The Mata Book

A Book for Serious Programmers and Those Who Want to Be

William W. Gould
STATACORP LLC

= ©

&? 'A"\
v) Press

A Stata Press Publication
StataCorp LLC
College Station, Texas

o~ [Copyright © 2018 StataCorp LLC
HES All rights reserved. First edition 2018
)i

A 4
A

I

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in BTEX 2¢
Printed in the United States of America

10987654321

Print ISBN-10: 1-59718-263-X
Print ISBN-13: 978-1-59718-263-8
ePub ISBN-10: 1-59718-264-8
ePub ISBN-13: 978-1-59718-264-5
Mobi ISBN-10: 1-59718-265-6
Mobi ISBN-13: 978-1-59718-265-2

Library of Congress Control Number: 2018933411

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without
the prior written permission of StataCorp LLC.

Stata, STaTQ, Stata Press, Mata, MATAQ, and NetCourse are registered trademarks of
StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organi-
zation of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

ETEX 2¢ is a trademark of the American Mathematical Society.

Contents

Acknowledgment
1 Introduction
1.1 Is this book forme?
1.2 Whatis Mata?
1.3 What is covered in this book,
1.4 How to download the files for this book
2 The mechanics of using Mata
2.1 Imtroduction
2.2 Mata code appearing indo-files
2.3 Mata code appearing in ado-files
2.4 Mata code to be exposed publicly oL
3 A programmer’s tour of Mata
3.1 Preliminaries L
3.1.1 Results of expressions are displayed when not stored
3.1.2 Assignment
3.1.3 Multiple assignmento
3.2 Real, complex, and string values
3.2.1 Real values
3.2.2 Complex values,
3.2.3 String values (ASCII, Unicode, and binary)
3.3 Scalars, vectors, and matrices
3.3.1 Functions rows(), cols(), and length()
332 FunctionI() L.
333 Function J()

@EEEEEEEQEQ@@EEE@mmmEEEQ

Contents

3.3.4 Row-join and column-join operators l2d

3.3.5 Null vectors and null matrices l2d

3.4 Mata’s advanced features L oL oL 32
3.4.1 Variable types oo 32

3.4.2 Structures [34

3.4.3 Classes o o it [3d

3.4.4 Pointerso 39

3.5 Notes for programmers 0L oo l4d
3.5.1 How programmers use Mata’s interactive mode l4d

3.5.2 What happens when code has errors 42

3.5.3 The _error() abort function 43
Mata’s programming statements 45
4.1 The structure of Mata programs 44
4.2 The program body o 47
4.2.1 Expressions oo @

4.2.2 Conditional execution statement 19

4.2.3 Looping statementso [5d
4231 while. 51

4232 for .. 3

4233 dowhile d

4.2.3.4 continue and break 51

424 goto ... 54

4.2.5 return L @
4.2.5.1 Functions returning values 59

4.2.5.2 Functions returning void l6d

Mata’s expressions l61]
5.1 More surpriseso e e @
5.2 Numeric and string literals l64
521 Numeric literals l64

52.1.1 Base-10 notationo l64

Contents vii

5.2.1.2 Base-2notation @

5.2.2 Complex literals, 1

5.2.3 String literals oo (72

5.3 Assignment operator 3
5.4 Operator precedence v it e (4
5.5 Arithmetic operators Lo 3
5.6 Increment and decrement operators [zd
5.7 Logical operators @i
5.8 (Understand this ? skip : read) Ternary conditional operator [zd
5.9 Matrix row and column join and range operators 80
5.9.1 Row and column join 80

5.9.2 Comma operator is overloaded &1

5.9.3 Row and column count vectors 2

5.10 Colon operators for vectors and matrices k2
5.11 Vector and matrix subscriptingo k3
5.11.1 Element subscripting oL 4
5.11.2 List subscripting oo 84
5.11.3 Permutation vectors 0L 88
5.11.3.1 Usetosortdata 88

5.11.3.2 Use in advanced mathematical programming . . . o1l

5.11.4 Submatrix subscripting L oL o2

5.12 Pointer and address operators L. lo4
5.13 Cast-to-void operator o7
6 Mata’s variable types log
6.1 Overview lod
6.2 The forty variable types [103
6.2.1 Default initialization 103

6.2.2 Default eltype, orgtype, and therefore, variable type [10d

6.2.3 Partial types [10d

6.2.4 A forty-first type for returned values from functions [107

viii

6.3

Appropriate use of transmorphic
6.3.1 Use transmorphic for arguments of overloaded functions
6.3.2 Use transmorphic for output arguments

6.3.2.1 Use transmorphic for passthru variables

6.3.3 You must declare structures and classes if not passthru . . .

6.3.4 How to declare pointers

Mata’s strict option and Mata’s pragmas

7.1
7.2
7.3

Overview e

Turning matastriccon andoff

The messages that matastrict produces, and suppressing them

Mata’s function arguments

8.1
8.2

8.3
8.4

Introduction L
Functions can change the contents of the caller’s arguments . . .
8.2.1 How to document arguments that are changed

8.2.2 How to write functions that do not unnecessarily change
arguments L. 0oL o e e e

How to write functions that allow a varying number of arguments . .

How to write functions that have multiple syntaxes

Programming example: n_choose_k() three ways

9.1
9.2
9.3

9.4

Overview e
Developing n_choose k()
n_choose k() packaged asa do-file
9.3.1 How I packaged the code: n_choose k.do
9.3.2 How I could have packaged the code

9.3.2.1 n-choosekmata

9.3.2.2 testnchoosekdo
9.3.3 Certification files
n_choose k() packaged as an ado-file
9.4.1 Writing Stata code to call Mata functions
9.4.2 nchoosekiiado oL oo

Contents

Contents

10

11

9.5

9.4.3
9.4.4

test_nchoosekido

Mata code inside of ado-files is private

n_choose k() packaged as a Mata library routine

9.5.1

9.5.2
9.5.3

Your approved source directory . . .
9.5.1.1 make_lmatabook.do
9.5.1.2 test.do............
9.5.1.3 hellomata
9.5.1.4 n_choose k.mata
9.5.1.5 test.n_choosek.do
Building and rebuilding libraries . . .

Deleting libraries

Mata’s structures

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Overview

You must define structures before using them

Structure jargon

Adding variables to structures

Structures containing other structures

Surprising things you can do with structures .

Do not omit the word scalar in structure declarations

Structure vectors and matrices and use of the constructor function .

Use of transmorphic with structures

10.10 Structure pointers

Programming example: Linear regression

11.1

Introduction

11.2 Self-threading code

11.3 Linear-regression system Ir*() version 1. . . .

11.3.1
11.3.2
11.3.3
11.34

Ir*() in action
The calculations to be programmed .
Ir*() version-1 code listing

Discussion of the 1r*() version-1 code

ix

12

Contents

11.3.4.1 Getting started oL [10d

11.3.4.2 Assume subroutines [19d

11.3.4.3 Learn about Mata’s built-in subroutines Rod

11.3.4.4 Use of built-in subroutine cross() 207

11.3.4.5 Use more subroutines 204

11.4 Linear-regression system Ir*() version 2. o4
11.4.1 The deviation from mean formulas od

11.4.2 The Ir*() version-2 code R0od
11.4.3 Ir*() version-2 code listing 11
11.4.4 Other improvements you could make 211

11.5 Closeout of Ir*() version 2 214
1151 Certification 213

11.5.2 Adding Ir*() to the lmatabook.mlib library 214
Mata’s classes 221
12,1 OVEIVIEW . o o oot 21
12.1.1 Classes contain member variables 227
12.1.2 Classes contain member functions 227
12.1.3 Member functions occult external functions 224
12.1.4 Members—variables and functions—can be private 27
12.1.5 Classes can inherit from other classes 221
12.1.5.1 Privacy versus protection 22d

12.1.5.2 Subclass functions occult superclass functions . . . l2d

12.1.5.3 Multiple inheritance 3d

12.1.54 Andmore 231

12.2 Class creation and deletion 231
12.3 The this prefix 233
12.4 Should all member variables be private? 234
12.5 Classes with no member variables 23d
12,6 Inheritanceo 234

12.6.1 Virtual functionso 44

Contents

13

14

15

12.6.2
12.6.3
12.6.4

Final functions
Polymorphisms oL

When to use inheritance

12.7 Pointers to class instances

Programming example: Linear regression 2

13.1
13.2
13.3
13.4

13.5
13.6
13.7

Introduction

LinReginuse o

LinReg version-1 code

Adding OPG and robust variance estimates to LinReg

13.4.1
13.4.2
13.4.3

Aside on numerical accuracy: Order of addition
Aside on numerical accuracy: Symmetric matrices

Finishing thecode

LinReg version-2 code L.

Certifying LinReg version 2

Adding LinReg version 2 to the Imatabook.mlib library

Better variable types

14.1
14.2
14.3
14.4

Overview e

Stata’s Macros e

Using macros to create new types

Macroed types you might use

14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.4.6
14.4.7

The boolean type
The Code type o . o
Filehandle oo
Idiosyncratic types, such as Filenames
Macroed types for structures
Macroed types for classes

Macroed types to avoid name conflicts

Programming constants

15.1 Problem and solution

15.2 How to define constants

xi

xii

16

17

18

15.3 How to use constants

15.4 Where to place constant definitions

Mata’s associative arrays

16.1 Introduction
16.2 Using class AssociativeArray

16.3 Finding out more about AssociativeArray

Programming example: Sparse matrices

17.1 Introduction
17.2 The idea
17.3 Design

17.4 Code

17.5 Certification script

Producing a design from an idea
The design goesbad
Fixing thedesign
17.3.3.1 Sketches of R_-*x*() and S_*x*() subroutines
17.3.3.2 Sketches of class’s multiplication functions . .
Design summary

Design shortcomings

Programming example: Sparse matrices, continued

18.1 Introduction
18.2 Making overall timings
Timing T1, Mata R=RR
Timing T2, SpMat R=RR
Timing T3, SpMat R=SR
Timing T4, SpMat R=RS
Timing T5, SpMat R=SS

18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.6
18.2.7

18.3 Making detailed timings

Call a function once before timing

Summary

Contents

Contents

19

18.3.1 Mata’s timer() function L.

18.3.2 Make a copy of the code to be timed

18.3.3 Make a do-file to run the example to be timed

18.3.4 Add calls to timer_on() and timer_off() to the code

18.3.5 Analyze timing results L.

18.4 Developing better algorithms

18.4.1 Developing anewidea,

18.4.2 Aside

18.4.2.1 Features of associative arrays

18.4.2.2 Advanced use of pointers

18.5 Converting the new idea into code sketches

18.5.0.3 Converting the idea into a sketch of R_SxS()

18.5.0.4 Sketching subroutine cols_of row()

18.5.1 Converting sketches into completed code

18.5.1.1 Double-bang comments and messages

18.5.1.2 // NotReached comments

18.5.1.3 Back to converting sketches

18.5.2 Measuring performance

18.6 Cleaning up v v v e

18.6.1 Finishing R_SxS() and cols_ofrow()

18.6.2 Running certification

18.7 Continuing development
The Mata Reference Manual

Writing Mata code to add new commands to Stata

Al Overview

A2 Ways tostructure code L

A.3 Accessing Stata’s data from Mata

A4 Handling errors

A5 Making the calculation and displaying results

A6 Returningresults oL

Xiv

Contents

A.7 The Stata interface functions 393
A.7.1 Accessing Stata’sdata L. 394
A.7.2 Modifying Stata’sdata 394
A.7.3 Accessing and modifying Stata’s metadata 394
A.7.4 Changing Stata’s dataset [30d
A.7.5 Accessing and modifying Stata macros, scalars, matrices . . 394
A.7.6 Executing Stata commands from Mata 397
A.7.7 Other Stata interface functions [39d
Mata’s storage type for complex numbers 401
B.1 Complex values l101
B.2 Complex values and literals l103
B.3 Complex scalars, vectors, and matrices ls04
B.4 Real, complex, and numeric eltypes l10d
B.5 Functions Re(), Im(),and C() l10d
B.6 Function eltype() l10d
How Mata differs from C and C+-+ m
C.1 Imtroduction la11l
C.2 Treatment of semicolons la11l
C.3 Nested comments o l419
C4 Argument passing. o 419
C.5 Strings are not arrays of characters l419
C.6 Pointers l413
C.6.1 Pointers to existing objects l413
C.6.2 Pointers to new objects, allocation of memory [413
C.6.3 The size and even type of the object may change l4149
C.6.4 Pointers to new objects, freeing of memory l415
C.6.5 Pointers to subscripted values l414
C.6.6 Pointer arithmetic is not allowed la1d
C.7 Lack of switch/case statements l41d

C.8 Mata code aborts with error when C would crash m

Contents

D

Three-dimensional arrays (advanced use of pointers)

D.1 Imtroduction
D.2 Creating three-dimensional arrays
References

Author index

Subject index

EIEIEIEIBE +

(Pages omitted)

1 Introduction

1.1 Isthis book forme?
1.2 Whatis Mata?
1.3 What is covered in thisbook
1.4 How to download the files for this book

BRI E

1.1 Is this book for me?

This book is for you if you have tried to learn Mata by reading the Mata Reference
Manual and failed. You are not alone. Though the manual describes the parts of Mata,
it never gets around to telling you what Mata is, what is special about Mata, what you
might do with Mata, or even how Mata’s parts fit together. This book does that.

This is an applied book. It will teach you the modern way to write programs, which is
to say, it will teach you about structures, classes, and pointers. And the book will show
you some programming techniques that may be new to you. In short, in this book, we
are going to use Mata to write programs that are good enough that StataCorp could
distribute them.

This book is for “serious programmers and those who want to be”. Fifteen years ago,
the subtitle would have referenced professional rather than serious programmers, and
yet I would have written the same book. These days, the distinction is evaporating. I
meet researchers who do not program for a living but are most certainly serious. And
I meet the other kind, too.

A serious programmer is someone who has a serious interest in sharpening their pro-
gramming skills and broadening their knowledge of programming tools. There is an easy
test to determine whether you are serious. If I tell you that I know of a new technique
for programming interrelated equations and your response is “Tell me about it,” then
you are serious.

Being serious is a matter of attitude, not current skill level or knowledge.

Still, I made assumptions in writing this book. I assumed that you have some experience
with at least one programming language, be it Stata’s ado, Python, Java, C++, Fortran,
or any other language you care to mention. I also assumed that you already know that
programs contain conditional statements and loops. If you need a first introduction to

2 Chapter 1 Introduction

programming, you could look at the introductory section of the Mata manual or at the
Mata chapters in [Baum’s friendly text An Introduction to Stata Programming (2016).

The examples in this book are statistical and mathematical. Formulas are provided, but
the formulas are of secondary importance. They just provide the examples of something
for us to program.

In this book, I will show you a language aimed at programming statistical and data
management applications that has all the usual features and some unique ones, too.
And I will show you programming techniques that might be new to you.

As I said, being serious is a matter of attitude. New techniques and languages are
continually being developed, and you need to learn them, just as I still learn them. I
have been programming for 45 years as a professional. I have a lot of experience and
knowledge, but I have not stopped learning new techniques. I may be a professional
programmer, but more importantly, I am a serious one.

1.2 What is Mata?

Many Stata users would describe Mata as a matrix language. StataCorp itself markets
Mata that way. Mata would be more accurately described, however, as an across-
platform portable-code compiled programming language that happens to have matrix
capabilities. Just as important as its matrix capabilities are Mata’s structures, classes,
and pointers.

We at StataCorp designed and wrote Mata to be the development language that we
would use. Nowadays, we write most new features of Stata in Mata. Before Mata
existed, we used C. Compared with C, Mata code is easier to write, less error prone,
easier to debug, and easier to maintain.

It is important that Mata is compiled. Being compiled means that programs run fast.
Stata’s other programming language, ado, is interpreted. Interpreted languages are slow
in comparison with compiled languages. Mata code runs 1040 times faster than ado.

Mata looks a lot like C and C++. In The C Programming Language, Kernighan and
Ritchie (1978) introduced what has become perhaps the most famous first program:

main ()
{

printf ("hello, world\n")
}

1.3 What is covered in this book 3

To convert the program to Mata, we need to add void in front of main():

: void main ()

> A

> printf ("hello, world\n")
>}

: main ()

hello, world

Most Mata users would not bother typing the semicolon at the end of printf ("hello,
world\n"). Semicolons are optional in Mata. There are other differences between the
languages, too. Those differences are covered in appendix

1.3 What is covered in this book

The programs we will write in this book are

Filename Contents

hello.mata First program, function hello ()

n_choose_k.mata Serious but short function, packaged as library
function

1rl.mata Linear regression, ver. 1 (structures)

1r2.mata Linear regression, ver. 2 (structures)

earthdistance.mata An aside concerning classes

linregl.mata Linear regression take 2, ver. 1 (classes)

linreg2.mata Linear regression take 2, ver. 2 (classes)

spmatl.mata Sparse matrices, ver. 1

spmat2.mata Sparse matrices, ver. 2

spmat3.mata Sparse matrices, ver. 3

The first serious program we will write is n_choose k(). It will have just 47 lines
including comments and white space.

We will then work our way to a nearly complete implementation of linear regression,
starting with 1rl.mata and ending with linreg2.mata. There will be only 388 lines in
the final code in 1inreg2.mata! We will use structures for the first two implementations
and use classes after that.

The earthdistance.mata program merely illustrates a point about class programming.

Finally, we will undertake a large project, namely, the implementation of sparse matri-
ces. Sparse matrices are matrices in which most elements are 0. The project will concern
storing the matrices efficiently—there is no reason to store all those Os—and writing
code to add and multiply them just as if they were regular matrices. File spmat3.mata
will contain 937 lines.

4 Chapter 1 Introduction

We will do all that, but we will not start until chapter 9. There is a lot to tell you first.

Chapter 2 covers the mechanics of using Mata. You may know that Mata can be used
interactively, but that is not how we will be using it except when we want to experiment
before committing an idea to code.

Chapter 3 takes you on a tour of Mata. It will show you ordinary features, such as
assignment; surprising features, such as 0 x 0 matrices and 0 x 1 and 1 x 0 vectors; and
advanced features, such as structures, classes, and pointers. Pointers, by the way, are
not nearly as difficult to understand as you might fear. Later, we will use pointers when
we write 1rl.mata, our first implementation of linear regression, and we will use them
in an advanced way when we write spmat3.mata to implement sparse matrices.

Chapter 4 explains Mata’s programming statements, all nine of them. There may be
only nine, but they fit together in remarkable ways.

Chapter 5 provides details about Mata’s expressions, such as y = sqrt(2). Expres-
sions are one of the nine programming statements, but that understates their impor-
tance because they comprise the bulk of programs. Just calling a subroutine is an
expression. Chapter 5 also discusses programming for numerical accuracy. Do not skip
section even though its title is Base-2 notation.

Chapter 6 describes Mata’s 40 variable types. One of them is transmorphic, and the
chapter enumerates its proper and improper uses.

Chapter 7 is about Mata’s strict option. strict tells Mata to flag questionable
constructs in programs. Bugs hide inside questionable constructs.

Chapter 8 is about function arguments. Mata passes arguments by reference, but you
may not yet know what that means. The chapter also shows how to write functions
that allow a varying number of arguments.

In chapter 9, we finally turn to programming. The chapter is entitled n_choose_k() three
ways. We will write the new function n_choose k() and use it in three ways. We will
use the function in an analysis do-file, as the computational engine inside an ado-file,
and as a function to be added to a Mata library so that it can be used anywhere and
anyplace.

We will start programming in chapter 9, and we will not stop. A few chapters after 9
will explain Mata features that we will need for the programs we will write. Chapters 10
and 11 deeply explain structures. Chapters 12 and 13 do the same for classes. Chapter
14 shows how to create new variable types so you can declare a variable to be boolean
instead of real or an SpMat instead of a class SpMat scalar. Chapter 15 shows a
better way to deal with constants that appear in code. Chapter 16 explains Mata’s
associative arrays.

1.3 What is covered in this book 5

The chapters of this book are about Mata, not Stata. All but one example is about
writing Mata programs to be called from other Mata programs. And yet, the purpose of
Mata is to add new features to Stata. In appendix A, we will finally discuss programming
for Stata. Because you will have read the chapters, we will be able to discuss the subject
as one serious and knowledgeable programmer with another. There will be three issues
for us to discuss.

The first issue is how code should be structured. Stata’s ado language is how new
commands are added to Stata, and Mata does not change that. The question is whether
you should write one line of ado-code calling Mata so that the entire program is written
in Mata, or you should parse in Stata and then call Mata, or you should leave the
ado-code in charge and use Mata to provide the occasional subroutine for the ado-code
to call.

The second issue is how to access Stata objects such as variables, observations, macros,
and the like. Mata provides functions to do this.

The third issue is how to handle errors caused by mistakes by the users of our code.
By default, Mata aborts with error and issues a traceback log. That is acceptable
behavior when we write subroutines for use by other serious programmers, but it is not
acceptable when writing code for direct use by Stata users. Mata has functions that
will issue informative error messages and stop execution with a nonzero return code so
that we can write code that handles errors as gracefully as Stata users expect.

The book covers more, too. A thorough treatment of programming requires discussion
about workflow. Workflow is jargon for how to organize your work from the time you
write the first line of code to the time the program is ready to ship or be put in use.
Workflow is also about how you will later fix the program’s first reported bug, and its
second, and the substantive expansion of capabilities that you will make two years from
now.

The workflow discussion begins in chapter 2, becomes more detailed in chapter 9, and
continues in every programming example thereafter. Earlier, I mentioned the programs
we will be writing: hello.mata, n_choose_k.mata, 1rl.mata, and so on. When we
write 1rl.mata, we will also write file test_1r1l.do, a Stata do-file to certify that the
code in 1r1.mata produces correct results. We will store the certified code and its test
file in our Approved Source Directory. We will develop an automated procedure for
creating and updating Mata libraries that recompiles all the code in all the *.mata files,
runs all the test_*.do files, and rebuilds libraries from scratch.

(Pages omitted)

2 The mechanics of using Mata

2.1 Imtroduction [
2.2 Mata code appearing in do-files [1d
2.3 Mata code appearing in ado-files
2.4 Mata code to be exposed publicly

2.1 Introduction

I showed the Mata function for hello() in the last chapter. Here it is again, although
this time I have changed the function’s name from main() to hello() and I execute it:

. mata:

mata (type end to exit)
: void hello()

> |

> printf ("hello, world\n")

>}

: hello()
hello, world

: end

Just the act of entering the program caused Mata to compile it. Mata compiled hello (),
discarded the original source code, and left the compiled code in memory. That is why
I can execute the function by typing hello().

This interactive approach can be useful in teaching, but it is useless for serious appli-
cations. There are three ways Mata code is used more seriously.

Mata code can be placed in do-files. The functions you define there can be used inter-
actively and by other do-files.

Mata code can be placed in ado-files. The functions you define there can be used inside
the ado-file.

10 Chapter 2 The mechanics of using Mata

Mata code can be compiled and placed in libraries. The functions you place in them
may be used anytime, anywhere. They can be used interactively, in do-files, in ado-files,
and in other functions that appear in the same or different libraries.

2.2 Mata code appearing in do-files

I do not recommend putting Mata code straight into analysis do-files, although I have
done that when the code was simple enough. Complicated code will need debugging,
and debugging is easier when the code can be worked on in isolation. That argues for

putting the code in its own do-file. Doing that also makes it easier to use the Mata code
in other analyses.

I recommend that you place the code in its own do-file with the file extension .mata,
such as

hello.mata —
version 15
mata:
void hello ()
{
printf ("hello, world\n")
}

end

hello.mata —

Additional functions can appear in the same file:

hello.mata ———
version 15
mata:
void hello ()
{
printf ("hello, world\n")
}
void goodbye ()
{
printf ("good-bye, world\n")
}

end

hello.mata ———

Functions in the same file should be related. hello() and goodbye () are related; in the
unlikely event you want to use one of them, you will probably need the other. Related
use is a fine reason for functions to appear in the same file. Usually, however, the
functions are even more related in that they call one another.

2.2 Mata code appearing in do-files 11

To use the functions in your analysis do-file, code do filename.mata in the do-file before
using them:

analysis.do
version 15

clear all

do hello.mata
mata: hello ()
mata: goodbye ()

analysis.do

The line do hello.mata appears in boldface only for emphasis. When the analysis.do
do-file executes the line, the hello.mata do-file will be executed, which will define the
functions hello() and goodbye(). You could execute analysis.do by typing

. do analysis
(output omitted)

File analysis.do begins with the line version 15. Version control is a hallmark of
Stata. Every Stata do-file and ado-file since Stata 1 (in 1985) still works even though
Stata’s programming language looks nothing like it did originally. I included version
15 in this file so that it will continue to work in the future.

In this book, we will use .mata for files containing Mata code. Those files should start
with a version number, too. Look back and you will see that version 15 appears at
the top of file hello.mata. Version control serves the same purpose in .mata files that
it does in do-files and ado-files. If some Mata language feature should change in the
future, that feature will be backdated to have its old meaning. The version number does
not preclude the use of features added later; it merely handles backdating for changes
in syntax.

If there seems to be a profusion of version 15 statements in these two files, imagine
that it is now two-and-a-half years later and you are using Stata 16. I also need you to
imagine that analysis.do is a real analysis do-file and that hello() and goodbye()
do something useful. Typing do analysis will obviously reproduce the original results,
but that is not what you want to do. You want to add a second analysis using a new
Stata 16 feature. You create file analysis2.do and it starts, naturally enough, with
version 16. You also want to use hello() and goodbye() in the new file, so you
include do hello.mata in new file analysis2.do. The version 15 in mata.do will
assure that the code in hello() and goodbye() is given the Stata 15 interpretation
when the functions are compiled. Thus, even in this new Stata 16 do-file, old functions
hello() and goodbye () will work as originally intended.

(Pages omitted)

4 Mata’s programming statements

4.1 The structure of Mata programs
4.2 The program body
4.2.1 Expressions

4.2.2 Conditional execution statement

4.2.3 Looping statements 0oL
4231 while.

4232 for

4233 dowhile oo

4.2.3.4 continue and breako

4.2.4 goto

4.2.5 return ... oL L. Lo L

4.2.5.1 Functions returning values

Bl &l B &l B Bl E] E1 Bl B Bl B &

4.2.5.2 Functions returning void

4.1 The structure of Mata programs

Individual programs are formally called functions in Mata, but that will not stop us
from calling them programs, routines, or subroutines. A program is a chunk of code.
Here are some examples.

Function speed_of_light () takes no arguments and returns a value. It would be useful
if you were an astrophysicist.

real scalar speed_of_light ()

{
return (299792458 /% m/sec */)

}

Function show() takes arguments but returns nothing. Functions returning nothing are
common when displaying results or writing results to a file.

void show(real scalar a)

{
printf("a = %$f\n", a)

}

45

46 Chapter 4 Mata’s programming statements

Function n_choose_k() and its subroutine nfactorial_over_kfactorial() really are
functions in the mathematical sense because they accept arguments and return results.

real scalar n_choose_k (real scalar n, real scalar k)
{
return(n-k > k ?
nfactorial_over_kfactorial (n, n-k) /
nfactorial_over_kfactorial (k, 1)

nfactorial_over_kfactorial (n, k) /
nfactorial_over_kfactorial (n-k, 1)

}

real scalar nfactorial_over_kfactorial (real scalar n,
real scalar k)

{

real scalar result, i

if (n<0 | n>1.0x+35 | n!=trunc(n)) return(.)
if (k<0 | k>1.0x+35 | k!=trunc(k)) return(.)
result = 1

for (i=n; i>k; —--1i) result = resultxi

return (result)

}

I want you to focus on the physical structure of the programs. That structure is

returnedtype name (arguments)

{

declarations

program body
}

All Mata functions have this structure.

Most functions require arguments and return something. returnedtype specifies what is
returned, such as a real scalar or complex matrix.

Functions that return nothing are said to return void.

You can omit the declarations of the variables used in the body of the program, but
we will not omit them in this book. Omitting the declarations increases the chances of
mistakes, and programs without declarations sometimes run slower. They run slower
when the compiler—not knowing the type—mneeds to produce more general code that
can handle all the possibilities.

4.2.1 Expressions 47

4.2 The program body

There are nine statements that can be used in the program body. They are as follows:

Conditional execution statements:
if (expr) ... else
Looping statements:

for (expr; expr; expr)

while (expr)

do ... while (expr)
continue (continue with next iteration of loop)
break (break out of loop)

Go-to statements (useful when translating Fortran programs):

goto stmt

Exit and exit-and-return-value statements:

return and return (ezxpr)

Assignment, subroutine calls, and the like:
expr

expr is an abbreviation for expressions.

4.2.1 Expressions

We will discuss expressions deeply in the next chapter, and anyway, you already know
what expressions are. Examples of expressions include

i=1+1

y = myfcn (x)

mysubroutine (a, b)

This last example may not look like an expression to you, but it is. It is an expression
that returns void.

There is a lot I could tell you about expressions, but as I said, you mostly know what
they are. I do need to tell you about three surprising features of expressions, however.

The first surprising feature is that mathematical expressions such as

(-b + sqgrt(b"2 - 4xaxc)) / (2x*a)

48 Chapter 4 Mata’s programming statements

and logical expressions such as

a>1l & b<2

are, despite appearances, both numerical expressions. They are numerical because they
both return numerical results. Logical expressions return 1 or 0, where 1 means true and
0 means false. Mathematical and logical expressions may differ in the operators used,
but they do not differ in the type of results they produce. Because they do not differ,
mathematical and logical operators can be combined in surprising and useful ways.

For instance, say you have three numerical variables, a, b, and c. How many are
negative? Answer: (a<0) + (b<0) + (c<0) are negative.

Arithmetic expressions can substitute for logical expressions, too. A condition is deemed
to be true if the expression evaluates to any value except 0 because 0 means false. This
means you can code

if ((b + sqgrt(b"2 - 4xax*c)) / (2xa))

and what follows the if will be executed when (-b + sqrt(b”"2 - 4*axc)) / (2%a)
is not 0.

The equivalency of numeric and logical expressions is Mata’s first surprising feature.
The second is that = means assignment and == means equality. Do not code

if (x=2)
when you mean
if (x==2)

The first is not an error; it is a bug. Mata will not complain when you code if (x=2),
but the code will not do what you expect. The code will treat x=2 as assignment,
meaning x will be changed to be 2. If that is not bad enough, assignment leaves behind
the value, so the expression will be treated as true.

Coding x==2 is how you ask whether x is equal to 2.
Coding x!=2 is how you ask whether x is not equal to 2.

Finally, I need to tell you about Mata’s ++ and -- operators. Coding i++ increments
i by 1. You can think of it as a shorthand for i = i + 1. By the same token, coding
i-- decrements i by 1.

Later in this chapter, I will show you examples of i++, such as
for (i=0; i<=n; 1i++)
I could just as well present the example as

for (i=0; i<=n; i=i+1)

4.2.2 Conditional execution statement 49

Most programmers type i++ instead of 1 = i + 1.

You can code the ++ operator after the variable name or before it: i++ or ++i. When
coded as a standalone statement, which you code makes no difference. Coded in the
midst of an expression, there is a distinction. Look at the following two statements:

z = v[i++] + x
z = v[++i] + x
v [i++] means obtain v[i] and then increment i.

v[++i] means increment i and then obtain v[i].

For instance, if i were 2 before the statements were executed, then

v[i++] accesses v[2], whereas
v[++i] accesses v[3],

and either way, i is incremented to be 3.

i-- and --i work the same way.

4.2.2 Conditional execution statement

The syntax of if (ezpr) ... else ... is

if Cexpr) stmitl
and
if (expr) stmitl
else stmt2
stmtl is executed if expr evaluates to true (nonzero).

When else is coded, stmt2 is executed if ezpr evaluates to false (zero).

You can code

if (x==2) y = myfcn(z)
and you can code

if (x==2) y = myfcn(z)

else y = altfcn(z)

	Pages from tmb.pdf
	Binder1.pdf
	Pages omitted.pdf
	tmb-preview.pdf

