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1 Introduction

Statistics is a major part of research in many fields, often serving as the primary method
for establishing whether results support hypotheses. Indeed, it is unusual for a quan-
titative study in psychology to not use statistical analysis. Consequently, it’s essential
for psychologists to be competent users of statistics, and that is the primary aim of this
book.

That is a lofty goal. Statistics is a huge, technical field. Psychologists who spend
their careers studying statistics only master small portions, and most psychologists
study psychological content, not statistics. Furthermore, studying a single book will
not make you a competent user of statistics. Competence comes from trial and error
and from applying statistical methods and ideas to your own research. Competence
comes from years of building your skills. Competence comes from collaborating with
more competent people and learning from them. My hope is that this book serves as
a step toward competence for those starting their training and as a useful reference or
development tool for those already using statistics.

1.1 Structure of the book

This book covers some foundational topics in psychological statistics and psychomet-
rics. Topics include t tests, analysis of variance (ANOVA), regression, power analysis,
multilevel models, structural equation modeling, and factor analysis. I do not provide
an exhaustive treatment of each topic because many books already do that. Instead, I
provide an introduction to key concepts regarding how to use these statistical models
to answer research questions.

Competent statistical analysis requires the use of statistical software. Consequently,
I weave the statistical content with Stata code that illustrates how to fit models and
make sense of the output. Most of the code examples illustrate how to use Stata
commands, such as regress (for regression) or sem (for structural equation modeling).
I also illustrate how to use some of Stata’s graphical commands, such as histogram and
twoway scatter for scatterplots, and data management commands, such as generate
and egen (to create new variables). I show how to program Stata to run simulations to
help you learn a concept or as a method for understanding your models.

The book is divided into three parts. Part I provides an introduction to Stata,
including the interface, loading data, do-files and Stata syntax, descriptive statistics,
graphics, and help and documentation. Part II discusses regression, ANOVA, multilevel

3
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models, and statistical power. I begin with regression because it provides the foundation
for the discussion of ANOVA, multilevel models, and power. Part III covers psychomet-
rics, including a discussion of the issues of reliability and validity. In these chapters,
I discuss these concepts from the perspective of factor analysis, because I believe this
provides a coherent framework for thinking about these measurement concepts. Look-
ing at these concepts from the perspective of factor analysis will also help you make
connections between the psychometric concepts of reliability and validity and regression
models.

I strongly recommend that you work through the Stata code in each chapter rather
than just reading the code and seeing the results in the book. You will learn statistical
concepts better by toying with code and seeing what happens, especially as you change
the specification or the options. My students tell me that it is more effective to practice
using Stata and to run models during class rather than just watch me use Stata or read
lecture notes. Furthermore, as you get more comfortable with Stata, you will find it
much easier to learn how to use other Stata commands because you will start to see the
connections between the various commands.

1.2 Benefits of Stata

Statistical software is necessary, but why choose Stata? Some treat statistical software
kind of like a sports team, showing undying devotion to the software and viewing crit-
icisms of the software as personal attacks. Others are pragmatic users, simply using
what is available to them or what seems useful. Some want only open source software;
others want a company to back the development and certification of the software. Many
use a specific software because that’s what their adviser used or what was taught in
their program. I started using Stata because I was a longtime Mac user. As I was
finishing my graduate degree in 2003, SAS did not support Mac at all, and SPSS’s Mac
software was buggy and slow. Stata’s Mac support was excellent, and the software did
most of what I needed. I had been introduced to Stata as an undergraduate and was
happy to return. I have never looked back. Stata has remained my primary statistical
package.1

Although my reasons for choosing Stata had little to do with statistics itself, I believe
Stata is an excellent choice for five reasons:

1. Consistent syntax. Learning Stata, like learning any programming language,
is challenging. However, learning Stata is manageable because Stata’s syntax is
expressive and consistent. It is expressive because it is easy to understand once
you have the basics down. It is consistent because command syntax does not
fundamentally change from one command to another. Thus, once you get the
basic structure down, it is easy to learn how to use new commands: the structure
will be similar to commands you are already familiar with.

1. That’s not to say that I do not use other software. Sometimes, collaboration requires that I do.
Sometimes, I need analysis routines not available in Stata. And sometimes, I just like to learn new
stuff, so I try software that is available to me.
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2. Aids the replicability of analyses. Statistical analyses should be reproducible
(Long 2009), which means that if I asked you to run an analysis a second time (or
third, fourth, and so on), you will get the same answer. Likewise, if I ran your
code on my computer, I would get the same results. Stata includes the ability
to specify the Stata version number for your analysis. For example, you may
start your analysis with the command version 14.2, which tells Stata to run
the analysis using the code that was present for Stata version 14.2. Therefore,
if something changed between version 14.2 and 15.0, you will not get different
answers.2

3. Comprehensive documentation. Stata’s support documentation is compre-
hensive and ships as part of the software. Additionally, all documentation is freely
available on the web. In my opinion, Stata documentation is second-to-none in
the statistical software world. The documentation provides a readable explanation
of each command, including options. Furthermore, the documentation includes
worked examples and discussion of output to aid your learning. Finally, the doc-
umentation provides technical details regarding the mathematical and statistical
underpinnings of commands. You can learn a lot by studying the documentation.

4. Data management. Most analyses require data management: cleaning data,
generating variables, labeling variables and values, reshaping the data into a spe-
cific format, and so on. Stata’s data management commands and utilities are
excellent and make data preparation straightforward and replicable. Even when
I need to use another software package for analysis, I nearly always prepare and
manage the data in Stata.

5. Graphics. Graphics are an essential part of data analysis and are often supe-
rior to tables of numbers when it comes to communicating results (Cox 2004;
Gelman, Pasarica, and Dodhia 2002; Gelman 2011). Stata includes comprehen-
sive graphical tools to aid in exploring your data and interpreting the results of
your models. The graphics are customizable and can be quite beautiful. Nearly all
figures in this book were created with Stata. I include the code for creating these
figures so that you can reproduce the graphs. Study this code. You will appreciate
how flexible Stata graphs can be, and you will learn about Stata programming.

1.3 Scientific context

As I write this introduction, psychology, and science generally, has some problems.
Pressure to publish and to ensure it is something exciting and novel combined with
bad methodological practices means that a lot of research is not replicable (Ioannidis
2005, 2008, 2012). Indeed, many psychological studies simply do not replicate (Open
Science Collaboration 2015), leading some to call the situation a “replication crisis”

2. Of course, if the Stata developers caught a bug in the code that results in a different answer in
version 15 than 14.2, you may want the different answer. Nevertheless, by making the version
number explicit, you can ensure that the results will only change when you expect them to.
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(Pashler and Harris 2012). Psychology is not alone in this, with some pointing to prob-
lems in other disciplines, such as economics, biology, and medicine (Ioannidis 2005, 2013,
2014). Do these problems mean that many (or even most) theories are not worthwhile
and the scientific literature cannot be trusted? I hope it is not that bad. Regardless of
the answer to that question, I think the replication crisis does suggest we ought to step
back and think about why we are facing these problems.

Some argue that a major reason for these problems is the incentives that influ-
ence scientists (Baldwin 2017; Ioannidis 2014; Nelson, Simmons, and Simonsohn 2012;
Simmons, Nelson, and Simonsohn 2011). For example, in universities across the world,
promotion and tenure depend upon publications—hence the phrase “publish or perish”.
Getting your first academic job often depends upon having many publications, includ-
ing some in prestigious journals. Some research positions are “soft money” jobs, which
means that salary and research support comes from grant money rather than the uni-
versity itself. Getting grants requires that you are productive and that previous grants
worked out. Sometimes we joke that to get a grant, we have to do all the research
that the grant is proposing to prove that the research will work. When your salary
and reputation depend upon getting papers published and the research turning out in
a specific way, the incentive is to make sure the research works out as predicted.

Given these incentives, publishing becomes the end goal of research. That is, rather
than publishing being the means to communicate scientific observation, publishing and
adding lines to your vita become tantamount to science itself. The book The Compleat
Academic3 provides advice to researchers in the early stages of their careers on things
like graduate school, applying for postdocs and jobs, submitting grants, and teaching
classes. The advice to graduate students states:

The information that we need to arrive at a short list of applicants is con-
tained in the letters of recommendation and, primarily, in the academic vita.
Wise graduate students, therefore, will start at day one of their first year
in a PhD program to develop a strong vita. [. . . ] Alter your perspective so
that you derive your professional self-respect entirely from what is on that
document. From the start of graduate school on, throughout what we hope
will be a long and productive career, you are your vita. (Lord 2004, 10,
emphasis in original)

Given such advice, combined with the incentives for getting and keeping a job (in-
cluding securing your own salary!), it is not difficult to see why publishing became
equivalent to doing science.

I learned statistics in this context, as did most researchers before me. Consequently,
a number of problematic research and statistical practices evolved that ultimately helped
publication rates but did not improve the quality of the science. For example, consider
the use of p-values to evaluate statistical significance. There are many criticisms of

3. The dictionary on my computer defines the word “Compleat” as “archaic spelling of complete”.
Leave it to academics to take the simple word complete and make it snooty.
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p-values in the scientific literature (for example, Meehl [1978]). Many of the criticisms
are about how p-values are used, not so much about p-values themselves. McElreath
(2016) says it well:

This audience accepts that there is something vaguely wrong about typical
statistical practice in the early 21st century, dominated as it is by p-values
and a confusing menagerie of testing procedures. [. . . ] The problem in my
opinion is not so much p-values as the set of odd rituals that have evolved
around them, in the wilds of the sciences, as well as the exclusion of so many
other useful tools. (pp. xi–xii)

In short, p-values became the primary source of evidence that a result is publishable.
Consequently, the goal of analysis becomes finding a p-value that is less than 0.05. If
you complete a study and find null results, there’s a good chance you will not even try
to publish it.

Researcher flexibility, especially with respect to design, analysis, and reporting,
means that finding significant effects probably required torturing the data. More advice
from The Compleat Academic4 explains this well:

To compensate for this remoteness from our participants, let us at least
become familiar with the record of their behavior: the data. Examine them
from every angle. Analyze the sexes separately. Make up composite indexes.
If a datum suggests a new hypothesis, try to find additional evidence for it
elsewhere in the data. If you see dim traces of interesting patterns, try to
reorganize the data to bring them into bolder relief. If there are participants
you do not like, or trials, observers, or interviewers who gave you anomalous
results, drop them (temporarily). Go on a fishing expedition for something—
anything—interesting. (Bem 2004, 187)

“Interesting patterns” here usually means small p-values. Such flexibility in analysis
is sometimes called researcher degrees of freedom or p-hacking (Simmons, Nelson, and
Simonsohn 2011) or the garden of forking paths (Gelman and Loken 2014). Exam-
ples of such analyses include running multiple experiments and only reporting results
from those with significant results. If main effects are not significant, test interactions;
dropping observations when doing so takes the p-value from p = 0.09 to p = 0.03.
Change a continuous variable to a categorical variable because the categorical variable
produces significant results. Ignore problems with estimation and fit because a result
is statistically significant. Fail to look at the raw data to see what a model (which
is a reduction of the data) implies about the data because the analysis is statistically
significant (Simmons, Nelson, and Simonsohn 2011). I think you get the idea.

4. Honestly, I cannot get over that name.
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Fortunately, changes are in process. For example, the Open Science Framework
(https://osf.io/) provides tools for researchers to register hypotheses before seeing the
data and to create a website for hosting data and analysis files. I have seen job postings
where an emphasis on improving rigor and replicability of science is a job qualification.
Journals are accepting registered reports, wherein studies are reviewed prior to data
collection and evaluated solely on the basis of the research question and quality of the
design and proposed analyses (https://cos.io/rr/).

I hope this book contributes to the positive changes. My goal is to teach statistical
concepts and software in a way that helps researchers a) address their research question
transparently and openly, b) better understand their data, and c) better understand
the models they use and what the models imply about their theory or research area. To
be sure, I teach and use p-values—they can be useful. Stata includes many tools that
supplement the information provided by p-values, and as a consequence, Stata can be
used in a way that improves how statistics are used in psychology specifically and in
science generally. So buckle up! We have a lot of great stuff to discuss.
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3.3 Bivariate regression

The mean was our best guess regarding the value of new attitude. Another term
meaning best guess is expected value. That is, in the long run, what do we expect the
value of attitude to be? For a single variable, such as attitude, the expected value
is the mean. Regression, on the other hand, allows us to determine an expected value
for attitude that incorporates information from other variables. Our best guess about
attitude will be based on variables such as the respondent’s level of education and
mental health symptoms.

Figure 3.2 is a scatterplot of educ and attitude.

. use http://www.stata-press.com/data/pspus/gss_attitude, clear

. twoway scatter attitude educ, jitter(2) scheme(lean2)
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Figure 3.2. Relationship between educ and attitude

Based on figure 3.2, what do you think is the expected value for attitude? Does that
expected value differ for someone who has 10 years of education compared with someone
who has 20 years of education? That is, if we consider educ, does that affect what we
expect attitude to be? If there is a relationship between education and attitude toward
psychotropic medication, then expected values of attitude will vary as a function of
educ. Regression provides information about the nature of that relationship in the form
of a line, which is why regression is also called linear regression.
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3.3.1 Lines

Let’s go back in time and revisit junior high school algebra. You may recall the formula
for a line:

y = mx+ b

where x and y are variables, m is the slope, and b is the y intercept. We say that
y is a function of two quantities: i) the product of m and x and ii) b. The slope
describes changes in y with respect to changes in x (that is, “rise over run”), and the
y intercept provides the value of y when x = 0. If we know m, x, and b, then we know
y (see figure 3.3). Regression produces slope and intercept values that describe the
relationship between an outcome and predictors.

y = .5x + 1

0

1

2

3

4

5

6

y

0 1 2 3 4 5 6 7 8

x

Figure 3.3. Illustration of y = mx+ b

3.3.2 Regression equation

Compare figures 3.2 and 3.3. In figure 3.3, it is obvious what the line should be because
the points all fall on a straight line. In figure 3.2, you could draw any number of lines
through the data—a horizontal line, a vertical line, a line moving up from left to right,
or a line moving down from left to right. All lines would provide some indication of
the relationship between attitude and educ, and all lines will provide an intercept
and slope. Which line is best? The best line is the line that provides the closest
correspondence between the expected value of y and the actual value of y. In other
words, the regression line will provide the best prediction of y given the x values across
the entire dataset.
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A regression equation for the relationship between attitude and educ is

attitudei = β0 + β1educi + ǫi (3.1)

This equation says that the observed value of attitude for person i is a function of an
intercept (β0), a slope (β1) relating educ to attitude, and error in prediction (ǫi). Error
is included in (3.1) because the observed value of attitude is not perfectly captured
by β0 and β1 (that is, the data do fall on a straight line).

Commonly, the regression equation is written in terms of the expected value of y.
For the example model, the equation is

E(attitudei|educi) = β0 + β1educi (3.2)

which is read as, “The expected value of attitude given educ is equal to β0 plus β1
times educ.” Alternatively, we can substitute E(attitudei|educi) with ̂attitudei:

̂attitudei = β0 + β1educi (3.3)

The “hat” over attitudei denotes the predicted value of attitude. Equations (3.2)
and (3.3) omit ǫi because these equations deal with the expected or predicted values
of attitude—errors come into play when comparing the expected value to the actual
value of y.

A general bivariate regression (one y and one x) equation is

yi = β0 + β1xi + ǫi (3.4)

Further, the general form of (3.2) and (3.3) is

E(yi|xi) = β0 + β1xi (3.5)

and
ŷi = β0 + β1xi (3.6)

Population parameters versus sample-based estimates

In research, we collect data on samples to learn about populations. In regression,
we estimate slopes and intercepts based on samples to learn about what the slopes
and intercepts are in the broader population. Slopes and intercepts in the popula-
tion are called population parameters. Parameters are typically symbolized using
Greek letters, such as β in the case of regression coefficients [see (3.4)]. In this
book, sample-based estimates of those equations are symbolized using lowercase,
Roman letters, such as b in the case of regression coefficients. Thus, the popula-
tion slope is β1 and the sample-based estimate of the slope is b1. Other examples
include σ and s for the population and sample-based standard deviation, and ρ
and r for the population and sample-based correlation.
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3.3.3 Estimation

The slope is computed as

b1 = ryx
sy
sx

(3.7)

where ryx is the correlation between x and y, and sy and sx are the standard deviations
for y and x, respectively. The intercept is computed as

b0 = y − b1x (3.8)

Of course, we rarely—if ever—compute these quantities by hand. Stata’s regress
command does this for us. The syntax for regress is straightforward. Following the
keyword regress, you type the dependent variable followed by the independent vari-
ables. As discussed in section 2.4.1, you can use if and in with regress.

regress depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

Estimating (3.3) with regress is done as follows:

. regress attitude educ

Source SS df MS Number of obs = 1,006
F(1, 1004) = 33.02

Model 8.81344558 1 8.81344558 Prob > F = 0.0000
Residual 267.958141 1,004 .266890579 R-squared = 0.0318

Adj R-squared = 0.0309
Total 276.771587 1,005 .275394614 Root MSE = .51661

attitude Coef. Std. Err. t P>|t| [95% Conf. Interval]

educ .0335253 .005834 5.75 0.000 .0220771 .0449736
_cons 1.991708 .0804314 24.76 0.000 1.833876 2.149541

Focus on the bottom portion of the output for now. Stata calls the estimated intercept
cons (that is, constant). Thus, b0 = 1.99. The slope for educ is b1 = 0.03. We can
now fill in the details of (3.3).

̂attitudei = 1.99 + 0.03educi (3.9)

We can make predictions based on the coefficients. For example, if we want to know
the predicted attitude for someone who has 15 years of education, we simply plug 15
into (3.9).

2.44 = 1.99 + 0.03× 15 (3.10)

The predicted attitude for someone who has 15 years of education is 2.44. Another
way to say that is, “The expected value of attitude given that educ equals 15 is 2.44,
or E(attitude|educ = 15) = 2.44.”




