An Introduction to Survival Analysis Using Stata

Revised Third Edition

Mario Cleves Department of Pediatrics University of Arkansas Medical Sciences

William Gould StataCorp

Yulia V. Marchenko StataCorp

A Stata Press Publication StataCorp LP College Station, Texas

Copyright © 2002, 2004, 2008, 2010, 2016 by StataCorp LP All rights reserved. First edition 2002 Revised edition 2004 Second edition 2008 Third edition 2010 Revised third edition 2016

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in $\rm IAT_{E}X\,2_{\mathcal{E}}$ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

Print ISBN-10: 1-59718-174-9 Print ISBN-13: 978-1-59718-174-7

Library of Congress Control Number: 2016935492

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LP.

Stata, **STATA**, Stata Press, Mata, **MATA**, and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

 $\operatorname{{\rm I\!AT}_{\rm E\!X}} 2_{\mathcal{E}}$ is a trademark of the American Mathematical Society.

	\mathbf{List}	of tables	xiii
	\mathbf{List}	of figures	$\mathbf{x}\mathbf{v}$
	Pref	ace to the Revised Third Edition	xix
	Pref	ace to the Third Edition	xxi
	Pref	ace to the Second Edition	xxiii
	Pref	ace to the Revised Edition	xxv
	Pref	ace to the First Edition x	xvii
	Nota	ation and typography	xxix
1	The	problem of survival analysis	1
	1.1	Parametric modeling	2
	1.2	Semiparametric modeling	2
	1.3	Nonparametric analysis	5
	1.4	Linking the three approaches	5
2	Desc	ribing the distribution of failure times	7
	2.1	The survivor and hazard functions	7
	2.2	The quantile function	10
	2.3	Interpreting the cumulative hazard and hazard rate	13
		2.3.1 Interpreting the cumulative hazard	13
		2.3.2 Interpreting the hazard rate	15
	2.4	Means and medians	16
3	Haza	ard models	19
	3.1	Parametric models	20
	3.2	Semiparametric models	21
	3.3	Analysis time (time at risk) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	24

4	Cens	oring a	nd truncation	29			
	4.1	Censori	ng	29			
		4.1.1	Right-censoring	30			
		4.1.2	Interval-censoring	32			
		4.1.3	Left-censoring	34			
	4.2	Truncat	tion	34			
		4.2.1	Left-truncation (delayed entry) $\ldots \ldots \ldots \ldots \ldots \ldots$	34			
		4.2.2	Right-truncation	35			
		4.2.3	Gaps	36			
5	Reco	ording s	urvival data	37			
	5.1	The des	sired format	37			
	5.2	Other f	ormats	40			
	5.3	Example: Wide-form snapshot data					
6	Usin	g stset		47			
	6.1	A short lesson on dates					
	6.2	Purposes of the stset command					
	6.3	Syntax	of the stset command	51			
		6.3.1	Specifying analysis time	52			
		6.3.2	Variables defined by stset	55			
		6.3.3	Specifying what constitutes failure	57			
		6.3.4	Specifying when subjects exit from the analysis	59			
		6.3.5	Specifying when subjects enter the analysis	62			
		6.3.6	Specifying the subject-ID variable	65			
		6.3.7	Specifying the begin-of-span variable	67			
		6.3.8	Convenience options	70			
7	Afte	r stset		73			
	7.1	Look at	t stset's output	73			
	7.2	List sor	ne of your data	76			
	7.3	Use std	escribe	77			
	7.4	Use stv	ary	78			

vi

Contents	5
----------	---

	7.5	Perhaps	use stfill	81
	7.6	Example	e: Hip-fracture data	83
8	Nonp	paramet	ric analysis	91
	8.1	Inadequ	acies of standard univariate methods	91
	8.2	The Ka	plan–Meier estimator	93
		8.2.1	Calculation	93
		8.2.2	Censoring	96
		8.2.3	Left-truncation (delayed entry) $\ldots \ldots \ldots \ldots \ldots$	97
		8.2.4	Gaps	99
		8.2.5	Relationship to the empirical distribution function \ldots .	99
		8.2.6	Other uses of sts list $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	101
		8.2.7	Graphing the Kaplan–Meier estimate	102
	8.3	The Nel	son–Aalen estimator	107
	8.4	Estimat	ing the hazard function \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	113
	8.5	Estimat	ing mean and median survival times \ldots \ldots \ldots \ldots \ldots	118
	8.6	Tests of	hypothesis	122
		8.6.1	The log-rank test \hdots	123
		8.6.2	The Wilcoxon test \hdots	125
		8.6.3	Other tests	126
		8.6.4	Stratified tests	126
9	The	Cox pro	oportional hazards model	131
	9.1	Using st		132
		9.1.1	The Cox model has no intercept	133
		9.1.2	Interpreting coefficients	133
		9.1.3	The effect of units on coefficients $\hdots \hdots \hdots$	135
		9.1.4	Estimating the baseline cumulative hazard and survivor functions	137
		9.1.5	Estimating the baseline hazard function $\ldots \ldots \ldots \ldots$	141
		9.1.6	The effect of units on the baseline functions $\ . \ . \ . \ .$.	145
	9.2	Likeliho	od calculations	147

vii

		9.2.1	No tied failures	147
		9.2.2	Tied failures	150
			The marginal calculation	150
			The partial calculation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	151
			The Breslow approximation	152
			The Efron approximation	153
		9.2.3	Summary	153
	9.3	Stratifi	ed analysis	155
		9.3.1	Obtaining coefficient estimates	155
		9.3.2	Obtaining estimates of baseline functions	157
	9.4	Cox me	odels with shared frailty	158
		9.4.1	Parameter estimation	160
		9.4.2	Obtaining estimates of baseline functions	164
	9.5	Cox mo	odels with survey data	167
		9.5.1	Declaring survey characteristics	168
		9.5.2	Fitting a Cox model with survey data	169
		9.5.3	Some caveats of analyzing survival data from complex survey designs	171
	9.6	Cox mo	odel with missing data—multiple imputation	172
		9.6.1	Imputing missing values	174
		9.6.2	Multiple-imputation inference	176
10	Mod	el build	ling using stcox	179
	10.1	Indicat	or variables	179
	10.2	Catego	rical variables	180
	10.3	Continu	nous variables	182
		10.3.1	Fractional polynomials	184
	10.4	Interac	tions	188
	10.5	Time-v	arying variables	191
		10.5.1	Using stcox, tvc() texp() $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	193
		10.5.2	Using stsplit	195

	10.6	Modeling group effects: fixed-effects, random-effects, stratifica- tion, and clustering
11	The	Cox model: Diagnostics 205
	11.1	Testing the proportional-hazards assumption
		11.1.1 Tests based on reestimation
		11.1.2 Test based on Schoenfeld residuals
		11.1.3 Graphical methods
	11.2	Residuals and diagnostic measures 214
		Reye's syndrome data 215
		11.2.1 Determining functional form
		11.2.2 Goodness of fit
		11.2.3 Outliers and influential points
12	Para	metric models 231
	12.1	Motivation
	12.2	Classes of parametric models
		12.2.1 Parametric proportional hazards models
		12.2.2 Accelerated failure-time models
		12.2.3 Comparing the two parameterizations
13	A su	rvey of basic parametric regression models in Stata 247
	13.1	The exponential model
		13.1.1 Exponential regression in the PH metric
		13.1.2 Exponential regression in the AFT metric
	13.2	Weibull regression
		13.2.1 Weibull regression in the PH metric
		Fitting null models
		13.2.2 Weibull regression in the AFT metric
	13.3	Gompertz regression (PH metric)
	13.4	Lognormal regression (AFT metric)
	13.5	Loglogistic regression (AFT metric)
	13.6	Generalized gamma regression (AFT metric)

	13.7	Choosin	noosing among parametric models		
		13.7.1	Nested models	280	
		13.7.2	Nonnested models	283	
14	Post	estimat	ion commands for parametric models	285	
	14.1	Use of g	predict after streg	285	
		14.1.1	Predicting the time of failure	287	
		14.1.2	Predicting the hazard and related functions $\ldots \ldots \ldots$	293	
		14.1.3	Calculating residuals	296	
	14.2	Using s	tcurve	298	
	14.3	Predict	ive margins and marginal effects	302	
		14.3.1	Predictive margins	302	
			Marginal mean survival time	302	
			Marginal survival probabilities	307	
			Multiple-record data	309	
		14.3.2	Marginal effects	311	
			-		
15	Gene	eralizing	g the parametric regression model	317	
15	Gene	e ralizin g 15.0.3	g the parametric regression model Using the ancillary() option	317 317	
15	Gene	e ralizing 15.0.3 15.0.4	g the parametric regression model Using the ancillary() option Stratified models	317 317 323	
15	Gene 15.1	eralizing 15.0.3 15.0.4 Frailty	g the parametric regression model Using the ancillary() option	317317323326	
15	Gene 15.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1	g the parametric regression model Using the ancillary() option	 317 317 323 326 327 	
15	Gene 15.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2	g the parametric regression model Using the ancillary() option	 317 317 323 326 327 328 	
15	Geno 15.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3	g the parametric regression model Using the ancillary() option Stratified models models unshared-frailty models Example: Kidney data Testing for heterogeneity	 317 317 323 326 327 328 333 	
15	Gene	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3 15.1.4	g the parametric regression model Using the ancillary() option Stratified models Stratified models models Unshared-frailty models Example: Kidney data Testing for heterogeneity Shared-frailty models	 317 317 323 326 327 328 333 341 	
15	Gend 15.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3 15.1.4 er and s	g the parametric regression model Using the ancillary() option Stratified models Stratified models models Unshared-frailty models Example: Kidney data Testing for heterogeneity Shared-frailty models Shared-frailty models Shared-frailty models Shared-frailty models	 317 323 326 327 328 333 341 349 	
15	Gend 15.1 Powe 16.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3 15.1.4 er and s Estima	g the parametric regression model Using the ancillary() option	 317 323 326 327 328 333 341 349 352 	
15	Gend 15.1 Powe 16.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3 15.1.4 er and s Estima 16.1.1	g the parametric regression model Using the ancillary() option	 317 323 326 327 328 333 341 349 352 352 	
15	Gend 15.1 Powe 16.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3 15.1.4 er and s Estima: 16.1.1 16.1.2	g the parametric regression model Using the ancillary() option	 317 323 326 327 328 333 341 349 352 352 354 	
15	Gend 15.1 Powe 16.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3 15.1.4 er and s Estimat 16.1.1 16.1.2 16.1.3	g the parametric regression model Using the ancillary() option Stratified models models Multiple-myeloma data Comparing two exponential survivor functions	 317 323 326 327 328 333 341 349 352 354 358 	
15	Gend 15.1 Powe 16.1	eralizing 15.0.3 15.0.4 Frailty 15.1.1 15.1.2 15.1.3 15.1.4 er and s Estima 16.1.1 16.1.2 16.1.3 16.1.4	g the parametric regression model Using the ancillary() option Stratified models models Mudels Multiple-myeloma data Comparing two survivor functions nonparametrically Cox regression models	 317 323 326 327 328 333 341 349 352 352 354 358 362 	

х

		16.2.1	The effect of withdrawal or loss to follow-up \hdots	365
		16.2.2	The effect of accrual	366
		16.2.3	Examples	369
	16.3	Estimat	ting power and effect size \ldots \ldots \ldots \ldots \ldots \ldots	376
	16.4	Tabulat	ting or graphing results	377
17	Com	peting	risks	381
	17.1	Cause-s	specific hazards	382
	17.2	Cumula	ative incidence functions	383
	17.3	Nonpar	ametric analysis	384
		17.3.1	Breast cancer data	385
		17.3.2	Cause-specific hazards	386
		17.3.3	Cumulative incidence functions	389
	17.4	Semipa	rametric analysis	392
		17.4.1	Cause-specific hazards	392
			Simultaneous regressions for cause-specific hazards	395
		17.4.2	Cumulative incidence functions	399
			Using storreg	399
			Using stcox	406
	17.5	Parame	etric analysis	407
	Refe	rences		409
	Auth	or inde	2X	417
	\mathbf{Subj}	ect inde	ex	421

xi

(Pages omitted)

8 Nonparametric analysis

The previous two chapters served as a tutorial on stset. Once you stset your data, you can use any st survival command, and the nice thing is that you do not have to continually restate the definitions of analysis time, failure, and rules for inclusion.

As previously discussed in chapter 1, the analysis of survival data can take one of three forms—nonparametric, semiparametric, and parametric—all depending on what we are willing to assume about the form of the survivor function and about how the survival experience is affected by covariates.

Nonparametric analysis follows the philosophy of letting the dataset speak for itself and making no assumption about the functional form of the survivor function (and thus no assumption about, for example, the hazard, cumulative hazard). The effects of covariates are not modeled, either—the comparison of the survival experience is done at a qualitative level across the values of the covariates.

Most of Stata's nonparametric survival analysis is performed via the **sts** command, which calculates estimates, saves estimates as data, draws graphs, and performs tests, among other things; see [ST] **sts**.

8.1 Inadequacies of standard univariate methods

Before we proceed, however, we must discuss briefly the reasons that the typical preliminary data analysis tools do not translate well into the survival analysis paradigm. For example, the most basic of analyses would be one that analyzed the mean time to failure or the median time to failure. Let's use the hip-fracture dataset, which we **stset** at the end of chapter 7.

	use	http://	www.stata	-press.com,	/data/	cgm3r/	/hip2
11		C					

(hip fracture study)

. list id _t0 _t fracture protect age calcium if 20<=id & id<=22, sepby(id)

	id	_t0	_t	fracture	protect	age	calcium
32.	20	0	5	0	0	67	11.19
33.	20	5	15	0	0	67	10.68
34.	20	15	23	1	0	67	10.46
35.	21	0	5	0	1	82	8.97
36.	21	5	6	1		82	7.25
37.	22	0	5	0	1	80	7.98
38.	22	5	6	0	1	80	9.65

Putting aside for now the possible effects of the covariates, if we were interested in estimating the population mean time to failure, we might be tempted to use the standard tools such as

. ci means _t					
Variable	Obs	Mean	Std. Err.	[95% Conf.	Interval]
_t	106	11.5283	.8237498	9.894958	13.16165

We might quickly realize that this is not what we want because there are multiple records for each individual. We could just consider those values of _t corresponding to the last record for each individual,

•	sort id _t				
•	by id: gen]	last = _n==_N			
	ci means _t	if last			
	Variable	Obs	Mean	Std. Err.	[95% Conf. Interval]
	_t	48	15.5	1.480368	12.52188 18.47812

and we now have a mean based on 48 observations (one for each subject). This will not serve, however, because _t does not always correspond to failure time—some times in our data are censored, meaning that the failure time in these cases is known only to be greater than _t. As such, the estimate of the mean is biased downward.

Dropping the censored observations and redoing the analysis will not help. Consider an extreme case of a dataset with just one censored observation and assume the observation is censored at time 0.1, long before the first failure. For all you know, had that subject not been censored, the failure might have occurred long after the last failure in the data and thus had a large effect on the mean. Wherever the censored observation is located in the data, we can repeat that argument, and so, in the presence of censoring, obtaining estimates of the mean survival time calculated in the standard way is simply not possible.

8.2.1 Calculation

Estimates of the median survival time are similarly not possible to obtain using standard nonsurvival tools. The standard way of calculating the median is to order the observations and to report the middle observation as the median. With censoring, that ordering is impossible to ascertain. (We can compute the median by calculating survival probabilities and finding the point at which the survival probability is 0.5. See section 8.5.)

Thus even the most simple analysis—never mind the more complicated regression models—will break down when applied to survival data. Also there are even more issues related to survival data—truncation, for example—that would only further complicate the estimation.

Instead, survival analysis is a field of its own. Given the nature of the role that time plays in the analysis, much focus is given to the functions that characterize the distribution of the survival time: the hazard function, the cumulative hazard function, and the survivor function being the most common ways to describe the distribution. Much of survival analysis is concerned with the estimation of and inference for these functions of time.

8.2 The Kaplan–Meier estimator

8.2.1 Calculation

The estimator of Kaplan and Meier (1958) is a nonparametric estimate of the survivor function S(t), which is the probability of survival past time t or, equivalently, the probability of failing after t. For a dataset with observed failure times, t_1, \ldots, t_k , where k is the number of distinct failure times observed in the data, the Kaplan-Meier estimate [also known as the product limit estimate of S(t)] at any time t is given by

$$\widehat{S}(t) = \prod_{j|t_j \le t} \left(\frac{n_j - d_j}{n_j} \right)$$
(8.1)

where n_j is the number of individuals at risk at time t_j and d_j is the number of failures at time t_j . The product is over all observed failure times less than or equal to t.

How does this estimator work? Consider the hypothetical dataset of subjects given in the usual format,

id	t	failed
1	2	1
2	4	1
3	4	1
4	5	0
5	7	1
6	8	0

and form a table that summarizes what happens at each time in our data (whether a failure time or a censored time):

t	No. at risk	No. failed	No. censored
2	6	1	0
4	5	2	0
5	3	0	1
7	2	1	0
8	1	0	1

At t = 2, the earliest time in our data, all six subjects were at risk, but at that instant, only one failed (id==1). At the next time, t = 4, five subjects were at risk, but at that instant, two failed. At t = 5, three subjects were left, and no one failed, but one subject was censored. This left us with two subjects at t = 7, of which one failed. Finally, at t = 8, we had one subject left at risk, and this subject was censored at that time.

Now we ask the following:

- What is the probability of survival beyond t = 2, the earliest time in our data? Because five of the six subjects survived beyond this point, the estimate is 5/6.
- What is the probability of survival beyond t = 4 given survival right up to t = 4? Because we had five subjects at risk at t = 4, and two failed, we estimate this probability to be 3/5.
- What is the probability of survival beyond t = 5 given survival right up to t = 5? Because three subjects were at risk, and no one failed, the probability estimate is 3/3 = 1.

and so on. We can now augment our table with these component probabilities (calling them p):

t	No. at risk	No. failed	No. censored	p
2	6	1	0	5/6
4	5	2	0	3/5
5	3	0	1	1
7	2	1	0	1/2
8	1	0	1	1

- The first value of p, 5/6, is the probability of survival beyond t = 2.
- The second value, 3/5, is the (conditional) probability of survival beyond t = 4 given survival up until t = 4, which in these data is the same as survival beyond t = 4 given survival beyond t = 2. Thus unconditionally, the probability of survival beyond t = 4 is (5/6)(3/5) = 1/2.
- The third value, 1, is the conditional probability of survival beyond t = 5 given survival up until t = 5, which in these data is the same as survival beyond t = 5 given survival beyond t = 4. Unconditionally, the probability of survival beyond t = 5 is thus equal to (1/2)(1) = 1/2.

8.2.1 Calculation

Thus the Kaplan–Meier estimate is the running product of the values of p that we have previously calculated, and we can add it to our table.

t	No. at risk	No. failed	No. censored	p	$\widehat{S}(t)$
2	6	1	0	5/6	5/6
4	5	2	0	3/5	1/2
5	3	0	1	1	1/2
7	2	1	0	1/2	1/4
8	1	0	1	1	1/4

Because the Kaplan–Meier estimate in (8.1) operates only on observed failure times (and not at censoring times), the net effect is simply to ignore the cases where p = 1 in calculating our product; ignoring these changes nothing.

In Stata, the Kaplan–Meier estimate is obtained using the **sts list** command, which gives a table similar to the one we constructed.

. cl	ear								
. ir	put id	time f	ailed						
1. 2. 3. 4. 5. 6. 7.	1 2 1 2 4 1 3 4 1 4 5 0 5 7 1 6 8 0 end	id	tir	ne	failed				
. st	set ti	me, fai	l(faile	ed)					
(0	utput a	omitted))						
. st	s list								
a	f nalysi	ailure s time	_d: fa _t: ti	ailed ime					
		Beg.		Net		Survivor	Std.		
Ti	me	Total	Fail	Lost		Function	Error	[95% Cor	nf. Int.]
	2	6	1	0		0.8333	0.1521	0.2731	0.9747
	4	5	2	0		0.5000	0.2041	0.1109	0.8037
	5	3	0	1		0.5000	0.2041	0.1109	0.8037
	7	2	1	0		0.2500	0.2041	0.0123	0.6459
	8	1	0	1		0.2500	0.2041	0.0123	0.6459

The column Beg. Total is what we called "No. at risk" in our table; the column Fail is "No. failed"; and the column Net Lost is related to our "No. censored" column but is modified to handle delayed entry (see sec. 8.2.3).

The standard error (SE) reported for the Kaplan–Meier estimate is that given by Greenwood's (1926) formula.

$$\widehat{\operatorname{Var}}\{\widehat{S}(t)\} = \widehat{S}^2(t) \sum_{j|t_j \le t} \frac{d_j}{n_j(n_j - d_j)}$$
(8.2)

These SEs, however, are not used for confidence intervals. Instead, the asymptotic variance of $\ln\{-\ln \hat{S}(t)\}$,

$$\widehat{\sigma}^{2}(t) = \frac{\sum \frac{d_{j}}{n_{j}(n_{j}-d_{j})}}{\left\{\sum \ln\left(\frac{n_{j}-d_{j}}{d_{j}}\right)\right\}^{2}}$$

is used, where the sums are calculated over j such that $t_j \leq t$ (Kalbfleisch and Prentice 2002, 18). The confidence bounds are then calculated as $\widehat{S}(t)$ raised to the power $\exp\{\pm z_{\alpha/2}\widehat{\sigma}(t)\}$, where $z_{\alpha/2}$ is the $(1-\alpha/2)$ quantile of the standard normal distribution.

8.2.2 Censoring

When censoring occurs at some time other than an observed failure time, for a different subject the effect is simply that the censored subjects are dropped from the "No. at risk" total without processing the censored subject as having failed. However, when some subjects are censored at the same time that others fail, we need to be a bit careful about how we order the censorings and failures. When we went through the calculations of the Kaplan–Meier estimate in section 8.2.1, we did so without explaining this point, yet be assured that we were following some convention.

The Stata convention for handling a censoring that happens at the same time as a failure is to assume that the failure occurred before the censoring, and in fact, all Stata's **st** commands follow this rule. In chapter 7, we defined a time span based on the **stset** variables _t0 and _t to be the interval $(t_0, t]$, which is open at the left endpoint and closed at the right endpoint. Therefore, if we apply this definition of a time span, then any record shown to be censored at the end of this span can be thought of as instead being censored at some time $t + \epsilon$ for an arbitrarily small ϵ . The subject can fail at time t, but if the subject is censored, then Stata assumes that the censoring took place just a little bit later; thus failures occur before censorings.

This is how Stata handles this issue, but there is nothing wrong with the convention that handles censorings as occurring before failures when they appear to happen concurrently. One can force Stata to look at things this way by subtracting a small number from the time variable in your data for those records that are censored, and most of the time the number may be chosen small enough as to not otherwise affect the analysis.

Technical note

If you force Stata to treat censorings as occurring before failures, be sure to modify the time variable in your data and not the _t variable that stset has created. In general, manually changing the values of the stset variables _t0, _t, _d, and _st is dangerous because these variables have relations to your variables, and some of the data-management st commands exploit that relationship.

Thus instead of using a command such as

```
. replace _t = _t - 0.0001 if _d == 0
```

use

```
. replace time = time - 0.0001 if failed == 0
. stset time, failure(failed)
```

Better yet, use

. replace time = time - 0.0001 if failed == 0 . stset

because **stset** will remember the details of how you previously set your data and will apply these same settings to the modified data.

8.2.3 Left-truncation (delayed entry)

Left-truncation refers to subjects who do not come under observation until after they are at risk. By the time you begin observing this subject, they have already survived for some time, and you are observing them only because they did not fail during that time.

At one level, such observations cause no problems with the Kaplan-Meier calculation. In (8.1), n_j is the number of subjects at risk (eligible to fail), and this number needs to take into account that subjects are not at risk of failing until they come under observation. When they enter, we simply increase n_j to reflect this fact.

For example, if you have the following data (subject 6 enters at $t_0 = 4$ and is censored at t = 7),

failed	t1	t0	id
1	2	0	1
1	4	0	2
1	4	0	3
0	5	0	4
1	7	0	5
0	7	4	6
0	8	0	7

then the risk-group table is

t	No. at risk	No. failed	No. censored	No. added
2	6	1	0	0
4	5	2	0	1
5	4	0	1	0
7	3	1	1	0
8	1	0	1	0

and now it is just a matter of making the Kaplan–Meier calculations based on how many are in the "No. at risk" and "No. failed" columns. We will let Stata do the work:

·	clear								
	input	id time	0 time1	failed					
		id	ti	me0	time1	failed			
	1. 1	0	2	1					
	2. 2	0	4	1					
	3. 3	0	4	1					
	4. 4	0	5	0					
	5. 5	0	7	1					
	6. 6	4	7	0					
	7. 7	0	8	0					
	8. en	d							
	stset	time1,	fail(fa	iled) ti	me0(time	0)			
	(outp	ut omitte	d)						
	sts l	ist							
		failur	e _d:	failed					
	anal	ysis tim	e _t:	time1					
		Beg.		Net		Survivor	Std.		
	Time	Total	Fail	Lost		Function	Error	[95% Cont	f. Int.]
	2	6	1	0		0.8333	0.1521	0.2731	0.9747
	4	5	2	-1		0.5000	0.2041	0.1109	0.8037
	5	4	0	1		0.5000	0.2041	0.1109	0.8037
	7	3	1	1		0.3333	0.1925	0.0461	0.6756
	8	1	0	1		0.3333	0.1925	0.0461	0.6756

Notice how Stata listed the delayed entry at t = 4: Net Lost is -1. To conserve columns, rather than listing censorings and entries separately, Stata combines them into one column containing censorings-minus-entries and labels that column as Net Lost.

There is a level at which delayed entries cause considerable problems. In these entries' presence, the Kaplan–Meier procedure for calculating the survivor curve can yield absurd results. This happens when some late arrivals enter the study after everyone before them has failed.

. sts li	st						
analy	failure sis time	_d: fa _t: t:	ailed ime1				
Time	Beg. Total	Fail	Net Lost	Survivor Function	Std. Error	[95% Co	onf. Int.]
2	6	1	0	0.8333	0.1521	0.2731	0.9747
4	5	2	-1	0.5000	0.2041	0.1109	0.8037
5	4	0	1	0.5000	0.2041	0.1109	0.8037
7	3	1	1	0.3333	0.1925	0.0461	0.6756
8	1	1	0	0.0000			
9	0	0	-3	0.0000			
10	3	1	0	0.0000			
11	2	1	1	0.0000			

Consider the following output from sts list for such a dataset:

We constructed these data to include three more subjects to enter at t = 9, after everyone who was previously at risk had failed. At t = 8, $\hat{S}(t)$ has reached zero, never to return. Why does this happen? Note the product form of (8.1). Once a product term of zero (which occurs at t = 8) has been introduced, the product is zero, and further multiplication by anything nonzero is pointless. This is a shortcoming of the Kaplan–Meier method, and in section 8.3 we show that there is an alternative.

Technical note

There is one other issue about the Kaplan–Meier estimator regarding delayed entry. When the earliest entry into the study occurs after t = 0, one may still calculate the Kaplan–Meier estimation, but the interpretation changes. Rather than estimating S(t), you are now estimating $S(t|t_{\min})$, the probability of surviving past time t given survival to time t_{\min} , where t_{\min} is the earliest entry time.

8.2.4 Gaps

A gap is really no different from censoring followed by delayed entry. The subject disappears from the risk groups for a while and then reenters. The only issue is making sure that our "No. at risk" calculations reflect this fact, but Stata is up to that.

As with delayed entry, if a subject with a gap reenters after a final failure—meaning that a prior Kaplan–Meier estimate of S(t) is zero—then all subsequent estimates of S(t) will also be zero regardless of future activity.

8.2.5 Relationship to the empirical distribution function

The cumulative distribution function is defined as F(t) = 1 - S(t), and in fact, by specifying the **failure** option, you can ask **sts list** to list the estimate of F(t), which is obtained as 1 minus the Kaplan-Meier estimate:

•	CTC	ar								
•	inp	out	id time	eO time1	failed					
			id	ti	me0	time1	failed			
	1.	1	0	2	1					
	2.	2	0	4	1					
	З.	3	0	4	1					
	4.	4	0	5	0					
	5.	5	0	7	1					
	6.	6	4	7	0					
	7.	7	0	8	0					
	8.	end	ł							
•	sts	set	time1,	fail(fa	ailed) ti	.me0(tin	ie0)			
	(ou	itpi	it omitte	ed)						
	sts	; li	ist, fai	lure						
			failur	e d:	failed					
	an	naly	ysis tin	ne _t:	time1					
			Beg.		Net		Failure	Std.		
	Tim	ıe	Total	. Fail	Lost		Function	Error	[95% Co	nf. Int.]
		2	e	6 1	0		0.1667	0.1521	0.0253	0.7269
		4	5	5 2	2 -1		0.5000	0.2041	0.1963	0.8891
		5	4	L C) 1		0.5000	0.2041	0.1963	0.8891
		7	3	3 1	. 1		0.6667	0.1925	0.3244	0.9539
		8	1) 1		0.6667	0.1925	0.3244	0.9539

For standard nonsurvival datasets, the *empirical distribution function* (edf) is defined to be

$$\widehat{F}_{\text{edf}}(t) = \sum_{j|t_j \le t} n^{-1}$$

where we have j = 1, ..., n observations. That is, $\widehat{F}_{edf}(t)$ is a step function that increases by 1/n at each observation in the data. Of course, $\widehat{F}_{edf}(t)$ has no mechanism to account for censoring, truncation, and gaps, but when none of these exist, it can be shown that

$$\widehat{S}(t) = 1 - \widehat{F}_{\text{edf}}(t)$$

where $\widehat{S}(t)$ is the Kaplan–Meier estimate. To demonstrate, consider the following simple dataset, which has no censoring or truncation:

a] a a m

. clear								
. input	t							
	t							
$\begin{array}{ccc} 1. & 1 \\ 2. & 4 \end{array}$								
3.4 4.5								
5. end	1							
. stset	t							
(outpu)	at omitted)						
. sts li	st, failu	ire						
analy	failure vsis time	_d: 1 _t: t	(meaning	all fail)				
	Beg.		Net	Failu	re	Std.		
Time	Total	Fail	Lost	Funct	ion	Error	[95% C	onf. Int.]
1	4	1	0	0.2	500	0.2165	0.0395	0.8721
4	3	2	0	0.7	500	0.2165	0.3347	0.9911
5	1	1	0	1.0	000			

This reproduces $\widehat{F}_{edf}(t)$, which is a nice property of the Kaplan–Meier estimator. Despite its sophistication in dealing with the complexities caused by censoring and truncation, it reduces to the standard methodology when these complexities do not exist.

8.2.6 Other uses of sts list

The sts list command lists the Kaplan-Meier survivor function. Let's use our hipfracture dataset (the version we already stset).

```
. use http://www.stata-press.com/data/cgm3r/hip2, clear
(hip fracture study)
. sts list
         failure _d: fracture
   analysis time _t: time1
                 id: id
           Beg.
                          Net
                                          Survivor
                                                         Std.
                  Fail
                                                        Error
                                                                   [95% Conf. Int.]
 Time
          Total
                          Lost
                                          Function
                                            0.9583
                                                       0.0288
                                                                  0.8435
                                                                             0.9894
             48
                      2
                             0
     1
    2
             46
                             0
                                            0.9375
                                                       0.0349
                                                                  0.8186
                                                                             0.9794
                      1
    3
             45
                             0
                                            0.9167
                                                       0.0399
                                                                  0.7930
                                                                             0.9679
                      1
     4
             44
                      2
                             0
                                            0.8750
                                                       0.0477
                                                                  0.7427
                                                                             0.9418
  (output omitted)
                             0
    13
             21
                      1
                                            0.5384
                                                       0.0774
                                                                  0.3767
                                                                             0.6752
    15
             20
                      1
                             -2
                                            0.5114
                                                       0.0781
                                                                  0.3507
                                                                             0.6511
    16
             21
                             0
                                            0.4871
                                                       0.0781
                                                                  0.3285
                                                                             0.6283
                      1
  (output omitted)
                      0
                             1
                                            0.1822
                                                       0.0760
                                                                  0.0638
                                                                             0.3487
   35
              2
   39
              1
                      0
                             1
                                            0.1822
                                                       0.0760
                                                                  0.0638
                                                                             0.3487
```