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8 Nonparametric analysis

The previous two chapters served as a tutorial on stset. Once you stset your data,
you can use any st survival command, and the nice thing is that you do not have to
continually restate the definitions of analysis time, failure, and rules for inclusion.

As previously discussed in chapter 1, the analysis of survival data can take one of
three forms—nonparametric, semiparametric, and parametric—all depending on what
we are willing to assume about the form of the survivor function and about how the
survival experience is affected by covariates.

Nonparametric analysis follows the philosophy of letting the dataset speak for itself
and making no assumption about the functional form of the survivor function (and
thus no assumption about, for example, the hazard, cumulative hazard). The effects of
covariates are not modeled, either—the comparison of the survival experience is done
at a qualitative level across the values of the covariates.

Most of Stata’s nonparametric survival analysis is performed via the sts command,
which calculates estimates, saves estimates as data, draws graphs, and performs tests,
among other things; see [ST] sts.

8.1 Inadequacies of standard univariate methods

Before we proceed, however, we must discuss briefly the reasons that the typical pre-
liminary data analysis tools do not translate well into the survival analysis paradigm.
For example, the most basic of analyses would be one that analyzed the mean time to
failure or the median time to failure. Let’s use the hip-fracture dataset, which we stset
at the end of chapter 7.
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92 Chapter 8 Nonparametric analysis

. use http://www.stata-press.com/data/cgm3r/hip2
(hip fracture study)

. list id _t0 _t fracture protect age calcium if 20<=id & id<=22, sepby(id)

id _t0 _t fracture protect age calcium

32. 20 0 5 0 0 67 11.19
33. 20 5 15 0 0 67 10.68
34. 20 15 23 1 0 67 10.46

35. 21 0 5 0 1 82 8.97
36. 21 5 6 1 1 82 7.25

37. 22 0 5 0 1 80 7.98
38. 22 5 6 0 1 80 9.65

Putting aside for now the possible effects of the covariates, if we were interested in
estimating the population mean time to failure, we might be tempted to use the standard
tools such as

. ci means _t

Variable Obs Mean Std. Err. [95% Conf. Interval]

_t 106 11.5283 .8237498 9.894958 13.16165

We might quickly realize that this is not what we want because there are multiple
records for each individual. We could just consider those values of t corresponding to
the last record for each individual,

. sort id _t

. by id: gen last = _n==_N

. ci means _t if last

Variable Obs Mean Std. Err. [95% Conf. Interval]

_t 48 15.5 1.480368 12.52188 18.47812

and we now have a mean based on 48 observations (one for each subject). This will not
serve, however, because t does not always correspond to failure time—some times in
our data are censored, meaning that the failure time in these cases is known only to be
greater than t. As such, the estimate of the mean is biased downward.

Dropping the censored observations and redoing the analysis will not help. Consider
an extreme case of a dataset with just one censored observation and assume the obser-
vation is censored at time 0.1, long before the first failure. For all you know, had that
subject not been censored, the failure might have occurred long after the last failure in
the data and thus had a large effect on the mean. Wherever the censored observation is
located in the data, we can repeat that argument, and so, in the presence of censoring,
obtaining estimates of the mean survival time calculated in the standard way is simply
not possible.
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Estimates of the median survival time are similarly not possible to obtain using
standard nonsurvival tools. The standard way of calculating the median is to order
the observations and to report the middle observation as the median. With censoring,
that ordering is impossible to ascertain. (We can compute the median by calculating
survival probabilities and finding the point at which the survival probability is 0.5. See
section 8.5.)

Thus even the most simple analysis—never mind the more complicated regression
models—will break down when applied to survival data. Also there are even more issues
related to survival data—truncation, for example—that would only further complicate
the estimation.

Instead, survival analysis is a field of its own. Given the nature of the role that
time plays in the analysis, much focus is given to the functions that characterize the
distribution of the survival time: the hazard function, the cumulative hazard function,
and the survivor function being the most common ways to describe the distribution.
Much of survival analysis is concerned with the estimation of and inference for these
functions of time.

8.2 The Kaplan–Meier estimator

8.2.1 Calculation

The estimator of Kaplan and Meier (1958) is a nonparametric estimate of the survivor
function S(t), which is the probability of survival past time t or, equivalently, the
probability of failing after t. For a dataset with observed failure times, t1, . . . , tk, where
k is the number of distinct failure times observed in the data, the Kaplan–Meier estimate
[also known as the product limit estimate of S(t)] at any time t is given by

Ŝ(t) =
∏

j|tj≤t

(
nj − dj

nj

)
(8.1)

where nj is the number of individuals at risk at time tj and dj is the number of failures
at time tj . The product is over all observed failure times less than or equal to t.

How does this estimator work? Consider the hypothetical dataset of subjects given
in the usual format,

id t failed
1 2 1
2 4 1
3 4 1
4 5 0
5 7 1
6 8 0

and form a table that summarizes what happens at each time in our data (whether a
failure time or a censored time):
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t No. at risk No. failed No. censored
2 6 1 0
4 5 2 0
5 3 0 1
7 2 1 0
8 1 0 1

At t = 2, the earliest time in our data, all six subjects were at risk, but at that instant,
only one failed (id==1). At the next time, t = 4, five subjects were at risk, but at that
instant, two failed. At t = 5, three subjects were left, and no one failed, but one subject
was censored. This left us with two subjects at t = 7, of which one failed. Finally, at
t = 8, we had one subject left at risk, and this subject was censored at that time.

Now we ask the following:

• What is the probability of survival beyond t = 2, the earliest time in our data?
Because five of the six subjects survived beyond this point, the estimate is 5/6.

• What is the probability of survival beyond t = 4 given survival right up to t = 4?
Because we had five subjects at risk at t = 4, and two failed, we estimate this
probability to be 3/5.

• What is the probability of survival beyond t = 5 given survival right up to t = 5?
Because three subjects were at risk, and no one failed, the probability estimate is
3/3 = 1.

and so on. We can now augment our table with these component probabilities (calling
them p):

t No. at risk No. failed No. censored p
2 6 1 0 5/6
4 5 2 0 3/5
5 3 0 1 1
7 2 1 0 1/2
8 1 0 1 1

• The first value of p, 5/6, is the probability of survival beyond t = 2.

• The second value, 3/5, is the (conditional) probability of survival beyond t = 4
given survival up until t = 4, which in these data is the same as survival beyond
t = 4 given survival beyond t = 2. Thus unconditionally, the probability of
survival beyond t = 4 is (5/6)(3/5) = 1/2.

• The third value, 1, is the conditional probability of survival beyond t = 5 given
survival up until t = 5, which in these data is the same as survival beyond t = 5
given survival beyond t = 4. Unconditionally, the probability of survival beyond
t = 5 is thus equal to (1/2)(1) = 1/2.
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Thus the Kaplan–Meier estimate is the running product of the values of p that we have
previously calculated, and we can add it to our table.

t No. at risk No. failed No. censored p Ŝ(t)

2 6 1 0 5/6 5/6
4 5 2 0 3/5 1/2
5 3 0 1 1 1/2
7 2 1 0 1/2 1/4
8 1 0 1 1 1/4

Because the Kaplan–Meier estimate in (8.1) operates only on observed failure times
(and not at censoring times), the net effect is simply to ignore the cases where p = 1 in
calculating our product; ignoring these changes nothing.

In Stata, the Kaplan–Meier estimate is obtained using the sts list command, which
gives a table similar to the one we constructed.

. clear

. input id time failed

id time failed
1. 1 2 1
2. 2 4 1
3. 3 4 1
4. 4 5 0
5. 5 7 1
6. 6 8 0
7. end

. stset time, fail(failed)

(output omitted )

. sts list

failure _d: failed
analysis time _t: time

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

2 6 1 0 0.8333 0.1521 0.2731 0.9747
4 5 2 0 0.5000 0.2041 0.1109 0.8037
5 3 0 1 0.5000 0.2041 0.1109 0.8037
7 2 1 0 0.2500 0.2041 0.0123 0.6459
8 1 0 1 0.2500 0.2041 0.0123 0.6459

The column Beg. Total is what we called “No. at risk” in our table; the column Fail

is “No. failed”; and the column Net Lost is related to our “No. censored” column but
is modified to handle delayed entry (see sec. 8.2.3).
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The standard error (SE) reported for the Kaplan–Meier estimate is that given by
Greenwood’s (1926) formula.

V̂ar{Ŝ(t)} = Ŝ2(t)
∑

j|tj≤t

dj
nj(nj − dj)

(8.2)

These SEs, however, are not used for confidence intervals. Instead, the asymptotic
variance of ln{− ln Ŝ(t)},

σ̂2(t) =

∑ dj

nj(nj−dj){∑
ln
(

nj−dj

dj

)}2

is used, where the sums are calculated over j such that tj ≤ t (Kalbfleisch and Prentice

2002, 18). The confidence bounds are then calculated as Ŝ(t) raised to the power
exp{±zα/2σ̂(t)}, where zα/2 is the (1−α/2) quantile of the standard normal distribution.

8.2.2 Censoring

When censoring occurs at some time other than an observed failure time, for a different
subject the effect is simply that the censored subjects are dropped from the “No. at
risk” total without processing the censored subject as having failed. However, when
some subjects are censored at the same time that others fail, we need to be a bit careful
about how we order the censorings and failures. When we went through the calculations
of the Kaplan–Meier estimate in section 8.2.1, we did so without explaining this point,
yet be assured that we were following some convention.

The Stata convention for handling a censoring that happens at the same time as a
failure is to assume that the failure occurred before the censoring, and in fact, all Stata’s
st commands follow this rule. In chapter 7, we defined a time span based on the stset
variables t0 and t to be the interval (t0, t ], which is open at the left endpoint and
closed at the right endpoint. Therefore, if we apply this definition of a time span, then
any record shown to be censored at the end of this span can be thought of as instead
being censored at some time t+ ǫ for an arbitrarily small ǫ. The subject can fail at time
t, but if the subject is censored, then Stata assumes that the censoring took place just
a little bit later; thus failures occur before censorings.

This is how Stata handles this issue, but there is nothing wrong with the convention
that handles censorings as occurring before failures when they appear to happen con-
currently. One can force Stata to look at things this way by subtracting a small number
from the time variable in your data for those records that are censored, and most of the
time the number may be chosen small enough as to not otherwise affect the analysis.
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Technical note

If you force Stata to treat censorings as occurring before failures, be sure to modify
the time variable in your data and not the t variable that stset has created. In
general, manually changing the values of the stset variables t0, t, d, and st is
dangerous because these variables have relations to your variables, and some of the
data-management st commands exploit that relationship.

Thus instead of using a command such as

. replace _t = _t - 0.0001 if _d == 0

use

. replace time = time - 0.0001 if failed == 0

. stset time, failure(failed)

Better yet, use

. replace time = time - 0.0001 if failed == 0

. stset

because stset will remember the details of how you previously set your data and will
apply these same settings to the modified data.

8.2.3 Left-truncation (delayed entry)

Left-truncation refers to subjects who do not come under observation until after they
are at risk. By the time you begin observing this subject, they have already survived
for some time, and you are observing them only because they did not fail during that
time.

At one level, such observations cause no problems with the Kaplan–Meier calculation.
In (8.1), nj is the number of subjects at risk (eligible to fail), and this number needs
to take into account that subjects are not at risk of failing until they come under
observation. When they enter, we simply increase nj to reflect this fact.

For example, if you have the following data (subject 6 enters at t0 = 4 and is censored
at t = 7),

id t0 t1 failed
1 0 2 1
2 0 4 1
3 0 4 1
4 0 5 0
5 0 7 1
6 4 7 0
7 0 8 0
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then the risk-group table is

t No. at risk No. failed No. censored No. added

2 6 1 0 0
4 5 2 0 1
5 4 0 1 0
7 3 1 1 0
8 1 0 1 0

and now it is just a matter of making the Kaplan–Meier calculations based on how many
are in the “No. at risk” and “No. failed” columns. We will let Stata do the work:

. clear

. input id time0 time1 failed

id time0 time1 failed
1. 1 0 2 1
2. 2 0 4 1
3. 3 0 4 1
4. 4 0 5 0
5. 5 0 7 1
6. 6 4 7 0
7. 7 0 8 0
8. end

. stset time1, fail(failed) time0(time0)

(output omitted )

. sts list

failure _d: failed
analysis time _t: time1

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

2 6 1 0 0.8333 0.1521 0.2731 0.9747
4 5 2 -1 0.5000 0.2041 0.1109 0.8037
5 4 0 1 0.5000 0.2041 0.1109 0.8037
7 3 1 1 0.3333 0.1925 0.0461 0.6756
8 1 0 1 0.3333 0.1925 0.0461 0.6756

Notice how Stata listed the delayed entry at t = 4: Net Lost is −1. To conserve
columns, rather than listing censorings and entries separately, Stata combines them into
one column containing censorings-minus-entries and labels that column as Net Lost.

There is a level at which delayed entries cause considerable problems. In these
entries’ presence, the Kaplan–Meier procedure for calculating the survivor curve can
yield absurd results. This happens when some late arrivals enter the study after everyone
before them has failed.
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Consider the following output from sts list for such a dataset:

. sts list

failure _d: failed
analysis time _t: time1

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

2 6 1 0 0.8333 0.1521 0.2731 0.9747
4 5 2 -1 0.5000 0.2041 0.1109 0.8037
5 4 0 1 0.5000 0.2041 0.1109 0.8037
7 3 1 1 0.3333 0.1925 0.0461 0.6756
8 1 1 0 0.0000 . . .
9 0 0 -3 0.0000 . . .

10 3 1 0 0.0000 . . .
11 2 1 1 0.0000 . . .

We constructed these data to include three more subjects to enter at t = 9, after
everyone who was previously at risk had failed. At t = 8, Ŝ(t) has reached zero, never
to return. Why does this happen? Note the product form of (8.1). Once a product
term of zero (which occurs at t = 8) has been introduced, the product is zero, and
further multiplication by anything nonzero is pointless. This is a shortcoming of the
Kaplan–Meier method, and in section 8.3 we show that there is an alternative.

Technical note

There is one other issue about the Kaplan–Meier estimator regarding delayed entry.
When the earliest entry into the study occurs after t = 0, one may still calculate the
Kaplan–Meier estimation, but the interpretation changes. Rather than estimating S(t),
you are now estimating S(t|tmin), the probability of surviving past time t given survival
to time tmin, where tmin is the earliest entry time.

8.2.4 Gaps

A gap is really no different from censoring followed by delayed entry. The subject
disappears from the risk groups for a while and then reenters. The only issue is making
sure that our “No. at risk” calculations reflect this fact, but Stata is up to that.

As with delayed entry, if a subject with a gap reenters after a final failure—meaning
that a prior Kaplan–Meier estimate of S(t) is zero—then all subsequent estimates of
S(t) will also be zero regardless of future activity.

8.2.5 Relationship to the empirical distribution function

The cumulative distribution function is defined as F (t) = 1 − S(t), and in fact, by
specifying the failure option, you can ask sts list to list the estimate of F (t), which
is obtained as 1 minus the Kaplan–Meier estimate:
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. clear

. input id time0 time1 failed

id time0 time1 failed
1. 1 0 2 1
2. 2 0 4 1
3. 3 0 4 1
4. 4 0 5 0
5. 5 0 7 1
6. 6 4 7 0
7. 7 0 8 0
8. end

. stset time1, fail(failed) time0(time0)

(output omitted )

. sts list, failure

failure _d: failed
analysis time _t: time1

Beg. Net Failure Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

2 6 1 0 0.1667 0.1521 0.0253 0.7269
4 5 2 -1 0.5000 0.2041 0.1963 0.8891
5 4 0 1 0.5000 0.2041 0.1963 0.8891
7 3 1 1 0.6667 0.1925 0.3244 0.9539
8 1 0 1 0.6667 0.1925 0.3244 0.9539

For standard nonsurvival datasets, the empirical distribution function (edf) is defined
to be

F̂edf(t) =
∑

j|tj≤t

n−1

where we have j = 1, . . . , n observations. That is, F̂edf(t) is a step function that increases

by 1/n at each observation in the data. Of course, F̂edf(t) has no mechanism to account
for censoring, truncation, and gaps, but when none of these exist, it can be shown that

Ŝ(t) = 1− F̂edf(t)

where Ŝ(t) is the Kaplan–Meier estimate. To demonstrate, consider the following simple
dataset, which has no censoring or truncation:
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. clear

. input t

t
1. 1
2. 4
3. 4
4. 5
5. end

. stset t

(output omitted )

. sts list, failure

failure _d: 1 (meaning all fail)
analysis time _t: t

Beg. Net Failure Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

1 4 1 0 0.2500 0.2165 0.0395 0.8721
4 3 2 0 0.7500 0.2165 0.3347 0.9911
5 1 1 0 1.0000 . . .

This reproduces F̂edf(t), which is a nice property of the Kaplan–Meier estimator. Despite
its sophistication in dealing with the complexities caused by censoring and truncation,
it reduces to the standard methodology when these complexities do not exist.

8.2.6 Other uses of sts list

The sts list command lists the Kaplan–Meier survivor function. Let’s use our hip-
fracture dataset (the version we already stset).

. use http://www.stata-press.com/data/cgm3r/hip2, clear
(hip fracture study)

. sts list

failure _d: fracture
analysis time _t: time1

id: id

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

1 48 2 0 0.9583 0.0288 0.8435 0.9894
2 46 1 0 0.9375 0.0349 0.8186 0.9794
3 45 1 0 0.9167 0.0399 0.7930 0.9679
4 44 2 0 0.8750 0.0477 0.7427 0.9418

(output omitted )
13 21 1 0 0.5384 0.0774 0.3767 0.6752
15 20 1 -2 0.5114 0.0781 0.3507 0.6511
16 21 1 0 0.4871 0.0781 0.3285 0.6283

(output omitted )
35 2 0 1 0.1822 0.0760 0.0638 0.3487
39 1 0 1 0.1822 0.0760 0.0638 0.3487




