Contents

List of figures xix
List of tables xxiii
List of listings xxviii
Preface xxix

1 Introduction 1
1.1 Origins and motivation . 2
1.2 Notational conventions . 3
1.3 Applied or theoretical? . 4
1.4 Road map . 4
1.5 Installing the support materials .. . 6

I Foundations of Generalized Linear Models 7

2 GLMs 9
2.1 Components . 11
2.2 Assumptions . 12
2.3 Exponential family . 13
2.4 Example: Using an offset in a GLM 15
2.5 Summary . 17

3 GLM estimation algorithms 19
3.1 Newton–Raphson (using the observed Hessian) 25
3.2 Starting values for Newton–Raphson 26
3.3 IRLS (using the expected Hessian) 28
3.4 Starting values for IRLS . 31
3.5 Goodness of fit . 31
3.6 Estimated variance matrices .32
3.6.1 Hessian ... 34
3.6.2 Outer product of the gradient 35
3.6.3 Sandwich .. 35
3.6.4 Modified sandwich 36
3.6.5 Unbiased sandwich 37
3.6.6 Modified unbiased sandwich 38
3.6.7 Weighted sandwich: Newey–West 39
3.6.8 Jackknife .. 40
 3.6.8.1 Usual jackknife 40
 3.6.8.2 One-step jackknife 41
 3.6.8.3 Weighted jackknife 41
 3.6.8.4 Variable jackknife 42
3.6.9 Bootstrap .. 42
 3.6.9.1 Usual bootstrap 43
 3.6.9.2 Grouped bootstrap 43
3.7 Estimation algorithms 44
3.8 Summary .. 44

4 Analysis of fit ... 47
 4.1 Deviance ... 48
 4.2 Diagnostics ... 49
 4.2.1 Cook’s distance 49
 4.2.2 Overdispersion 49
 4.3 Assessing the link function 50
 4.4 Residual analysis 51
 4.4.1 Response residuals 52
 4.4.2 Working residuals 53
 4.4.3 Pearson residuals 53
 4.4.4 Partial residuals 53
 4.4.5 Anscombe residuals 54
 4.4.6 Deviance residuals 54
4.4.7 Adjusted deviance residuals ... 54
4.4.8 Likelihood residuals .. 55
4.4.9 Score residuals ... 55

4.5 Checks for systematic departure from the model 55

4.6 Model statistics .. 56

4.6.1 Criterion measures ... 56
 4.6.1.1 AIC .. 56
 4.6.1.2 BIC .. 58

4.6.2 The interpretation of R^2 in linear regression 58
 4.6.2.1 Percentage variance explained 58
 4.6.2.2 The ratio of variances .. 58
 4.6.2.3 A transformation of the likelihood ratio 58
 4.6.2.4 A transformation of the F test 60
 4.6.2.5 Squared correlation .. 60

4.6.3 Generalizations of linear regression R^2 interpretations 60
 4.6.3.1 Efron’s pseudo-R^2 ... 61
 4.6.3.2 McFadden’s likelihood-ratio index 61
 4.6.3.3 Ben-Akiva and Lerman adjusted likelihood-ratio index ... 61
 4.6.3.4 McKelvey and Zavoina ratio of variances 62
 4.6.3.5 Transformation of likelihood ratio 62
 4.6.3.6 Cragg and Uhler normed measure 63

4.6.4 More R^2 measures .. 63
 4.6.4.1 The count R^2 ... 63
 4.6.4.2 The adjusted count R^2 63
 4.6.4.3 Veall and Zimmermann R^2 63
 4.6.4.4 Cameron–Windmeijer R^2 64

4.7 Marginal effects ... 64

4.7.1 Marginal effects for GLMs ... 64

4.7.2 Discrete change for GLMs .. 68
Contents

II Continuous Response Models

5 The Gaussian family

5.1 Derivation of the GLM Gaussian family

5.2 Derivation in terms of the mean

5.3 IRLS GLM algorithm (nonbinomial)

5.4 ML estimation

5.5 GLM log-Gaussian models

5.6 Expected versus observed information matrix

5.7 Other Gaussian links

5.8 Example: Relation to OLS

5.9 Example: Beta-carotene

6 The gamma family

6.1 Derivation of the gamma model

6.2 Example: Reciprocal link

6.3 ML estimation

6.4 Log-gamma models

6.5 Identity-gamma models

6.6 Using the gamma model for survival analysis

7 The inverse Gaussian family

7.1 Derivation of the inverse Gaussian model

7.2 Shape of the distribution

7.3 The inverse Gaussian algorithm

7.4 Maximum likelihood algorithm

7.5 Example: The canonical inverse Gaussian

7.6 Noncanonical links

8 The power family and link

8.1 Power links

8.2 Example: Power link

8.3 The power family
III Binomial Response Models

9 The binomial–logit family

9.1 Derivation of the binomial model

9.2 Derivation of the Bernoulli model

9.3 The binomial regression algorithm

9.4 Example: Logistic regression

9.4.1 Model producing logistic coefficients: The heart data

9.4.2 Model producing logistic odds ratios

9.5 GOF statistics

9.6 Grouped data

9.7 Interpretation of parameter estimates

10 The general binomial family

10.1 Noncanonical binomial models

10.2 Noncanonical binomial links (binary form)

10.3 The probit model

10.4 The clog-log and log-log models

10.5 Other links

10.6 Interpretation of coefficients

10.6.1 Identity link

10.6.2 Logit link

10.6.3 Log link

10.6.4 Log complement link

10.6.5 Log-log link

10.6.6 Complementary log-log link

10.6.7 Summary

10.7 Generalized binomial regression

10.8 Beta binomial regression

10.9 Zero-inflated models

11 The problem of overdispersion

11.1 Overdispersion
11.2 Scaling of standard errors ... 193
11.3 Williams’ procedure .. 200
11.4 Robust standard errors .. 202

IV Count Response Models .. 205
12 The Poisson family .. 207
12.1 Count response regression models 207
12.2 Derivation of the Poisson algorithm 208
12.3 Poisson regression: Examples .. 212
12.4 Example: Testing overdispersion in the Poisson model 216
12.5 Using the Poisson model for survival analysis 218
12.6 Using offsets to compare models 219
12.7 Interpretation of coefficients ... 222

13 The negative binomial family ... 225
13.1 Constant overdispersion ... 227
13.2 Variable overdispersion ... 228
 13.2.1 Derivation in terms of a Poisson–gamma mixture 228
 13.2.2 Derivation in terms of the negative binomial probability function ... 231
 13.2.3 The canonical link negative binomial parameterization 233
13.3 The log-negative binomial parameterization 235
13.4 Negative binomial examples .. 238
13.5 The geometric family ... 244
13.6 Interpretation of coefficients ... 248

14 Other count-data models .. 251
14.1 Count response regression models 251
14.2 Zero-truncated models ... 253
14.3 Zero-inflated models ... 258
14.4 General truncated models ... 265
14.5 Hurdle models ... 272
14.6 Negative binomial(P) models .. 277
14.7 Negative binomial (Famoye) .. 284
14.8 Negative binomial (Waring) ... 285
14.9 Heterogeneous negative binomial models 286
14.10 Generalized Poisson regression models 289
14.11 Poisson inverse Gaussian models 293
14.12 Censored count response models 295
14.13 Finite mixture models .. 304
14.14 Quantile regression for count outcomes 309
14.15 Heaped data models ... 311

V Multinomial Response Models .. 319
15 Unordered-response family .. 321
15.1 The multinomial logit model .. 322
 15.1.1 Interpretation of coefficients: Single binary predictor 322
 15.1.2 Example: Relation to logistic regression 324
 15.1.3 Example: Relation to conditional logistic regression 325
 15.1.4 Example: Extensions with conditional logistic regression . 326
 15.1.5 The independence of irrelevant alternatives 328
 15.1.6 Example: Assessing the IIA 329
 15.1.7 Interpreting coefficients ... 331
 15.1.8 Example: Medical admissions—introduction 332
 15.1.9 Example: Medical admissions—summary 334
15.2 The multinomial probit model 338
 15.2.1 Example: A comparison of the models 340
 15.2.2 Example: Comparing probit and multinomial probit 343
 15.2.3 Example: Concluding remarks 347

16 The ordered-response family ... 349
16.1 Interpretation of coefficients: Single binary predictor 350
16.2 Ordered outcomes for general link 352
16.3 Ordered outcomes for specific links 355
Contents

16.3.1 Ordered logit .. 355
16.3.2 Ordered probit .. 356
16.3.3 Ordered clog-log .. 356
16.3.4 Ordered log-log .. 357
16.3.5 Ordered cauchit .. 357
16.4 Generalized ordered outcome models 358
16.5 Example: Synthetic data ... 359
16.6 Example: Automobile data .. 363
16.7 Partial proportional-odds models 372
16.8 Continuation-ratio models ... 373
16.9 Adjacent category model .. 382

VI Extensions to the GLM .. 385

17 Extending the likelihood .. 387
17.1 The quasilikelihood .. 387
17.2 Example: Wedderburn’s leaf blotch data 388
17.3 Example: Tweedie family variance 396
17.4 Generalized additive models 399

18 Clustered data .. 401
18.1 Generalization from individual to clustered data 401
18.2 Pooled estimators .. 402
18.3 Fixed effects ... 404
18.3.1 Unconditional fixed-effects estimators 404
18.3.2 Conditional fixed-effects estimators 405
18.4 Random effects ... 407
18.4.1 Maximum likelihood estimation 407
18.4.2 Gibbs sampling .. 412
18.5 Mixed-effect models .. 413
18.6 GEEs .. 417
18.7 Other models ... 420
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Bivariate and multivariate models for binary outcomes</td>
<td>425</td>
</tr>
<tr>
<td>19.2</td>
<td>Copula functions</td>
<td>425</td>
</tr>
<tr>
<td>19.3</td>
<td>Using copula functions to calculate bivariate probabilities</td>
<td>426</td>
</tr>
<tr>
<td>19.4</td>
<td>Synthetic datasets</td>
<td>427</td>
</tr>
<tr>
<td>19.5</td>
<td>Examples of bivariate count models using copula functions</td>
<td>436</td>
</tr>
<tr>
<td>19.6</td>
<td>The Famoye bivariate Poisson regression model</td>
<td>436</td>
</tr>
<tr>
<td>19.7</td>
<td>The Marshall–Olkin bivariate negative binomial regression model</td>
<td>438</td>
</tr>
<tr>
<td>19.8</td>
<td>The Famoye bivariate negative binomial regression model</td>
<td>441</td>
</tr>
<tr>
<td>20.1</td>
<td>Brief overview of Bayesian methodology</td>
<td>447</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Bayesian logistic regression—noninformative priors</td>
<td>459</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Diagnostic plots</td>
<td>463</td>
</tr>
<tr>
<td>20.2.3</td>
<td>Bayesian logistic regression—informative priors</td>
<td>466</td>
</tr>
<tr>
<td>20.3</td>
<td>Bayesian probit regression</td>
<td>471</td>
</tr>
<tr>
<td>20.4</td>
<td>Bayesian complementary log-log regression</td>
<td>473</td>
</tr>
<tr>
<td>20.5</td>
<td>Bayesian binomial logistic regression</td>
<td>474</td>
</tr>
<tr>
<td>20.6</td>
<td>Bayesian Poisson regression</td>
<td>475</td>
</tr>
<tr>
<td>20.6.1</td>
<td>Bayesian Poisson regression with noninformative priors</td>
<td>478</td>
</tr>
<tr>
<td>20.6.2</td>
<td>Bayesian Poisson with informative priors</td>
<td>479</td>
</tr>
<tr>
<td>20.7</td>
<td>Bayesian negative binomial likelihood</td>
<td>483</td>
</tr>
<tr>
<td>20.7.1</td>
<td>Zero-inflated negative binomial logit</td>
<td>486</td>
</tr>
<tr>
<td>20.8</td>
<td>Bayesian normal regression</td>
<td>488</td>
</tr>
<tr>
<td>20.9</td>
<td>Writing a custom likelihood</td>
<td>491</td>
</tr>
<tr>
<td>20.9.1</td>
<td>Using the llf() option</td>
<td>492</td>
</tr>
<tr>
<td>20.9.1.1</td>
<td>Bayesian logistic regression using llf()</td>
<td>492</td>
</tr>
</tbody>
</table>
20.9.1.2 Bayesian zero-inflated negative binomial logit regression using llf() 494
20.9.2 Using the llevaluator() option ... 496
 20.9.2.1 Logistic regression model using llevaluator() 496
 20.9.2.2 Bayesian clog-log regression with llevaluator() 498
 20.9.2.3 Bayesian Poisson regression with llevaluator() 498
 20.9.2.4 Bayesian negative binomial regression using llevaluator() 499
 20.9.2.5 Zero-inflated negative binomial logit using llevaluator() 501
 20.9.2.6 Bayesian gamma regression using llevaluator() 503
 20.9.2.7 Bayesian inverse Gaussian regression using llevaluator() 506
 20.9.2.8 Bayesian zero-truncated Poisson using llevaluator() 508
 20.9.2.9 Bayesian bivariate Poisson using llevaluator() 511

VII Stata Software 519
21 Programs for Stata 521
 21.1 The glm command ... 522
 21.1.1 Syntax ... 522
 21.1.2 Description ... 524
 21.1.3 Options ... 524
 21.2 The predict command after glm .. 528
 21.2.1 Syntax ... 528
 21.2.2 Options ... 528
 21.3 User-written programs ... 530
 21.3.1 Global macros available for user-written programs 530
 21.3.2 User-written variance functions .. 531
 21.3.3 User-written programs for link functions 533
 21.3.4 User-written programs for Newey–West weights 533
 21.4 Remarks ... 536
 21.4.1 Equivalent commands .. 536
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4.2 Special comments on family(Gaussian) models</td>
<td>536</td>
</tr>
<tr>
<td>21.4.3 Special comments on family(binomial) models</td>
<td>537</td>
</tr>
<tr>
<td>21.4.4 Special comments on family(nbinomial) models</td>
<td>537</td>
</tr>
<tr>
<td>21.4.5 Special comment on family(gamma) link(log) models</td>
<td>537</td>
</tr>
<tr>
<td>22 Data synthesis</td>
<td>539</td>
</tr>
<tr>
<td>22.1 Generating correlated data</td>
<td>538</td>
</tr>
<tr>
<td>22.2 Generating data from a specified population</td>
<td>543</td>
</tr>
<tr>
<td>22.2.1 Generating data for linear regression</td>
<td>544</td>
</tr>
<tr>
<td>22.2.2 Generating data for logistic regression</td>
<td>546</td>
</tr>
<tr>
<td>22.2.3 Generating data for probit regression</td>
<td>548</td>
</tr>
<tr>
<td>22.2.4 Generating data for complimentary log-log regression</td>
<td>550</td>
</tr>
<tr>
<td>22.2.5 Generating data for Gaussian variance and log link</td>
<td>551</td>
</tr>
<tr>
<td>22.2.6 Generating underdispersed count data</td>
<td>551</td>
</tr>
<tr>
<td>22.3 Simulation</td>
<td>552</td>
</tr>
<tr>
<td>22.3.1 Heteroskedasticity in linear regression</td>
<td>554</td>
</tr>
<tr>
<td>22.3.2 Power analysis</td>
<td>556</td>
</tr>
<tr>
<td>22.3.3 Comparing fit of Poisson and negative binomial</td>
<td>558</td>
</tr>
<tr>
<td>22.3.4 Effect of missing covariate on R^2_{Efron} in Poisson regression</td>
<td>561</td>
</tr>
<tr>
<td>A Tables</td>
<td>563</td>
</tr>
<tr>
<td>References</td>
<td>577</td>
</tr>
<tr>
<td>Author index</td>
<td>589</td>
</tr>
<tr>
<td>Subject index</td>
<td>593</td>
</tr>
</tbody>
</table>
(Pages omitted)
Preface

We have added several new models to the discussion of extended generalized linear models (GLMs). We have included new software and discussion of extensions to negative binomial regression because of Waring and Famoye. We have also added discussion of heaped data and bias-corrected GLMs because of Firth. There are two new chapters on multivariate outcomes and Bayes GLMs. In addition, we have expanded the clustered data discussion to cover more of the commands available in Stata.

We now include even more examples using synthetically created models to illustrate estimation results, and we illustrate to readers how to construct synthetic Monte Carlo models for binomial and major count models. Code for creating synthetic Poisson, negative binomial, zero-inflated, hurdle, and finite mixture models is provided and further explained. We have enhanced discussion of marginal effects and discrete change for GLMs.

This fourth edition of Generalized Linear Models and Extensions is written for the active researcher as well as for the theoretical statistician. Our goal has been to clarify the nature and scope of GLMs and to demonstrate how all the families, links, and variations of GLMs fit together in an understandable whole.

In a step-by-step manner, we detail the foundations and provide working algorithms that readers can use to construct and better understand models that they wish to develop. In a sense, we offer readers a workbook or handbook of how to deal with data using GLM and GLM extensions.

This text is intended as a textbook on GLMs and as a handbook of advice for researchers. We continue to use this book as the required text for a web-based short course through Statistics.com (also known as the Institute for Statistical Education); see http://www.statistics.com. The students of this six-week course include university professors and active researchers from hospitals, government agencies, research institutes, educational concerns, and other institutions across the world. This latest edition reflects the experiences we have had in communicating to our readers and students the relevant materials over the past decade.

Many people have contributed to the ideas presented in the new edition of this book. John Nelder has been the foremost influence. Other important and influential people include Peter Bruce, David Collett, David Hosmer, Stanley Lemeshow, James Lindsey, J. Scott Long, Roger Newson, Scott Zeger, Kung-Yee Liang, Raymond J. Carroll, H. Joseph Newton, Henrik Schmiediche, Norman Breslow, Berwin Turlach, Gordon Johnston, Thomas Lumley, Bill Sribney, Vince Wiggins, Mario Cleves, William...
Preface

Greene, Andrew Robinson, Heather Presnal, and others. Specifically, for this edition, we thank Tammy Cummings, Chelsea Deroche, Xinling Xu, Roy Bower, Julie Royer, James Hussey, Alex McLain, Rebecca Wardrop, Gelareh Rahimi, Michael G. Smith, Marco Geraci, Bo Cai, and Feifei Xiao.

As always, we thank William Gould, president of StataCorp, for his encouragement in this project. His statistical computing expertise and his contributions to statistical modeling have had a deep impact on this book.

We are grateful to StataCorp’s editorial staff for their equanimity in reading and editing our manuscript, especially to Patricia Branton and Lisa Gilmore for their insightful and patient contributions in this area. Finally, we thank Kristin MacDonald and Isabel Canette-Fernandez, Stata statisticians at StataCorp, for their expert assistance on various programming issues, and Nikolay Balov, Senior Statistician and Software Developer at StataCorp, for his helpful assistance with chapter 20 on Bayesian GLMs. We would also like to thank Rose Medeiros, Senior Statistician at StataCorp, for her assistance in the final passes of this edition.

Stata Press allowed us to dictate some of the style of this text. In writing this material in other forms for short courses, we have always included equation numbers for all equations rather than only for those equations mentioned in text. Although this is not the standard editorial style for textbooks, we enjoy the benefits of students being able to communicate questions and comments more easily (and efficiently). We hope that readers find this practice as beneficial as our short-course participants have found it.

Errata, datasets, and supporting Stata programs (do-files and ado-files) may be found at the publisher’s site http://www.stata-press.com/books/generalized-linear-models-and-extensions/. We also maintain these materials on the author sites at http://www.thirdwaystat.com/jameshardin/ and at https://works.bepress.com/joseph_hilbe/. We are very pleased to be able to produce this newest edition. Working on this text from the first edition in 2001 over the past 17 years has been a tremendously satisfying experience.

James W. Hardin
Joseph M. Hilbe

March 2018
(Pages omitted)
2 GLMs

Contents

2.1 Components .. 11
2.2 Assumptions .. 12
2.3 Exponential family ... 13
2.4 Example: Using an offset in a GLM 15
2.5 Summary .. 17

Nelder and Wedderburn (1972) introduced the theory of GLMs. The authors derived an underlying unity for an entire class of regression models. This class consisted of models whose single response variable, the variable that the model is to explain, is hypothesized to have the variance that is reflected by a member of the single-parameter exponential family of probability distributions. This family of distributions includes the Gaussian or normal, binomial, Poisson, gamma, inverse Gaussian, geometric, and negative binomial.

To establish a basis, we begin discussion of GLMs by initially recalling important results on linear models, specifically those results for linear regression. The standard linear regression model relies on several assumptions, among which are the following:

1. Each observation of the response variable is characterized by the normal or Gaussian distribution: $y_i \sim N(\mu_i, \sigma_i^2)$.
2. The distributions for all observations have a common variance: $\sigma_i^2 = \sigma^2$ for all i.
3. There is a direct or “identical” relationship between the linear predictor (linear combination of covariate values and associated parameters) and the expected values of the model: $E(x_i \beta) = \mu_i$.

The purpose of GLMs, and the linear models that they generalize, is to specify the relationship between the observed response variable and some number of covariates. The outcome variable is viewed as a realization from a random variable.

Nelder and Wedderburn showed that general models could be developed by relaxing the assumptions of the linear model. By restructuring the relationship between the linear predictor and the fit, we can “linearize” relationships that initially seem to be
nonlinear. Nelder and Wedderburn accordingly dubbed these models “generalized linear models”.

Most models that were placed under the original GLM framework were well established and popular—some more than others. However, these models had historically been fit using maximum likelihood (ML) algorithms specific to each model. ML algorithms, as we will call them, can be hard to implement. Starting or initial estimates for parameters must be provided, and considerable work is required to derive model-specific quantities to ultimately obtain parameter estimates and their standard errors. In the next chapter, we show much effort is involved.

Ordinary least squares (OLS) extends ML linear regression such that the properties of OLS estimates depend only on the assumptions of constant variance and independence. ML linear regression carries the more restrictive distributional assumption of normality. Similarly, although we may derive likelihoods from specific distributions in the exponential family, the second-order properties of our estimates are shown to depend only on the assumed mean–variance relationship and on the independence of the observations rather than on a more restrictive assumption that observations follow a particular distribution.

The classical linear model assumes that the observations that our dependent variable \(y \) represents are independent normal variates with constant variance \(\sigma^2 \). Also covariates are related to the expected value of the independent variable such that

\[
E(y) = \mu \\
\mu = X\beta
\]

This last equation shows the “identical” or identity relationship between the linear predictor \(X\beta \) and the mean \(\mu \).

Whereas the linear model conceptualizes the outcome \(y \) as the sum of its mean \(\mu \) and a random variable \(\epsilon \), Nelder and Wedderburn linearized each GLM family member by means of a link function. They then altered a previously used algorithm called iterative weighted least squares, which was used in fitting weighted least-squares regression models. Aside from introducing the link function relating the linear predictor to the fitted values, they also introduced the variance function as an element in the weighting of the regression. The iterations of the algorithm updates parameter estimates to produce appropriate linear predictors, fitted values, and standard errors. We will clarify exactly how all this falls together in the section on the iteratively reweighted least-squares (IRLS) algorithm.

The estimation algorithm allowed researchers to easily fit many models previously considered to be nonlinear by restructuring them into GLMs. Later, it was discovered that an even more general class of linear models results from more relaxations of assumptions for GLMs.

However, even though the historical roots of GLMs are based on IRLS methodology, many generalizations to the linear model still require Newton–Raphson techniques common to ML methods. We take the position here that GLMs should not be constrained to
those models first discussed by Nelder and Wedderburn but rather that they encompass all such linear generalizations to the standard model.

Many other books and journal articles followed the cornerstone article by Nelder and Wedderburn (1972) as well as the text by McCullagh and Nelder (1989) (the original text was published in 1983). Lindsey (1997) illustrates the application of GLMs to biostatistics, most notably focusing on survival models. Hilbe (1994) gives an overview of the GLM and its support from various software packages. Software was developed early on. In fact, Nelder was instrumental in developing the first statistical program based entirely on GLM principles—generalized linear interactive modeling (GLIM). Published by the Numerical Algorithms Group (NAG), the software package has been widely used since the mid-1970s. Other vendors began offering GLM capabilities in the 1980s, including GENSTAT and S-Plus. Stata and SAS included it in their software offerings in 1993 and 1994, respectively.

This text covers much of the same foundation material as other books. What distinguishes our presentation of the material is twofold. First, we focus on the estimation of various models via the estimation technique. Second, we present our derivation of the methods of estimation in a more accessible manner than which is presented in other sources. In fact, where possible, we present complete algebraic derivations that include nearly every step in the illustrations. Pedagogically, we have found that this manner of exposition imparts a more solid understanding and “feel” of the area than do other approaches. The idea is this: if you can write your own GLM, then you are probably more able to know how it works, when and why it does not work, and how it is to be evaluated. Of course, we also discuss methods of fit assessment and testing. To model data without subjecting them to evaluation is like taking a test without checking the answers. Hence, we will spend considerable time dealing with model evaluation as well as algorithm construction.

\section{Components}

Cited in various places such as Hilbe (1993b) and Francis, Green, and Payne (1993), GLMs are characterized by an expanded itemized list given by the following:

1. A random component for the response, \(y \), which has the characteristic variance of a distribution that belongs to the exponential family.
2. A linear systematic component relating the linear predictor, \(\eta = X\beta \), to the product of the design matrix \(X \) and the parameters \(\beta \).
3. A known monotonic, one-to-one, differentiable link function \(g(\cdot) \) relating the linear predictor to the fitted values. Because the function is one-to-one, there is an inverse function relating the mean expected response, \(E(y) = \mu \), to the linear predictor such that \(\mu = g^{-1}(\eta) = E(y) \).
4. The variance may change with the covariates only as a function of the mean.
5. There is one IRLS algorithm that suffices to fit all members of the class.
Chapter 2 GLMs

Item 5 is of special interest. The traditional formulation of the theory certainly supposed
that there was one algorithm that could fit all GLMs. We will see later how this was
implemented. However, there have been extensions to this traditional viewpoint. Ad-
justments to the weight function have been added to match the usual Newton–Raphson
algorithms more closely and so that more appropriate standard errors may be calculated
for noncanonical link models. Such features as scaling and robust variance estimators
have also been added to the basic algorithm. More importantly, sometimes a traditional
GLM must be restructured and fit using a model-specific Newton–Raphson algorithm.
Of course, one may simply define a GLM as a model requiring only the standard approach
but doing so would severely limit the range of possible models. We prefer to think of
a GLM as a model that is ultimately based on the probability function belonging to
the exponential family of distributions, but with the proviso that this criterion may be
relaxed to include quasilikelihood models as well as certain types of multinomial, trun-
cated, censored, and inflated models. Most of the latter type require a Newton–Raphson
approach rather than the traditional IRLS algorithm.

Early GLM software development constrained GLMs to those models that could be fit
using the originally described estimation algorithm. As we will illustrate, the traditional
algorithm is relatively simple to implement and requires little computing power. In the
days when RAM was scarce and expensive, this was an optimal production strategy for
software development. Because this is no longer the case, a wider range of GLMs can
more easily be fit using a variety of algorithms. We will discuss these implementation
details at length.

In the classical linear model, the observations of the dependent variable \(y \) are
independent normal variates with constant variance \(\sigma^2 \). We assume that the mean
value of \(y \) may depend on other quantities (predictors) denoted by the column vectors
\(X_1, X_2, \ldots, X_{p-1} \). In the simplest situation, we assume that this dependency is linear
and write

\[
E(y) = \beta_0 + \beta_1 X_1 + \cdots + \beta_{p-1} X_{p-1}
\]

and attempt to estimate the vector \(\beta \).

GLMs specify a relationship between the mean of the random variable \(y \) and a func-
tion of the linear combination of the predictors. This generalization admits a model
specification allowing for continuous or discrete outcomes and allows a description of
the variance as a function of the mean.

2.2 Assumptions

The link function relates the mean \(\mu = E(y) \) to the linear predictor \(X\beta \), and the variance
function relates the variance as a function of the mean \(V(y) = a(\phi)v(\mu) \), where \(a(\phi) \)
is the scale factor. For the Poisson, binomial, and negative binomial variance models,
\(a(\phi) = 1 \).
Breslow (1996) points out that the critical assumptions in the GLM framework may be stated as follows:

1. Statistical independence of the n observations.
2. The variance function $v(\mu)$ is correctly specified.
3. $a(\phi)$ is correctly specified (1 for Poisson, binomial, and negative binomial).
4. The link function is correctly specified.
5. Explanatory variables are of the correct form.
6. There is no undue influence of the individual observations on the fit.

As a simple illustration, in Table 2.1 we demonstrate the effect of the assumed variance function on the model and fitted values of a simple GLM.

<table>
<thead>
<tr>
<th>Observed (y)</th>
<th>Predicted [Normal: $v(\mu) = \phi$]</th>
<th>Predicted [Poisson: $v(\mu) = \mu$]</th>
<th>Predicted [Gamma: $v(\mu) = \phi \mu^2$]</th>
<th>Predicted [Inverse Gaussian: $v(\mu) = \phi \mu^3$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.00 4.00 8.00 $\hat{y} = -4.00 + 4.00x$</td>
<td>0.80 4.00 7.20 $\hat{y} = -2.40 + 3.20x$</td>
<td>0.94 3.69 6.43 $\hat{y} = -1.80 + 2.74x$</td>
<td>0.98 3.33 5.69 $\hat{y} = -1.37 + 2.35x$</td>
</tr>
</tbody>
</table>

Table 2.1. Predicted values for various choices of variance function

Note: The models are all fit using the identity link, and the data consist of three observations $(y,x) = \{(1,1),(2,2),(9,3)\}$. The fitted models are included in the last column.

2.3 Exponential family

GLMs are traditionally formulated within the framework of the exponential family of distributions. In the associated representation, we can derive a general model that may be fit using the scoring process (IRLS) detailed in section 3.3. Many people confuse the estimation method with the class of GLMs. This is a mistake because there are many estimation methods. Some software implementations allow specification of more diverse models than others. We will point this out throughout the text.

The exponential family is usually (there are other algebraically equivalent forms in the literature) written as

$$f_y(y; \theta, \phi) = \exp \left\{ \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \right\}$$

(2.4)

where θ is the canonical (natural) parameter of location and ϕ is the parameter of scale. The location parameter (also known as the canonical link function) relates to the means,
and the scalar parameter relates to the variances for members of the exponential family of distributions including Gaussian, gamma, inverse Gaussian, and others. Using the notation of the exponential family provides a means to specify models for continuous, discrete, proportional, count, and binary outcomes.

In the exponential family presentation, we construe each of the y_i observations as being defined in terms of the parameters θ. Because the observations are independent, the joint density of the sample of observations y_i, given parameters θ and ϕ, is defined by the product of the density over the individual observations (review section 2). Interested readers can review Barndorff-Nielsen (1976) for the theoretical justification that allows this factorization:

$$f_{y_1,y_2,...,y_n}(y_1,y_2,...,y_n;\theta,\phi) = \prod_{i=1}^{n} \exp \left\{ \frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i,\phi) \right\}$$ (2.5)

Conveniently, the joint probability density function may be expressed as a function of θ and ϕ given the observations y_i. This function is called the likelihood, L, and is written as

$$L(\theta,\phi; y_1,y_2,...,y_n) = \prod_{i=1}^{n} \exp \left\{ \frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i,\phi) \right\}$$ (2.6)

We wish to obtain estimates of (θ,ϕ) that maximize the likelihood function. Given the product in the likelihood, it is more convenient to work with the log likelihood,

$$L(\theta,\phi; y_1,y_2,...,y_n) = \prod_{i=1}^{n} \exp \left\{ \frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i,\phi) \right\}$$ (2.7)

because the values that maximize the likelihood are the same values that maximize the log likelihood.

Throughout the text, we will derive each distributional family member from the exponential family notation so that the components are clearly illustrated. The log likelihood for the exponential family is in a relatively basic form, admitting simple calculations of first and second derivatives for ML estimation. The IRLS algorithm takes advantage of this form of the log likelihood.

First, we generalize the log likelihood to include an offset to the linear predictor. This generalization will allow us to investigate simple equality constraints on the parameters.

The idea of an offset is simple. To fit models with covariates, we specify that θ is a function of specified covariates, X, and their associated coefficients, β. Within the linear combination of the covariates and their coefficients $X\beta$, we may further wish to constrain a particular subset of the coefficients β_i to particular values. For example, we may know or wish to test that $\beta_3 = 2$ in a model with a constant, X_0, and three covariates X_1, X_2, and X_3. If we wish to enforce the $\beta_3 = 2$ restriction on the estimation, then we will want the optimization process to calculate the linear predictor as

$$\eta = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + 2 X_3$$ (2.8)
at each step. We know (or wish to enforce) that the linear predictor is composed of a linear combination of the unrestricted parameters plus two times the X_3 covariate. If we consider that the linear predictor is generally written as

$$\eta = X\beta + \text{offset}$$

then we can appreciate the implementation of a program that allows an offset. We could generate a new variable equal to two times the variable containing the X_3 observations and specify that generated variable as the offset. By considering this issue from the outset, we can include an offset in our derivations, which will allow us to write programs that include this functionality.

The offset is a given (nonstochastic) component in the estimation problem. By including the offset, we gain the ability to fit (equality) restricted models without adding unnecessary complexity to the model; the offset plays no role in derivative calculations. If we do not include an offset in our derivations and subsequent programs, we can still fit restricted models, but the justification is less clear; see the arguments of [Nyquist](1991) for obtaining restricted estimates in a GLM.

2.4 Example: Using an offset in a GLM

In subsequent chapters (especially chapter 3), we illustrate the two main components of the specification of a GLM. The first component of a GLM specification is a function of the linear predictor, which substitutes for the location (mean) parameter of the exponential family. This function is called the link function because it links the expected value of the outcome to the linear predictor comprising the regression coefficients; we specify this function with the `link()` option. The second component of a GLM specification is the variance as a scaled function of the mean. In Stata, this function is specified using the name of a particular member distribution of the exponential family; we specify this function with the `family()` option. The example below highlights a log-link Poisson GLM.

For this example, it is important to note the treatment of the offset in the linear predictor. The particular choices for the link and variance functions are not relevant to the utility of the offset.
Below, we illustrate the use of an offset with Stata’s \texttt{glm} command. From an analysis presented in chapter 12, consider the output of the following model:

\begin{verbatim}
. glm los hmo white type2 type3, family(poisson) link(log) nolog
Generalized linear models
Optimization : ML
Residual df = 1,490
Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391
Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
AIC = 9.276131
Log likelihood = -6928.907786 BIC = -2749.057

OIM
\end{verbatim}

\begin{verbatim}
 | OIM |
---|--------------------------|
 los | Coef. Std. Err. z P>|z| [95% Conf. Interval] |
----------|---------------------|-------|-------|------------------|------------------|
 hmo | -.0715493 .0239444 -2.99 0.003 -.1184786 -.02462 |
 white | -.153871 .0274128 -5.61 0.000 -.2075991 -.100143 |
 type2 | .2216518 .0210519 10.53 0.000 .1803908 .2629127 |
 type3 | .7094767 .0261364 27.15 0.000 .6582512 .7607022 |
 _cons | 2.332933 .0272082 85.74 0.000 2.279606 2.38626 |
\end{verbatim}

We would like to test whether the coefficient on \textit{white} is equal to \(-0.20\). We could use Stata’s \texttt{test} command to obtain a Wald test

\begin{verbatim}
. test white = -.2
 (1) [los]white = -.2
 chi2(1) = 2.83
 Prob > chi2 = 0.0924
\end{verbatim}

which indicates that \(-0.15\) (coefficient on \textit{white}) is not significantly different at a 5% level from \(-0.20\). However, we want to use a likelihood-ratio test, which is usually a more reliable test of parameter estimate significance. Stata provides a command that stores the likelihood from the unrestricted model (above) and then compares it with a restricted model. Having fit the unrestricted model, our attention now turns to fitting a model satisfying our specific set of constraints. Our constraint is that the coefficient on \textit{white} be restricted to the constant value \(-0.20\).

First, we store the log-likelihood value from the unrestricted model, and then we generate a variable indicative of our constraint. This new variable contains the restrictions that we will then supply to the software for fitting the restricted model. In short, the software will add our restriction any time that it calculates the linear predictor \(x_i\beta\). Because we envision a model for which the coefficient of \textit{white} is equal to \(-0.20\), we need to generate a variable that is equal to \(-0.20\) times the variable \textit{white}.
2.5 Summary

```
. estimates store Unconstrained
. generate offvar = -.20*white
. glm los hmo type2 type3, family(poisson) link(log) offset(offvar) nolog
Generalized linear models
No. of obs = 1,495
Optimization : ML
Residual df = 1,491
Scale parameter = 1
Deviance = 8146.531652 (1/df) Deviance = 5.463133
Pearson = 9334.640731 (1/df) Pearson = 6.260658
Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
AIC = 9.27671
Log likelihood = -6930.340612 BIC = -2753.502

| GIM   | los          | Coef.     | Std. Err. | z   | P>|z| | [95% Conf. Interval] |
|-------|--------------|-----------|-----------|-----|-----|----------------------|
| hmo   | -.0696133    | .0239174  | -2.91     | 0.004 | .1164906 | .022736              |
| type2 | .218131      | .020951   | 10.41     | 0.000 | .1770677 | .2591942             |
| type3 | .7079687     | .0281214  | 27.10     | 0.000 | .6567717 | .7591658             |
| _cons | 2.374881     | .0107941  | 220.22    | 0.000 | 2.353744 | 2.396017             |
| offvar| 1 (offset)   |           |           |      |      |                      |
```

LR test Unconstrained
Likelihood-ratio test
(Assumption: . nested in Unconstrained)
LR chi2(1) = 2.87
Prob > chi2 = 0.0906

Because we restricted one coefficient from our full model, the likelihood-ratio statistic is distributed as a chi-squared random variable with one degree of freedom. We fail to reject the hypothesis that the coefficient on white is equal to −0.20 at the 5% level.

Restricting coefficients for likelihood-ratio tests is just one use for offsets. Later, we discuss how to use offsets to account for exposure in count-data models.

2.5 Summary

The class of GLMs extends traditional linear models so that a linear predictor is mapped through a link function to model the mean of a response characterized by any member of the exponential family of distributions. Because we are able to develop one algorithm to fit the entire class of models, we can support estimation of such useful statistical models as logit, probit, and Poisson.

The traditional linear model is not appropriate when it is unreasonable to assume that data are normally distributed or if the response variable has a limited outcome set. Furthermore, in many instances in which homoskedasticity is an untenable requirement, the linear model is inappropriate. The GLM allows these extensions to the linear model.

A GLM is constructed by first selecting explanatory variables for the response variable of interest. A probability distribution that is a member of the exponential family is selected, and an appropriate link function is specified, for which the mapped range of values supports the implied variance function of the distribution.