0.000	1.667635	2.531474

Variances and covariances of random effects

```
***level 2 (subj)
```

```
var(1): .25149332 (.05878944)
cov(2,1): .00287152 (.08870194) cor(2,1): .00785426
```

var(2): .53148073 (.22938513)

We can then obtain posterior mean counts by using gllapred:

```
. gllapred pred, mu
(mu will be stored in pred)
Non-adaptive log-likelihood: -659.19989
-658.7592 -656.0947 -655.6810 -655.6810 -655.6810
log-likelihood:-655.68102
. sort treat subj
. by treat subj: generate f=_n==1
. by treat: generate id=sum(f)
. twoway line pred visit if id<13 & treat==0, by(id)
. twoway line pred visit if id<13 & treat==1, by(id)</pre>
```

The graphs are shown in figures 4 and 5.

Figure 4: Posterior mean number of epileptic fits versus time for placebo group

Figure 5: Posterior mean number of epileptic fits versus time for treatment group

14.7 Cigarette data

1. Expand the data to person-period data.

```
. use cigarette, clear
. generate id=_n
. expand time
(1670 observations created)
. by id, sort: gen t = _n
. generate y=0
. by id (t), sort: replace y = event if _n==_N
(634 real changes made)
```

2. Estimate the discrete-time model that assumes the continuous-time hazards to be proportional. Include cc, tv, and their interaction as explanatory variables and specify a random intercept for classes. Use dummy variables for periods.

. tabulate t,	generate(occ))				
t	Freq.	Percent	Cum			
1	1,556	48.23	48.23	3		
2	1,082	33.54	81.77	7		
3	588	18.23	100.00)		
Total	3,226	100.00				
. mecloglog y	male cc tv co	c_tv occ2 oc	c3 clas	ss:		
Mixed-effects	cloglog regre	ession		Number	r of obs =	3,226
Group variabl	e: 0	class		Number	r of groups =	134
				Obs p	er group:	
					min =	3
					avg =	24.1
					max =	54
Integration m	ethod: mvagher	rmite		Integ	ration pts. =	7
				Wald (chi2(6) =	12.09
Log likelihoo	d = -1592.3537	7		Prob 3	> chi2 =	0.0599
У	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
male	.0594819	.0804729	0.74	0.460	0982421	.2172058
cc	.129357	.1216004	1.06	0.287	1089754	.3676895
tv	.0914655	.1222319	0.75	0.454	1481046	.3310356
cc_tv	1605053	.1747716	-0.92	0.358	5030515	.1820408
occ2	.0462722	.0918315	0.50	0.614	1337142	.2262586
occ3	.32482	.1042103	3.12	0.002	.1205716	.5290685
_cons	-1.707058	.1068043	-15.98	0.000	-1.91639	-1.497725
class						
<pre>var(_cons)</pre>	.0348174	.0300665			.0064083	.1891694
LR test vs. cloglog model: chibar2(01) = 1.76 Prob >= chibar2 = 0.0924						

3. Interpret the exponentials of the estimated regression coefficients.

. mecloglog, e	eform					
Mixed-effects	cloglog regre	ession		Number o	of obs =	3,226
Group variable	Group variable: class				of groups =	134
				Obs per	group:	
				1	min =	3
					avg =	24.1
					max =	54
Integration me	ethod: mvaghe	rmite		Integrat	ion pts. =	7
				Wald chi	=	12.09
Log likelihood	1 = -1592.353	7		Prob > o	chi2 =	0.0599
У	exp(b)	Std. Err.	Z	P> z	[95% Conf	. Interval]
male	1.061287	.0854048	0.74	0.460	.9064294	1.2426
сс	1.138096	.138393	1.06	0.287	.8967524	1.444393
tv	1.095779	.1339392	0.75	0.454	.8623409	1.392409
cc_tv	.8517133	.1488553	-0.92	0.358	.6046827	1.199663
occ2	1.047359	.0961806	0.50	0.614	.87484	1.2539
occ3	1.383782	.1442043	3.12	0.002	1.128141	1.69735
_cons	.1813988	.0193742	-15.98	0.000	.1471371	.2236384
class						
<pre>var(_cons)</pre>	.0348174	.0300665			.0064083	.1891694

Note: Estimates are transformed only in the first equation. LR test vs. cloglog model: chibar2(01) = 1.76 Prob >= chibar2 = 0.0924

At the 5% level of significance there is not sufficient evidence to conclude that the interventions had any effects.

Specifically, for each intervention on its own (when the other intervention is not used), the hazard ratio does not differ significantly from 1. When combined with the other intervention, the hazard ratio for each intervention decreases by an estimated 15% (since the hazard ratio for the interaction is 0.85).

The hazards of smoking are estimated as 38% greater in 9th grade than in 7th grade after controlling for the other variables.

4. Obtain the estimated residual intraclass correlation of the latent responses.

You can calculate the estimated intraclass correlation using

```
. display .0348174/(.0348174+_pi^2/6)
.02072771
```

This is a very small correlation, and we also see from the last line of the mecloglog output that we cannot reject the null hypothesis (at the 5% level) that the true intraclass correlation is 0.

15.4 Bladder-cancer data

36.

1. Wei, Lin, and Weissfeld (1989) specify a marginal Cox regression model based on total time and semirestricted risk sets, where the risk set for a kth event includes risk intervals for all previous events (< k). They specify event-specific baseline hazards and allow the effects of treat, number, and size to differ between events. Fit this model.

```
. use bladder, clear
. egen obs = group(enum id)
. stset stop, failure(event=1) id(obs)
                 id: obs
     failure event:
                      event == 1
obs. time interval:
                      (stop[_n-1], stop]
exit on or before: failure
        340
             total observations
          0
             exclusions
        340 observations remaining, representing
        340
             subjects
        112 failures in single-failure-per-subject data
      8,522 total analysis time at risk and under observation
                                                                              0
                                                   at risk from t =
                                        earliest observed entry t =
                                                                              0
                                             last observed exit t =
                                                                             59
. sort id enum
. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)
       id
             enum
                    start
                             stop
                                    event
                                             _t0
                                                         _d
                                                    _t
                                                               _st
25.
        7
                1
                        0
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
26.
        7
                2
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
27.
        7
                3
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
28.
        7
                4
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
29.
        8
                        0
                1
                                5
                                         1
                                               0
                                                    5
                                                          1
                                                                 1
30.
        8
                2
                        5
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
31.
                                               0
        8
                3
                       18
                               18
                                         0
                                                    18
                                                          0
                                                                 1
32.
        8
                4
                       18
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
33.
        9
                1
                        0
                               12
                                         1
                                               0
                                                    12
                                                          1
                                                                 1
34.
        9
                2
                       12
                               16
                                               0
                                                    16
                                                          1
                                                                 1
                                         1
35.
        9
                3
                       16
                               18
                                         0
                                               0
                                                    18
                                                          0
                                                                 1
```

The model could be parameterized by having a coefficient for treat, number, and size, as well as coefficients for interactions of each of these variables with dummy variables for the second, third and fourth events. Instead, we will include interactions between dummy variables for each event, including the first, and treat, number, and size. We must then omit "main effects" for treat, number, and size:

0 18

(Continued on next page)

```
. stcox ibn.enum#(c.treat c.number c.size), strata(enum) vce(cluster id) efron
         failure _d: event == 1
   analysis time _t: stop
                 id: obs
Stratified Cox regr. -- Efron method for ties
No. of subjects
                      =
                                 340
                                                                               340
                                                                     =
                                                  Number of obs
No. of failures
                      =
                                 112
Time at risk
                      =
                                8522
                                                  Wald chi2(12)
                                                                             34.32
                                                                     =
Log pseudolikelihood =
                          -423.73286
                                                  Prob > chi2
                                                                     =
                                                                            0.0006
                                       (Std. Err. adjusted for 85 clusters in id)
                               Robust
           _t
                Haz. Ratio
                              Std. Err.
                                              z
                                                   P>|z|
                                                              [95% Conf. Interval]
 enum#c.treat
                   .5909733
                               .1874038
                                           -1.66
                                                    0.097
                                                               .3174264
                                                                           1.100253
           1
                                                    0.088
                                                               .2570531
                                                                           1.098396
           2
                   .5313625
                              .1968685
                                           -1.71
           3
                   .4973349
                               .2103116
                                           -1.65
                                                    0.099
                                                               .2171177
                                                                           1.139207
                   .5297029
                               .2649767
                                           -1.27
                                                    0.204
                                                              .1987149
                                                                           1.411999
           4
enum#c.number
                   1.268937
                               .0952058
                                            3.17
                                                    0.002
                                                              1.095409
                                                                           1.469955
           1
                   1.146744
                              .1012115
                                                               .9645825
                                                                           1.363306
           2
                                            1.55
                                                    0.121
           3
                    1.18947
                              .1264058
                                            1.63
                                                    0.103
                                                               .9658189
                                                                           1.464911
                   1.394411
                              .1621041
                                            2.86
                                                   0.004
                                                               1.11029
                                                                           1.751238
           4
 enum#c.size
                                            0.78
           1
                   1.072094
                               .0955849
                                                    0.435
                                                                .900206
                                                                           1.276802
           2
                   .9251941
                              .1106043
                                           -0.65
                                                    0.515
                                                               .7319378
                                                                           1.169477
                   .8074792
                              .1409972
                                                                           1.137007
           3
                                           -1.22
                                                   0.221
                                                               .5734553
           4
                   .8134582
                              .1585875
                                           -1.06
                                                   0.290
                                                               .5551233
                                                                           1.192013
```

Stratified by enum

2. Use testparm to test whether the coefficients of treat differ significantly between events (at the 5% level) and similarly for number and size.

In order to use testparm, it is better to use the more standard way of including interactions, where the dummy variable for event 1 is excluded and treat, number, and size are included:

(Continued on next page)

```
. stcox i.enum#(c.treat c.number c.size) c.treat c.number c.size,
     strata(enum) vce(cluster id) efron
>
         failure _d: event == 1
   analysis time _t: stop
                 id: obs
Stratified Cox regr. -- Efron method for ties
No. of subjects
                     =
                                 340
                                                  Number of obs
                                                                    =
                                                                              340
No. of failures
                                 112
Time at risk
                      =
                                8522
                                                  Wald chi2(12)
                                                                    =
                                                                            34.32
Log pseudolikelihood =
                          -423.73286
                                                  Prob > chi2
                                                                    =
                                                                           0.0006
                                      (Std. Err. adjusted for 85 clusters in id)
                               Robust
                                                              [95% Conf. Interval]
           _t
                Haz. Ratio
                              Std. Err.
                                                   P>|z|
                                              z
 enum#c.treat
                    .899131
                              .3020539
                                           -0.32
                                                   0.752
                                                                          1.736903
           2
                                                              .4654473
                                                                          1.846928
           3
                   .8415522
                               .337499
                                           -0.43
                                                   0.667
                                                              .3834531
                   .8963229
                               .4565585
                                           -0.21
                                                   0.830
                                                              .3302854
                                                                          2.432426
           4
enum#c.number
                   .9037042
                              .1068984
                                           -0.86
                                                   0.392
                                                              .7167016
                                                                            1.1395
           2
                   .9373751
                                .11348
                                           -0.53
                                                   0.593
                                                              .7393767
                                                                          1.188396
           3
           4
                  1.098881
                              .1323528
                                           0.78
                                                   0.434
                                                              .8678191
                                                                          1.391464
  enum#c.size
                   .8629789
                              .0990377
                                           -1.28
                                                   0.199
                                                              .6891505
                                                                          1.080653
           2
                   .7531798
                                                                          1.016764
           3
                              .1153141
                                           -1.85
                                                   0.064
                                                              .5579266
                   .7587567
                              .1442884
                                           -1.45
                                                   0.147
                                                              .5226783
                                                                          1.101465
           4
                   .5909733
                              .1874038
                                           -1.66
                                                   0.097
                                                              .3174264
                                                                          1.100253
        treat
                  1.268937
                              .0952058
                                           3.17
                                                   0.002
                                                              1.095409
                                                                          1.469955
       number
                  1.072094
                              .0955849
                                                   0.435
                                                               .900206
                                                                          1.276802
```

0.78

```
Stratified by enum
```

```
(1) 2.enum#c.treat = 0
(2)
      3.enum#c.treat = 0
      4.enum#c.treat = 0
(3)
          chi2( 3) =
                        0.24
        Prob > chi2 =
                        0.9715
. testparm enum#c.number
(1) 2.enum#c.number = 0
      3.enum#c.number = 0
(2)
```

size

. testparm enum#c.treat

```
(3) 4.enum#c.number = 0
          chi2(3) =
                        5.86
        Prob > chi2 =
                        0.1186
. testparm enum#c.size
(1) 2.enum#c.size = 0
      3.enum#c.size = 0
(2)
(3) 4.enum#c.size = 0
          chi2( 3) =
                        3.61
                        0.3065
        Prob > chi2 =
```

None of the interactions are significant at the 5% level

3. Fit the model by Wei, Lin, and Weissfeld (1989) but constraining all coefficients to be the same across events.

. stcox treat	number size,	strata(enum	n) vce(clu	uster id)	efron		
failu analysis ti	ire _d: even ime _t: stop id: obs	t == 1					
Stratified Cox	k regr Ef	ron method f	for ties				
No. of subject	ts =	340		Number	of obs	=	340
No. of failure	es =	112					
Time at risk	=	8522					
				Wald ch	i2(3)	=	15.35
Log pseudolike	elihood = -	426.14683		Prob >	chi2	=	0.0015
		2)	Std. Err.	adjusted	for 85	clust	ers in id)
		Robust					
_t	Haz. Ratio	Std. Err.	z	P> z	[95%	Conf.	Interval]
treat	.5572209	.1726125	-1.89	0.059	.3036	5319	1.022604
number	1.23404	.0827266	3.14	0.002	1.0	0821	1.407316
size	.9496925	.0903613	-0.54	0.587	.788	3121	1.144388

Stratified by enum

4. In their model (2), Prentice, Williams, and Peterson (1981) use counting process risk intervals with restricted risk sets and event-specific baseline hazards. Fit this model, assuming that treat, number, and size have the same coefficients across events.

340 total obs. 162 obs. end on or before enter()

exit on or before: failure

178	obs. remaining, representing	
178	subjects	
112	failures in single failure-per-subject data	
2480	total analysis time at risk, at risk from t =	0
	earliest observed entry $t =$	0
	last observed exit $t =$	59

. sort id enum

```
. list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id)
```

	id	enum	start	stop	event	_t0	_t	_d	_st
25.	7	1	0	18	0	0	18	0	1
29.	8	1	0	5	1	0	5	1	1
30.	8	2	5	18	0	5	18	0	1
33.	9	1	0	12	1	0	12	1	1
34.	9	2	12	16	1	12	16	1	1
35.	9	3	16	18	0	16	18	0	1

```
. stcox treat number size, strata(enum) vce(cluster id) efron
        failure _d: event == 1
  analysis time _t:
                      stop
 enter on or after:
                      time start
                 id: obs
Stratified Cox regr. -- Efron method for ties
                     =
No. of subjects
                                 178
                                                     Number of obs
                                                                      =
                                                                              178
No. of failures
                      =
                                 112
Time at risk
                     =
                                2480
                                                     Wald chi2(3)
                                                                             7.17
                          -315.99082
                                                     Prob > chi2
Log pseudolikelihood =
                                                                      =
                                                                           0.0665
                                     (Std. Err. adjusted for 85 clusters in id)
                              Robust
                                                             [95% Conf. Interval]
               Haz. Ratio
                             Std. Err.
                                                  P>|z|
          _t
                                            z
                    .71642
                              .147584
                                         -1.62
                                                  0.105
                                                             .4784299
                                                                         1.072796
       treat
                                                             1.018472
      number
                 1.127065
                             .0582599
                                          2.31
                                                  0.021
                                                                         1.247238
        size
                  .9915413
                             .0614766
                                         -0.14
                                                  0.891
                                                             .8780828
                                                                          1.11966
                                                              Stratified by enum
```

5. Andersen and Gill (1982) also use counting process risk intervals, but they use unrestricted risk sets and assume that all events have a common baseline hazard function. Fit this model, again assuming that treat, number, and size have the same coefficients across events.

```
. stcox c.treat c.number c.size, vce(cluster id) efron
        failure _d: event == 1
  analysis time _t:
                      stop
 enter on or after:
                      time start
                 id:
                      obs
Cox regression -- Efron method for ties
No. of subjects
                      =
                                 178
                                                     Number of obs
                                                                      =
                                                                              178
No. of failures
                                 112
                      _
                      =
Time at risk
                                2480
                                                     Wald chi2(3)
                                                                      =
                                                                            11.41
                                                                      =
Log pseudolikelihood =
                          -449.98064
                                                     Prob > chi2
                                                                           0.0097
                                     (Std. Err. adjusted for 85 clusters in id)
                              Robust
               Haz. Ratio
                             Std. Err.
                                                  P>|z|
                                                             [95% Conf. Interval]
          _t
                                            z
       treat
                  .6283318
                             .1678506
                                         -1.74
                                                  0.082
                                                             .3722217
                                                                          1.06066
                             .0755395
                                                                         1.348848
      number
                 1.191199
                                          2.76
                                                  0.006
                                                             1.051976
        size
                  .9572791
                             .0747412
                                         -0.56
                                                  0.576
                                                              .821447
                                                                         1.115572
```

6. In their model (3), Prentice, Williams, and Peterson (1981) use gap time with restricted risk sets and event-specific baseline hazards. Fit this model, assuming that treat, number, and size have the same coefficients across events.

. stset stop, origin(start) failure(event=1) id(obs) id: obs event == 1failure event: obs. time interval: (stop[_n-1], stop] exit on or before: failure t for analysis: (time-origin) origin: time start 340 total obs. 162 obs. end on or before enter() 178 obs. remaining, representing 178 subjects failures in single failure-per-subject data 112 total analysis time at risk, at risk from t = 0 2480 earliest observed entry t = 0 last observed exit t = 59 . sort id enum . list id enum start stop event _t0 _t _d _st if id>6&id<10 & _st==1, sepby(id) id stop _t0 enum start event _t _d _st 25. 7 0 0 18 0 1 0 18 1 29. 8 1 0 5 1 0 5 1 1 0 30. 8 2 5 18 0 13 0 1 33. 0 9 1 12 1 0 12 1 1 2 34. 12 9 16 1 0 4 1 1 35. 9 3 16 18 0 0 2 0 1 . stcox treat number size, strata(enum) vce(cluster id) efron failure _d: event == 1 analysis time _t: (stop-origin) origin: time start id: obs Stratified Cox regr. -- Efron method for ties No. of subjects 178 178 Number of obs = = No. of failures = 112 Time at risk 2480 = Wald chi2(3) = 11.70 Log pseudolikelihood = -358.96849 Prob > chi2 = 0.0085 (Std. Err. adjusted for 85 clusters in id) Robust Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] _t z .4945398 .7565365 .1640954 -1.29 0.198 1.157333 treat number 1.17122 .0600157 3.08 0.002 1.059305 1.294958 .8874327 1.007443 .065196 0.11 0.909 1.143682 size

Stratified by enum

MLMUS4 (Vol. II) – Rabe-Hesketh and Skrondal

7. Compare and interpret the treatment-effect estimates from steps 3 to 6.

The estimated hazard ratios are 0.56 for total time semi-restricted, 0.72 for counting process, restricted, 0.63 for counting process unrestricted, and 0.76 for gap times, restricted. Only the total time semi-restricted estimate is nearly significant at the 5% level. The estimates can be interpreted as a 54% reduction in the hazard (largest effect size estimate) down to a 24% reduction in the hazard (smallest effect size estimate), controlling for number and maximum size of initial tumors.

Exercise 15.4

16.2 Tower-of-London data

1. Fit the two-level random-intercept model (random intercept for persons):

$$logit\{Pr(y_{ijk} = 1 | \mathbf{x}_{ijk}, \zeta_{jk}^{(2)})\} = \beta_0 + \beta_1 x_{ijk} + \beta_2 g_{2ijk} + \beta_3 g_{3ijk} + \zeta_{jk}^{(2)}$$

where g_{2ijk} and g_{3ijk} are dummy variables for groups 2 and 3, respectively, and $\zeta_{jk}^{(2)} \sim N(0, \psi^{(2)})$ is independent of the covariates \mathbf{x}_{ijk} . Here and throughout the exercise, level is treated as continuous.

. use towerl, . tabulate gro	clear oup, generate	(g)				
GROUP	Freq.	Percent	Cum.			
1 2 3	194 294 189	28.66 43.43 27.92	28.66 72.08 100.00	5 3)		
Total . rename g2 re	677 elatives chizo	100.00				
. melogit dtlr	n level relati	ives schizo	id:			
Mixed-effects Group variable	logistic regnes:	ression id		Number Number	of obs = of groups =	677 226
				Obs pe:	r group: min = avg = max =	2 3.0 3
Integration me	ethod: mvagher	rmite		Integra	ation pts. =	7
Log likelihood	1 = -305.95965	5		Wald c Prob >	hi2(3) = chi2 =	74.77 0.0000
dtlm	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
level relatives schizo _cons	-1.648715 1690655 -1.02274 -1.482555	.1932597 .3342397 .3938351 .2834946	-8.53 -0.51 -2.60 -5.23	0.000 0.613 0.009 0.000	-2.027497 8241632 -1.794642 -2.038194	-1.269933 .4860322 2508373 9269154
id var(_cons)	1.674663	.6609173			.7726717	3.62961

LR test vs. logistic model: chibar2(01) = 15.86 Prob >= chibar2 = 0.0000
. estimates store mod0

The syntax for gllamm is

gllamm dtlm level relatives schizo, i(id) link(logit) family(binomial) adapt

2. Fit the three-level random-intercept model (random intercepts for subjects and families):

$$\operatorname{logit}\{\Pr(y_{ijk}=1 \mid \mathbf{x}_{ijk}, \zeta_{jk}^{(2)}, \zeta_{k}^{(3)})\} = \beta_0 + \beta_1 x_{ijk} + \beta_2 g_{2ijk} + \beta_3 g_{3ijk} + \zeta_{jk}^{(2)} + \zeta_{k}^{(3)}$$

where $\zeta_{jk}^{(2)} \sim N(0, \psi^{(2)})$ is independent of $\zeta_k^{(3)} \sim N(0, \psi^{(3)})$ and both random effects are assumed independent of \mathbf{x}_{ijk} .

. melogit dtln Mixed-effects	n level relat: logistic reg	ives schizo ression	famnu	m: i Numbe:	d: r of obs	=	677
Group Variabl	.e Group	of Obs os Minimu	ervation n Ave	s per G rage	roup Maximum		
famnu j	in 1: id 22	18 : 26 :	2 2	5.7 3.0	27 3		
Integration me	ethod: mvagher	rmite		Integ	ration pts.	=	7
Log likelihood	l = -305.1204:	L		Wald Prob	chi2(3) > chi2	= =	74.90 0.0000
dtlm	Coef.	Std. Err.	Z	P> z	[95% Co	onf.	Interval]
level relatives schizo _cons	-1.648505 2486841 -1.052306 -1.485863	.1932075 .3544076 .3999921 .2848455	-8.53 -0.70 -2.63 -5.22	0.000 0.483 0.009 0.000	-2.02718 943310 -1.83627 -2.044	35)2 76 15	-1.269826 .445942 2683357 9275762
famnum var(_cons)	.5692105	.5215654			.09447	57	3.429459
famnum>id var(_cons)	1.137917	.6854853			.349416	65	3.705762

LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002 Note: LR test is conservative and provided only for reference.

. estimates store mod1

Subjects with schizophrenia perform significantly worse than unrelated healthy control subjects, whereas the healthy relatives of the subjects with schizophrenia do perform significantly worse than unrelated healthy control subjects (at the 5% level). Performance declines as the level of difficulty increases. There is more variability between subjects within families than between families after controlling for covariates.

The syntax for gllamm is

gllamm dtlm level relatives schizo, i(id famnum) link(logit) family(binomial) adapt

3. Compare the models in steps 1 and 2 by using a likelihood-ratio test, but retain the three-level model even if the null hypothesis is not rejected at the 5% level.

. lrtest mod0 mod1	
Likelihood-ratio test (Assumption: mod0 nested in mod1)	LR chi2(1) = 1.68 Prob > chi2 = 0.1951
Note: The reported degrees of freedom assumes the null the boundary of the parameter space. If this is reported test is conservative.	l hypothesis is not on s not true, then the

Since the random intercepts at the different levels are uncorrelated, we can divide the naïve p-value by 2 (see display 8.1, page 397) to obtain the correct asymptotic p-value of 0.10.

MLMUS4 (Vol. II) – Rabe-Hesketh and Skrondal

4. Include a group (controls, relatives, schizophrenics) by level of difficulty interaction in the three-level model. Test the interaction by using both a Wald test and a likelihood-ratio test.

. generate lev	/_rel = level	*relatives						
. generate lev_sch = level*schizo								
. melogit dtln > famnum:	n level relat id:	ives schizo	lev_rel	lev_sch				
Mixed-effects logistic regression Number of obs						=	677	
Group Variabl	No. of Ob up Variable Groups Minim			s per G rage	roup Maximum			
famnu	ım 1 id 2	18 26	2 2	5.7 3.0	27 3			
Integration method: mvaghermite Integration pts. =						7		
Log likelihood = -301.88298				Wald & Prob >	chi2(5) > chi2	=	72.08 0.0000	
dtlm	Coef.	Std. Err.	z	P> z	[95% C	onf.	Interval]	
level relatives schizo lev_rel lev_sch _cons	-1.180708 4365397 -1.611146 6126014 -1.176491 -1.356806	.2643882 .3705962 .5116061 .3527997 .5209267 .279781	-4.47 -1.18 -3.15 -1.74 -2.26 -4.85	0.000 0.239 0.002 0.082 0.024 0.000	-1.69 -1.1628 -2.6138 -1.3040 -2.1974 -1.9051	89 95 76 76 89 67	662517 .2898156 6084166 .0788733 1554935 8084453	
famnum var(_cons)	.5378161	.4857528			.09158	68	3.158164	
famnum>id var(_cons)	1.208996	.6959634			.39122	55	3.736134	
LR test vs. lo	ogistic model	: chi2(2) =	17.83		Prob >	chi	2 = 0.0001	

Note: LR test is conservative and provided only for reference.

We obtain a Wald test by using testparm

. testparm lev_rel lev_sch
(1) [dtlm]lev_rel = 0
(2) [dtlm]lev_sch = 0
chi2(2) = 6.08
Prob > chi2 = 0.0478

The interaction is significant at the 5% level according to the Wald test (w = 6.09, df = 2, p = 0.048). The corresponding likelihood-ratio test can be obtained using lrtest

. lrtest mod1 .		
Likelihood-ratio test	LR chi2(2) =	6.47
(Assumption: mod1 nested in .)	Prob > chi2 =	0.0393

The likelihood-ratio statistic is 6.47 with two degrees of freedom, giving a *p*-value of 0.04.

For schizophrenics, performance declines faster with increasing level of difficulty than for controls (z = -2.26, p = 0.024).

5. For the model in step 4, obtain predicted marginal or population-averaged probabilities. Plot the probabilities against the levels of difficulty with different curves for the three groups. To obtain predicted marginal or population-averaged probabilities we can use predict (after fitting with melogit)

```
. predict prob, pr marginal (using 7 quadrature points)
```

or gllapred (after fitting with gllamm)

. gllapred prob, mu marg (mu will be stored in prob)

The plot can now be obtained as

. twoway (line prob level if group==1, sort)
> (line prob level if group==2, sort lpatt(longdash))
> (line prob level if group==3, sort lpatt(shortdash)),
> xtitle(Level of difficulty) ytitle(Probability)
> legend(order(1 "Controls" 2 "Relatives" 3 "Schizophrenics") row(1))
> xlabel(-1 "Low" 0 "Medium" 1 "High")

Figure 6: Predicted marginal probabilities as a function of level of difficulty for the three groups.