Data Management Using Stata:
A Practical Handbook

Second Edition

MICHAEL N. MITCHELL

: Press

A Stata Press Publication
StataCorp LLC
College Station, Texas

o~ | Copyright © 2010, 2020 by StataCorp LLC
7)1 \] All rights reserved. First edition 2010
! ‘j}/“ Second edition 2020

o

< 27

N

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in WTEX 2,

Printed in the United States of America

109 87654321

Print ISBN-10: 1-59718-318-0
Print ISBN-13: 978-1-59718-318-5
ePub ISBN-10: 1-59718-319-9
ePub ISBN-13: 978-1-59718-319-2
Mobi ISBN-10: 1-59718-320-2
Mobi ISBN-13: 978-1-59718-320-8

Library of Congress Control Number: 2020938361

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without
the prior written permission of StataCorp LLC.

Stata, STATQ, Stata Press, Mata, MATAQ, and NetCourse are registered trademarks of
StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organi-
zation of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

ITEX 2¢ is a trademark of the American Mathematical Society.

(Pages omitted)

Contents

Acknowledgments
List of tables
List of figures
Preface to the Second Edition
Preface
1 Introduction
1.1 Using thisbook
1.2 Overview of thisbook
1.3 Listing observations in this book
1.4 More online resourceso
2 Reading and importing data files
2.1 Introduction I
2.2 Reading Stata datasets L oL
2.3 Importing Excel spreadsheets
2.4 Importing SASfiles Lo
2.4.1 Importing SAS .sas7bdat files

@EEEEE@@EQEEEEEEE

2.4.2 Importing SAS XPORT Version 5 files

2.4.3 Importing SAS XPORT Version 8 files 24]
2.5 Importing SPSSfiles
2.6 ImportingdBasefiles 28]
2.7 Importing raw data files 0oL 29)
2.7.1 Importing comma-separated and tab-separated files 301
2.7.2 Importing space-separated files B3

2.7.3 Importing fixed-column files 35]

viii

2.8
2.9

Contents

2.74 Importing fixed-column files with multiple lines of raw
data per observation

Common errors when reading and importing files

Entering data directly into the Stata Data Editor

3 Saving and exporting data files

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4 Data
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Introduction
Saving Stata datasets L.
Exporting Excel files o o oo
Exporting SAS XPORT Version 8 files
Exporting SAS XPORT Version 5 files
Exporting dBase files
Exporting comma-separated and tab-separated files
Exporting space-separated files L.
Exporting Excel files revisited: Creating reports.
cleaning

Introductiono
Double data entry o
Checking individual variables
Checking categorical by categorical variables
Checking categorical by continuous variables
Checking continuous by continuous variables
Correcting errorsindata
Identifying duplicates.

Final thoughts on data cleaning

5 Labeling datasets

5.1
5.2
5.3
5.4
5.5

Introduction
Describing datasets L oo
Labeling variables
Labeling values

Labeling utilities o o

39)

Contents ix
5.6 Labeling variables and values in different languages 1217
5.7 Adding comments to your dataset using notes @32
5.8 Formatting the display of variables 1136l
5.9 Changing the order of variables in a dataset 140

6 Creating variables
6.1 Introduction [146]
6.2 Creating and changing variables [146]
6.3 Numeric expressions and functions 150]
6.4 String expressions and functions 152
6.5 Recoding 160
6.6 Coding missing values oL 166!
6.7 Dummy variables
6.8 Date variables 172
6.9 Date-and-time variables L0 0oL 179
6.10 Computations across variables
6.11 Computations across observations 18]
6.12 More examples using the egen command 1190
6.13 Converting string variables to numeric variables 192
6.14 Converting numeric variables to string variables 1199
6.15 Renaming and ordering variables 20T

7 Combining datasets 209
7.1 Introduction L 210
7.2 Appending: Appending datasets 210
7.3 Appending: Problems
7.4 Merging: One-to-one match merging
7.5 Merging: One-to-many match merging 237
7.6 Merging: Merging multiple datasets 230]
7.7 Merging: Update merges
7.8 Merging: Additional options when merging datasets
7.9 Merging: Problems merging datasets

10

Contents

7.10 Joining datasets o
7.11 Crossing datasets
Processing observations across subgroups

8.1 Imtroduction
8.2 Obtaining separate results for subgroups
8.3 Computing values separately by subgroups
8.4 Computing values within subgroups: Subscripting observations

8.5 Computing values within subgroups: Computations across obser-
vations

8.6 Computing values within subgroups: Running sums
8.7 Computing values within subgroups: More examples
8.8 Comparing the by and tsset commands
Changing the shape of your data

9.1 Imtroduction e
9.2 Wide and long datasets L.
9.3 Introduction to reshaping long towide
9.4 Reshaping long to wide: Problems
9.5 Introduction to reshaping wide tolong
9.6 Reshaping wide to long: Problems
9.7 Multilevel datasets
9.8 Collapsing datasets
Programming for data management: Part I

10.1 Introduction
10.2 Tips on long-term goals in data management
10.3 Executing do-files and making log files
10.4 Automating data checking Lo
10.5 Combining do-files Lo L
10.6 Introducing Stata macros L.
10.7 Manipulating Stata macroso Lo

10.8 Repeating commands by looping over variables

Contents xi

11

10.9 Repeating commands by looping over numbers B51
10.10 Repeating commands by looping over anything B53
10.11 Accessing results stored from Stata commands.
Programming for data management: Part II 359
11.1 Writing Stata programs for data management 309
11.2 Program 1: hello 364!
11.3 Where to save your Stata programs B75
11.4 Program 2: Multilevel counting B
11.5 Program 3: Tabulations in list format 387
11.6 Program 4: Scoring the simple depression scale 394!
11.7 Program 5: Standardizing variables 402
11.8 Program 6: Checking variable labels 410
11.9 Program 7: Checking value labels 416l
11.10 Program 8: Customized describe command 418
11.11 Program 9: Customized summarize command 437
11.12 Program 10: Checking for unlabeled values 439
11.13 Tips on debugging Stata programs 445
11.14 Final thoughts: Writing Stata programs for data management [450]
Common elements 453
A1 Introduction 454
A2 Overview of Stata syntax 454
A.3 Working across groups of observations with by 456!
A4 Comments 458
A5 Datatypes. 459
A6 Logical expressions L 469
A7 Functions @74
A.8 Subsetting observations with ifand in 4
A.9 Subsetting observations and variables with keep and drop 480
A10 Missing values 483

A.11 Referring to variable lists 487

xii Contents

A.12 Frames

Subject index 503

(Pages omitted)

Preface to the Second Edition

It was nearly 10 years ago that I wrote the preface for the first edition of this book.
The goals and scope of this book are still the same, but in this second edition you will
find new data management features that have been added over the last 10 years. Such
features include the ability to read and write a wide variety of file formats, the ability
to write highly customized Excel files, the ability to have multiple Stata datasets open
at once, and the ability to store and manipulate string variables stored as Unicode.

As mentioned above, Stata now reads many file formats. Stata can now read Excel
files (see section [2.3)), SAS files (see section [2.4), sPss files (see section [2.5)), and even
dBase files (see Section. Further, Stata has added the import delimited command,
which reads a wide variety of delimited files and supports many options for customizing
the importing of such data (see section .

Stata can now export files into many file formats. Stata can now export Excel files
(see section [3.3)), SAS XPORT 8 and SAS XPORT 5 files (see sections and [3.5), and
dBase files (see section . Additionally, the export delimited command exports
delimited files and supports many options for customizing the export of such data (see
section . Also, section will illustrate some of the enhanced capabilities Stata now
has for exporting Excel files, showing how you can generate custom formatted reports.

The biggest change you will find in this new edition is the addition of chapter
titled “Programming for data management: Part II”. Chapter builds upon chap-
ter illustrating how Stata programs can be used to solve common data management
tasks. I describe four strategies that I commonly use when creating a program to solve a
data management task and illustrate how to solve 10 different data management prob-
lems, drawing upon these strategies as part of solving each problem. The concluding
discussions of each example talk about the strategies and programming tools involved
in solving the example. I chose the 10 examples in this chapter not only because the
problems are common and easy to grasp but also because these programs illustrate fre-
quently used tools for writing Stata programs. After you explore these examples and
see these programming tools applied to data management problems, I hope you will
have insight into how you can apply these tools to build programs for your own data
management tasks.

Writing this book has been both a challenge and a pleasure. I hope that you like it!

Ventura, CA Michael N. Mitchell
May 2020

(Pages omitted)

6 Creating variables

6.1 Introduction

6.2 Creating and changing variables

6.3 Numeric expressions and functions

6.4 String expressions and functions. L.
6.5 Recoding

6.6 Coding missing values

6.7 Dummy variableso Lo
6.8 Datevariables oo oL

6.9 Date-and-time variables

6.10 Computations across variables

6.11 Computations across observations

6.12 More examples using the egen command

6.13 Converting string variables to numeric variables

6.14 Converting numeric variables to string variables

6.15 Renaming and ordering variables

Not everything that can be counted counts, and not everything that counts

can be counted.

—Albert Einstein

145

146 Chapter 6 Creating variables

6.1 Introduction

This chapter covers many ways that you can create variables in Stata. I start by intro-
ducing the generate and replace commands for creating new variables and changing
the contents of existing variables (see section . The next two sections describe how
you can use numeric expressions and functions when creating variables (see section
and how you can use string expressions and functions when creating variables (see sec-
tion . Section illustrates tools to recode variables.

Tools for coding missing values are illustrated in section which is followed by a
discussion of dummy variables and the broader issue of factor variables (see section[6.7).
Section covers creating and using date variables, and section covers creating and
using date-and-time variables.

The next three sections illustrate the use of the egen command for computations
across variables within each observation (section [6.10]), for computations across obser-
vations (section [6.11)), and for additional functions (section [6.12]).

Methods for converting string variables to numeric variables are illustrated in sec-
tion [6.13] and section [6.14] shows how numeric variables can be converted to string
variables.

The chapter concludes with section which illustrates how to rename and order
variables.

6.2 Creating and changing variables

The two most common commands used for creating and modifying variables are the
generate and replace commands. These commands are identical except that generate
creates a new variable, while replace alters the values of an existing variable. I illus-
trate these two commands using wws2.dta, which contains demographic and labor force
information regarding 2,246 women. Consider the variable wage, which contains the
woman’s hourly wages. This variable is summarized below. It has two missing values

(the N = 2244).

. use wws2
(Working Women Survey w/fixes)

. summarize wage
Variable ‘ Obs Mean Std. Dev. Min Max

2,244 7.796781 5.82459 0 40.74659

wage

Say that we want to compute a weekly wage for these women based on a 40-hour
work week. We use the generate command to create the new variable, called wageweek,
which contains the value of wage multiplied by 40.

. generate wageweek = wage*40
(2 missing values generated)

6.2 Creating and changing variables 147

. summarize wageweek
Variable ‘ Obs Mean Std. Dev. Min Max

wageweek ‘ 2,244 311.8712 232.9836 0 1629.864

This dataset also contains a variable named hours, which is the typical number
of hours the woman works per week. Let’s create wageweek again but use hours in
place of 40. Because wageweek already exists, we must use the replace command to
indicate that we want to replace the contents of the existing variable. Note that because
hours has 4 missing observations, the wageweek variable now has 4 additional missing
observations, having only 2,240 valid observations instead of 2,244E]

. replace wageweek = wagexhours
(1,152 real changes made, 4 to missing)

. summarize wageweek
Variable ‘ Obs Mean Std. Dev. Min Max

wageweek ‘ 2,240 300.2539 259.2544 0 1920

Tip! Ordering variables with the generate command

When creating a new variable using the generate command, you can use the
before() or after() option to specify where the new variable will be positioned
within the dataset. For example, we could have used the generate command as
follows to create wageweek, positioning it after the variable wage:

. generate wageweek = wage*40, after(wage)

The generate and replace commands can be used together when a variable takes
multiple steps to create. Consider the variables married (which is 1 if the woman is
currently married and 0 otherwise) and nevermarried (which is 1 if she was never
married and 0 if she is married or was previously married). We can place the women
into three groups based on the cross-tabulation of these two variables.

. tabulate married nevermarried

Woman never been
married
married 0 1 Total
0 570 234 804
1 1,440 2 1,442
Total 2,010 236 2,246

1. When a variable is missing as part of an arithmetic expression, then the result of the expression is
missing.

148 Chapter 6 Creating variables

Say that we want to create a variable that reflects whether a woman is 1) single
and has never married (n = 234), 2) currently married (n = 1440), or 3) single but
previously married (n = 570). Those who are (nonsensically) currently married and
have never been married (n = 2) will be assigned a value of missingﬂ This can be
done as shown below. The first generate command creates the variable smd (for single,
married, or divorced or widowed) and assigns a value of 1 if the woman meets the criteria
for being single (and never married). The replace command assigns a value of 2 if the
woman meets the criteria for being currently married. The second replace command
assigns a value of 3 if the woman meets the criteria for being divorced or widowed. The
third replace command is superfluous but clearly shows that smd is missing for those
nonsense cases where the woman is currently married and has never been married. (For
more information about the use of if, see section)

. generate smd = 1 if (married == 0) & (nevermarried == 1)
(2,012 missing values generated)

. replace smd = 2 if (married == 1) & (nevermarried == 0)
(1,440 real changes made)

. replace smd = 3 if (married == 0) & (nevermarried == 0)
(570 real changes made)

. replace smd = . if (married == 1) & (nevermarried == 1)
(0 real changes made)

We can double-check this in two ways. First, we can tabulate smd and see that the
frequencies for smd match the frequencies of the two-way table we created above.

. tabulate smd, missing

smd Freq. Percent Cum.
1 234 10.42 10.42
2 1,440 64.11 74.53
3 570 25.38 99.91
2 0.09 100.00
Total 2,246 100.00

A more direct way to check the creation of this variable is to use the table command
to make a three-way table of smd by married by nevermarried. As shown below, this
also confirms that the values of smd properly correspond to the values of married and
nevermarried.

2. The label for this dataset says “with fixes”, but clearly not everything was fixed.

6.2 Creating and changing variables 149

. table smd married nevermarried

Woman never been married and
married
0 1 —
smd 0 1 0 1
1 234
2 1,440
3 570

We can combine the generate and replace commands to create a new dummy
(0/1) variable based on the values of a continuous variable. For example, let’s create
a dummy variable called over4Ohours that will be 1 if a woman works over 40 hours
and 0 if she works 40 or fewer hours. The generate command creates the over4Ohours
variable and assigns a value of 0 when the woman works 40 or fewer hours. Then, the
replace command assigns a value of 1 when the woman works more than 40 hours.

. generate over4Ohours = 0 if (hours <= 40)
(394 missing values generated)

. replace over40Ohours = 1 if (hours > 40) & !missing(hours)
(390 real changes made)

Note that the replace command specifies that over4Ohours is 1 if hours is over 40
and if hours is not missing. Without the second qualifier, people who had missing data
on hours would be treated as though they had worked over 40 hours (because missing
values are treated as positive infinity). See section for more on missing values.

We can double-check the creation of this dummy variable with the tabstat com-
mand, as shown below. When over40Ohours is 0, the value of hours ranges from 1 to
40 (as it should); when over4Ohours is 1, the value of hours ranges from 41 to 80.

. tabstat hours, by(over4Ohours) statistics(min max)

Summary for variables: hours
by categories of: over4Ohours

over40Ohours min max
0 1 40

1 41 80

Total 1 80

We can combine these generate and replace commands into one generate com-
mand. This can save computation time (because Stata needs to execute only one com-
mand) and save you time (because you need to type only one command). This strategy
is based on the values a logical expression assumes when it is true or false. When a
logical expression is false, it takes on a value of 0; when it is true, it takes on a value
of 1. From the previous example, the expression (hours > 40) would be 0 (false) when
a woman works 40 or fewer hours and would be 1 (true) if a woman works over 40 hours
(or had a missing value for hours).

150 Chapter 6 Creating variables

Below, we use this one-step strategy to create over4Ohours. Women who worked 40
or fewer hours get a 0 (because the expression is false), and women who worked more
than 40 hours get a 1 (because the expression is true). Women with missing values on
hours worked get a missing value because they are excluded based on the if qualifier.
(See section for more details about logical expressions and examples.)

. generate over4Ohours = (hours > 40) if !missing(hours)
(4 missing values generated)

The tabstat results below confirm that this variable was created correctly.

. tabstat hours, by(over4Ohours) statistics(min max)

Summary for variables: hours
by categories of: over4Ohours

over40Ohours min max
0 1 40

1 41 80

Total 1 80

For more information, see help generate and see the next section, which illustrates
how to use numeric expressions and functions to create variables.

6.3 Numeric expressions and functions

In the previous section, we used the generate and replace commands on simple ex-
pressions, such as creating a new variable that equaled wage*40. This section illustrates
more complex expressions and some useful functions that can be used with the generate
and replace commands.

Stata supports the standard mathematical operators of addition (+), subtraction (-),
multiplication (*), division (/), and exponentiation (~) using the standard rules of the
order of operators. Parentheses can be used to override the standard order of operators
or to provide clarity. I illustrate these operators below to create a nonsense variable
named nonsense using wws2.dta.

. use wws2, clear
(Working Women Survey w/fixes)

. generate nonsense = (age*2 + 10)72 - (grade/10)
(4 missing values generated)

Stata also has many mathematical functions that you can include in your generate
and replace commands. The examples below illustrate the int() function (which
removes any values after the decimal place), the round() function (which rounds a
number to the desired number of decimal places), the 1n() function (which yields the
natural log), the 1og10() function (which computes the base-10 logarithm), and sqrt ()
(which computes the square root). The first five values are then listed to show the results
of using these functions.

6.3 Numeric expressions and functions

. generate
(2 missing
. generate
(2 missing
. generate
(3 missing
. generate
(3 missing

. generate
(2 missing

intwage = int(wage)
values generated)
rndwage = round(wage,1)
values generated)
lnwage = ln(wage)
values generated)
logwage = loglO(wage)
values generated)
sqrtwage = sqrt(wage)
values generated)

151

. list wage intwage rndwage lnwage logwage sqrtwage in 1/5

wage intwage rndwage lnwage logwage sqrtwage
1. 7.15781 7 7 1.968204 .8547801 2.675408
2. 2.447664 2 2 .8951342 .3887518 1.564501
3. 3.824476 3 4 1.341422 .582572 1.955627
4. 14.32367 14 14 2.661913 1.156054 3.784662
5. 5.517124 5 6 1.707857 .7417127 2.348856

Stata has many functions for creating random variables. For example, you can use
the runiform() (random uniform) function to create a variable with a random number
ranging from 0 to 1. Below, I set the seed of the random-function generator to a number
picked from thin air and then I use the generate command to create a new variable,
r, that is a random number between 0 and 1.

. set seed

. generate

83271

r = runiform()

. summarize r

Variable ‘ Obs Mean

Std. Dev. Min Max

r ‘ 2,246 .4922679

.2881426

.0002064 .999861

The rnormal() (random normal) function allows us to draw random values from
a normal distribution with a mean of 0 and a standard deviation of 1, as illustrated
below with the variable randz. The variable randiq is created, drawn from a normal
distribution with a mean of 100 and a standard deviation of 15 (which is the same
distribution as some IQ tests).

. generate

. generate

randz = rnormal()

randiq = rnormal(100,15)

. summarize randz randiq

Variable ‘ Obs Mean Std. Dev. Min Max
randz 2,246 -.0078068 1.02353 -3.369846 3.485156
randiq 2,246 100.3909 15.07335 49.11288 161.4213

3. Setting the seed guarantees that we get the same series of random numbers every time we run the
commands, making results that use random numbers reproducible.

152

Chapter 6 Creating variables

You can even use the rchi2() (random chi-squared) function to create a variable
representing a random value from a chi-squared distribution. For example, below 1
create randchi2, which draws random values from a chi-squared distribution with 5
degrees of freedom.

. generate randchi2 = rchi2(5)

. summarize randchi2
Variable ‘ Obs

Mean Std. Dev. Min Max

randchi2 ‘ 2,246 4.796946 3.032883 .209906 30.87784

This section has illustrated just a handful of the numeric functions that are available
in Stata. For more information on functions, see section

6.4 String expressions and functions

The previous section focused on numeric expressions and functions, while this section
focuses on string expressions and functions.

We will use authors.dta to illustrate string functions (shown below). We first
format name so that it is displayed using left-justification (see section [5.8)).

. use authors

. format name %-17s

name

Ruth Canaale

Y. Don Uflossmore
thich nhit hanh

J. Carrefio Quifiones
0 Knausgérd

Don b Iteme
isaac 0'yerbreath
Mike avity
EMILE ZOLA
i William Crown

. list
id
1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. 7
8. 8
9. 9
10. 10
11. 11
12. 12
13. 13

Ott W. Onthurt
Olive Tu'Drill
bjérk gudmundsdéttir

Note how the names have some errors and inconsistencies; for example, there is an
extra space before Ruth’s name. Sometimes, the first letter or initial is in lowercase,
and sometimes, periods are omitted after initials. By cleaning up these names, we can
see how to work with string expressions and functions in Stata.

6.4 String expressions and functions 153

There are inconsistencies in the capitalization of the authors’ names. Below, I use
the ustrtitle() function to “titlecase” the names (that is, make the first letter of each
word in uppercase). This uses Unicode definitions of what constitutes a word. I use the
ustrlower () and ustrupper() functions to convert the names into all lowercase and
all uppercase, respectively, according to the Unicode rules of capitalization.

. generate name2 = ustrtitle(name)

. generate lowname = ustrlower(name)
. generate upname = ustrupper (name)
. format name2 lowname upname %-23s

. list name2 lowname upname

name2 lowname upname
1 Ruth Canaale ruth canaale RUTH CANAALE
2 Y. Don Uflossmore y. don uflossmore Y. DON UFLOSSMORE
3. | Thich Nhit Hanh thich nhit hanh THICH NHAT HANH
4. | J. Carrefio Quifiones j. carrefio quifiones J. CARRENO QUINONES |
5 0 Knausgard & knausgard 0 KNAUSGARD
6 Don B Iteme don b iteme DON B ITEME
7. Isaac 0'yerbreath isaac o'yerbreath ISAAC O'YERBREATH
8. Mike Avity mike avity MIKE AVITY
9 Emile Zola émile zola EMILE ZOLA
10 I William Crown i william crown I WILLIAM CROWN
11. 0tt W. Onthurt ott w. onthurt OTT W. ONTHURT
12. Olive Tu'drill olive tu'drill OLIVE TU'DRILL

13. l Bjork Gudmundsdéttir bjérk gudmundsdéttir BJORK GUDMUNDSDOTTIR ‘

We can trim off the leading blanks, like the one in front of Ruth’s name, using the
ustrltrim() function, like this:

. generate name3 = ustrltrim(name2)

To see the result of the ustrltrim() function, we need to left-justify name2 and name3
before we list the results.

154

. format name2 name3 %-17s

list name name2 name3

Chapter 6 Creating variables

name

name?2

name3

Ruth Canaale

Y. Don Uflossmore
thich nhat hanh

J. Carreiflo Quifiones
0 Knausgéard

Ruth Canaale

Y. Don Uflossmore
Thich Nhat Hanh

J. Carrefio Quifiones
0 Knausgard

Ruth Canaale

Y. Don Uflossmore
Thich Nhat Hanh

J. Carrefio Quifiones
0 Knausgéard

Don b Iteme
isaac 0'yerbreath
Mike avity
EMILE ZOLA
i William Crown

Don B Iteme
Isaac 0'yerbreath
Mike Avity
Emile Zola
I William Crown

Don B Iteme

Isaac 0'yerbreath
Mike Avity

Emile Zola

I William Crown

Ott W. Onthurt
Olive Tu'Drill
bjérk gudmundsdéttir

0tt W. Onthurt
Olive Tu'drill
Bjork Gudmundsdéttir

0tt W. Onthurt
Olive Tu'drill
Bjork Gudmundsdéttir

Let’s identify the names that start with an initial rather than with a full first name.
When you look at those names, their second character is either a period or a space.
We need a way to extract a piece of the name, starting with the second character
and extracting that one character. The usubstr() function used with the generate
command below does exactly this, creating the variable secondchar. Then, the value
of firstinit gets the value of the logical expression that tests if secondchar is a space
or a period, yielding a 1 if this expression is true and 0 if false (see section [6.2)).

. generate secondchar = usubstr(name3,2,1)

. generate firstinit = (secondchar == " " | secondchar == ".")
> if !'missing(secondchar)
list name3 secondchar firstinit, abb(20)
name3 secondchar firstinit
1 Ruth Canaale u 0
2. Y. Don Uflossmore . 1
3. Thich Nhat Hanh h 0
4 J. Carreiflo Quifiones 1
5 0 Knausgard 1
6 Don B Iteme o 0
7. Isaac 0'yerbreath s 0
8. Mike Avity i 0
9 Emile Zola m 0
10 I William Crown 1
11. 0tt W. Onthurt t 0
12. Olive Tu'drill 1 0
13. Bjork Gudmundsdéttir J 0

6.4 String expressions and functions 155

We might want to take the full name and break it up into first, middle, and
last names. Because some of the authors have only two names, we first need to
count the number of names. The Unicode-aware version of this function is called
ustrwordcount (). This is used to count the number of names, using the word-boundary
rules of Unicode strings.

. generate namecnt = ustrwordcount(name3)

. list name3 namecnt

name3 namecnt

1 Ruth Canaale

2. Y. Don Uflossmore
3. Thich Nhat Hanh

4 J. Carrefio Quifiones
5

N D> W PN

0 Knausgérd

6 Don B Iteme

7. Isaac O'yerbreath
8. Mike Avity

9 Emile Zola

0 I William Crown

WN NN W

11. 0tt W. Onthurt
12. Olive Tu'drill
13. Bjork Gudmundsdéttir 2

SIS

Note how the ustrwordcount() function reports four words in the name of the
second author. To help understand this better, I use the ustrword () function to extract
the first, second, third, and fourth word from name. These are called unamel, uname2,
uname3, and uname4. The 1list command then shows the full name along with the first,
second, third, and fourth word of the name.

. generate unamel = ustrword(name3,1)
. generate uname2 = ustrword(name3,2)

. generate uname3 = ustrword(name3,3)
(7 missing values generated)

. generate uname4 = ustrword(name3,4)
(10 missing values generated)

156

. list name3 unamel uname2 uname3 uname4d

Chapter 6 Creating variables

name3 unamel uname?2 uname3 uname4
1. Ruth Canaale Ruth Canaale
2. Y. Don Uflossmore Y . Don Uflossmore
3. Thich Nhat Hanh Thich Nhat Hanh
4. J. Carreiflo Quifiones J . Carreifio Quifiones
5. | 0 Knausgérd 0 Knausgérd
6. Don B Iteme Don B Iteme
7. Isaac 0'yerbreath Isaac 0'yerbreath
8. Mike Avity Mike Avity
9. | Emile Zola Emile Zola
10. I William Crown I William Crown
11. 0tt W. Onthurt ott 1) Onthurt
12. Olive Tu'drill Olive Tu'drill
13. Bjork Gudmundsdéttir Bjork Gudmundsdottir

Now, it is clear why author 2 is counted as having four words in the name. According
to the Unicode word-boundary rules, the single period is being counted as a separate
word.

To handle this, I am going to create a new variable named name4, where the . has
been removed from name3. The output of the 1ist command below confirms that name4

is the same as name3 except for the removal of the periods from the name.

. generate name4 = usubinstr(name3,".","",.)

. list name3 name4

name3 name4
1. Ruth Canaale Ruth Canaale
2. Y. Don Uflossmore Y Don Uflossmore
3. Thich Nhit Hanh Thich Nhat Hanh
4. J. Carrefio Quifiones J Carrefio Quifiones
5. | 0 Knausgérd 0 Knausgard
6. Don B Iteme Don B Iteme
7. Isaac 0'yerbreath Isaac 0'yerbreath
8. Mike Avity Mike Avity
9. | Emile Zola Emile Zola
10. I William Crown I William Crown
11. Ott W. Onthurt Ott W Onthurt
12. Olive Tu'drill Olive Tu'drill
13. Bjork Gudmundsdéttir Bjoérk Gudmundsdéttir

6.4 String expressions and functions

157

Now, I am going to use the replace command to create a new version of namecnt

that counts the number of words in this new version of name, name4.

. replace namecnt = ustrwordcount(name4)

(3 real changes made)

. list name4 namecnt

The count of the number of names matches what I would expect.

name4

namecnt

Ruth Canaale
Y Don Uflossmore

Thich Nhat Hanh
J Carreiio Quifiones

0 Knausgard

N Ww wN

Don B Iteme

Isaac 0'yerbreath
Mike Avity

Emile Zola

I William Crown

WN NN W

0tt W Onthurt
Olive Tu'drill
Bjork Gudmundsdéttir

N W

Now, we can split name4 into first, middle, and last names using the ustrword()
function. The first name is the first word shown in name4 (that is, ustrword (name4,1)).
The second name is the second word if there are three words in name4 (that is,
ustrword(name4,2) if namecnt

== 3).

. generate fname = ustrword(name4,1)

. generate mname = ustrword(name4,2) if namecnt

(7 missing values generated)

. generate lname = ustrword(name4,namecnt)

The last name is based on the number of
names the dentist has (that is, ustrword(name4,namecnt)).

158 Chapter 6 Creating variables
Now, I format the first, middle, and last names using a width of 15 with left-
justification and then list the first, middle, and last names:

. format fname mname lname %-15s

list name4 fname mname lname

name4 fname mname lname
1 Ruth Canaale Ruth Canaale
2. Y Don Uflossmore Y Don Uflossmore
3. Thich Nhdt Hanh Thich Nhét Hanh
4 J Carrefio Quifiones J Carrefio Quifiones
5 0 Knausgadrd O Knausgéard
6 Don B Iteme Don B Iteme
7. Isaac 0'yerbreath Isaac 0'yerbreath
8. Mike Avity Mike Avity
9 Emile Zola Emile Zola
10 I William Crown I William Crown
11. 0tt W Onthurt Ott) Onthurt
12. Olive Tu'drill Olive Tu'drill
13. Bjork Gudmundsdéttir Bjoérk Gudmundsdoéttir

If you look at the values of fname and mname above, you can see that some of the
names are composed of one initial. In every instance, the initial does not have a period
after it (because we removed it).

Let’s make all the initials have a period after them. In the first replace command
below, the ustrlen() function is used to identify observations where the first name is
one character. In such instances, the fname variable is replaced with fname with a period
appended to it (showing that the plus sign can be used to combine strings together).
The same strategy is applied to the middle names in the next replace command.

1]
]
-

. replace fname = fname + "." if ustrlen(fname)
(4 real changes made)

]
-

. replace mname = mname + "." if ustrlen(mname) =
(2 real changes made)

Below, we see that the first and middle names always have a period after them if
they are one initial.

6.4 String expressions and functions

. list fname mname

fname mname
Ruth

Y. Don
Thich Nhat

J. Carreifio
0.

Don B.
Isaac

Mike

Emile

I. William
0tt W.
Olive

Bjork

159

Now that we have repaired the first and middle names, we can join the first, middle,

and last names together to form a full name.

left-justify the full name.

. generate fullname =
(6 missing values generated)

. replace fullname = fname + " " + mname + " " + lname if namecnt ==

(6 real changes made)

. format fullname %-30s

fname + " " + lname if namecnt ==

I then use the format command to

The output of the 1ist command below displays the first, middle, and last names
as well as the full name.

. list fname mname lname fullname

fname mname 1name fullname

Ruth Canaale Ruth Canaale

Y. Don Uflossmore Y. Don Uflossmore
Thich Nhat Hanh Thich Nhat Hanh

J. Carreifio Quifiones J. Carrefio Quifiones
0. Knausgérd 0. Knausgard

Don B. Iteme Don B. Iteme

Isaac 0'yerbreath Isaac 0'yerbreath
Mike Avity Mike Avity

Emile Zola Emile Zola

I. William Crown I. William Crown
0tt W. Onthurt 0tt W. Onthurt
Olive Tu'drill Olive Tu'drill
Bjork Gudmundsdoéttir Bjork Gudmundsdéttir

160

Chapter 6 Creating variables

The output of the 1ist command below shows only the original name and the version
of the name we cleaned up.

. list name fullname

name

fullname

Ruth Canaale

Y. Don Uflossmore
thich nhat hanh

J. Carreilo Quifiones
0 Knausgard

Ruth Canaale
Y. Don Uflossmore

Thich Nhat Hanh
J. Carrefio Quifiones

0. Knausgard

Don b Iteme
isaac 0'yerbreath
Mike avity
EMILE ZOLA
i William Crown

Don B. Iteme
Isaac 0'yerbreath
Mike Avity

Emile Zola

I. William Crown

Ott W. Onthurt
Olive Tu'Drill
bjérk gudmundsdéttir

0tt W. Onthurt
Olive Tu'drill
Bjork Gudmundsdéttir

For more information about string functions, see help string functions. For
more information about Unicode, see help unicode.

Tip! Long strings

Do you work with datasets with long strings? Stata has a special string variable
type called strL (pronounced “sturl”). This variable type can be more frugal than
a standard string variable, and it can hold large strings, up to 2-billion bytes. You
can get a quick overview of long strings by visiting the Stata video tutorial “Tour
of long strings and BLOBs in Stata” by searching for “Stata video blobs” with

your favorite web browser and search engine.

6.5 Recoding

Sometimes, you want to recode the values of an existing variable to make a new variable,
mapping the existing values for the existing variable to new values for the new variable.
For example, consider the variable occupation from wws2lab.dta.

6.5 Recoding 161
. use wws2lab
(Working Women Survey w/fixes)
. codebook occupation, tabulate(20)
occupation occupation
type: numeric (byte)
label: occlbl
range: [1,13] units: 1
unique values: 13 missing .: 9/2,246
tabulation: Freq. Numeric Label
319 1 Professional/technical
264 2 Managers/admin
725 3 Sales
101 4 Clerical/unskilled
53 5 Craftsmen
246 6 Operatives
28 7 Transport
286 8 Laborers
1 9 Farmers
9 10 Farm laborers
16 11 Service
2 12 Household workers
187 13 Other
9

Let’s recode occupation into three categories: white collar, blue collar, and other. Say
that we decide that occupations 1-3 will be white collar, 5—8 will be blue collar, and
4 and 9-13 will be other. We recode the variable below, creating a new variable called

occ3.

. recode occupation (1/3=1) (5/8=2) (4 9/13=3), generate(occ3)
(1918 differences between occupation and occ3)

We use the table command to double check that the variable occ was properly

recoded into occ3.

162 Chapter 6 Creating variables

. table occupation occ3

RECODE of
occupation
(occupation)
occupation 1 2 3

Professional/technical 319
Managers/admin 264

Sales 725
Clerical/unskilled 101
Craftsmen 53
Operatives 246
Transport 28
Laborers 286
Farmers 1
Farm laborers 9
Service 16
Household workers 2
Other 187

This is pretty handy, but it would be nice if the values of occ3 were labeled. Although
we could use the label define and label values commands to label the values of
occ3 (as illustrated in section , the example below shows a shortcut that labels the
values as part of the recoding process. Value labels are given after the new values in
the recode command. (Continuation comments are used to make this long command
more readable; see section for more information.)

. drop occ3

. recode occupation (1/3=1 "White Collar") ///

> (5/8=2 "Blue Collar") ///

> (4 9/13=3 "Other"), generate(occ3)

(1918 differences between occupation and occ3)
label variable occ3 "Occupation in 3 groups"

. table occupation occ3

Occupation in 3 groups
occupation | White Collar Blue Collar Other
Professional/technical 319
Managers/admin 264
Sales 725
Clerical/unskilled 101
Craftsmen 53
Operatives 246
Transport 28
Laborers 286
Farmers 1
Farm laborers 9
Service 16
Household workers 2
Other 187

6.5 Recoding 163

The recode command can also be useful when applied to continuous variables. Say
that we wanted to recode the woman’s hourly wage (wage) into four categories using
the following rules: 0 up to 10 would be coded 1, over 10 to 20 would be coded 2, over
20 to 30 would be coded 3, and over 30 would be coded 4. We can do this as shown
below. When you specify recode #1/#2, all values between #1 and #2, including
the boundaries #1 and #2 are included. So when we specify recode wage (0/10=1)
(10/20=2), 10 is included in both of these rules. In such cases, the first rule encountered
takes precedence, so 10 is recoded to having a value of 1.

. recode wage (0/10 =1 "0 to 10") ///

> (10/20 =2 ">10 to 20") ///
> (20/30 =3 ">20 to 30") ///
> (30/max=4 ">30 and up"), generate(wage4)

(2244 differences between wage and wage4)

We can check this using the tabstat command below (see section [4.5). The results
confirm that wage4 was created correctly. For example, for category 2 (over 10 up
to 20), the minimum is slightly larger than 10 and the maximum is 20.

. tabstat wage, by(wage4) stat(min max)

Summary for variables: wage
by categories of: wage4 (RECODE of wage (hourly wage))

wage4 min max
0 to 10 0 10
>10 to 20 10.00805 20
>20 to 30 20.12883 30

>30 and up 30.19324 40.74659

Total 0 40.74659

We might want to use a rule that 0 up to (but not including) 10 would be coded
1, 10 up to (but not including) 20 would be coded 2, 20 up to (but not including) 30
would be coded 3, and 30 and over would be coded 4. By switching the order of the
rules, for example, we can move 10 to belong to category 2 because that rule appears
first.

. recode wage (30/max=4 "30 and up") ///

> (20/30 =3 "20 to <30") ///
> (10/20 =2 "10 to <20") ///
> (0/10 =1 "0 to <10"), generate(wageda)

(2244 differences between wage and wageda)

164

Chapter 6 Creating variables

The results of the tabstat command below confirm that wage4a was recoded prop-

erly.

. tabstat wage, by(wage4a) stat(min max)

Summary for variables:
by categories of:

wage
wage4a (RECODE of wage (hourly wage))

wageéda min max
0 to <10 0 9.999998
10 to <20 10 19.91143
20 to <30 20 29.72623
30 and up 30 40.74659
Total 0 40.74659

The recode command is not the only way to recode variables. Stata has several
functions that we can also use for recoding. We can use the irecode() function to
recode a continuous variable into groups based on a series of cutpoints that you supply.
For example, below, the wages are cut into four groups based on the cutpoints 10, 20,
and 30. Those with wages up to 10 are coded 0, over 10 up to 20 are coded 1, over 20
up to 30 are coded 2, and over 30 are coded 3.

. generate mywagel =
(2 missing values generated)

irecode (wage,10,20,30)

The tabstat command confirms the recoding of this variable:

. tabstat wage, by(mywagel) stat(min max)

Summary for variables: wage
by categories of: mywagel

mywagel min max
0 0 10

1 10.00805 20

2 20.12883 30

3 30.19324 40.74659

Total 0 40.74659

The autocode () function recodes continuous variables into equally spaced groups.
Below, we recode wage to form three equally spaced groups that span from 0 to 42. The
groups are numbered according to the highest value in the group, so 14 represents 0 to
14, then 28 represents over 14 to 28, and finally 42 represents over 28 up to 42. The
tabstat command confirms the recoding.

6.5 Recoding 165

. generate mywage2 = autocode(wage,3,0,42)
(2 missing values generated)

. tabstat wage, by(mywage2) stat(min max n)

Summary for variables: wage
by categories of: mywage2

mywage?2 min max N
14 0 13.9694 2068

28 14.00966 27.89049 127

42 28.15219 40.74659 49
Total 0 40.74659 2244

Although the autocode () function seeks to equalize the spacing of the groups, the
group() option of the egen command seeks to equalize the number of observations in
each group. Below, we create mywage3 using the group () option to create three equally
sized groups

. egen mywage3 = cut(wage), group(3)
(2 missing values generated)

The values of mywage3 are numbered 0, 1, and 2. The lower and upper limits of
wage for each group are selected to attempt to equalize the size of the groups, so the
values chosen are not round numbers. The tabstat command below shows the lower
and upper limits of wages for each of the three groups. The first group ranges from 0
to 4.904, the second group ranges from 4.911 to 8.068, and the third group ranges from
8.075 to 40.747.

. tabstat wage, by(mywage3) stat(min max n)

Summary for variables: wage
by categories of: mywage3

mywage3 min max N
0 0 4.903378 748

1 4.911432 8.067631 748

2 8.075683 40.74659 748

Total 0 40.74659 2244

See help recode, help irecode, and help autocode for more information on re-
coding.

4. It is also possible to use the xtile command to create equally sized groupings. For example, the
command xtile wage3 = wage, nq(3) creates three equally sized groupings of the variable wage
storing those groupings as wage3.

	dmus1
	pageomitted
	dmus3
	pageomitted
	dmus4
	pageomitted
	dmustoc

