Table of contents

Preface
I Warming up
1 Introduction
2 Descriptive statistics
3 Basic inferential statistics
II Between-subjects ANOVA models
4 One-way between-subjects ANOVA
5 Contrasts for a one-way ANOVA
6 Analysis of covariance
7 Two-way factorial between-subjects ANOVA
8 Analysis of covariance with interactions
9 Three-way between-subjects analysis of variance
10 Supercharge your analysis of variance (via regression)
11 Power analysis for analysis of variance and covariance
III Repeated measures and longitudinal designs
12 Repeated measures designs
13 Longitudinal designs
IV Regression models
14 Simple and multiple regression
15 More details about the regress command
16 Presenting regression results
17 Tools for model building
18 Regression diagnostics
19 Power analysis for regression
V Stata overview
20 Common features of estimation commands
21 Postestimation commands
22 Stata data management commands
23 Stata equivalents of common IBM® SPSS® Commands

Stata for the Behavioral Sciences

By Michael N. Mitchell
Publisher: Stata Press
Copyright: 2015
ISBN: 978-1-59718-173-0
Pages: 646; paperback
Price: $62.00

For more details or to order, visit us online at stata-press.com/books/stata-for-the-behavioral-sciences.
Stata for the Behavioral Sciences, by Michael Mitchell, is the ideal reference for researchers using Stata to fit ANOVA models and other models commonly applied to behavioral science data. Drawing on his education in psychology and his experience in consulting, Mitchell uses terminology and examples familiar to the reader as he demonstrates how to fit a variety of models, how to interpret results, how to understand simple and interaction effects, and how to explore results graphically.

Although this book is not designed as an introduction to Stata, it is appealing even to Stata novices. Throughout the text, Mitchell thoughtfully addresses any features of Stata that are important to understand for the analysis at hand. He also is careful to point out additional resources such as related videos from Stata’s YouTube channel.

The book is divided into five sections.

The first section contains a chapter that introduces Stata commands for descriptive statistics and another that covers basic inferential statistics such as one- and two-sample t tests.

The second section focuses on between-subjects ANOVA modeling. The discussion moves from one-way ANOVA models to ANCOVA models to two-way and three-way ANOVA models. In each case, special attention is given to the use of commands such as contrast and margins for testing specific hypotheses of interest. Mitchell also emphasizes the understanding of interactions through contrasts and graphs. Underscoring the importance of planning any experiment, he discusses power analysis for t tests, for one- and two-way ANOVA models, and for ANCOVA models.

Section three of the book extends the discussion in the previous section to models for repeated-measures data and for longitudinal data.

The fourth section of the book illustrates the use of the regress command for fitting multiple regression models. Mitchell then turns his attention to tools for formatting regression output, for testing assumptions, and for model building. This section ends with a discussion of power analysis for simple, multiple, and nested regression models.

The final section has a tone that differs from the first four. Rather than focusing on a particular type of analysis, Mitchell describes elements of Stata. He first discusses estimation commands and similarities in syntax from command to command. Then, he details a set of postestimation commands that are available after most estimation commands. Another chapter provides an overview of data management commands. This section ends with a chapter that will be of particular interest to anyone who has used IBM® SPSS®; it lists commonly used SPSS® commands and provides equivalent Stata syntax.

This book is an easy-to-follow guide to analyzing data using Stata for researchers in the behavioral sciences and a valuable addition to the bookshelf of anyone interested in applying ANOVA methods to a variety of experimental designs.