
An Introduction to Stata

Programming

Second Edition

CHRISTOPHER F. BAUM
Department of Economics and School of Social Work

Boston College

®

A Stata Press Publication
StataCorp LP
College Station, Texas

® Copyright c© 2009, 2016 by StataCorp LP
All rights reserved. First edition 2009
Second edition 2016

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in LATEX2ε
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-59718-150-1
ISBN-13: 978-1-59718-150-1

Library of Congress Control Number: 2015955595

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without
the prior written permission of StataCorp LP.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of
StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organi-
zation of the United Nations.

LATEX2ε is a trademark of the American Mathematical Society.

Contents

List of figures xvii

List of tables xix

Preface xxi

Acknowledgments xxiii

Notation and typography xxv

1 Why should you become a Stata programmer? 1

Do-file programming . 2

Ado-file programming . 2

Mata programming for ado-files 2

1.1 Plan of the book . 3

1.2 Installing the necessary software . 4

2 Some elementary concepts and tools 5

2.1 Introduction . 5

2.1.1 What you should learn from this chapter 5

2.2 Navigational and organizational issues 5

2.2.1 The current working directory and profile.do 6

2.2.2 Locating important directories: sysdir and adopath 6

2.2.3 Organization of do-files, ado-files, and data files 7

2.3 Editing Stata do- and ado-files . 8

2.4 Data types . 9

2.4.1 Storing data efficiently: The compress command 11

2.4.2 Date and time handling . 11

2.4.3 Time-series operators . 13

2.4.4 Factor variables and operators 14

viii Contents

2.5 Handling errors: The capture command 16

2.6 Protecting the data in memory: The preserve and restore commands 17

2.7 Getting your data into Stata . 18

2.7.1 Inputting and importing data 18

Handling text files . 19

Free format versus fixed format 20

The import delimited command 21

Accessing data stored in spreadsheets 23

Fixed-format data files . 24

2.7.2 Importing data from other package formats 29

2.8 Guidelines for Stata do-file programming style 30

2.8.1 Basic guidelines for do-file writers 31

2.8.2 Enhancing speed and efficiency 33

2.9 How to seek help for Stata programming 33

3 Do-file programming: Functions, macros, scalars, and matrices 37

3.1 Introduction . 37

3.1.1 What you should learn from this chapter 37

3.2 Some general programming details 38

3.2.1 The varlist . 39

3.2.2 The numlist . 39

3.2.3 The if exp and in range qualifiers 39

3.2.4 Missing-data handling . 40

Recoding missing values: The mvdecode and mvencode
commands . 41

3.2.5 String-to-numeric conversion and vice versa 42

Numeric-to-string conversion 43

Working with quoted strings 44

3.3 Functions for the generate command 44

3.3.1 Using if exp with indicator variables 47

3.3.2 The cond() function . 49

Contents ix

3.3.3 Recoding discrete and continuous variables 49

3.4 Functions for the egen command . 51

Official egen functions . 52

egen functions from the user community 53

3.5 Computation for by-groups . 54

3.5.1 Observation numbering: n and N 55

3.6 Local macros . 57

3.7 Global macros . 60

3.8 Extended macro functions and macro list functions 60

3.8.1 System parameters, settings, and constants: creturn 62

3.9 Scalars . 62

3.10 Matrices . 64

4 Cookbook: Do-file programming I 67

4.1 Tabulating a logical condition across a set of variables 67

4.2 Computing summary statistics over groups 69

4.3 Computing the extreme values of a sequence 70

4.4 Computing the length of spells . 71

4.5 Summarizing group characteristics over observations 76

4.6 Using global macros to set up your environment 78

4.7 List manipulation with extended macro functions 79

4.8 Using creturn values to document your work 81

5 Do-file programming: Validation, results, and data management 83

5.1 Introduction . 83

5.1.1 What you should learn from this chapter 83

5.2 Data validation: The assert, count, and duplicates commands 83

5.3 Reusing computed results: The return and ereturn commands 90

5.3.1 The ereturn list command 94

5.4 Storing, saving, and using estimated results 97

5.4.1 Generating publication-quality tables from stored estimates 102

5.5 Reorganizing datasets with the reshape command 104

x Contents

5.6 Combining datasets . 109

5.7 Combining datasets with the append command 111

5.8 Combining datasets with the merge command 113

5.8.1 The one-to-one match-merge 115

5.8.2 The dangers of many-to-many merges 116

5.9 Other data management commands 117

5.9.1 The fillin command . 117

5.9.2 The cross command . 117

5.9.3 The stack command . 118

5.9.4 The separate command . 119

5.9.5 The joinby command . 120

5.9.6 The xpose command . 121

6 Cookbook: Do-file programming II 123

6.1 Efficiently defining group characteristics and subsets 123

6.1.1 Using a complicated criterion to select a subset of observations 124

6.2 Applying reshape repeatedly . 125

6.3 Handling time-series data effectively 129

6.3.1 Working with a business-daily calendar 132

6.4 reshape to perform rowwise computation 133

6.5 Adding computed statistics to presentation-quality tables 136

6.6 Presenting marginal effects rather than coefficients 138

6.6.1 Graphing marginal effects with marginsplot 140

6.7 Generating time-series data at a lower frequency 141

6.8 Using suest and gsem to compare estimates from nonoverlapping
samples . 146

6.9 Using reshape to produce forecasts from a VAR or VECM 149

6.10 Working with IRF files . 152

7 Do-file programming: Prefixes, loops, and lists 157

7.1 Introduction . 157

7.1.1 What you should learn from this chapter 157

Contents xi

7.2 Prefix commands . 157

7.2.1 The by prefix . 158

7.2.2 The statsby prefix . 160

7.2.3 The xi prefix and factor-variable notation 161

7.2.4 The rolling prefix . 162

7.2.5 The simulate and permute prefixes 164

7.2.6 The bootstrap and jackknife prefixes 167

7.2.7 Other prefix commands . 169

7.3 The forvalues and foreach commands 169

8 Cookbook: Do-file programming III 177

8.1 Handling parallel lists . 177

8.2 Calculating moving-window summary statistics 178

8.2.1 Producing summary statistics with rolling and merge 180

8.2.2 Calculating moving-window correlations 181

8.3 Computing monthly statistics from daily data 182

8.4 Requiring at least n observations per panel unit 184

8.5 Counting the number of distinct values per individual 185

8.6 Importing multiple spreadsheet pages 186

9 Do-file programming: Other topics 189

9.1 Introduction . 189

9.1.1 What you should learn from this chapter 189

9.2 Storing results in Stata matrices . 189

9.3 The post and postfile commands . 193

9.4 Output: The export delimited, outfile, and file commands 196

9.5 Automating estimation output . 199

9.6 Automating graphics . 203

9.7 Characteristics . 207

10 Cookbook: Do-file programming IV 211

10.1 Computing firm-level correlations with multiple indices 211

10.2 Computing marginal effects for graphical presentation 214

xii Contents

10.3 Automating the production of LATEX tables 216

10.4 Extracting data from graph files’ sersets 220

10.5 Constructing continuous price and returns series 225

11 Ado-file programming 231

11.1 Introduction . 231

11.1.1 What you should learn from this chapter 232

11.2 The structure of a Stata program . 232

11.3 The program statement . 233

11.4 The syntax and return statements 234

11.5 Implementing program options . 237

11.6 Including a subset of observations . 238

11.7 Generalizing the command to handle multiple variables 240

11.8 Making commands byable . 242

Program properties . 243

11.9 Documenting your program . 244

11.10 egen function programs . 246

11.11 Writing an e-class program . 248

11.11.1 Defining subprograms . 250

11.12 Certifying your program . 250

11.13 Programs for ml, nl, and nlsur . 252

Maximum likelihood estimation of distributions’ parameters 255

11.13.1 Writing an ml-based command 260

11.13.2 Programs for the nl and nlsur commands 263

11.14 Programs for gmm . 265

11.15 Programs for the simulate, bootstrap, and jackknife prefixes 270

11.16 Guidelines for Stata ado-file programming style 272

11.16.1 Presentation . 273

11.16.2 Helpful Stata features . 274

11.16.3 Respect for datasets . 274

11.16.4 Speed and efficiency . 275

Contents xiii

11.16.5 Reminders . 275

11.16.6 Style in the large . 276

11.16.7 Use the best tools . 276

12 Cookbook: Ado-file programming 277

12.1 Retrieving results from rolling . 277

12.2 Generalization of egen function pct9010() to support all pairs of
quantiles . 280

12.3 Constructing a certification script . 282

12.4 Using the ml command to estimate means and variances 287

12.4.1 Applying equality constraints in ml estimation 289

12.5 Applying inequality constraints in ml estimation 291

12.6 Generating a dataset containing the longest spell 294

12.7 Using suest on a fixed-effects model 297

13 Mata functions for do-file and ado-file programming 301

13.1 Mata: First principles . 301

13.1.1 What you should learn from this chapter 302

13.2 Mata fundamentals . 302

13.2.1 Operators . 303

13.2.2 Relational and logical operators 304

13.2.3 Subscripts . 305

13.2.4 Populating matrix elements 305

13.2.5 Mata loop commands . 307

13.2.6 Conditional statements . 308

13.3 Mata’s st interface functions . 309

13.3.1 Data access . 309

13.3.2 Access to locals, globals, scalars, and matrices 311

13.3.3 Access to Stata variables’ attributes 312

13.4 Calling Mata with a single command line 312

13.5 Components of a Mata function . 316

13.5.1 Arguments . 316

xiv Contents

13.5.2 Variables . 317

13.5.3 Stored results . 317

13.6 Calling Mata functions . 318

13.7 Example: st interface function usage 320

13.8 Example: Matrix operations . 322

13.8.1 Extending the command . 327

13.9 Mata-based likelihood function evaluators 329

13.10 Creating arrays of temporary objects with pointers 331

13.11 Structures . 334

13.12 Additional Mata features . 337

13.12.1 Macros in Mata functions 337

13.12.2 Associative arrays in Mata functions 338

13.12.3 Compiling Mata functions 340

13.12.4 Building and maintaining an object library 341

13.12.5 A useful collection of Mata routines 342

14 Cookbook: Mata function programming 343

14.1 Reversing the rows or columns of a Stata matrix 343

14.2 Shuffling the elements of a string variable 346

14.3 Firm-level correlations with multiple indices with Mata 348

14.4 Passing a function to a Mata function 353

14.5 Using subviews in Mata . 356

14.6 Storing and retrieving country-level data with Mata structures . . . 358

14.7 Locating nearest neighbors with Mata 363

14.8 Using a permutation vector to reorder results 368

14.9 Producing LATEX tables from svy results 370

14.10 Computing marginal effects for quantile regression 375

14.11 Computing the seemingly unrelated regression estimator 379

14.12 A GMM-CUE estimator using Mata’s optimize() functions 384

Contents xv

References 397

Author index 403

Subject index 405

Preface

This book is a concise introduction to the art of Stata programming. It covers three
types of programming that can be used in working with Stata: do-file programming,
ado-file programming, and Mata functions that work in conjunction with do- and ado-
files. Its emphasis is on the automation of your work with Stata and how programming
on one or more of these levels can help you use Stata more effectively.

In the development of these concepts, I do not assume that you have prior experience
with Stata programming, although familiarity with the command-line interface is help-
ful. While examples are drawn from several disciplines, my background as an applied
econometrician is evident in the selection of some sample problems. The introductory
first chapter motivates the why: why should you invest time and effort into learning
Stata programming? In chapter 2, I discuss elementary concepts of the command-
line interface and describe some commonly used tools for working with programs and
datasets.

The format of the book may be unfamiliar to readers who have some familiarity
with other books that help you learn how to use Stata. Beginning with chapter 4,
each even-numbered chapter is a “cookbook” chapter containing several “recipes”, 47
in total. Each recipe poses a problem: how can I perform a certain task with Stata
programming? The recipe then provides a complete worked solution to the problem
and describes how the features presented in the previous chapter can be put to good
use. You may not want to follow a recipe exactly from the cookbook; just as in cuisine,
a minor variation on the recipe may meet your needs, or the techniques presented in
that recipe may help you see how Stata programming applies to your specific problem.

Most Stata users who delve into programming use do-files to automate and document
their work. Consequently, the major focus of the book is do-file programming, covered in
chapters 3, 5, 7, and 9. Some users will find that writing formal Stata programs, or ado-
files, meets their needs. Chapter 11 is a concise summary of ado-file programming, with
the cookbook chapter that follows presenting several recipes that contain developed ado-
files. Stata’s matrix programming language, Mata, can also be helpful in automating
certain tasks. Chapter 13 presents a summary of Mata concepts and the key features
that allow interchange of variables, scalars, macros, and matrices. The last chapter,
cookbook chapter 14, presents several examples of Mata functions developed to work
with ado-files. All the do-files, ado-files, Mata functions, and datasets used in the book’s
examples and recipes are available from the Stata Press website, as discussed in Notation
and typography.

xxii Preface

The second edition of this book contains several new recipes illustrating how do-
files, ado-files, and Mata functions can be used to solve programming problems. Several
recipes have also been updated to reflect new features in Stata added between versions 10
and 14. The discussion of maximum-likelihood function evaluators has been significantly
expanded in this edition. The new topics covered in this edition include factor variables
and operators; use of margins, marginsplot, and suest; Mata-based likelihood function
evaluators; and associative arrays.

1 Why should you become a Stata
programmer?

This book provides an introduction to several contexts of Stata programming. I must
first define what I mean by “programming”. You can consider yourself a Stata pro-
grammer if you write do-files, which are text files of sequences of Stata commands that
you can execute with the do ([R] do) command, by double-clicking on the file, or by
running them in the Do-file Editor ([R] doedit). You might also write what Stata for-
mally defines as a program, which is a set of Stata commands that includes the program
([P] program) command. A Stata program, stored in an ado-file, defines a new Stata
command. You can also use Stata’s matrix programming language, Mata, to write rou-
tines in that language that are called by ado-files. Any of these tasks involves Stata
programming.1

With that set of definitions in mind, we must deal with the why: why should you
become a Stata programmer? After answering that essential question, this text takes
up the how: how you can become a more efficient user of Stata by using programming
techniques, be they simple or complex.

Using any computer program or language is all about efficiency—getting the com-
puter to do the work that can be routinely automated, reducing human errors, and
allowing you to more efficiently use your time. Computers are excellent at performing
repetitive tasks; humans are not. One of the strongest rationales for learning how to use
programming techniques in Stata is the potential to shift more of the repetitive burden
of data management, statistical analysis, and production of graphics to the computer.
Let’s consider several specific advantages of using Stata programming techniques in the
three contexts listed above.

1. There are also specialized forms of Stata programming, such as dialog programming, scheme pro-
gramming, and class programming. A user-written program can present a dialog, like any official
Stata command, if its author writes a dialog file. The command can also be added to the User menu
of Stata’s graphical interface. For more information, see [P] dialog programming and [P] win-
dow programming. Graphics users can write their own schemes to set graphic defaults. See
[G-4] schemes intro for details. Class programming allows you to write object-oriented programs
in Stata. As [P] class indicates, this has primarily been used in Stata’s graphics subsystem and
graphical user interface. I do not consider these specialized forms of programming in this book.

1

2 Chapter 1 Why should you become a Stata programmer?

Do-file programming

Using a do-file to automate a specific data-management or statistical task leads to
reproducible research and the ability to document the empirical research process. This
reduces the effort needed to perform a similar task at a later point or to document for
your coworkers or supervisor the specific steps you followed. Ideally, your entire research
project should be defined by a set of do-files that execute every step, from the input
of the raw data to the production of the final tables and graphs. Because a do-file can
call another do-file (and so on), a hierarchy of do-files can be used to handle a complex
project.

The beauty of this approach is its flexibility. If you find an error in an earlier stage
of the project, you need only to modify the code and then rerun that do-file and those
following to bring the project up to date. For instance, a researcher may need to respond
to a review of her paper—submitted months ago to an academic journal—by revising
the specification of variables in a set of estimated models and estimating new statistical
results. If all the steps that produce the final results are documented by a set of do-
files, her task is straightforward. I argue that all serious users of Stata should gain some
facility with do-files and the Stata commands that support repetitive use of commands.

That advice does not imply that Stata’s interactive capabilities should be shunned.
Stata is a powerful and effective tool for exploratory data analysis and ad hoc queries
about your data. But data-management tasks and the statistical analyses leading to
tabulated results should not be performed with “point-and-click” tools that leave you
without an audit trail of the steps you have taken.

Ado-file programming

On a second level, you may find that despite the breadth of Stata’s official and user-
written commands, there are tasks you must repeatedly perform that involve variations
on the same do-file. You would like Stata to have a command to perform those tasks.
At that point, you should consider Stata’s ado-file programming capabilities. Stata
has great flexibility: a Stata command need be no more than a few lines of Stata code.
Once defined, that command becomes a “first-class citizen”. You can easily write a Stata
program, stored in an ado-file, that handles all the features of official Stata commands
such as if exp, in range, and command options. You can (and should) write a help
file that documents the program’s operation for your benefit and for those with whom
you share the code. Although ado-file programming requires that you learn how to use
some additional commands used in that context, it can help you become more efficient
in performing the data-management, statistical, or graphical tasks that you face.

Mata programming for ado-files

On a third level, your ado-files can perform some complicated tasks that involve many
invocations of the same commands. Stata’s ado-file language is easy to read and write,

1.1 Plan of the book 3

but it is interpreted. Stata must evaluate each statement and translate it into machine
code. The Mata programming language (help mata) creates compiled code, which can
run much faster than ado-file code. Your ado-file can call a Mata routine to carry out
a computationally intensive task and return the results in the form of Stata variables,
scalars, or matrices. Although you may think of Mata solely as a matrix language,
it is actually a general-purpose programming language, suitable for many nonmatrix-
oriented tasks, such as text processing and list management.

The level of Stata programming that you choose to attain and master depends on
your needs and skills. As I have argued, the vast majority of interactive Stata users
can and should take the next step of learning how to use do-files efficiently to take
full advantage of Stata’s capabilities and to save time. A few hours of investment in
understanding the rudiments of do-file programming—as covered in the chapters to
follow—will save you days or weeks over the course of a sizable research project.

A smaller fraction of users may choose to develop ado-files. Many users find that
those features lacking in official Stata are adequately provided by the work of members
of the Stata user community who have developed and documented ado-files, sharing
them via the Stata Journal, the Statistical Software Components (SSC) archive,2 or
their own user site. However, developing a reading knowledge of ado-file code is highly
useful for many Stata users. It permits you to scrutinize ado-file code—either that
of official Stata or user-written code—and more fully understand how it performs its
function. In many cases, minor modifications to existing code may meet your needs.

Mata has been embraced by programmers wishing to take advantage of its many
features and its speed. Although this book does not discuss interactive use of Mata,
I present two ways in which Mata can be used in ado-files: in “one-liners” to fulfill a
single, specific task, and as functions to be called from ado-files.

1.1 Plan of the book

The chapters of this book present the details of the three types of Stata programming
discussed above, placing the greatest emphasis on effective use of do-file programming.
Each fairly brief chapter on the structure of programming techniques is followed by
a “cookbook” chapter. These chapters contain several “recipes” for the solution of
a particular, commonly encountered problem, illustrating the necessary programming
techniques to compose a solution. Like in a literal cookbook, the recipes here are
illustrative examples; you are free to modify the ingredients to produce a somewhat
different dish. The recipes as presented may not address your precise problem, but they
should prove helpful in devising a solution as a variation on the same theme.

2. For details on the SSC (Boston College) archive of user-contributed routines, type help ssc.

4 Cookbook: Do-file programming I

This cookbook chapter presents for Stata do-file programmers several recipes using the
programming features described in the previous chapter. Each recipe poses a problem
and a worked solution. Although you may not encounter this precise problem, you
should be able to recognize its similarities to a task that you would like to automate in
a do-file.

4.1 Tabulating a logical condition across a set of variables

The problem.

When considering many related variables, you want to determine whether, for each
observation, all variables satisfy a logical condition. Alternatively, you might want to
know whether any satisfy that condition (for instance, taking on inappropriate values),
or you might want to count how many of the variables satisfy the logical condition.1

The solution.

This would seem to be a natural application of egen ([D] egen), because that com-
mand already contains many rowwise functions to perform computations across vari-
ables. For instance, the anycount() function counts the number of variables in its
varlist whose values for each observation match those of an integer numlist, whereas the
rowmiss() and rownonmiss() functions tabulate the number of missing and nonmiss-
ing values for each observation, respectively. The three tasks above are all satisfied by
egen functions from Nicholas Cox’s egenmore package: rall(), rany(), and rcount(),
respectively. Why not use those functions, then?

Two reasons come to mind: First, recall that egen functions are interpreted code.
Unlike the built-in functions accessed by generate, the logic of an egen function must be
interpreted each time it is called. For a large dataset, the time penalty can be significant.
Second, to use an egen function, you must remember that there is such a function, and
you must remember its name. In addition to Stata’s official egen functions, documented
in the online help files, there are many user-written egen functions available, but you
must track them down.

For these reasons, current good programming practice suggests that you should avoid
egen function calls in instances where the performance penalty might be an issue. This

1. This recipe relies heavily on Nicholas J. Cox’s egenmore help file.

67

