
An Introduction to Stata

Programming

Christopher F. Baum
Boston College

A Stata Press Publication
StataCorp LP
College Station, Texas

Copyright c© 2009 by StataCorp LP
All rights reserved. First edition 2009

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in LATEX2ε
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-59718-045-9
ISBN-13: 978-1-59718-045-0

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without
the prior written permission of StataCorp LP.

Stata is a registered trademark of StataCorp LP. LATEX2ε is a trademark of the American
Mathematical Society.

Contents

List of tables xv

List of figures xvii

Preface xix

Acknowledgments xxi

Notation and typography xxiii

1 Why should you become a Stata programmer? 1

Do-file programming . 1

Ado-file programming . 2

Mata programming for ado-files 2

1.1 Plan of the book . 3

1.2 Installing the necessary software . 3

2 Some elementary concepts and tools 5

2.1 Introduction . 5

2.1.1 What you should learn from this chapter 5

2.2 Navigational and organizational issues 5

2.2.1 The current working directory and profile.do 6

2.2.2 Locating important directories: sysdir and adopath 6

2.2.3 Organization of do-files, ado-files, and data files 7

2.3 Editing Stata do- and ado-files . 8

2.4 Data types . 9

2.4.1 Storing data efficiently: The compress command 11

2.4.2 Date and time handling . 11

2.4.3 Time-series operators . 12

2.5 Handling errors: The capture command 14

viii Contents

2.6 Protecting the data in memory: The preserve and restore commands 14

2.7 Getting your data into Stata . 15

2.7.1 Inputting data from ASCII text files and spreadsheets . . . 15

Handling text files . 16

Free format versus fixed format 17

The insheet command . 18

Accessing data stored in spreadsheets 20

Fixed-format data files . 20

2.7.2 Importing data from other package formats 25

2.8 Guidelines for Stata do-file programming style 26

2.8.1 Basic guidelines for do-file writers 27

2.8.2 Enhancing speed and efficiency 29

2.9 How to seek help for Stata programming 29

3 Do-file programming: Functions, macros, scalars, and matrices 33

3.1 Introduction . 33

3.1.1 What you should learn from this chapter 33

3.2 Some general programming details 34

3.2.1 The varlist . 35

3.2.2 The numlist . 35

3.2.3 The if exp and in range qualifiers 35

3.2.4 Missing data handling . 36

Recoding missing values: The mvdecode and mvencode
commands . 37

3.2.5 String-to-numeric conversion and vice versa 37

Numeric-to-string conversion 38

Working with quoted strings 39

3.3 Functions for the generate command 40

3.3.1 Using if exp with indicator variables 42

3.3.2 The cond() function . 44

3.3.3 Recoding discrete and continuous variables 45

Contents ix

3.4 Functions for the egen command . 47

Official egen functions . 47

egen functions from the user community 49

3.5 Computation for by-groups . 50

3.5.1 Observation numbering: n and N 50

3.6 Local macros . 53

3.7 Global macros . 56

3.8 Extended macro functions and macro list functions 56

3.8.1 System parameters, settings, and constants: creturn 57

3.9 Scalars . 58

3.10 Matrices . 60

4 Cookbook: Do-file programming I 63

4.1 Tabulating a logical condition across a set of variables 63

4.2 Computing summary statistics over groups 65

4.3 Computing the extreme values of a sequence 66

4.4 Computing the length of spells . 67

4.5 Summarizing group characteristics over observations 71

4.6 Using global macros to set up your environment 73

4.7 List manipulation with extended macro functions 74

4.8 Using creturn values to document your work 76

5 Do-file programming: Validation, results, and data management 79

5.1 Introduction . 79

5.1.1 What you should learn from this chapter 79

5.2 Data validation: The assert, count, and duplicates commands 79

5.3 Reusing computed results: The return and ereturn commands 86

5.3.1 The ereturn list command 90

5.4 Storing, saving, and using estimated results 93

5.4.1 Generating publication-quality tables from stored estimates 98

5.5 Reorganizing datasets with the reshape command 99

5.6 Combining datasets . 105

x Contents

5.7 Combining datasets with the append command 107

5.8 Combining datasets with the merge command 108

5.8.1 The dangers of many-to-many merges 110

5.9 Other data-management commands 111

5.9.1 The fillin command . 112

5.9.2 The cross command . 112

5.9.3 The stack command . 112

5.9.4 The separate command . 114

5.9.5 The joinby command . 115

5.9.6 The xpose command . 115

6 Cookbook: Do-file programming II 117

6.1 Efficiently defining group characteristics and subsets 117

6.1.1 Using a complicated criterion to select a subset of observations 118

6.2 Applying reshape repeatedly . 119

6.3 Handling time-series data effectively 123

6.4 reshape to perform rowwise computation 126

6.5 Adding computed statistics to presentation-quality tables 128

6.5.1 Presenting marginal effects rather than coefficients 130

6.6 Generating time-series data at a lower frequency 132

7 Do-file programming: Prefixes, loops, and lists 139

7.1 Introduction . 139

7.1.1 What you should learn from this chapter 139

7.2 Prefix commands . 139

7.2.1 The by prefix . 140

7.2.2 The xi prefix . 142

7.2.3 The statsby prefix . 145

7.2.4 The rolling prefix . 146

7.2.5 The simulate and permute prefix 148

7.2.6 The bootstrap and jackknife prefixes 151

7.2.7 Other prefix commands . 153

Contents xi

7.3 The forvalues and foreach commands 154

8 Cookbook: Do-file programming III 161

8.1 Handling parallel lists . 161

8.2 Calculating moving-window summary statistics 162

8.2.1 Producing summary statistics with rolling and merge 164

8.2.2 Calculating moving-window correlations 165

8.3 Computing monthly statistics from daily data 166

8.4 Requiring at least n observations per panel unit 167

8.5 Counting the number of distinct values per individual 169

9 Do-file programming: Other topics 171

9.1 Introduction . 171

9.1.1 What you should learn from this chapter 171

9.2 Storing results in Stata matrices . 171

9.3 The post and postfile commands . 175

9.4 Output: The outsheet, outfile, and file commands 177

9.5 Automating estimation output . 181

9.6 Automating graphics . 184

9.7 Characteristics . 188

10 Cookbook: Do-file programming IV 191

10.1 Computing firm-level correlations with multiple indices 191

10.2 Computing marginal effects for graphical presentation 194

10.3 Automating the production of LATEX tables 197

10.4 Tabulating downloads from the Statistical Software Components
archive . 202

10.5 Extracting data from graph files’ sersets 204

10.6 Constructing continuous price and returns series 209

11 Ado-file programming 215

11.1 Introduction . 215

11.1.1 What you should learn from this chapter 216

11.2 The structure of a Stata program . 216

xii Contents

11.3 The program statement . 217

11.4 The syntax and return statements 218

11.5 Implementing program options . 221

11.6 Including a subset of observations . 222

11.7 Generalizing the command to handle multiple variables 224

11.8 Making commands byable . 226

Program properties . 228

11.9 Documenting your program . 228

11.10 egen function programs . 231

11.11 Writing an e-class program . 232

11.11.1 Defining subprograms . 234

11.12 Certifying your program . 234

11.13 Programs for ml, nl, nlsur, simulate, bootstrap, and jackknife 236

Writing an ml-based command 237

11.13.1 Programs for the nl and nlsur commands 240

11.13.2 Programs for the simulate, bootstrap, and jackknife prefixes 242

11.14 Guidelines for Stata ado-file programming style 244

11.14.1 Presentation . 244

11.14.2 Helpful Stata features . 245

11.14.3 Respect for datasets . 246

11.14.4 Speed and efficiency . 246

11.14.5 Reminders . 247

11.14.6 Style in the large . 247

11.14.7 Use the best tools . 248

12 Cookbook: Ado-file programming 249

12.1 Retrieving results from rolling: . 249

12.2 Generalization of egen function pct9010() to support all pairs of
quantiles . 252

12.3 Constructing a certification script . 254

Contents xiii

12.4 Using the ml command to estimate means and variances 259

12.4.1 Applying equality constraints in ml estimation 261

12.5 Applying inequality constraints in ml estimation 262

12.6 Generating a dataset containing the single longest spell 267

13 Mata functions for ado-file programming 271

13.1 Mata: First principles . 271

13.1.1 What you should learn from this chapter 272

13.2 Mata fundamentals . 272

13.2.1 Operators . 272

13.2.2 Relational and logical operators 274

13.2.3 Subscripts . 274

13.2.4 Populating matrix elements 275

13.2.5 Mata loop commands . 276

13.2.6 Conditional statements . 278

13.3 Function components . 279

13.3.1 Arguments . 279

13.3.2 Variables . 280

13.3.3 Saved results . 280

13.4 Calling Mata functions . 281

13.5 Mata’s st interface functions . 283

13.5.1 Data access . 283

13.5.2 Access to locals, globals, scalars, and matrices 285

13.5.3 Access to Stata variables’ attributes 286

13.6 Example: st interface function usage 286

13.7 Example: Matrix operations . 288

13.7.1 Extending the command . 293

13.8 Creating arrays of temporary objects with pointers 295

13.9 Structures . 299

13.10 Additional Mata features . 302

13.10.1 Macros in Mata functions 302

xiv Contents

13.10.2 Compiling Mata functions 303

13.10.3 Building and maintaining an object library 304

13.10.4 A useful collection of Mata routines 305

14 Cookbook: Mata function programming 307

14.1 Reversing the rows or columns of a Stata matrix 307

14.2 Shuffling the elements of a string variable 311

14.3 Firm-level correlations with multiple indices with Mata 312

14.4 Passing a function to a Mata function 316

14.5 Using subviews in Mata . 319

14.6 Storing and retrieving country-level data with Mata structures . . . 321

14.7 Locating nearest neighbors with Mata 327

14.8 Computing the seemingly unrelated regression estimator 331

14.9 A GMM-CUE estimator using Mata’s optimize() functions 337

References 349

Author index 353

Subject index 355

Preface

This book is a concise introduction to the art of Stata programming. It covers three
types of programming that can be used in working with Stata: do-file programming,
ado-file programming, and Mata functions that work in conjunction with do- and ado-
files. Its emphasis is on the automation of your work with Stata and how programming
on one or more of these levels can help you use Stata more effectively.

In the development of these concepts, I do not assume that you have prior experience
with Stata programming, although familiarity with the command-line interface is help-
ful. Examples are drawn from several disciplines, although my background as an applied
econometrician is evident in the selection of some sample problems. The introductory
chapter motivates the why: why should you invest time and effort into learning Stata
programming? In chapter 2, I discuss elementary concepts of the command-line interface
and describe some commonly used tools for working with programs and datasets.

The format of the book may be unfamiliar to readers who have some familiarity
with other books that help you learn how to use Stata. Beginning with chapter 3,
each odd-numbered chapter is followed by a “cookbook” chapter containing several
“recipes”, 40 in total. Each recipe poses a problem: how can I perform a certain task
with Stata programming? The recipe then provides a complete solution to the problem
and describes how the features presented in the previous chapter can be put to good use.
As in the kitchen, you may not want to follow a recipe exactly from the cookbook; just
as in cuisine, a minor variation on the recipe may meet your needs, or the techniques
presented in that recipe can help you see how Stata programming applies to your specific
problem.

Most Stata users who delve into programming make use of do-files to automate and
document their work. Consequently, the major focus of the book is do-file program-
ming, covered in chapters 3, 5, 7, and 9. Some users will find that writing formal Stata
programs, or ado-files, meets their needs. Chapter 11 is a concise summary of ado-
file programming, with the following cookbook chapter presenting several recipes that
contain developed ado-files. Stata’s matrix programming language, Mata, can also be
helpful in automating certain tasks. Chapter 13 presents a summary of Mata concepts
and the key features that allow interchange of variables, scalars, macros, and matrices.
The last chapter presents several examples of Mata functions developed to work with
ado-files. All the do-files, ado-files, Mata functions, and datasets used in the book’s ex-
amples and recipes are available from the Stata Press web site, as discussed in Notation
and typography.

3 Do-file programming: Functions,
macros, scalars, and matrices

3.1 Introduction

This chapter describes several elements of do-file programming: functions used to gener-
ate new variables; macros that store individual results; and lists, scalars, and matrices.
Although functions will be familiar to all users of Stata, macros and scalars are often
overlooked by interactive users. Because nearly all Stata commands return results in
the form of macros and scalars, familiarity with these concepts is useful.

The first section of the chapter deals with several general details: varlists, numlists,
if exp and in range qualifiers, missing data handling, and string-to-numeric conversion
(and vice versa). Subsequent sections present functions for generate, functions for egen
([D] egen), computation with a by varlist:, and an introduction to macros, scalars, and
matrices.

3.1.1 What you should learn from this chapter

• Understand varlists, numlists, and if and in qualifiers

• Know how to handle missing data and conversion of values to missing and vice
versa

• Understand string-to-numeric conversion and vice versa

• Be familiar with functions for use with generate

• Understand how to recode discrete and continuous variables

• Be familiar with the capabilities of egen functions

• Know how to use by-groups effectively

• Understand the use of local and global macros

• Be familiar with extended macro functions and macro list functions

• Understand how to use numeric and string scalars

• Know how to use matrices to retrieve and store results

33

34 Chapter 3 Do-file programming: Functions, macros, scalars, and matrices

3.2 Some general programming details

In this section, we use the census2c dataset of U.S. state-level statistics to illustrate
details of do-file programming:

. use census2c
(1980 Census data for NE and NC states)

. list, sep(0)

state region pop popurb medage marr divr

1. Connecticut NE 3107.6 2449.8 32.00 26.0 13.5
2. Illinois N Cntrl 11426.5 9518.0 29.90 109.8 51.0
3. Indiana N Cntrl 5490.2 3525.3 29.20 57.9 40.0
4. Iowa N Cntrl 2913.8 1708.2 30.00 27.5 11.9
5. Kansas N Cntrl 2363.7 1575.9 30.10 24.8 13.4
6. Maine NE 1124.7 534.1 30.40 12.0 6.2
7. Massachusetts NE 5737.0 4808.3 31.20 46.3 17.9
8. Michigan N Cntrl 9262.1 6551.6 28.80 86.9 45.0
9. Minnesota N Cntrl 4076.0 2725.2 29.20 37.6 15.4
10. Missouri N Cntrl 4916.7 3349.6 30.90 54.6 27.6
11. Nebraska N Cntrl 1569.8 987.9 29.70 14.2 6.4
12. New Hampshire NE 920.6 480.3 30.10 9.3 5.3
13. New Jersey NE 7364.8 6557.4 32.20 55.8 27.8
14. New York NE 17558.1 14858.1 31.90 144.5 62.0
15. N. Dakota N Cntrl 652.7 318.3 28.30 6.1 2.1
16. Ohio N Cntrl 10797.6 7918.3 29.90 99.8 58.8
17. Pennsylvania NE 11863.9 8220.9 32.10 93.7 34.9
18. Rhode Island NE 947.2 824.0 31.80 7.5 3.6
19. S. Dakota N Cntrl 690.8 320.8 28.90 8.8 2.8
20. Vermont NE 511.5 172.7 29.40 5.2 2.6
21. Wisconsin N Cntrl 4705.8 3020.7 29.40 41.1 17.5

This dataset, census2c, is arranged in tabular format, similarly to a spreadsheet. The
table rows are the observations, cases, or records. The columns are the Stata variables,
or fields. We see that there are 21 rows, each corresponding to one U.S. state in the North
East or North Central regions, and seven columns, or variables: state, region, pop,
popurb, medage, marr, and divr. The variables pop and popurb represent each state’s
1980 population and urbanized population, respectively, in thousands. The variable
medage, median age, is measured in years, while the variables marr and divr represent
the number of marriages and divorces, respectively, in thousands.

The Stata variable names must be distinct and follow certain rules of syntax. For
instance, they cannot contain embedded spaces, hyphens (-), or characters outside the
sets A-Z, a-z, 0-9, and . In particular, a full stop, or period (.), cannot appear
within a variable name. Variable names must start with a letter or an underscore. Most
importantly, case matters: STATE, State, and state are three different variables to
Stata. The Stata convention, which I urge you to adopt, is to use lowercase names for
all variables to avoid confusion and to use uppercase only for some special reason. You
can always use variable labels to hold additional information.

3.2.3 The if exp and in range qualifiers 35

3.2.1 The varlist

Many Stata commands accept a varlist, a list of one or more variables to be used. A
varlist can contain the variable names, or you can use a wild card (*), such as in *id.
The * will stand in for an arbitrary set of characters. In the census2c dataset, pop*
will refer to both pop and popurb:

. summarize pop*

Variable Obs Mean Std. Dev. Min Max

pop 21 5142.903 4675.152 511.456 17558.07
popurb 21 3829.776 3851.458 172.735 14858.07

A varlist can also contain a hyphenated list, such as dose1-dose4. This hyphenated
list refers to all variables in the dataset between dose1 and dose4, including those two,
in the order the variables appear in the dataset. The order of variables is provided
by describe and is shown in the Variables window. It can be modified by the order
command.

3.2.2 The numlist

Many Stata commands require the use of a numlist, a list of numeric arguments. A
numlist can be provided in several ways. It can be spelled out explicitly, as in 0.5 1.0
1.5. It may involve a range of values, such as 1/4 or -3/3; these lists would include
the integers between those limits. You could also specify 10 15 to 30, which would
count from 10 to 30 by 5s, or you could use a colon to say the same thing: 10 15:30.
You can count by steps, as in 1(2)9, which is a list of the first five odd integers, or
9(-2)1, which is the same list in reverse order. Square brackets can be used in place of
parentheses.

One thing that generally should not appear in a numlist is a comma. A comma
in a numlist will usually cause a syntax error. Other programming languages’ loop
constructs often spell out a range with an expression, such as 1,10. In Stata, such an
expression will involve a numlist of 1/10. One of the primary uses of the numlist is for
the forvalues ([P] forvalues) statement, which is described in section 7.3 (but not all
valid numlists are acceptable in forvalues).

3.2.3 The if exp and in range qualifiers

Stata commands operate on all the observations in memory by default. Almost all Stata
commands accept qualifiers: if exp and in range clauses that restrict the command to
a subset of the observations. If we wanted to apply a transformation to a subset of the
dataset or wanted to list ([D] list) only certain observations or summarize only those
observations that met some criterion, we would use an if exp or an in range clause on
the command.

36 Chapter 3 Do-file programming: Functions, macros, scalars, and matrices

In many problems, the desired subset of the data is not defined in terms of observa-
tion numbers (as specified with in range) but in terms of some logical condition. Then
it is more useful to use the if exp qualifier. We could, of course, use if exp to express
an in range condition. But the most common use of if exp involves the transformation
of data or the specification of a statistical procedure for a subset of data identified by
if exp as a logical condition. Here are some examples to illustrate these qualifiers:

. list state pop in 1/5

state pop

1. Connecticut 3107.6
2. Illinois 11426.5
3. Indiana 5490.2
4. Iowa 2913.8
5. Kansas 2363.7

. list state pop medage if medage >= 32

state pop medage

1. Connecticut 3107.6 32.00
13. New Jersey 7364.8 32.20
17. Pennsylvania 11863.9 32.10

3.2.4 Missing data handling

Stata possesses 27 numeric missing value codes: the system missing value . and 26
others from .a through .z. They are treated as large positive values, and they sort
in that order; plain . is the smallest missing value (see [U] 12.2.1 Missing values).
This allows qualifiers such as if variable <. to exclude all possible missing values.1 To
make your code as readable as possible, use the missing() ([D] functions) function
described below.

Stata’s standard practice for missing data handling is to omit those observations from
any computation. For generate or replace, missing values are typically propagated
so that any function of missing data is missing. In univariate statistical computations
(such as summarize) computing a mean or standard deviation, only nonmissing cases
are considered. For multivariate statistical commands, Stata generally practices case-
wise deletion, which is when an observation in which any variable is missing is deleted
from the computation. The missing(x1,x2,...,xn) function returns 1 if any of the
arguments are missing, and 0 otherwise; that is, it provides the user with a casewise
deletion indicator.

1. Before version 8, Stata user code often used qualifiers like if variable != . to rule out missing
values. That is now dangerous practice because that qualifier will capture only the . missing data
code. If any of the additional codes are present in the data (for instance, by virtue of having used
Stat/Transfer to convert an SPSS or SAS dataset to Stata format), they will be handled properly
only when if variable <. or if !missing(variable) is used.

3.2.5 String-to-numeric conversion and vice versa 37

Several Stata commands handle missing data in nonstandard ways. The functions
max() and min() and the egen rowwise functions (rowmax(), rowmean(), rowmin(),
rowsd(), and rowtotal()) all ignore missing values (see section 3.4). For example,
rowmean(x1,x2,x3) will compute the mean of three, two, or one of the variables, re-
turning missing only if all three variables’ values are missing for that observation. The
egen functions rownonmiss() and rowmiss() return, respectively, the number of non-
missing and missing elements in their varlists. Although correlate varlist ([R] corre-
late) uses casewise deletion to remove any observation containing missing values in any
variable of the varlist from the computation of the correlation matrix, the alternative
command pwcorr computes pairwise correlations using all the available data for each
pair of variables.

We have discussed missing values in numeric variables, but Stata also provides for
missing values in string variables. The empty, or null, string ("") is taken as missing.
There is an important difference in Stata between a string variable containing one
or more spaces and a string variable containing no spaces (although they will appear
identical to the naked eye). This suggests that you should not include one or more
spaces as a possible value of a string variable; take care if you do.

Recoding missing values: The mvdecode and mvencode commands

When importing data from another statistical package, spreadsheet, or database, dif-
fering notions of missing data codes can hinder the proper rendition of the data within
Stata. Likewise, if the data are to be used in another program that does not use the .
notation for missing data codes, there may be a need to use an alternative representation
of Stata’s missing data. The mvdecode and mvencode commands (see [D] mvencode)
can be useful in those circumstances. The mvdecode command permits you to recode
various numeric values to missing, as would be appropriate when missing data have
been represented as −99,−999, 0.001, and so on. Stata’s full set of 27 numeric missing
data codes can be used, so that −9 can be mapped to .a, −99 can be mapped to .b,
etc. The mvencode command provides the inverse function, allowing Stata’s missing
values to be revised to numeric form. Like mvdecode, mvencode can map each of the 27
numeric missing data codes to a different numeric value.

Many of the thorny details involved with the reliable transfer of missing data values
between packages are handled competently by Stat/Transfer. This third-party appli-
cation (remarketed by StataCorp) can handle the transfer of variable and value labels
between major statistical packages and can create subsets of files’ contents (e.g., only
selected variables are translated into the target format); it is well worth the cost for
those researchers who frequently import or export datasets.

3.2.5 String-to-numeric conversion and vice versa

Stata has two major kinds of variables: string and numeric. Quite commonly, a variable
imported from an external source will be misclassified as string when it should be

38 Chapter 3 Do-file programming: Functions, macros, scalars, and matrices

considered as numeric. For instance, if the first value read by insheet is NA, that variable
will be classified as a string variable. Stata provides several methods for converting
string variables to numeric.

First, if the variable has merely been misclassified as string, you can apply the brute
force approach of the real() function, e.g., generate patid = real(patientid).
This will create missing values for any observations that cannot be interpreted as nu-
meric.

Second, a more subtle approach is given by the destring command, which can
transform variables in place (with the replace option) and can be used with a varlist
to apply the same transformation to an entire set of variables with one command. This
is useful if there are several variables that require conversion. However, destring should
be used only for variables that have genuine numeric content but happen to have been
misclassified as string variables.

Third, if the variable truly has string content and you need a numeric equivalent,
you can use the encode command. You should not apply encode to a string variable
that has purely numeric content (for instance, one that has been misclassified as a string
variable) because encode will attempt to create a value label for each distinct value of
the variable. As an example, we create a numeric equivalent of the state variable:

. encode state, generate(stateid)

. describe state stateid

storage display value
variable name type format label variable label

state str13 %-13s State
stateid long %13.0g stateid State

. list state stateid in 1/5

state stateid

1. Connecticut Connecticut
2. Illinois Illinois
3. Indiana Indiana
4. Iowa Iowa
5. Kansas Kansas

Although stateid is numeric, it has automatically been given the value label of the
values of state. To see the numeric values, use list with the nolabel option.

Numeric-to-string conversion

You may also need to generate the string equivalent of a numeric variable. Often it is
easier to parse the contents of string variables and extract substrings that may have
some particular significance. Such transformations can be applied to integer numeric
variables by means of integer division and remainders, but these transformations are
generally more cumbersome and error-prone. The limits to exact representation of

3.2.5 String-to-numeric conversion and vice versa 39

numeric values, such as integers, with many digits are circumvented by placing those
values in string form. A thorough discussion of these issues is given in Cox (2002c).

We discussed three methods for string-to-numeric conversion. For each method, the
inverse function or command is available for numeric-to-string conversion: the string()
function, tostring, and decode. The string() function is useful in allowing a numeric
display format ([D] format) to be used. This would allow, for instance, the creation
of a variable with leading zeros, which are integral in some ID-number schemes. The
tostring command provides a more comprehensive approach: it contains various safe-
guards to prevent the loss of information and can be used with a particular display
format. Like destring, tostring can be applied to a varlist to alter an entire set of
variables.

A common task is the restoration of leading zeros in a variable that has been trans-
ferred from a spreadsheet. For instance, U.S. zip (postal) codes and Social Security
numbers can start with zero. The tostring command is useful here. Say, for example,
that we have a variable, zip:

tostring zip, format(%05.0f) generate(zipstring)

The variable zipstring will contain strings of five-digit numbers with leading zeros
included, as specified by the format() option.

To illustrate decode, let’s say that you have the stateid numeric variable defined
above (with its value label) in your dataset but you do not have the variable in string
form. You can create the string variable statename by using decode:

. decode stateid, generate(statename)

. list stateid statename in 1/5

stateid statename

1. Connecticut Connecticut
2. Illinois Illinois
3. Indiana Indiana
4. Iowa Iowa
5. Kansas Kansas

To use decode, the numeric variable to be decoded must have a value label.

Working with quoted strings

You may be aware that display "this is a quoted string" will display the contents
of that quoted string. What happens, though, if your string itself contains quotation
marks? Then you must resort to compound double quotes. A command such as

. display ‘"This is a "quoted" string."’

40 Chapter 3 Do-file programming: Functions, macros, scalars, and matrices

will properly display the string, with the inner quotation marks intact. If ordinary
double quotes are used, Stata will produce an error message. Compound double quotes
can often be used advantageously when there is any possibility that the contents of
string variables might include quotation marks.

3.3 Functions for the generate command

The fundamental commands for data transformation are generate and replace. They
function in the same way, but two rules govern their use. generate can be used only
to create a new variable, one whose name is not currently in use. On the other hand,
replace can be used only to revise the contents of an existing variable. Unlike other
Stata commands whose names can be abbreviated, replace must be spelled out for
safety’s sake.

We illustrate the use of generate by creating a new variable in our dataset that
measures the fraction of each state’s population living in urban areas in 1980. We need
only specify the appropriate formula, and Stata will automatically apply that formula to
every observation that is specified by the generate command, using the rules of algebra.
For instance, if the formula would result in a division by zero for a given state, the result
for that state would be flagged as missing. We generate the fraction, urbanized, and
use the summarize command to display its descriptive statistics:

. generate urbanized = popurb / pop

. summarize urbanized

Variable Obs Mean Std. Dev. Min Max

urbanized 21 .6667691 .1500842 .3377319 .8903645

We see that the average state in this part of the United States is 66.7% urbanized, with
that fraction ranging from 34% to 89%.

If the urbanized variable already existed, but we wanted to express it as a percentage
rather than a decimal fraction, we must use replace:

. replace urbanized = 100 * urbanized
(21 real changes made)

. summarize urbanized

Variable Obs Mean Std. Dev. Min Max

urbanized 21 66.67691 15.00843 33.77319 89.03645

replace reports the number of changes it made; here it changed all 21 observations.

The concern for efficiency of a do-file is first a concern for human efficiency. You
should write the data transformations as a simple, succinct set of commands that can
readily be audited and modified. You may find that there are several ways to create
the same variable by using generate and replace. It is usually best to stick with the
simplest and clearest form of these statements.

3.3 Functions for the generate command 41

A variety of useful functions are located in Stata’s programming functions cate-
gory (help programming functions or [D] functions). For instance, several replace
statements might themselves be replaced with one call to the inlist() or inrange()
functions (see Cox [2006c]). The former will allow the specification of a variable and
a list of values. It returns 1 for each observation if the variable matches one of the
elements of the list, and 0 otherwise. The function can be applied to either numeric or
string variables. For string variables, up to 10 string values can be specified in the list.
For example,

. generate byte newengland = inlist(state, "Connecticut", "Maine",
> "Massachusetts", "New Hampshire", "Rhode Island", "Vermont")

. sort medage

. list state medage pop if newengland, sep(0)

state medage pop

6. Vermont 29.40 511.5
13. New Hampshire 30.10 920.6
14. Maine 30.40 1124.7
16. Massachusetts 31.20 5737.0
17. Rhode Island 31.80 947.2
19. Connecticut 32.00 3107.6

The inrange() function allows the specification of a variable and an interval on
the real line and returns 1 or 0 to indicate whether the variable’s values fall within the
interval (which can be open, i.e., one limit can be ±∞). For example,

. list state medage pop if inrange(pop, 5000, 9999), sep(0)

state medage pop

2. Michigan 28.80 9262.1
4. Indiana 29.20 5490.2
16. Massachusetts 31.20 5737.0
21. New Jersey 32.20 7364.8

Several data transformations involve the use of integer division, that is, truncating
the remainder. For instance, four-digit U.S. Standard Industrial Classification (SIC)
codes 3211–3299 divided by 100 must each yield 32. This is accomplished with the int()
function (defined in help math functions).2 A common task involves extracting one
or more digits from an integer code; for instance, the third and fourth digits of the codes
above can be defined as

generate digit34 = SIC - int(SIC / 100) * 100

or

generate mod34 = mod(SIC,100)

2. Also see the discussion of the floor() and ceil() functions in section 3.3.3.

42 Chapter 3 Do-file programming: Functions, macros, scalars, and matrices

where the second construct makes use of the modulo (mod()) function (see Cox [2007d]).
The third digit alone could be extracted with

generate digit3 = int((SIC - int(SIC / 100) * 100) / 10)

or

generate mod3 = (mod(SIC, 100) - mod(SIC, 10)) / 10

or even

generate sub3 = real(substr(string(SIC), 3, 1))

using the string() function to express SIC as a string, the substr() function to extract
the desired piece of that string, and the real() function to convert the extracted string
into numeric form.

As discussed in section 2.4, you should realize the limitations of this method in
dealing with very long integers, such as U.S. Social Security numbers of nine digits or
ID codes of 10 or 12 digits. The functions maxbyte(), maxint(), and maxlong() are
useful here. An excellent discussion of these issues is given in Cox (2002c).

Lastly, we must mention one exceedingly useful function for generate: the sum()
function, which produces cumulative or running sums. That capability is useful in the
context of time-series data, where it can be used to convert a flow or other rate variable
into a stock or other amount variable. If we have an initial capital stock value and a
net investment series, the sum() of investment plus the initial capital stock defines the
capital stock at each point in time. This function does not place the single sum of the
series into the new variable. If that is what you want, use the egen function total().

3.3.1 Using if exp with indicator variables

A key element of many empirical research projects is the indicator variable: a variable
taking on the values (0, 1) to indicate whether a particular condition is satisfied. These
are also commonly known as dummy variables or Boolean variables. The creation of
indicator variables is best accomplished by using a Boolean condition: an expression
that evaluates to true or false for each observation. The if exp qualifier has an important
role here as well. Using our dataset, it would be possible to generate indicator variables
for small and large states with the following commands. As I note below, we must take
care to handle potentially missing values by using the missing() function.

. generate smallpop = 0

. replace smallpop = 1 if pop <= 5000 & !missing(pop)
(13 real changes made)

. generate largepop = 0

. replace largepop = 1 if pop > 5000 & !missing(pop)
(8 real changes made)

