Microeconometrics Using Stata Volume I: Cross-Sectional and Panel Regression Methods

Second Edition

A. COLIN CAMERON

Department of Economics University of California, Davis, CA and School of Economics University of Sydney, Sydney, Australia

PRAVIN K. TRIVEDI School of Economics University of Queensland, Brisbane, Australia and Department of Economics Indiana University, Bloomington, IN

A Stata Press Publication StataCorp LLC College Station, Texas

Copyright © 2009, 2010, 2022 by StataCorp LLC All rights reserved. First edition 2009 Revised edition 2010 Second edition 2022

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in $\rm I\!AT_{\rm E}\!X\,2_{\mathcal{E}}$ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

Print ISBN-10: 1-59718-359-8 (volumes I and II) Print ISBN-10: 1-59718-361-X (volume I) Print ISBN-10: 1-59718-362-8 (volume II) Print ISBN-13: 978-1-59718-369-8 (volumes I and II) Print ISBN-13: 978-1-59718-361-1 (volume I) Print ISBN-13: 978-1-59718-362-8 (volume II) ePub ISBN-10: 1-59718-360-1 (volumes I and II) ePub ISBN-10: 1-59718-363-6 (volumes I) ePub ISBN-10: 1-59718-364-4 (volumes II) ePub ISBN-13: 978-1-59718-360-4 (volumes I and II) ePub ISBN-13: 978-1-59718-363-5 (volumes I) ePub ISBN-13: 978-1-59718-363-5 (volumes I) ePub ISBN-13: 978-1-59718-364-2 (volumes II)

Library of Congress Control Number: 2022938057

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LLC.

Stata, **STATA**, Stata Press, Mata, **MATA**, and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

 $IAT_FX 2_{\varepsilon}$ is a trademark of the American Mathematical Society.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Microeconometrics Using Stata Volume II: Nonlinear Models and Causal Inference Methods

Second Edition

A. COLIN CAMERON

Department of Economics University of California, Davis, CA and School of Economics University of Sydney, Sydney, Australia

PRAVIN K. TRIVEDI School of Economics University of Queensland, Brisbane, Australia and Department of Economics Indiana University, Bloomington, IN

A Stata Press Publication StataCorp LLC College Station, Texas

Copyright © 2009, 2010, 2022 by StataCorp LLC All rights reserved. First edition 2009 Revised edition 2010 Second edition 2022

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in $\rm I\!AT_{\rm E}\!X\,2_{\mathcal{E}}$ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

Print ISBN-10: 1-59718-359-8 (volumes I and II) Print ISBN-10: 1-59718-361-X (volume I) Print ISBN-10: 1-59718-362-8 (volume II) Print ISBN-13: 978-1-59718-369-8 (volumes I and II) Print ISBN-13: 978-1-59718-361-1 (volume I) Print ISBN-13: 978-1-59718-362-8 (volume II) ePub ISBN-10: 1-59718-360-1 (volumes I and II) ePub ISBN-10: 1-59718-363-6 (volumes I) ePub ISBN-10: 1-59718-364-4 (volumes II) ePub ISBN-13: 978-1-59718-360-4 (volumes I and II) ePub ISBN-13: 978-1-59718-363-5 (volumes I) ePub ISBN-13: 978-1-59718-363-5 (volumes I) ePub ISBN-13: 978-1-59718-364-2 (volumes II)

Library of Congress Control Number: 2022938057

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LLC.

Stata, **STATA**, Stata Press, Mata, **MATA**, and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

 $IAT_FX 2_{\varepsilon}$ is a trademark of the American Mathematical Society.

Other brand and product names are registered trademarks or trademarks of their respective companies.

	\mathbf{List}	of tables	xiii
	\mathbf{List}	of figures	$\mathbf{x}\mathbf{v}$
	Prefa	ace to the Second Edition	xvii
	Prefa	ace to the First Edition	xix
1	Stata	a basics	1
	1.1	Interactive use	1
	1.2	Documentation	2
	1.3	Command syntax and operators	5
	1.4	Do-files and log files	14
	1.5	Scalars and matrices	19
	1.6	Using results from Stata commands	20
	1.7	Global and local macros	23
	1.8	Looping commands	26
	1.9	Mata and Python in Stata	29
	1.10	Some useful commands	29
	1.11	Template do-file	30
	1.12	Community-contributed commands	30
	1.13	Additional resources	31
	1.14	Exercises	31
2	Data	a management and graphics	33
	2.1	Introduction	33
	2.2	Types of data	33
	2.3	Inputting data	36
	2.4	Data management	43

	2.5	Manipulating datasets	60
	2.6	Graphical display of data	67
	2.7	Additional resources	83
	2.8	Exercises	83
3	Line	ar regression basics	85
	3.1	Introduction	85
	3.2	Data and data summary	85
	3.3	Transformation of data before regression	94
	3.4	Linear regression	96
	3.5	Basic regression analysis	102
	3.6	Specification analysis	123
	3.7	Specification tests	132
	3.8	Sampling weights	140
	3.9	OLS using Mata	145
	3.10	Additional resources	147
	3.11	Exercises	147
4	Line	ar regression extensions 1	.49
	4.1	Introduction	149
	4.2	In-sample prediction	149
	4.3	Out-of-sample prediction	157
	4.4	Predictive margins 1	161
	4.5	Marginal effects	175
	4.6	Regression decomposition analysis	186
	4.7	Shapley decomposition of relative regressor importance	193
	4.8	Difference-in-differences estimators	195
	4.9	Additional resources	204
	4.10	Exercises	204
5	Simu	ulation 2	207
	5.1	Introduction	207
	5.2	Pseudorandom-number generators	208

vi

	5.3	Distribution of the sample mean	14
	5.4	Pseudorandom-number generators: Further details	20
	5.5	Computing integrals	27
	5.6	Simulation for regression: Introduction	32
	5.7	Additional resources	42
	5.8	Exercises	42
6	Linea	ar regression with correlated errors 24	45
	6.1	Introduction	45
	6.2	Generalized least-squares and FGLS regression	46
	6.3	Modeling heteroskedastic data	50
	6.4	OLS for clustered data	56
	6.5	FGLS estimators for clustered data	65
	6.6	Fixed-effects estimator for clustered data	69
	6.7	Linear mixed models for clustered data	77
	6.8	Systems of linear regressions	86
	6.9	Survey data: Weighting, clustering, and stratification	95
	6.10	Additional resources	01
	6.11	Exercises	02
7	Linea	ar instrumental-variables regression 3	05
	7.1	Introduction	05
	7.2	Simultaneous equations model	06
	7.3	Instrumental-variables regression	10
	7.4	Instrumental-variables example	16
	7.5	Weak instruments	30
	7.6	Diagnostics and tests for weak instruments	39
	7.7	Inference with weak instruments	53
	7.8	Finite sample inference with weak instruments	62
	7.9	Other estimators	63
	7.10	Three-stage least-squares systems estimation	67

	7.11	Additional resources
	7.12	Exercises
8	Linea	ar panel-data models: Basics 373
	8.1	Introduction
	8.2	Panel-data methods overview
	8.3	Summary of panel data 379
	8.4	Pooled or population-averaged estimators
	8.5	Fixed-effects or within estimator
	8.6	Between estimator
	8.7	Random-effects estimator 402
	8.8	Comparison of estimators 406
	8.9	First-difference estimator
	8.10	Panel-data management
	8.11	Additional resources
	8.12	Exercises
9	Linea	ar panel-data models: Extensions 421
9	Linea 9.1	ar panel-data models: Extensions421Introduction
9	Linea 9.1 9.2	ar panel-data models: Extensions 421 Introduction
9	Linea 9.1 9.2 9.3	ar panel-data models: Extensions421Introduction
9	Linea 9.1 9.2 9.3 9.4	ar panel-data models: Extensions421Introduction
9	Linea 9.1 9.2 9.3 9.4 9.5	ar panel-data models: Extensions421Introduction
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6	ar panel-data models: Extensions421Introduction
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6 9.7	ar panel-data models: Extensions421Introduction
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Intro	ar panel-data models: Extensions421Introduction
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Intro 10.1	ar panel-data models: Extensions 421 Introduction 421 Panel instrumental-variables estimation 421 Hausman–Taylor estimator 425 Arellano–Bond estimator 428 Long panels 445 Additional resources 456 oduction to nonlinear regression 459 Introduction 459
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Intro 10.1 10.2	ar panel-data models: Extensions 421 Introduction
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Intro 10.1 10.2 10.3	ar panel-data models: Extensions 421 Introduction 421 Panel instrumental-variables estimation 421 Hausman–Taylor estimator 425 Arellano–Bond estimator 428 Long panels 445 Additional resources 456 oduction to nonlinear regression 459 Binary outcome models 459 Probit model 462
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Intro 10.1 10.2 10.3 10.4	ar panel-data models: Extensions 421 Introduction 421 Panel instrumental-variables estimation 421 Hausman–Taylor estimator 425 Arellano–Bond estimator 428 Long panels 426 Additional resources 426 oduction to nonlinear regression 459 Binary outcome models 459 Probit model 459 MEs and coefficient interpretation 466
9	Lines 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Intro 10.1 10.2 10.3 10.4 10.5	ar panel-data models: Extensions421Introduction421Panel instrumental-variables estimation421Hausman–Taylor estimator425Arellano–Bond estimator428Long panels445Additional resources456cexercises456oduction to nonlinear regression459Binary outcome models459Probit model462MEs and coefficient interpretation462Logit model472

viii

	10.7	Other nonlinear estimators	476
	10.8	Additional resources	477
	10.9	Exercises	477
11	Tests	of hypotheses and model specification	479
	11.1	Introduction	479
	11.2	Critical values and p-values	480
	11.3	Wald tests and confidence intervals	485
	11.4	Likelihood-ratio tests	498
	11.5	Lagrange multiplier test (or score test)	502
	11.6	Multiple testing	505
	11.7	Test size and power	512
	11.8	The power one mean command for multiple regression	519
	11.9	Specification tests	529
	11.10	Permutation tests and randomization tests	532
	11.11	Additional resources	534
	11.12	Exercises	534
12	Boot	strap methods	537
	12.1	Introduction	537
	12.2	Bootstrap methods	537
	12.3	Bootstrap pairs using the vce(bootstrap) option	539
	12.4	Bootstrap pairs using the bootstrap command	547
	12.5	Percentile-t bootstraps with asymptotic refinement $\hdots \ldots \hdots \ldots$.	555
	12.6	Wild bootstrap with asymptotic refinement $\hdots \ldots \hdots \ldots \hdots$.	560
	12.7	Bootstrap pairs using boample and simulate	569
	12.8	Alternative resampling schemes	570
	12.9	The jackknife	575
	12.10	Additional resources	576
	12.11	Exercises	577

13	Nonl	inear regression methods	579
	13.1	Introduction	579
	13.2	Nonlinear example: Doctor visits $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	580
	13.3	Nonlinear regression methods $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	582
	13.4	Different estimates of the VCE	597
	13.5	Prediction	604
	13.6	Predictive margins	609
	13.7	Marginal effects	612
	13.8	Model diagnostics	629
	13.9	Clustered data	632
	13.10	Additional resources	640
	13.11	Exercises	640
14	Flexi	ble regression: Finite mixtures and nonparametric	643
	14.1	Introduction	643
	14.2	Models based on finite mixtures	644
	14.3	FMM example: Earnings of doctors	650
	14.4	Global polynomials	665
	14.5	Regression splines	668
	14.6	Nonparametric regression	675
	14.7	Partially parametric regression	680
	14.8	Additional resources	681
	14.9	Exercises	681
15	Quar	tile regression	683
	15.1	Introduction	683
	15.2	Conditional quantile regression	684
	15.3	CQR for medical expenditures data	688
	15.4	CQR for generated heteroskedastic data	699
	15.5	Quantile treatment effects for a binary treatment	703
	15.6	Additional resources	706
	15.7	Exercises	707

х

Contents

Α	Prog	ramming in Stata	709
	A.1	Stata matrix commands	709
	A.2	Programs	716
	A.3	Program debugging	722
	A.4	Additional resources	725
в	Mata	a	727
	B.1	How to run Mata	727
	B.2	Mata matrix commands	729
	B.3	Programming in Mata	738
	B.4	Additional resources	740
\mathbf{C}	Opti	mization in Mata	741
	C.1	$Mata moptimize() function \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	741
	C.2	$Mata optimize() function \dots \dots$	751
	C.3	Additional resources	754
	Glos	sary of abbreviations	755
	Refe	rences	761
	Auth	nor index	777
	Subj	ect index	783

xi

	List o	of tables	xiii
	List o	of figures	xv
16	Nonl	inear optimization methods	819
	16.1	Introduction	819
	16.2	Newton–Raphson method	819
	16.3	${\rm Gradient\ methods\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	824
	16.4	Overview of ml, moptimize(), and optimize() $\ldots \ldots \ldots \ldots$	829
	16.5	The ml command: lf method $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	831
	16.6	Checking the program	837
	16.7	The ml command: lf0–lf2, d0–d2, and gf0 methods \hdots	844
	16.8	Nonlinear instrumental-variables (GMM) example	851
	16.9	Additional resources	854
	16.10	Exercises	854
17	Bina	ry outcome models	857
	17.1	Introduction	857
	17.2	Some parametric models	858
	17.3	Estimation	860
	17.4	Example	862
	17.5	Goodness of fit and prediction	869
	17.6	Marginal effects	877
	17.7	Clustered data	880
	17.8	Additional models	881
	17.9	Endogenous regressors	887
	17.10	Grouped and fractional data	895

	17.11	Additional resources	398
	17.12	Exercises	398
18	Mult	inomial models 9	01
	18.1	Introduction	901
	18.2	Multinomial models overview	901
	18.3	Multinomial example: Choice of fishing mode	905
	18.4	Multinomial logit model	908
	18.5	Alternative-specific conditional logit model	914
	18.6	Nested logit model	922
	18.7	Multinomial probit model	929
	18.8	Alternative-specific random-parameters logit	934
	18.9	Ordered outcome models	938
	18.10	Clustered data	942
	18.11	Multivariate outcomes	943
	18.12	Additional resources	946
	18.13	Exercises	946
19	Tobit	and selection models 9	49
	19.1	Introduction	949
	19.2	Tobit model	950
	19.3	Tobit model example $\ldots \ldots $	953
	19.4	Tobit for lognormal data	961
	19.5	Two-part model in logs	970
	19.6	Selection models	974
	19.7	Nonnormal models of selection $\ldots \ldots \ldots$	982
	19.8	Prediction from models with outcome in logs $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	986
	19.9	Endogenous regressors	989
	19.10	Missing data	991
	19.11	Panel attrition	995
	19.12	Additional resources)19
	19.13	Exercises)19

vi

20	Cour	nt-data models 1021
	20.1	Introduction
	20.2	Modeling strategies for count data
	20.3	Poisson and negative binomial models
	20.4	Hurdle model
	20.5	Finite-mixture models
	20.6	Zero-inflated models
	20.7	Endogenous regressors
	20.8	Clustered data
	20.9	Quantile regression for count data
	20.10	Additional resources
	20.11	Exercises
21	Surv	ival analysis for duration data 1099
	21.1	Introduction
	21.2	Data and data summary
	21.3	Survivor and hazard functions
	21.4	Semiparametric regression model
	21.5	Fully parametric regression models
	21.6	Multiple-records data
	21.7	Discrete-time hazards logit model
	21.8	Time-varying regressors
	21.9	Clustered data
	21.10	Additional resources
	21.11	Exercises
22	Nonl	inear panel models 1139
	22.1	Introduction
	22.2	Nonlinear panel-data overview
	22.3	Nonlinear panel-data example
	22.4	Binary outcome and ordered outcome models
	22.5	Tobit and interval-data models

	22.6	Count-data models	172
	22.7	Panel quantile regression	184
	22.8	Endogenous regressors in nonlinear panel models	187
	22.9	Additional resources	188
	22.10	Exercises	188
23	Para	metric models for heterogeneity and endogeneity 11	.91
	23.1	Introduction	191
	23.2	Finite mixtures and unobserved heterogeneity	192
	23.3	Empirical examples of FMMs	195
	23.4	Nonlinear mixed-effects models	224
	23.5	Linear structural equation models	231
	23.6	Generalized structural equation models	251
	23.7	ERM commands for endogeneity and selection	261
	23.8	Additional resources	266
	23.9	Exercises	266
24	Rand	lomized control trials and exogenous treatment effects 12	269
	24.1	Introduction	269
	24.2	Potential outcomes	271
	24.3	Randomized control trials	272
	24.4	Regression in an RCT	282
	24.5	Treatment evaluation with exogenous treatment	290
	24.6	Treatment evaluation methods and estimators	292
	24.7	Stata commands for treatment evaluation	302
	24.8	Oregon Health Insurance Experiment example	305
	24.9	Treatment-effect estimates using the OHIE data	312
	24.10	Multilevel treatment effects	323
	24.11	Conditional quantile TEs	332
	24.12	Additional resources	334
	24.13	Exercises	335

viii

25	Endo	ogenous treatment effects 1	337
	25.1	Introduction	1337
	25.2	Parametric methods for endogenous treatment	338
	25.3	ERM commands for endogenous treatment	341
	25.4	ET commands for binary endogenous treatment	348
	25.5	The LATE estimator for heterogeneous effects	1356
	25.6	Difference-in-differences and synthetic control	363
	25.7	Regression discontinuity design	369
	25.8	Conditional quantile regression with endogenous regressors 1	1388
	25.9	Unconditional quantiles	394
	25.10	Additional resources	401
	25.11	Exercises	402
26	Spati	ial regression 1	405
	26.1	Introduction	405
	26.2	Overview of spatial regression models	406
	26.3	Geospatial data	407
	26.4	The spatial weighting matrix	411
	26.5	OLS regression and test for spatial correlation	413
	26.6	Spatial dependence in the error	414
	26.7	Spatial autocorrelation regression models	417
	26.8	Spatial instrumental variables	427
	26.9	Spatial panel-data models	428
	26.10	Additional resources	429
	26.11	Exercises	430
27	\mathbf{Semi}	parametric regression 1	433
	27.1	Introduction	433
	27.2	Kernel regression	434
	27.3	Series regression	438
	27.4	Nonparametric single regressor example	440
	27.5	Nonparametric multiple regressor example	450

	27.6	Partial linear model
	27.7	Single-index model
	27.8	Generalized additive models
	27.9	Additional resources
	27.10	Exercises
28	Mach	nine learning for prediction and inference 1465
	28.1	Introduction
	28.2	Measuring the predictive ability of a model $\hdots \ldots \ldots \ldots \ldots \ldots 1466$
	28.3	Shrinkage estimators
	28.4	Prediction using lasso, ridge, and elastic net $\hfill \ldots \hfill \ldots \hfill 1482$
	28.5	Dimension reduction
	28.6	Machine learning methods for prediction
	28.7	Prediction application
	28.8	Machine learning for inference in partial linear model
	28.9	Machine learning for inference in other models $\hfill \ldots \hfill \ldots \hfill \ldots \hfill 1516$
	28.10	Additional resources
	28.11	Exercises
29	Baye	sian methods: Basics 1527
	29.1	Introduction
	29.2	Bayesian introductory example
	29.3	Bayesian methods overview
	29.4	An i.i.d. example
	29.5	Linear regression
	29.6	A linear regression example $\ldots \ldots 1552$
	29.7	Modifying the MH algorithm $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1560$
	29.8	RE model
	29.9	Bayesian model selection
	29.10	Bayesian prediction
	29.11	Probit example

х

	29.12	Additional resources	1576
	29.13	Exercises	1576
30	Baye	sian methods: Markov chain Monte Carlo algorithms	1579
	30.1	Introduction	1579
	30.2	User-provided log likelihood	1579
	30.3	MH algorithm in Mata	1584
	30.4	Data augmentation and the Gibbs sampler in Mata	1589
	30.5	Multiple imputation	1595
	30.6	Multiple-imputation example	1599
	30.7	Additional resources	1608
	30.8	Exercises	1608
	Gloss	sary of abbreviations	1611
	Refe	rences	1617
	Auth	or index	1635
	Subj	ect index	1641

(Pages omitted)

Preface to the Second Edition

Microeconometrics Using Stata, published in December 2008, was written for Stata 10.1. Microeconometrics Using Stata, Revised Edition, published in January 2010, was written for Stata 11.0. This second edition is written for Stata 17.

Whereas the scope and coverage of the preceding editions were reasonably synchronized with our own *Microeconometrics: Methods and Applications* (Cambridge, 2005), this second edition has broader scope in several respects. We have attempted not only to update our previous coverage to bring it in line with newer tools in the latest edition of Stata but also to bring into the book many topics and methods that are now actively studied and increasingly used in applied microeconometrics. This coverage includes several topics, listed below, that were not covered in our 2005 text.

This second edition covers over ten years of both enhancements to Stata and developments in the methods most commonly used in empirical microeconometrics analysis. The focus of the book remains the use of linear and nonlinear regression methods for cross-sectional and short panel data. In particular, we give only short treatment to other features of Stata that are useful for data analysis such as data management, use within Stata of other programming languages such as Python, and automated document preparation. The new edition is much expanded and is split into two volumes.

The first volume, comprising chapters 1–15 and Stata and Mata appendixes, focuses on the linear regression model and provides a brief introduction to nonlinear regression models. This volume is an expanded version of chapters 1–10, 12–13, and the appendixes of the first and revised editions. In places, there is greater explanation of underlying methods, and much of the first volume is intended to be suitable for an advanced undergraduate course in addition to serving graduate students and researchers.

The second volume, comprising chapters 16–30, covers the standard nonlinear models as well as more advanced and more recent material. In addition to updated versions of chapters 14–18 of the first edition and the revised edition, the second volume includes new chapters on duration models, treatment effects in randomized control trials, treatment effects with endogenous treatments, parametric models for endogeneity and heterogeneity, spatial regression, semiparametric regression, machine learning and prediction, and Bayesian methods.

Some methods we cover are well established. Other methods we present are in areas of active research, so they may become replaced by better methods. In particular, many methods for causal analysis using observational or experimental methods are still being established and improved upon, at a remarkably rapid pace. This includes inference for instrumental variables with weak instruments, cluster–robust inference with few clusters, treatment-effects estimation with heterogeneous treatment effects, regression discontinuity design, and causal analysis using machine learning methods. Accordingly, we plan to periodically add some supplementary material on the book's website (http://cameron.econ.ucdavis.edu/mus2).

Our target user base consists of practitioners of applied microeconometrics. This group is quite diverse in terms of familiarity with the available econometric tools. In deference to such diversity, we have chosen to separate the more advanced aspects of many topics and place them in different parts of the book. This is a challenging task because often the same material could, and in some cases should, appear in several alternative places. To assist the reader, we have provided numerous cross-references and a much lengthier subject index. The reader will benefit from checking out these connections.

Datasets and the do-files used in this book are available on the Stata Press website at https://www.stata-press.com/data/mus2.html. Any corrections to the book will be documented at https://www.stata-press.com/books/microeconometrics-stata/.

The preparation of this second edition has benefited from generous help from many sources. We thank our colleagues, coauthors, students, and many users of the previous editions for their suggested improvements, for reading parts of the book, for permission to use datasets developed in joint research, and for encouragement to proceed with the project. We have benefited from presenting some of the material in various short courses around the world and from positive feedback from readers of the earlier editions that encouraged writing this updated edition. Colin Cameron would especially like to thank Shu Shen, Takuya Ura, Oscar Jorda, Marianne Bitler, the broader econometrics and empirical microeconomics community at the University of California–Davis, and Doug Miller and Adrian Pagan. Pravin Trivedi gratefully acknowledges the support provided by the School of Economics, University of Queensland. We thank Yulia Marchenko and Nikolay Balov for very detailed comments on the Bayesian chapters, and Kristin MacDonald for a careful reading of the final draft of the book. We thank David Culwell for his excellent editing and Stephanie White for managing the LATFX formatting and production of this book. Most especially, both authors acknowledge their debt of gratitude to David Drukker for extensive feedback on many aspects of the material in the book throughout this project, including a complete reading, as well as feedback on the substantive aspects of applying the econometric and statistical tools. Finally, we thank our respective families for their patience and understanding during the long gestation period of the evolution of this project.

Davis, CA Charlottesville, VA June 2022 A. Colin Cameron Pravin K. Trivedi

xviii

(Pages omitted)

3 Linear regression basics

3.1 Introduction

Linear regression analysis is often the starting point of an empirical investigation. Because of its relative simplicity, it is useful for illustrating the different steps of a typical modeling cycle that involves an initial specification of the model followed by estimation, diagnostic checks, and model respecification. The purpose of such a linear regression analysis may be to summarize the data, generate conditional predictions, or test and evaluate the role of specific regressors. We will illustrate these aspects using a specific data example.

This chapter is limited to basic linear regression analysis on cross-sectional data of a continuous dependent variable. The setup is for a single equation and exogenous regressors. Some standard complications of linear regression, such as misspecification of the conditional mean and model errors that are heteroskedastic, will be considered. In particular, we model the natural logarithm of medical expenditures instead of the level. We will ignore other various aspects of the data that can lead to more sophisticated nonlinear models presented in later chapters.

3.2 Data and data summary

The first step is to decide what dataset will be used. In turn, this decision depends on the population of interest and the research question itself. We discussed how to convert a raw dataset to a form amenable to regression analysis in section 2.4. In this section, we present ways to summarize and gain some understanding of the data, a necessary step before any regression analysis.

3.2.1 Data description

We analyze medical expenditures in 2003 of individuals 65 years and older who qualify for healthcare under the U.S. Medicare program. The original data source is the Medical Expenditure Panel Survey.

Medicare does not cover all medical expenses. For example, copayments for medical services and expenses of prescribed pharmaceutical drugs were not covered for the time period studied here. About half of eligible individuals therefore purchase supplementary insurance in the private market that provides insurance coverage against various outof-pocket expenses. In this chapter, we consider the impact of this supplementary insurance on total annual medical expenditures of an individual, measured in dollars. A formal investigation must control for the influence of other factors that also determine individual medical expenditure, notably, sociodemographic factors such as age, gender, education and income, geographical location, and health-status measures such as self-assessed health and presence of chronic or limiting conditions. In this chapter, as in other chapters, we instead deliberately use a short list of regressors. This permits shorter output and simpler discussion of the results, an advantage because our intention is to simply explain the methods and tools available in Stata.

3.2.2 Variable description

Given the Stata dataset for analysis, we begin by using the describe command to list various features of the variables to be used in the linear regression. The command without a variable list describes all the variables in the dataset. Here we restrict attention to the variables used in this chapter.

 * Variable description for medical expenditure dataset use mus203mepsmedexp (A.C.Cameron & P.K.Trivedi (2022): Microeconometrics Using Stata, 2e) 							
. describe totexp ltotexp posexp suppins phylim actlim totchr age female income							
Variable Storage Display Value							
name	type	format	label	Variable label			
totexp	double	%12.0g		Total medical expenditure			
ltotexp	float	%9.0g		<pre>ln(totexp) if totexp > 0</pre>			
posexp	float	%9.0g	posexp	Total expenditure > 0			
suppins	float	%9.0g	suppins	Has supp priv insurance			
phylim	double	%12.0g	phylim	Has functional limitation			
actlim	double	%12.0g	actlim	Has activity limitation			
totchr	double	%12.0g		# of chronic problems			
age	double	%12.0g		Age			
female	double	%12.0g	female	Female			
income double %12.0g Annual household income/1000							

The variable types and format columns indicate that all the data are numeric. In this case, some variables are stored in single precision (float) and some in double precision (double). From the variable labels, we expect totexp to be nonnegative; ltotexp to be missing if totexp equals 0; posexp, suppins, phylim, actlim, and female to be 0 or 1; totchr to be a nonnegative integer; age to be positive; and income to be nonnegative or positive. Note that the integer variables could have been stored much more compactly as integer or byte. The variable labels provide a short description that is helpful but may not fully describe the variable. For example, the key regressor suppins was created by aggregating across several types of private supplementary insurance.

3.2.3 Summary statistics

It is essential in any data analysis to first check the data by using the summarize command.

	* Summary st summarize to	atistics for otexp ltotexp	medical expe posexp suppi	nditure data ns phylim ac	aset ctlim totchr	age female	income
_	Variable	Obs	Mean	Std. dev.	Min	Max	
	totexp	3,064	7030.889	11852.75	0	125610	
	posexp	2,955	.9644256	.1852568	0	11.74094	
	suppins phylim	3,064 3,064	.5812663 .4255875	.4934321 .4945125	0	1 1	
_	actlim	3,064	.2836162	.4508263	0	1	
	totchr	3,064	1.754243	1.307197	0	7	
	age	3,064	74.17167	6.372938	65	90	
	female	3,064	.5796345	.4936982	0	1	
	income	3,064	22.47472	22.53491	-1	312.46	

On average, 96% of individuals incur medical expenditures during a year; 58% have supplementary insurance; 43% have functional limitations; 28% have activity limitations; and 58% are female because the elderly population is disproportionately female because of the greater longevity of women. The only variable to have missing data is **ltotexp**, the natural logarithm of **totexp**, which is missing for the (3064 - 2955) = 109 observations with **totexp** = 0.

All variables have the expected range, except that income is negative. To see how many observations on **income** are negative, we use the **tabulate** command, restricting attention to nonpositive observations to limit output.

. * Tabulate w . tabulate inc	variable come if income	e <= 0	
Annual household income/1000	Freq.	Percent	Cum.
-1 0	1 87	1.14 98.86	1.14 100.00
Total	88	100.00	

Only one observation is negative, and negative income is possible for income from selfemployment or investment. We include the observation in the analysis here, though checking the original data source may be warranted.

Much of the subsequent regression analysis will drop the 109 observations with 0 medical expenditures, so in a research article, it would be best to report summary statistics without these observations.

3.2.4 More detailed summary statistics

Additional descriptive analysis of key variables, especially the dependent variable, is useful. For totexp, the level of medical expenditures, summarize, detail yields

. * Detailed summary statistics of a single variable . summarize totexp, detail							
Total medical expenditure							
	Percentiles	Smallest					
1%	0	0					
5%	112	0					
10%	393	0	Obs	3,064			
25%	1271	0	Sum of wgt.	3,064			
50%	3134.5		Mean	7030.889			
		Largest	Std. dev.	11852.75			
75%	7151	104823					
90%	17050	108256	Variance	1.40e+08			
95%	27367	123611	Skewness	4.165058			
99%	62346	125610	Kurtosis	26.26796			

Medical expenditures vary greatly across individuals, with a standard deviation of 11,853, which is almost twice the mean. The median of 3,135 is much smaller than the mean of 7,031, reflecting the skewness of the data. For variable x, the skewness statistic is a scale-free measure of skewness that estimates $E[\{(x - \mu)/\sigma\}^3] = E\{(x - \mu)^3\}/\sigma^3$, the third central moment standardized by the cube of the standard deviation. The skewness is zero for symmetrically distributed data. The value here of 4.17 indicates considerable right skewness. The kurtosis statistic is an estimate of $E[\{(x - \mu)/\sigma\}^4] = E\{(x - \mu)^4\}/\sigma^4$, the fourth central moment standardized by the fourth power of the standard deviation. The reference value is 3, the value for normally distributed data. The much higher value here of 26.27 indicates that the tails are much thicker than those of a normal distribution. You can obtain additional summary statistics by using the centile command, which is explained in section 3.2.6.

We conclude that the distribution of the dependent variable is considerably skewed and has thick tails. These complications often arise for commonly studied individuallevel economic variables such as expenditures, income, earnings, wages, and house prices. It is possible that including regressors will eliminate the skewness, but in practice, much of the variation in the data will be left unexplained ($R^2 < 0.3$ is common for individuallevel data), and skewness and excess kurtosis will remain.

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of additive errors. A standard solution is to transform the dependent variable by taking the natural logarithm. Here this is complicated by the presence of 109 0-valued observations. We take the expedient approach of dropping the zero observations from analysis in either logs or levels. This should make little difference here because only 3.6% of the sample is then dropped. A better approach, using two-part or selection models, is covered in sections 19.5–19.7.

The output for tabstat in section 3.2.6 reveals that taking the natural logarithm for these data essentially eliminates the skewness and excess kurtosis.

The community-contributed fsum command (Wolfe 2002) is an enhancement of summarize that enables formatting the output and including additional information such as percentiles and variable labels. The community-contributed outsum command (Papps 2006) produces a text file of means and standard deviations for one or more subsets of the data, for example, one column for the full sample, one for a male subsample, and one for a female subsample.

3.2.5 Tables of frequencies

. * Two-way table of frequencies

One-way tables can be created by using the tabulate command, presented in section 3.2.3, the table command, and the tabstat command. Two-way tables can also be created by using these commands.

For two-way tables of frequencies, only table produces clean output. For example,

. table f	female 1	totchr	1						
			# (of chro	onic p	robler	ns		
	0	1	2	3	4	5	6	7	Total
Female									
No	239	415	323	201	82	23	4	1	1,288
Yes	313	466	493	305	140	46	11	2	1,776
Total	552	881	816	506	222	69	15	3	3,064

provides frequencies for a two-way tabulation of gender against the number of chronic conditions. The option **stat(percent)** provides percentages rather than frequencies.

The tabulate command can provide both row and column percentages. For example,

. \ast Two-way table with row and column percentages and Pearson chi-squared

. tabulate female suppins, row col chi2

Кеу
frequency row percentage column percentage

	Has supp	priv	
Female	No	Yes	Total
No	488	800	1,288
	37.89	62.11	100.00
	38.04	44.92	42.04
Yes	795	981	1,776
	44.76	55.24	100.00
	61.96	55.08	57.96
Total	1,283	1,781	3,064
	41.87	58.13	100.00
	100.00	100.00	100.00
Pe	earson chi2(1)	= 14.499	1 Pr = 0.000

Comparing the row percentages for this sample, we see that while a woman is more likely to have supplemental insurance than not, the probability that a woman in this sample has purchased supplemental insurance is lower than the probability that a man in this sample has purchased supplemental insurance. Although we do not have the information to draw these inferences for the population, the results for Pearson's chisquared test soundly reject the null hypothesis that these variables are independent. Other tests of association are available. The related command tab2 will produce all possible two-way tables that can be obtained from a list of several variables. For multiway tables, it is best to use table. For the example at hand, we have

. * Three-way table of frequencies . table female suppins totchr, nototals

	# of chronic problems							
	0	1	2	3	- 4	5	6	7
Female								
No								
Has supp priv insurance								
No	102	165	121	68	25	6	1	
Yes	137	250	202	133	57	17	3	1
Yes								
Has supp priv insurance								
No	135	212	233	134	56	22	1	2
Yes	178	254	260	171	84	24	10	
	1							

An alternative is to use tabulate with the by prefix, but the results are not as neat as those from table.

3.2.6 Tables of summary statistics

The preceding tabulations will produce voluminous output if one of the variables being tabulated takes on many values. Then it is much better to use command table with the statistics() option to present tables that give key summary statistics for that variable, such as the mean and standard deviation. Note that the statistics() option, abbreviated stat(), was introduced in Stata 17 and replaces the contents() option available in earlier versions of Stata. Such tabulations can be useful even when variables take on few values. For example, when summarizing the number of chronic problems by gender, table yields

. * One-way table of summary statistics

. table (result) female, stat(count totchr) stat(mean totchr) stat(sd totchr)
> stat(p50 totchr)

>	stat	(p50	totchr

	Female				
	No	Yes	Total		
Number of nonmissing values	1,288	1,776	3,064		
Mean	1.659938	1.822635	1.754243		
Standard deviation	1.261175	1.335776	1.307197		
50th percentile	1	2	2		

Women on average have more chronic problems (1.82 versus 1.66 for men). The option stat() can produce many other statistics, including the minimum, maximum, and key percentiles.

The table command with the stat() options can additionally produce two-way and multiway tables of summary statistics. As an example,

. * Two-way table of summary statistics

. table female suppins, stat(count totchr) stat(mean totchr) nototals

	Has supp priv No	insurance Yes
Female		
No		
Number of nonmissing values	488	800
Mean	1.530738	1.73875
Yes		
Number of nonmissing values	795	981
Mean	1.803774	1.83792

shows that those with supplementary insurance on average have more chronic problems. This is especially so for males (1.74 versus 1.53).

The tabulate, summarize() command can be used to produce one-way and twoway tables with means, standard deviations, and frequencies. This is a small subset of the statistics that can be produced using table, so we might as well use table.

The tabstat command provides a table of summary statistics that permits more flexibility than summarize. The following output presents summary statistics on medical expenditures and the natural logarithm of expenditures that are useful in determining skewness and kurtosis.

	. * Summary statistics obtained using command tabstat						
	. tabstat totexp ltotexp, statistics(count mean p50 sd skew kurt)						
>	> columns(statistics)						
	Variable	N	Mean	p50	SD	Skewness	Kurtosis
	totexp	3064	7030.889	3134.5	11852.75	4.165058	26.26796
	ltotexp	2955	8.059866	8.111928	1.367592	3857887	3.842263

This reproduces information given in section 3.2.4 and shows that taking the natural logarithm eliminates most skewness and kurtosis. The columns(statistics) option presents the results with summary statistics being given in the columns and each variable being given in a separate row. Without this option, we would have summary statistics in rows and variables in the columns. A two-way table of summary statistics can be obtained by using the by() option.

The collect command, introduced in Stata 17, provides great flexibility in creating production-quality tables. The command is illustrated in section 3.5.7.

3.2.7 Hypothesis tests on the population mean

The ttest command can be used to test hypotheses about the population mean of a single variable $(H_0: \mu = \mu^* \text{ for specified value } \mu^*)$ and to test the equality of means $(H_0: \mu_1 = \mu_2)$. For more general analysis of variance and analysis of covariance, the oneway and anova commands can be used, and several other tests exist for more specialized examples such as testing the equality of proportions.

These commands are rarely used in microeconometrics because they can be recast as a special case of regression with an intercept and appropriate indicator variables. Furthermore, regression has the advantage of reliance on less restrictive distributional assumptions, provided samples are large enough for asymptotic theory to provide a good approximation.

For examples of the ttest command and comparison with tests based on OLS estimation, see section 3.5.12.

3.2.8 Data plots

It is useful to plot a smoothed histogram or a density estimate of the dependent variable. Here we use the kdensity command, which provides a kernel estimate of the density.

The data are highly skewed, with a 97th percentile of approximately \$40,000 and a maximum of \$125,000. The kdensity totexp command will therefore bunch 97% of the density in the first 30% of the x axis. One possibility is to type kdensity totexp if totexp < 40000, but this produces a kernel density estimate assuming the data are truncated at \$40,000. Instead, we use command kdensity totexp, we save the evaluation points in kx1 and the kernel density estimates in kd1, and then we line-plot kd1 against kx1.

We do this for both the level and the natural logarithm of medical expenditures, and we use graph combine to produce a figure that includes both density graphs (shown in figure 3.1). We have

- . * Kernel density plots with adjustment for highly skewed data
- . kdensity totexp if posexp==1, generate(kx1 kd1) n(500)
- . graph twoway (line kd1 kx1) if kx1 < 40000, name(levels, replace)
- . label variable ltotexp "Natural logarithm of expenditure"
- . kdensity ltotexp if posexp==1, generate(kx2 kd2) n(500)
- . graph twoway (line kd2 kx2) if kx2 < ln(40000), name(logs, replace)
- . graph combine levels logs, iscale(1.2) ysize(2.5) xsize(6.0)

Figure 3.1. Comparison of densities of level and natural logarithm of medical expenditures

Only positive expenditures are considered, and for graph readability, the very long right tail of totexp has been truncated at \$40,000. In figure 3.1, the distribution of totexp is very right skewed, whereas that of ltotexp is fairly symmetric.

3.3 Transformation of data before regression

When one specifies a linear regression model, the presumption is that the specified relationship between the variable of interest y and the regressors \mathbf{x} is linear, which means that the marginal response of y to a unit change in x is constant.

The preferred model linking y and the regressors, however, may not be linear. For example, the relation between total production costs and output is usually specified to be nonlinear. In such cases, it is usual to interpret the regression as linear after transformation from the original units. Transformations to the linear form may involve both y and \mathbf{x} , or just one of those components.

The purpose of the transformation is to "straighten out" a relationship. Consider some leading examples. Suppose that the relationship takes the form $y = \exp(\beta_1 + \beta_2 x + u)$, where x denotes the regressor and u is the error term. Then the transformation $\ln y = \beta_1 + \beta_2 x + u$ is a "semilog" or "log-linear" regression that relates $\ln y$ to x. After transformation, β_2 measures $\partial E(\ln y)/\partial x = (1/y) \times \partial y/\partial x$, which varies inversely with y.

Now consider the multiplicative relationship $y = e^{\beta_1} x^{\beta_2} u$. Taking logs on both sides of the equality yields $\ln y = \beta_1 + \beta_2 \ln x + \ln u$, a linear-in-logs or log-log regression. In this case, the coefficient β_1 measures $\partial E\{\ln(y)/\partial \ln x\}$, that is, the elasticity of y with respect to x based on the constant elasticity model.

In both the preceding examples, while the dependent variable and, in the second example, the regressor have been transformed, the transformed models are linear in the parameters. So the transformed models can be fit using OLS regression, the subject of this chapter.

More generally, we may consider a regression such as $g(y) = f(x,\beta) + u$, where $g(\cdot)$ and $f(\cdot)$ denote some linearizing transformation whose specific form will depend upon the context. Choosing the functions that provide the best approximations to the data-generating process (DGP) is a part of model specification. Having chosen one, one relies on statistical tests to check whether the functional form is such that the remaining unexplained variation is roughly random.

Although the least-squares estimator of the linear regression requires only the data, or the error on the regression, to have quite weak distributional properties, transformations are often motivated by a preference for some particular features. For example, some outcomes such as income and expenditure often display a highly skewed distribution. A log transformation will typically make the distribution more symmetric and less nonnormal.

Another motivation for transformation is to make the error variance less heteroskedastic. For example, in its original form, a regression may display dependence between (say) the location parameter E(y|x) and scale parameter $\operatorname{Var}(y|x)$; a transformation may get rid of such dependence by reducing the heteroskedasticity of the error term. A family of power transformations, known as Box–Cox transformations, that replaces y by y^p is motivated by a similar consideration. A special case is p = 1/2, the square-root transformation. In a third example, suppose y is positive and we want to ensure that fitted values of y remain positive. A log transformation ensures this. In the final example, suppose y is a proportion, that is, 0 < y < 1, and again we want the fitted values from the regression to preserve this property, whereas the linear regression of y on x will not. The logit transformation uses the transformation also changes the range of values of the dependent variable, producing greater symmetry and spread in the tails of the distribution. In some cases, such changes make the least-squares estimator more robust.

Transformations generally affect the interpretations of regression coefficients, and transformations involving the dependent variables will also affect measures of goodness of fit such as regression R^2 . This means that regression statistics such as R^2 with g(y)as a dependent variable cannot be directly compared with those with y as the dependent variable. This complicates the comparison of regressions with different transformations of the dependent variable. A substantial literature exists on the topic of comparison of linear and linear-in-logs regressions; see Godfrey and Wickens (1981) and references cited there.

Finally, even if one chooses to regress g(y) on h(x), one may want to interpret the results in terms of the original units of y and x. This involves a thorny problem of retransformation that is discussed in section 4.2.3. In some cases, retransformation can

be avoided by directly modeling y using methods more advanced than OLS regression. In particular, we can use Poisson regression (**poisson** command) in place of the log-linear model and use logit regression (**logit** command) for proportions data.

Economic theory rarely suggests a specific parametric form of a regression model, thereby leaving room for empirical explorations. Nonparametric regressions (see section 14.6) are less restrictive in this respect.

3.4 Linear regression

We present the linear regression model, first in levels and then for a transformed dependent variable, here in logs.

3.4.1 Basic regression theory

We begin by introducing terminology used throughout the rest of this book. Let θ denote the vector of parameters to be estimated, and let $\hat{\theta}$ denote an estimator of θ . Ideally, the distribution of $\hat{\theta}$ is centered on θ with small variance, for precision, and a known distribution, to permit statistical inference. We restrict analysis to estimators that are consistent for θ , meaning that in infinitely large samples, $\hat{\theta}$ equals θ aside from negligible random variation. This is denoted by $\hat{\theta} \xrightarrow{p} \theta$ or, more formally, by $\hat{\theta} \xrightarrow{p} \theta_0$, where θ_0 denotes the unknown "true" parameter value. A necessary condition for consistency is correct model specification or, in some leading cases, correct specification of key components of the model, most notably the conditional mean.

Under additional assumptions, most of the estimators considered in this book are asymptotically normally distributed, meaning that their distribution is well approximated by the multivariate normal in large samples. This is denoted by

$$\widehat{\boldsymbol{\theta}} \stackrel{a}{\sim} N\left\{ \boldsymbol{\theta}, \operatorname{Var}\left(\widehat{\boldsymbol{\theta}}\right) \right\}$$

where $\operatorname{Var}(\widehat{\theta})$ denotes the (asymptotic) variance-covariance matrix of the estimator (VCE). More efficient estimators have smaller VCEs. The VCE depends on unknown parameters, so we use an estimate of the VCE, denoted by $\widehat{V}(\widehat{\theta})$. Standard errors of the parameter estimates are obtained as the square root of diagonal entries in $\widehat{V}(\widehat{\theta})$. Different assumptions about the DGP, such as heteroskedasticity, can lead to different estimates of the VCE.

Test statistics based on asymptotic normal results lead to the use of the standard normal distribution and chi-squared distribution to compute critical values and p-values. For some estimators, notably, the OLS estimator, tests are instead based on the t distribution and the F distribution. This makes essentially no difference in large samples with, say, degrees of freedom greater than 100, but in practice it provides a better approximation especially for cluster-robust inference with few clusters; see section 3.4.6. 3.4.2 OLS regression and matrix algebra

3.4.2 OLS regression and matrix algebra

The goal of linear regression is to estimate the parameters of the linear conditional mean

$$E(y|\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta} = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K \tag{3.1}$$

where usually an intercept is included so that $x_1 = 1$. Here **x** is a $K \times 1$ column vector with the *j*th entry—the *j*th regressor x_j —and $\boldsymbol{\beta}$ is a $K \times 1$ column vector with the *j*th entry β_j .

Sometimes, $E(y|\mathbf{x})$ is of direct interest for prediction. More often, however, econometrics studies are interested in one or more of the associated marginal effects (MEs),

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \beta_j$$

for the *j*th regressor. For example, we are interested in the MEs of supplementary private health insurance on medical expenditures. An attraction of the linear model is that estimated MEs are given directly by estimates of the slope coefficients.

The linear regression model specifies an additive (often specified to be independent and identically distributed) error so that, for the typical *i*th observation,

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + u_i, \quad i = 1, \dots, N$$

The OLS estimator minimizes the sum of squared errors, $\sum_{i=1}^{N} (y_i - \mathbf{x}'_i \boldsymbol{\beta})^2$.

Matrix notation provides a compact way to represent the estimator and variance matrix formulas that involve sums of products and cross products. We define the $N \times 1$ column vector \mathbf{y} to have the *i*th entry y_i , and we define the $N \times K$ regressor matrix \mathbf{X} to have the *i*th row \mathbf{x}'_i . Then the OLS estimator can be written in several ways, with

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= \left(\sum_{i=1}^{N} \mathbf{x}_{i}\mathbf{x}_{i}'\right)^{-1}\sum_{i=1}^{N} \mathbf{x}_{i}y_{i}$$

$$= \left[\sum_{\substack{i=1\\N} X_{1i}}^{N} \sum_{\substack{i=1\\N} X_{2i}x_{1i}}^{N} \sum_{\substack{i=1\\i=1}}^{N} x_{2i}x_{2i}} \cdots \sum_{\substack{i=1\\i=1}}^{N} x_{2i}y_{2i}} \vdots \\ \vdots & \ddots & \vdots \\ \sum_{\substack{i=1\\N} X_{Ki}x_{1i}}^{N} \cdots \cdots \sum_{\substack{i=1\\i=1}}^{N} x_{Ki}^{2}y_{i}}\right]^{-1} \left[\sum_{\substack{i=1\\N\\i=1\\i=1}}^{N} x_{Ki}y_{i}} \right]$$

We define all vectors as column vectors, with a transpose if row vectors are desired. By contrast, Stata commands and Mata commands define vectors as row vectors, so in parts of Stata and Mata code, we need to take a transpose to conform to the notation in the book.

3.4.3 Properties of the OLS estimator

The properties of any estimator vary with the assumptions made about the DGP. For the linear regression model, this reduces to assumptions about the regression error u_i .

The starting point for analysis is to assume that u_i satisfies the following classical conditions:

- 1. $E(u_i | \mathbf{x}_i) = 0$ (exogeneity of regressors)
- 2. $E(u_i^2 | \mathbf{x}_i) = \sigma^2$ (conditional homoskedasticity)
- 3. $E(u_i u_j | \mathbf{x}_i, \mathbf{x}_j) = 0, i \neq j$ (conditionally uncorrelated observations)

Assumption 1 is essential for consistent estimation of β and implies that the conditional mean given in (3.1) is correctly specified. This means that the conditional mean is linear and that all relevant variables have been included in the regression. Assumption 1 is relaxed in chapter 7. Assumptions 2 and 3 determine the form of the VCE of $\hat{\beta}$.

3.4.4 Default standard errors

Assumptions 1–3 lead to $\hat{\boldsymbol{\beta}}$ being asymptotically normally distributed with the default estimator of the VCE

$$\widehat{V}_{ ext{default}}\left(\widehat{oldsymbol{eta}}
ight)=s^2(\mathbf{X}'\mathbf{X})^{-1}$$

where

$$s^{2} = (N - K)^{-1} \sum_{i=1}^{N} \widehat{u}_{i}^{2}$$
(3.2)

and $\hat{u}_i = y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}$. Under assumptions 1–3, the OLS estimator is fully efficient. If, additionally, u_i is normally distributed, then "t statistics" are exactly t distributed. This fourth assumption is not made, but it is common to continue to use the t distribution in the hope that it provides a better approximation than the standard normal in finite samples.

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 6, we present examples of more efficient, feasible generalized least-squares estimation. In the current chapter, we continue to use the OLS estimator, as is often done in practice, but we use alternative estimates of the VCE that are valid when assumption 2, assumption 3, or both are relaxed, provided the sample size is sufficiently large for the relevant asymptotic theory to provide a good approximation.

98

3.4.5 Heteroskedasticity-robust standard errors

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors. Then a robust estimator, or more precisely a heteroskedasticity-robust estimator, of the VCE of the OLS estimator is

$$\widehat{V}_{\text{robust}}\left(\widehat{\boldsymbol{\beta}}\right) = (\mathbf{X}'\mathbf{X})^{-1} \left(\frac{N}{N-K} \sum_{i=1}^{N} \widehat{u}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}'\right) (\mathbf{X}'\mathbf{X})^{-1}$$
(3.3)

For cross-sectional data that are independent, this estimator, introduced by White (1980), has supplanted the default variance matrix estimate in most applied work because heteroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect.

In Stata, a robust estimate of the VCE is obtained by using the vce(robust) option of the regress command, as illustrated in section 3.5.2. Related options are vce(hc2) and vce(hc3), which may provide better heteroskedasticity-robust estimates of the VCE when the sample size is small; see [R] regress. The robust estimator of the VCE has been extended to other estimators and models, and a feature of Stata is the vce(robust) option, which is applicable for many estimation commands. Some community-contributed commands use robust in place of vce(robust).

3.4.6 Cluster–robust standard errors

When errors for different observations are correlated, assumption 3 is violated. Then both default and heteroskedastic robust estimates of the VCE are invalid, and different ways in which error correlation may arise lead to different robust estimates of the VCE. Various robust estimates of the VCE are presented in section 13.4.

For cross-sectional data, the most common violation of assumption 3 is that errors are clustered. Clustered or grouped errors are errors that are correlated within a cluster or group and are uncorrelated across clusters. A simple example of clustering arises when sampling is of independent units but errors for individuals within the unit are correlated. For example, 100 independent villages may be sampled, with several people from each village surveyed. Then, if a regression model overpredicts y for one village member, it is likely to overpredict for other members of the same village, indicating positive correlation. Similar comments apply when sampling is of households with several individuals in each household. Another leading example is panel data with independence over individuals but with correlation over time for a given individual.

Given assumption 1, but not 2 or 3, a cluster–robust estimator of the VCE of the OLS estimator is

$$\widehat{V}_{\text{cluster}}\left(\widehat{\boldsymbol{\beta}}\right) = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\frac{G}{G-1} \frac{N-1}{N-K} \sum_{g=1}^{G} \mathbf{X}_{g} \widehat{\mathbf{u}}_{g} \widehat{\mathbf{u}}_{g}' \mathbf{X}_{g}'\right) \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

where g = 1, ..., G denotes the cluster (such as village), $\hat{\mathbf{u}}_g$ is the vector of residuals for the observations in the *g*th cluster, and \mathbf{X}_g is a matrix of the regressors for the observations in the gth cluster. The key assumptions made are error independence across clusters and that the number of clusters $G \to \infty$.

Cluster-robust standard errors can be computed by using the vce(cluster clustvar) option in Stata, where clusters are defined by the different values taken by the clustvar variable. The estimate of the VCE is in fact heteroskedasticity-robust and cluster-robust because there is no restriction on $\text{Cov}(u_{gi}, u_{gj})$. The cluster VCE estimate can be applied to many estimators and models; see section 13.4.6.

Cluster–robust standard errors must be used when data are clustered. For a scalar regressor x, a rule of thumb is that cluster–robust standard errors are

$$\tau \simeq \sqrt{1 + \rho_x \rho_u (M - 1)} \tag{3.4}$$

times the incorrect default standard errors, where ρ_x is the within-cluster correlation coefficient of the regressor, ρ_u is the within-cluster correlation coefficient of the error, and M is the average cluster size. This rule of thumb is a good guide in most settings, but when x is an experimentally assigned treatment with values that vary across observations within the same cluster, one should use the more general rule of thumb that $\tau \simeq \sqrt{1 + \rho_{xu}(M-1)}$, where ρ_{xu} is the within-cluster correlation of $x_i u_i$. Cluster-robust standard errors can be much larger than default or heteroskedastic-robust standard errors.

It can be necessary to use cluster-robust standard errors even where it is not immediately obvious. This is particularly the case when a regressor is an aggregated or macrovariable because then $\rho_x = 1$. For example, suppose we use data from the U.S. Current Population Survey and regress individual earnings on individual characteristics and a state-level regressor that does not vary within a state. Then, if there are many individuals in each state so M is large, even slight error correlation for individuals in the same state can lead to great downward bias in default standard errors and in heteroskedasticity-robust standard errors. Clustering can also be induced by the design of sample surveys. This topic is pursued in section 6.9.

Statistical inference for OLS based on cluster-robust standard errors uses critical values and p-values based on the t distribution with (G-1) degrees of freedom, where G is the number of clusters. When there are few clusters, this approximation can lead to considerable underestimation of standard errors and associated test p-values and to confidence intervals that are too narrow. Better inference for OLS with few clusters is pursued in section 6.4.6 and in section 12.6. In particular, see section 12.6 for the community-contributed **boottest** command (Roodman et al. 2019), which implements a wild cluster bootstrap that can lead to better finite cluster inference.

Many microeconometric applications use clustered data. Then other estimators than OLS are often used, most notably fixed-effects and random-effects estimators. For linear models, these methods are presented in sections 6.5–6.7 and, for panel data, in chapter 8. For nonlinear models, see section 13.9 and, for panel data, see chapter 22. For the recently proposed design-based approach to inference, see section 24.4.7.

3.4.7 Bootstrap standard errors

An appropriate alternative way to compute heteroskedasticity-robust or cluster–robust standard errors is to use an appropriate bootstrap. This is a widely applicable method for obtaining standard errors and confidence intervals for parameters in cases where the asymptotic distribution is either not available or is available but is inconvenient to implement.

Here we present simple bootstraps that yield standard errors that are asymptotically equivalent to those obtained using the vce(robust) and vce(cluster clustvar) options. A refined bootstrap procedure, if feasible, provides an improvement over the usual asymptotic distribution. These distinctions are further developed and used in section 12.5.

The basic idea of the bootstrap is that the sample is used as a population, and we then obtain a number of samples from this "population" by repeatedly resampling observations with replacement. Such samples are referred to as bootstrap samples. This is a substitute for the ideal but impractical situation of having multiple independent samples. We then obtain the sampling distribution of the parameters of interest by fitting the same model to the many bootstrap samples. Moments of the distribution can then be computed from the collection of estimates.

Resampling from a given sample is easiest to understand in the independent and identically distributed setting with sample $y_i, i = 1, ..., N$. Suppose that the target parameter is the population mean, denoted μ , and the estimator $\hat{\mu}$ is the sample mean \overline{y} . Then we can draw *B* different samples of *N* observations each by sampling with replacement. Each sample generates a sample mean, $\overline{y}_b, b = 1, ..., B$, so we have *B* independent estimates. Moments of the distribution of $\hat{\mu}$ can then be computed given the empirical distribution of these *B* estimates.

Now consider the linear regression setting with data (y_i, \mathbf{x}_i) , $i = 1, \ldots, N$, and model errors that are independent but heteroskedastic. A bootstrap called a paired bootstrap or nonparametric bootstrap obtains bootstrap resamples by sampling (y_i, \mathbf{x}_i) , jointly and with replacement. Each bootstrap sample of N observations generates an estimate of the regression parameters, denoted $\hat{\beta}_b$, $b = 1, \ldots, B$.

The bootstrap estimate of variance of an estimator is the usual formula for estimating a variance of (say) β_j , applied to the *B* bootstrap replications

$$s_{\widehat{\beta}_j}^2 = \frac{1}{B-1} \sum_{b} \left(\widehat{\beta}_{jb} - \overline{\widehat{\beta}}_{jb} \right)^2$$

The bootstrap $100(1 - \alpha)$ percent confidence interval for β_j is obtained by using the asymptotic α percent critical values from the standard normal distribution,

$$\left(\widehat{\beta}_j - z_{\alpha/2} \times s_{\widehat{\beta}_j}, \widehat{\beta}_j + z_{\alpha/2} \times s_{\widehat{\beta}_j}\right)$$

where $\Pr(Z > z_{\alpha/2}) = \alpha/2$. This bootstrap yields standard errors and confidence intervals that are asymptotically equivalent to those obtained using heteroskedastic-robust standard errors.

When regression model errors are instead clustered, the preceding method is adapted by resampling entire clusters with replacement. Each bootstrap sample of G clusters generates an estimate of the regression parameters, denoted $\hat{\beta}_b$, $b = 1, \ldots, B$. Then $s_{\hat{\beta}_j}^2$ and the associated confidence interval are computed using the preceding formulas. This cluster pairs bootstrap yields standard errors and confidence intervals that are equivalent as $G \to \infty$ to those obtained using cluster–robust standard errors.

3.4.8 Regression in logs

The medical expenditure data are very right skewed. Then a linear model in levels can provide very poor predictions because it restricts the effects of regressors to be additive. For example, aging 10 years is assumed to increase medical expenditures by the same amount regardless of observed health status. Instead, it is more reasonable to assume that aging 10 years has a multiplicative effect. For example, it may increase medical expenditures by 20%.

We begin with an exponential mean model for positive expenditures, with error that is also multiplicative, so $y_i = \exp(\mathbf{x}'_i \boldsymbol{\beta}) \varepsilon_i$. Defining $\varepsilon_i = \exp(u_i)$, we have $y_i = \exp(\mathbf{x}'_i \boldsymbol{\beta} + u_i)$, and taking the natural logarithm, we fit the log-linear model

$$\ln y_i = \mathbf{x}_i' \boldsymbol{\beta} + u_i$$

by OLS regression of $\ln y$ on **x**. The conditional mean of $\ln y$ is being modeled, rather than the conditional mean of y. In particular,

$$E(\ln y|\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$$

assuming u_i has conditional mean zero.

Parameter interpretation requires care. For regression of $\ln y$ on \mathbf{x} , the coefficient β_j measures the effect of a change in regressor x_j on $E(\ln y|\mathbf{x})$, but ultimate interest lies instead on the effect on $E(y|\mathbf{x})$. Some algebra shows that β_j measures the proportionate change in $E(y|\mathbf{x})$ as x_j changes, called a semielasticity, rather than the level of change in $E(y|\mathbf{x})$. For example, if $\beta_j = 0.02$, then a one-unit change in x_j is associated with a proportionate increase of 0.02, or a 2% increase, in $E(y|\mathbf{x})$.

Prediction of $E(y|\mathbf{x})$ is substantially more difficult because it can be shown that $E(\ln y|\mathbf{x}) \neq \exp(\mathbf{x}'\boldsymbol{\beta})$. This is pursued in section 4.2.3. Buntin and Zaslavsky (2004) compare several alternative regression models for medical expenditures.

3.5 Basic regression analysis

We use **regress** to run an OLS regression of the natural logarithm of medical expenditures, **ltotexp**, on **suppins** and several demographic and health-status measures. Using