Subject index

A
- adding commands/programs............. 33
- adjust for multiple comparisons....126–129
 - experimentwise error rate........126
 - familywise error rate.............126
 - Scheffé.........................126–127
 - Tukey's HSD....................126–129
- **anova** command..................119
 - factorial ANOVA.................144–146, 159–160
 - one-way ANOVA..................119

B
- benefits of Stata..................4–5
- **bootstrap** command..............342
 - computing the confidence interval........... 343
- by processing........................18
- **bysort** prefix...................268

C
- categorical predictors............77–86
 - dummy coding....................78–86
 - changing the base category....84
 - factor variables...............83–84
- **generate** and **replace**
 - commands.......................79
- **generate** command only....80
- interpretation of coefficients....81–83
 - null hypothesis...............83
 - rules.........................78
- **tabulate** command..............80
 - using with **regress** command..81
- incorrect implementation........78
- cd command........................12
- conditional variance.............53
 - formula........................53
 - root mean squared error........53
- confidence intervals.............58
 - coverage rate.................59–60
 - formula........................58
 - interpretation...............59–60
- confirmatory factor analysis...377–396
 - χ^2-difference test........346–349
- causal models....................321
 - computing reliability (ω)....340
 - connection to regression......323
 - correlated residuals..........350
 - reliability....................353
- estimating in Stata..............see **sem** command
 - global fit....................392–396
 - goodness of fit...............328
 - χ^2 test................330–334
 - χ^2...................392–393
 - CFI.............................394
 - printing in Stata..............see **estat**
 - **gof** command
 - RMSEA..........................393
 - SRMR...........................394–395
 - TLI..............................394
 - identification...............383, 401–402
 - constraints..................384–386
 - just-identified..............386
 - overidentified...............386
 - underidentified...............386
 - intercepts....................400
 - introduction..................320
 - latent variables.............321
 - mean structure..............381, 383
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>confirmatory factor analysis, continued</td>
<td>323, 382</td>
</tr>
<tr>
<td>model-implied covariance</td>
<td>323, 382</td>
</tr>
<tr>
<td>nested models</td>
<td>346</td>
</tr>
<tr>
<td>parallel items</td>
<td>349</td>
</tr>
<tr>
<td>path model</td>
<td>321</td>
</tr>
<tr>
<td>parts</td>
<td>321</td>
</tr>
<tr>
<td>predicted covariance matrix ($\hat{\Sigma}$)</td>
<td>326, 329, 334</td>
</tr>
<tr>
<td>prediction equation</td>
<td>323–326</td>
</tr>
<tr>
<td>R^2 for an item</td>
<td>335</td>
</tr>
<tr>
<td>estimating in Stata... see estat eegof command</td>
<td></td>
</tr>
<tr>
<td>formula</td>
<td>335</td>
</tr>
<tr>
<td>reliability</td>
<td>343</td>
</tr>
<tr>
<td>ω versus α</td>
<td>343</td>
</tr>
<tr>
<td>impact of weak loadings</td>
<td>343</td>
</tr>
<tr>
<td>internal consistency</td>
<td>343</td>
</tr>
<tr>
<td>tau-equivalence</td>
<td>344</td>
</tr>
<tr>
<td>sample versus asymptotic variance</td>
<td>336</td>
</tr>
<tr>
<td>saturated model</td>
<td>331</td>
</tr>
<tr>
<td>shared variance across all items</td>
<td></td>
</tr>
<tr>
<td>shared variance across all items</td>
<td>338</td>
</tr>
<tr>
<td>standardized solution</td>
<td>389</td>
</tr>
<tr>
<td>tau-equivalent models</td>
<td>346</td>
</tr>
<tr>
<td>unstructured model</td>
<td>321</td>
</tr>
<tr>
<td>variance of an item</td>
<td>382</td>
</tr>
<tr>
<td>variance structure</td>
<td>381</td>
</tr>
<tr>
<td>versus exploratory factor analysis</td>
<td>377</td>
</tr>
<tr>
<td>contrast command</td>
<td></td>
</tr>
<tr>
<td>factorial ANOVA</td>
<td>147–149, 164–165</td>
</tr>
<tr>
<td>mcompare() option</td>
<td>148, 165</td>
</tr>
<tr>
<td>nowald option</td>
<td>165</td>
</tr>
<tr>
<td>pveffects option</td>
<td>165</td>
</tr>
<tr>
<td>repeated measures</td>
<td>176, 196</td>
</tr>
<tr>
<td>small option</td>
<td>176, 196</td>
</tr>
<tr>
<td>small samples</td>
<td>190</td>
</tr>
<tr>
<td>corr command</td>
<td>322, 359</td>
</tr>
<tr>
<td>covariance option</td>
<td>329</td>
</tr>
<tr>
<td>cumulative normal distribution function (Φ)</td>
<td>211</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Data Editor</td>
<td>15</td>
</tr>
<tr>
<td>describe command</td>
<td>14</td>
</tr>
<tr>
<td>do-files</td>
<td></td>
</tr>
<tr>
<td>see reproducible analysis</td>
<td></td>
</tr>
<tr>
<td>dummy coding</td>
<td></td>
</tr>
<tr>
<td>see categorical predictors, dummy coding</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Early Childhood Longitudinal Program data</td>
<td>398</td>
</tr>
<tr>
<td>effect size</td>
<td></td>
</tr>
<tr>
<td>η^2</td>
<td>149–150</td>
</tr>
<tr>
<td>ω^2</td>
<td>150–151</td>
</tr>
<tr>
<td>f</td>
<td>223</td>
</tr>
<tr>
<td>Cohen's d</td>
<td>116</td>
</tr>
<tr>
<td>versus Hedges's g</td>
<td>116</td>
</tr>
<tr>
<td>estimating in Stata... see esize command</td>
<td></td>
</tr>
<tr>
<td>factorial ANOVA</td>
<td>149–151, 165</td>
</tr>
<tr>
<td>partial-η^2</td>
<td>149</td>
</tr>
<tr>
<td>partial-ω^2</td>
<td>150</td>
</tr>
<tr>
<td>egen command</td>
<td>17</td>
</tr>
<tr>
<td>mean() option</td>
<td>252, 268</td>
</tr>
<tr>
<td>tag option</td>
<td>268</td>
</tr>
<tr>
<td>egenmore command</td>
<td></td>
</tr>
<tr>
<td>semean option</td>
<td>252</td>
</tr>
<tr>
<td>esize command</td>
<td>116</td>
</tr>
<tr>
<td>esize twosample command</td>
<td>116</td>
</tr>
<tr>
<td>estat bootstrap command</td>
<td>343</td>
</tr>
<tr>
<td>estat icc</td>
<td>250</td>
</tr>
<tr>
<td>estat esize command</td>
<td>335</td>
</tr>
<tr>
<td>factorial ANOVA</td>
<td>150–151</td>
</tr>
<tr>
<td>omega option</td>
<td>151</td>
</tr>
<tr>
<td>estat framework command</td>
<td></td>
</tr>
<tr>
<td>fitted option</td>
<td>329, 334, 383</td>
</tr>
<tr>
<td>estat gof command</td>
<td>330, 391, 392</td>
</tr>
<tr>
<td>estat ic command</td>
<td></td>
</tr>
<tr>
<td>following mixed</td>
<td>179</td>
</tr>
<tr>
<td>estat icc command</td>
<td>250</td>
</tr>
<tr>
<td>estat wcorrelation command</td>
<td>178, 182, 184, 187, 196</td>
</tr>
<tr>
<td>estimates store command</td>
<td>348</td>
</tr>
<tr>
<td>exploratory factor analysis</td>
<td>358–377</td>
</tr>
<tr>
<td>common factor model</td>
<td>359</td>
</tr>
<tr>
<td>communality</td>
<td>364</td>
</tr>
</tbody>
</table>
exploratory factor analysis, continued
 data reduction 359
 eigenvalues 363
 equation 360
 estimating in Stata see factor command
 extracting factors 360
 choosing the number 366
 eigenvalues-greater-than-one rule 366
 scree plot 367
 extraction methods 360
 principal-component factor 360
 interpreting loadings 362
 notation 360
 orthogonal factors 362
 parallel analysis 368
 promax rotation 374
 rotation
 estat common command 376
 estat structure command 376
 rotate command 372, 374
 simple structure 370
 uniqueness 364
 varimax rotation 370
 versus confirmatory factor analysis 358
 versus principal-component analysis 365
 extending syntax over multiple lines 25

factorial ANOVA
 benefits 131
 degrees of freedom 142–143
 effect size see effect size
 estimating in Stata see anova command
 interactions 139–140, 156–158
 null hypothesis 140, 156
 main effects 138–139, 155–158
 null hypothesis 139
 versus first-order effects 139–140
 marginal means 138–139, 154–155
 one-way marginal means 155
 two-way marginal means 154
 notation 133–134
 partitioning the variance 140–142
 ss between 141
 ss interaction 141–142
 ss main effects 141
 simple effects 146–149, 163–165
 estimating in Stata see contrast command
 null hypothesis 147
 source table 142–143
 three-factor design 151–166
 three-way interactions 156, 158–159
 null hypothesis 158–159
 two-factor design 134–151
 visualize data 134–138, 152–153
 file paths 12

G
 General Social Survey 38
 generate command 17
 n function 288
 handling missing data 18–19
 getting help 32–33
 graph box command 24, 287
 by() option 153
 factorial ANOVA 135–136, 153
 over() option 153
 repeated measures 171, 192
Subject index

graph dot command 261
graphics introduction 22–27

H
histogram command 23, 281, 290

I
in qualifier 15, 16
interactions 90–109
categorical by continuous 91–107
continuous by continuous 107–109
interpretation of coefficients ... 108
margins command 108–109
marginsplot command 108–109
visualizing relationships 108–109
dichotomous by continuous 91–101
factor-variable notation 94
first-order coefficients 96
interpreting coefficients 95–101
multiple intercept, multiple slope model 99–101
factor notation 100
lincom command 100
polytomous by continuous 101–107
interpretation of coefficients ... 102–103
margins command 104
marginsplot command 104
using factor notation to prevent errors 102
visualizing the interaction 104–107
probing meaning 96–101
problems with dichotomization 107–109
product between variables 94
interactions, continued
simple regression equation 96–101
lincom command 98–99
margins command 97–98
marginsplot command 97–98
plotting 97–98
interocular trauma test 329

L
label values command 19
label variable command 19
labels 19
value labels 19
variable labels 19
lincom command 73, 305
between-clusters and within-cluster relationships 271
contrast after the regress command 73–74
planned comparisons 123–125
linear combinations see lincom command
lines 43
intercept 43
slope 43
list command 15
combined with if and in qualifiers 17
repeated measures 173
lrtest command 279, 298, 348, 350, 353, 389
repeated measures 199

M
margins command 50–51, 299, 302, 305, 309
expected values 65
following the anova command 145–146, 160
inferential uncertainty 65–70
marginsplot command 66–70, 299, 302, 305, 309
by option 309
factorial ANOVA 136–138
Subject index

marginsplot command, continued
following the anova command ... 145–146, 160–163
methods for improving ... 67–70
noci option ... 309
xdimension() option ... 162
mata command ... 363, 364
mean ... 40
measurement invariance ... 398–427
across groups ... 400–413
configural invariance ... 400–406
invariant factor means ... 412–413
invariant factor variances ... 412
metric invariance ... 407
residual invariance ... 408
scalar invariance ... 407–408
sem command ... 402–405
structural invariance ... 412–413
across time ... 413–427
configural invariance ... 413–424
identification ... 414–424
metric invariance ... 424–425
residual invariance ... 426
scalar invariance ... 425–426
sem command ... 417–424
structural invariance ... 427
steps ... 399–400
using the CFI to evaluate ... 409–411
mixed command
between-clusters and within-cluster relationships ... 270
cov(unstructured) option ... 278
covariance(unstructured)
option ... 297
cross-level interaction ... 304
dfmethod() option ... 175, 190
dfmethod(satterthwaite) option ... 178, 190
display residual correlation matrix
.... see estat wcorrelation command
fit indices ... see estat ic command
longitudinal data ... 297
noconstant option ... 175, 306
mixed command, continued
nofetable option ... 249
noheader option ... 249
random slopes ... 278
random-effects specification ... 175
random-intercept model ... 248–252
remi option ... 175
repeated measures ... 175, 195
residuals() option
by() option ... 198
residuals(ar 1) option ... 181
residuals(exchangeable) option ...
... 178
residuals(independent)
option ... 175, 176
residuals(toeplitz) option ...
... 183
residuals(unstructured) option ...
... 186, 195
separate intercepts, separate slopes model ... 306
stddeviations option ... 178, 184, 249, 279
syntax basics ... 175–176
t() option for residuals() ... 181, 183, 186
time-invariant covariate ... 301
time-varying covariate ... 308
multilevel models
adding a predictor ... 262–264
atomistic fallacy ... 267
basic model ... 244
Bayes's theorem ... 255
between-clusters variance ... 244, 245
between-clusters versus within-
cluster effects ... 264–266
between-clusters versus within-
cluster relationships ... 267–273
caterpillar plot ... 253–254
centering ... 292
complete pooling ... 254
conditional independence ... 246
contextual effect ... 273
correlated random effects ... 276
Subject index

multilevel models, continued
 definition of random effects 246
 ecological fallacy 267
 fitting them in Stata see mixed command
 interpreting random slopes ... 280–283
 intraclass correlation ... 250–252, 280
 fitting them in Stata see estat icc command
 issues with clustered data ... 239–243
 level-specific relationships ... 266
 longitudinal data 296
 need for growth model 290
 random slope 246–249
 longitudinal data introduction ... 287
 no pooling 254
 nonindependence 239–242
 sources 242–243
 substantive benefits ... 242–243
 partial pooling 255–259
 partitioning variance 244–246
 predicting cluster means ... 252–261
 random effects
 compared to fixed effects ... 247
 examples 246
 random intercepts 246–249
 random slopes 273–283
 separate intercepts, separate slopes
 model 306
 time-varying covariate 307
 total relationships 266
 total residual 244
 versus repeated-measures models ... 243
 visualizing partitioning ... 244
 within-cluster variance ... 244, 245

multiple comparisons 120–129
 adjust for multiple comparisons
 see adjust for multiple comparisons
 adjusting in Stata see pwcompare command
 \alpha_{\text{joint}} 121–122
 protecting against \alpha inflation
 122–129
multiple regression 86–90
 centering predictors 87–88
 interpreting coefficients ... 87–90
 model fit 86
 R^2 87
 root mean squared error 87
 partial slopes 88
 regress command 86
 relationship among predictors ... 89–90
 rescaling predictors 88–89

N
 nlcom command 338, 340, 341, 353
 normal() function 211
 null hypothesis significance testing 60–63, 202
 alternative hypothesis 60
 criticisms 63–64
 null hypothesis 60
 p-value 63
 regress output 63
 steps 61–63

O
 one-way ANOVA 116–129
 alternative hypothesis 117
 between versus within variance ... 117–119
 degrees of freedom 118
 estimating in Stata see oneway command or anova command
 follow-up tests 119–129
 mean squares 118–119
 multiple comparisons see multiple comparisons
Subject index

one-way ANOVA, continued
 null hypothesis 117
 ratio of variances 119
 sum of squares 117–118
 oneway command 119

 power command, continued
 one-way ANOVA 223–226
 f 223
 sample-size estimates 225
 onecorrelation 221–223
 oneway 224–226
 parallel option 225–226
 sample-size estimates 229
 t test 215–220
 detectable difference . 216–217
 sample-size calculation 218
 twomeans 214–215
 twoway 227–229
 parallel option 229
 varcolumn() option 227
 varrow() option 227
 varrowcolumn() option 227
 varying multiple parameters . 219
 z test 214–215

 predict command 49, 70–73
 residual option 49
 fitted option 299
 inferential uncertainty 70–71
 plotting the results 71–73
 predictive uncertainty 71–73
 stdf option 72
 stdp option 70
 predictive uncertainty see predict command, predictive uncertainty

 program command 204
 bootstrapping 342
 program define command ... 40
 Project Manager see reproducible analysis

 pwcompare command 191
 effects option 191
 mcompare() option 191
 Scheffé 126–127
 small option 191
 small samples 190
 Tukey’s HSD 127–129

 P

 paran command 368
 pcf option 368
 partitioning variance
 regression 51–53
 planned comparisons 122–125
 contrast weights 122
 degrees of freedom 123
 F test 123
 linear combinations 122–125
 Stata estimation 123
 see test command and
 1incom command
 sum of squares 123
 point-and-click 9
 problems 9
 versus command language ... 10
 population parameters versus sample-
 based estimates 44
 power see also simulate command
 definition 202
 estimating in Stata see power command
 null and alternative distribution ...
 202–210
 simulation 204–210
 type M error 230, 233–235
 type S error 230–233
 z test 210–214
 z test formula 211
 power command 214–229
 correlation 220–223
 detectable correlation .. 222–223
 sample-size calculation 221–222
 diff() option 218
 factorial ANOVA 226–229
 graph() option 216
 knownsds option 215
Subject index

R

R^2 ... 52
formula 52
interpretation 53
Stata output 52
regress command 45
output 45
regression
 centering predictors 47
 conceptual introduction 43
 equation 43
 expected values 44
 general bivariate equation 44
 intercept computation 45
 intercept interpretation 47–48
margins command . see margins
command
predict command . see predict
command
predicted values 49–51
reason for error term 43
residuals 48–49
definition 48
slope computation 45
slope interpretation 46–47
Stata command . see regress
command
reliability 315
definition 319
factor analysis . see factor analysis
partitioning variability in items
............. 319
reasons for factor analysis 320
shared variance across items . 318–320
variability in item scores 318
repeated measures
 Σ .. 174
benefits of mixed models 167–168
block diagonal matrix 189
covariance among residuals 174
repeated measures, continued
 covariance structures 176–189
 autoregressive 180–182
 compound symmetry 177–180
 independent 176–177
 Toeplitz 183–185
 unstructured 186–189
degrees of freedom 189–190
denominator degrees of freedom 179
estimating in Stata . see mixed
command
heteroskedastic residuals .. 197–200
maximum likelihood versus least
 squares 167
model formulation 172–173
multiple factors 192–197
nonindependence 173
replace command 17
replication 5–8
reproducible analysis 5, 27–31
log files 30
text versus SMCL 30
Project Manager 30–31
role of do-files 28
annotating 29
versus point-and-click 29
suggestions for 28
workflow 31
recommendations 31
reshape command 135, 171–172
i() option 172
j() option 172
naming recommendations 172
reshape long command .. 172
reshape wide command 172
residual variance . see conditional
covariance
residuals . see regression residuals
root mean squared error . see
 conditional variance
S

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampling distribution</td>
<td>56, 202</td>
</tr>
<tr>
<td>mean of</td>
<td></td>
</tr>
<tr>
<td>shape of</td>
<td></td>
</tr>
<tr>
<td>simulating</td>
<td></td>
</tr>
<tr>
<td>standard deviation of</td>
<td>56</td>
</tr>
<tr>
<td>standard error</td>
<td></td>
</tr>
<tr>
<td>screeplot command</td>
<td>367</td>
</tr>
<tr>
<td>sem command</td>
<td></td>
</tr>
<tr>
<td>constraining latent correlation</td>
<td>388</td>
</tr>
<tr>
<td>constraining latent variables</td>
<td>386</td>
</tr>
<tr>
<td>constraints</td>
<td>328, 345</td>
</tr>
<tr>
<td>equation goodness of fit</td>
<td></td>
</tr>
</tbody>
</table>

Stata interface, continued

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review window</td>
<td>11</td>
</tr>
<tr>
<td>Variable window</td>
<td>11</td>
</tr>
<tr>
<td>statsby command</td>
<td>275, 292–293</td>
</tr>
<tr>
<td>sum of squares</td>
<td>52</td>
</tr>
<tr>
<td>model</td>
<td>52</td>
</tr>
<tr>
<td>residual</td>
<td>52</td>
</tr>
<tr>
<td>total</td>
<td>52</td>
</tr>
<tr>
<td>summarize command</td>
<td>20–21</td>
</tr>
<tr>
<td>assisting with centering</td>
<td>47</td>
</tr>
<tr>
<td>repeated measures</td>
<td>170</td>
</tr>
<tr>
<td>returned values</td>
<td>47</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t test</td>
<td>114–116</td>
</tr>
<tr>
<td>effect size</td>
<td>115–116</td>
</tr>
<tr>
<td>formula and procedures</td>
<td>114</td>
</tr>
<tr>
<td>null hypothesis</td>
<td>114</td>
</tr>
<tr>
<td>table command</td>
<td>21–22</td>
</tr>
<tr>
<td>by() option</td>
<td>134, 152</td>
</tr>
<tr>
<td>contents() option</td>
<td>134</td>
</tr>
<tr>
<td>factorial ANOVA</td>
<td>134–135, 152</td>
</tr>
<tr>
<td>format() option</td>
<td>134</td>
</tr>
<tr>
<td>marginal means</td>
<td>138</td>
</tr>
<tr>
<td>tabstat command</td>
<td>113</td>
</tr>
<tr>
<td>stat option</td>
<td>336</td>
</tr>
<tr>
<td>tabulate command</td>
<td>21–22</td>
</tr>
<tr>
<td>test command</td>
<td></td>
</tr>
<tr>
<td>planned comparisons</td>
<td>123–125</td>
</tr>
<tr>
<td>ttest command</td>
<td>114–115</td>
</tr>
<tr>
<td>twoway</td>
<td></td>
</tr>
<tr>
<td>function command</td>
<td>260</td>
</tr>
<tr>
<td>lfit command</td>
<td>269, 292, 294</td>
</tr>
<tr>
<td>rcap command</td>
<td>276, 293</td>
</tr>
<tr>
<td>scatter command</td>
<td>25–27, 260, 269, 276, 291–294, 369</td>
</tr>
<tr>
<td>type I error rate</td>
<td>203</td>
</tr>
<tr>
<td>type II error</td>
<td>203</td>
</tr>
</tbody>
</table>

U

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>use command</td>
<td>12</td>
</tr>
<tr>
<td>file paths</td>
<td>12</td>
</tr>
</tbody>
</table>
Subject index

V
validity..........................315
variable types
 date and time...............14
 numeric.......................14
 string........................15
violin plots...................113
 vioplot command.............113

W
wide versus long datasets.....169–170
working directory..............12
 benefits of setting..........13

Y
Yale–Brown Obsessive Compulsive
 Scale.........................398