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Preface

This book is a concise introduction to the art of Stata programming. It covers three
types of programming that can be used in working with Stata: do-file programming,
ado-file programming, and Mata functions that work in conjunction with do- and ado-
files. Its emphasis is on the automation of your work with Stata and how programming
on one or more of these levels can help you use Stata more effectively.

In the development of these concepts, I do not assume that you have prior experience
with Stata programming, although familiarity with the command-line interface is help-
ful. While examples are drawn from several disciplines, my background as an applied
econometrician is evident in the selection of some sample problems. The introductory
first chapter motivates the why: why should you invest time and effort into learning
Stata programming? In chapter 2, I discuss elementary concepts of the command-
line interface and describe some commonly used tools for working with programs and
datasets.

The format of the book may be unfamiliar to readers who have some familiarity
with other books that help you learn how to use Stata. Beginning with chapter 4,
each even-numbered chapter is a “cookbook” chapter containing several “recipes”, 47
in total. Each recipe poses a problem: how can I perform a certain task with Stata
programming? The recipe then provides a complete worked solution to the problem
and describes how the features presented in the previous chapter can be put to good
use. You may not want to follow a recipe exactly from the cookbook; just as in cuisine,
a minor variation on the recipe may meet your needs, or the techniques presented in
that recipe may help you see how Stata programming applies to your specific problem.

Most Stata users who delve into programming use do-files to automate and document
their work. Consequently, the major focus of the book is do-file programming, covered in
chapters 3, 5, 7, and 9. Some users will find that writing formal Stata programs, or ado-
files, meets their needs. Chapter 11 is a concise summary of ado-file programming, with
the cookbook chapter that follows presenting several recipes that contain developed ado-
files. Stata’s matrix programming language, Mata, can also be helpful in automating
certain tasks. Chapter 13 presents a summary of Mata concepts and the key features
that allow interchange of variables, scalars, macros, and matrices. The last chapter,
cookbook chapter 14, presents several examples of Mata functions developed to work
with ado-files. All the do-files, ado-files, Mata functions, and datasets used in the book’s
examples and recipes are available from the Stata Press website, as discussed in Notation
and typography.



xxii Preface

The second edition of this book contains several new recipes illustrating how do-
files, ado-files, and Mata functions can be used to solve programming problems. Several
recipes have also been updated to reflect new features in Stata added between versions 10
and 14. The discussion of maximum-likelihood function evaluators has been significantly
expanded in this edition. The new topics covered in this edition include factor variables
and operators; use of margins, marginsplot, and suest; Mata-based likelihood function
evaluators; and associative arrays.



 

 

 

 

 

 

 



1 Why should you become a Stata
programmer?

This book provides an introduction to several contexts of Stata programming. I must
first define what I mean by “programming”. You can consider yourself a Stata pro-
grammer if you write do-files, which are text files of sequences of Stata commands that
you can execute with the do ([R] do) command, by double-clicking on the file, or by
running them in the Do-file Editor ([R] doedit). You might also write what Stata for-
mally defines as a program, which is a set of Stata commands that includes the program
([P] program) command. A Stata program, stored in an ado-file, defines a new Stata
command. You can also use Stata’s matrix programming language, Mata, to write rou-
tines in that language that are called by ado-files. Any of these tasks involves Stata
programming.1

With that set of definitions in mind, we must deal with the why: why should you
become a Stata programmer? After answering that essential question, this text takes
up the how: how you can become a more efficient user of Stata by using programming
techniques, be they simple or complex.

Using any computer program or language is all about efficiency—getting the com-
puter to do the work that can be routinely automated, reducing human errors, and
allowing you to more efficiently use your time. Computers are excellent at performing
repetitive tasks; humans are not. One of the strongest rationales for learning how to use
programming techniques in Stata is the potential to shift more of the repetitive burden
of data management, statistical analysis, and production of graphics to the computer.
Let’s consider several specific advantages of using Stata programming techniques in the
three contexts listed above.

1. There are also specialized forms of Stata programming, such as dialog programming, scheme pro-
gramming, and class programming. A user-written program can present a dialog, like any official
Stata command, if its author writes a dialog file. The command can also be added to the User menu
of Stata’s graphical interface. For more information, see [P] dialog programming and [P] win-
dow programming. Graphics users can write their own schemes to set graphic defaults. See
[G-4] schemes intro for details. Class programming allows you to write object-oriented programs
in Stata. As [P] class indicates, this has primarily been used in Stata’s graphics subsystem and
graphical user interface. I do not consider these specialized forms of programming in this book.
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2 Chapter 1 Why should you become a Stata programmer?

Do-file programming

Using a do-file to automate a specific data-management or statistical task leads to
reproducible research and the ability to document the empirical research process. This
reduces the effort needed to perform a similar task at a later point or to document for
your coworkers or supervisor the specific steps you followed. Ideally, your entire research
project should be defined by a set of do-files that execute every step, from the input
of the raw data to the production of the final tables and graphs. Because a do-file can
call another do-file (and so on), a hierarchy of do-files can be used to handle a complex
project.

The beauty of this approach is its flexibility. If you find an error in an earlier stage
of the project, you need only to modify the code and then rerun that do-file and those
following to bring the project up to date. For instance, a researcher may need to respond
to a review of her paper—submitted months ago to an academic journal—by revising
the specification of variables in a set of estimated models and estimating new statistical
results. If all the steps that produce the final results are documented by a set of do-
files, her task is straightforward. I argue that all serious users of Stata should gain some
facility with do-files and the Stata commands that support repetitive use of commands.

That advice does not imply that Stata’s interactive capabilities should be shunned.
Stata is a powerful and effective tool for exploratory data analysis and ad hoc queries
about your data. But data-management tasks and the statistical analyses leading to
tabulated results should not be performed with “point-and-click” tools that leave you
without an audit trail of the steps you have taken.

Ado-file programming

On a second level, you may find that despite the breadth of Stata’s official and user-
written commands, there are tasks you must repeatedly perform that involve variations
on the same do-file. You would like Stata to have a command to perform those tasks.
At that point, you should consider Stata’s ado-file programming capabilities. Stata
has great flexibility: a Stata command need be no more than a few lines of Stata code.
Once defined, that command becomes a “first-class citizen”. You can easily write a Stata
program, stored in an ado-file, that handles all the features of official Stata commands
such as if exp, in range, and command options. You can (and should) write a help
file that documents the program’s operation for your benefit and for those with whom
you share the code. Although ado-file programming requires that you learn how to use
some additional commands used in that context, it can help you become more efficient
in performing the data-management, statistical, or graphical tasks that you face.

Mata programming for ado-files

On a third level, your ado-files can perform some complicated tasks that involve many
invocations of the same commands. Stata’s ado-file language is easy to read and write,
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but it is interpreted. Stata must evaluate each statement and translate it into machine
code. The Mata programming language (help mata) creates compiled code, which can
run much faster than ado-file code. Your ado-file can call a Mata routine to carry out
a computationally intensive task and return the results in the form of Stata variables,
scalars, or matrices. Although you may think of Mata solely as a matrix language,
it is actually a general-purpose programming language, suitable for many nonmatrix-
oriented tasks, such as text processing and list management.

The level of Stata programming that you choose to attain and master depends on
your needs and skills. As I have argued, the vast majority of interactive Stata users
can and should take the next step of learning how to use do-files efficiently to take
full advantage of Stata’s capabilities and to save time. A few hours of investment in
understanding the rudiments of do-file programming—as covered in the chapters to
follow—will save you days or weeks over the course of a sizable research project.

A smaller fraction of users may choose to develop ado-files. Many users find that
those features lacking in official Stata are adequately provided by the work of members
of the Stata user community who have developed and documented ado-files, sharing
them via the Stata Journal, the Statistical Software Components (SSC) archive,2 or
their own user site. However, developing a reading knowledge of ado-file code is highly
useful for many Stata users. It permits you to scrutinize ado-file code—either that
of official Stata or user-written code—and more fully understand how it performs its
function. In many cases, minor modifications to existing code may meet your needs.

Mata has been embraced by programmers wishing to take advantage of its many
features and its speed. Although this book does not discuss interactive use of Mata,
I present two ways in which Mata can be used in ado-files: in “one-liners” to fulfill a
single, specific task, and as functions to be called from ado-files.

1.1 Plan of the book

The chapters of this book present the details of the three types of Stata programming
discussed above, placing the greatest emphasis on effective use of do-file programming.
Each fairly brief chapter on the structure of programming techniques is followed by
a “cookbook” chapter. These chapters contain several “recipes” for the solution of
a particular, commonly encountered problem, illustrating the necessary programming
techniques to compose a solution. Like in a literal cookbook, the recipes here are
illustrative examples; you are free to modify the ingredients to produce a somewhat
different dish. The recipes as presented may not address your precise problem, but they
should prove helpful in devising a solution as a variation on the same theme.

2. For details on the SSC (Boston College) archive of user-contributed routines, type help ssc.



 

 

 

 

 

 

 



4 Cookbook: Do-file programming I

This cookbook chapter presents for Stata do-file programmers several recipes using the
programming features described in the previous chapter. Each recipe poses a problem
and a worked solution. Although you may not encounter this precise problem, you
should be able to recognize its similarities to a task that you would like to automate in
a do-file.

4.1 Tabulating a logical condition across a set of variables

The problem.

When considering many related variables, you want to determine whether, for each
observation, all variables satisfy a logical condition. Alternatively, you might want to
know whether any satisfy that condition (for instance, taking on inappropriate values),
or you might want to count how many of the variables satisfy the logical condition.1

The solution.

This would seem to be a natural application of egen ([D] egen), because that com-
mand already contains many rowwise functions to perform computations across vari-
ables. For instance, the anycount() function counts the number of variables in its
varlist whose values for each observation match those of an integer numlist, whereas the
rowmiss() and rownonmiss() functions tabulate the number of missing and nonmiss-
ing values for each observation, respectively. The three tasks above are all satisfied by
egen functions from Nicholas Cox’s egenmore package: rall(), rany(), and rcount(),
respectively. Why not use those functions, then?

Two reasons come to mind: First, recall that egen functions are interpreted code.
Unlike the built-in functions accessed by generate, the logic of an egen function must be
interpreted each time it is called. For a large dataset, the time penalty can be significant.
Second, to use an egen function, you must remember that there is such a function, and
you must remember its name. In addition to Stata’s official egen functions, documented
in the online help files, there are many user-written egen functions available, but you
must track them down.

For these reasons, current good programming practice suggests that you should avoid
egen function calls in instances where the performance penalty might be an issue. This

1. This recipe relies heavily on Nicholas J. Cox’s egenmore help file.
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