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ani.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an  announcements ip  instruction on programming

cc  communications & letters os  operating system, hardware, &
dm  data management interprogram communication

dt data sets gs  questions and suggestions

gr  graphics tt  teaching

in instruction zz  not elsewhere classified
Statistical Categories:

sbe biostatistics & epidemiology srd  robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis

sg  general statistics ssi  simulation & random numbers
smv multivariate analysis sss  social science & psychometrics
snp  nonparametric methods sts  time-series, econometrics

sqc  quality control sxd experimental design

sqv  analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an37 Stata classes and programming services available

Eric Best, Best Consultants, 818-340-1146

Best Consultants is now offering Stata programming services and scheduling Stata classes at various locations. Stata classes
are being offered at beginning and intermediate levels. Let us know what subjects interest you. On-site classes are available.

We also offer Stata data analysis and programming services. Services include data analysis where your time and personal
resources might be limited and yet you need results quickly. Programming in Stata is available for both data manipulation and
analysis needs.

Please contact:
Eric Best, Ph.D.

Best Consultants

21450 Chagall Road
Topanga, California 90290
Telephone: 818-340-1146

dm1i5 Interactively list values of variables

Alan Riley, Stata Corporation, FAX 409-696-4601

Stata’s 1ist command is adequate when looking at data sets with small numbers of variables, or when a variable name is
desired adjacent to each data value (display format). However, when large numbers of variables are present, a listing becomes
impossible to read without specifying a subset of the variable list. Another shortcoming of list is that there is no way to page
up during the listing. The browse command acts as an interactive listing command, displaying only as many columns as will
fit on the screen at one time, and allowing you to look through a large data set easily. The syntax of browse is

browse [varlist] [if exp] [in range] [, nolabel noobs ]
browse is typically invoked without specifying any arguments, but, if you specify the varlist, the listing will be restricted to
solely those variables just as with 1ist. The same is true of the if exp and in range.
After typing browse, the first “page” of data is displayed, and you are requested to enter an action:

. browse
(determining variable widths...)

make price mpg rep78 hdroom
1. AMC Concord 4099 22 3 2.5
2. AMC Pacer 4749 17 3 3.0
3. AMC Spirit 3799 22 . 3.0
4. Buick Century 4816 20 3 4.5
5. Buick Electra 7827 15 4 4.0
6. Buick LeSabre 5788 18 3 4.0
7. Buick Opel 4453 26 3.0
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8. Buick Regal 5189 20 3 2.0
9. Buick Riviera 10372 16 3 3.5
10. Buick Skylark 4082 19 3 3.5
11. Cad. Deville 11385 14 3 4.0
12. Cad. Eldorado 14500 14 2 3.5
13. Cad. Seville 15906 21 3 3.0
14. Chev. Chevette 3299 29 3 2.5
15. Chev. Impala 5705 16 4 4.0
16. Chev. Malibu 4504 22 3 3.5
17. Chev. Monte Carlo 5104 22 2 2.0
18. Chev. Monza 3667 24 2 2.0
19. Chev. Nova 3955 19 3 3.5

browse (7 for help):

Typing ‘?” and pressing Return (or simply pressing F1) provides on-line help:
browse (? for help): . ?
F-Key Command Function

F1 ? this help screen

F2 a again: repeat last command

F3 1 move left 1 variable

F4 r move right 1 variable
1# move left # variables
r# move right # variables

F7 u move up 1 page (b synonym)

F8 d move down 1 page (f or Return synonyms)

F5 uh move up 1 half page

F6 dh move down 1 half page
u# move up # lines
d# move down # lines

F10 R redisplay current page
h vn hold vn (varname) at left of screen
h vh vn hold 2 variables at left of screen
h release all hold variables
p# reset page size to # lines
q quit

browse (? for help):

An action is chosen by typing the “command” or by pressing the corresponding F-key.

The most common action is to simply press Return, which goes to the next page:

browse (7 for help):

make price mpg rep78 hdroom
20. Dodge Colt 3984 30 5 2.0
21. Dodge Diplomat 4010 18 2 4.0
22. Dodge Magnum 5886 16 2 4.0
23. Dodge St. Regis 6342 17 2 4.5
24. Ford Fiesta 4389 28 4 1.5
25. Ford Mustang 4187 21 3 2.0
26. Linc. Continental 11497 12 3 3.5
27. Linc. Mark V 13594 12 3 2.5
28. Linc. Versailles 13466 14 3 3.5
29. Merc. Bobcat 3829 22 4 3.0
30. Merc. Cougar 5379 14 4 3.5
31. Merc. Marquis 6165 15 3 3.5
32. Merc. Monarch 4516 18 3 3.0
33. Merc. XR-7 6303 14 4 3.0
34. Merc. Zephyr 3291 20 3 3.5
35. Olds 98 8814 21 4 4.0
36. 0lds Cutl Supr 5172 19 3 2.0
37. 0lds Cutlass 4733 19 3 4.5
38. 0lds Delta 88 4890 18 4 4.0

browse (? for help):

We would have obtained the same result had we typed £ (or d) and pressed Return, or if we simply pressed F8.
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browse, unlike 1ist, can go backwards. If we now press b (or u) followed by Return, or F7, we move back up one “page” of
data:

browse (? for help): . b

make price mpg rep78 hdroom

1. AMC Concord 4099 22 3 2.5
2. AMC Pacer 4749 17 3 3.0
3. AMC Spirit 3799 22 . 3.0
4. Buick Century 4816 20 3 4.5
5. Buick Electra 7827 15 4 4.0
6. Buick LeSabre 5788 18 3 4.0
7. Buick Opel 4453 26 . 3.0
8. Buick Regal 5189 20 3 2.0
9. Buick Riviera 10372 16 3 3.5
10. Buick Skylark 4082 19 3 3.5
11. Cad. Deville 11385 14 3 4.0
12. Cad. Eldorado 14500 14 2 3.5
13. Cad. Seville 15906 21 3 3.0
14. Chev. Chevette 3299 29 3 2.5
15. Chev. Impala 5705 16 4 4.0
16. Chev. Malibu 4504 22 3 3.5
17. Chev. Monte Carlo 5104 22 2 2.0
18. Chev. Monza 3667 24 2 2.0
19. Chev. Nova 3955 19 3 3.5

browse (? for help):

We can also go up and down half pages by typing uh or dh (equivalent to F5 or F6), or we can go down (up) an arbitrary
number of lines by typing d (u) followed by the number, such as d8:

browse (? for help): . d8

make price mpg rep78 hdroom

9. Buick Riviera 10372 16 3 3.5
10. Buick Skylark 4082 19 3 3.5
11. Cad. Deville 11385 14 3 4.0
12. Cad. Eldorado 14500 14 2 3.5
13. Cad. Seville 15906 21 3 3.0
14. Chev. Chevette 3299 29 3 2.5
15. Chev. Impala 5705 16 4 4.0
16. Chev. Malibu 4504 22 3 3.5
17. Chev. Monte Carlo 5104 22 2 2.0
18. Chev. Monza 3667 24 2 2.0
19. Chev. Nova 3955 19 3 3.5
20. Dodge Colt 3984 30 5 2.0
21. Dodge Diplomat 4010 18 2 4.0
22. Dodge Magnum 5886 16 2 4.0
23. Dodge St. Regis 6342 17 2 4.5
24. Ford Fiesta 4389 28 4 1.5
25. Ford Mustang 4187 21 3 2.0
26. Linc. Continental 11497 12 3 3.5
27. Linc. Mark V 13594 12 3 2.5

browse (7 for help):

The page size may be reset by typing p#, where # is the number of lines of data to display on the screen:

browse (? for help): . pil0

make price mpg rep78 hdroom

9. Buick Riviera 10372 16 3 3.5
10. Buick Skylark 4082 19 3 3.5
11. Cad. Deville 11385 14 3 4.0
12. Cad. Eldorado 14500 14 2 3.5
13. Cad. Seville 15906 21 3 3.0
14. Chev. Chevette 3299 29 3 2.5
15. Chev. Impala 5705 16 4 4.0
16. Chev. Malibu 4504 22 3 3.5
17. Chev. Monte Carlo 5104 22 2 2.0
18. Chev. Monza 3667 24 2 2.0

browse (7 for help):
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When you reset the page size, the new size remains in effect throughout the Stata session. The page size may also be reset before
entering browse with the brset # command. The default page size is 19, meaning 19 observations are displayed per page.

You may move left and right along the variables by typing 1 or r (or F3 or F4):

browse (? for help): . r

price mpg rep78 hdroom trunk
9. 10372 16 3 3.5 17
10. 4082 19 3 3.5 13
11. 11385 14 3 4.0 20
12. 14500 14 2 3.5 16
13. 15906 21 3 3.0 13
14. 3299 29 3 2.5 9
15. 5705 16 4 4.0 20
16. 4504 22 3 3.5 17
17. 5104 22 2 2.0 16
18. 3667 24 2 2.0 7

browse (7 for help):

You may use r# and 1# to move right and left # of variables; r2 moves right two variables.

During moves to the right or left, it is sometimes desirable to hold one or two identifier variables at the left of the screen. This
is accomplished by typing h varnamel [varname2):

browse (? for help): . h make

make price mpg rep78 hdroom

9. Buick Riviera 10372 16 3 3.5
10. Buick Skylark 4082 19 3 3.5
11. Cad. Deville 11385 14 3 4.0
12. Cad. Eldorado 14500 14 2 3.5
13. Cad. Seville 15906 21 3 3.0
14. Chev. Chevette 3299 29 3 2.5
15. Chev. Impala 5705 16 4 4.0
16. Chev. Malibu 4504 22 3 3.5
17. Chev. Monte Carlo 5104 22 2 2.0
18. Chev. Monza 3667 24 2 2.0

browse (7 for help): . r2

make rep78 hdroom trunk weight

9. Buick Riviera 3 3.5 17 3880
10. Buick Skylark 3 3.5 13 3400
11. Cad. Deville 3 4.0 20 4330
12. Cad. Eldorado 2 3.5 16 3900
13. Cad. Seville 3 3.0 13 4290
14. Chev. Chevette 3 2.5 9 2110
15. Chev. Impala 4 4.0 20 3690
16. Chev. Malibu 3 3.5 17 3180
17. Chev. Monte Carlo 2 2.0 16 3220
18. Chev. Monza 2 2.0 7 2750

browse (7 for help):

After variables have been “held,” they may be released by typing h with no varnames specified.

browse (7 for help): . h

price mpg rep78 hdroom trunk weight
9. 10372 16 3 3.5 17 3880
10. 4082 19 3 3.5 13 3400
11. 11385 14 3 4.0 20 4330
12. 14500 14 2 3.5 16 3900
13. 15906 21 3 3.0 13 4290
14. 3299 29 3 2.5 9 2110
15. 5705 16 4 4.0 20 3690
16. 4504 22 3 3.5 17 3180
17. 5104 22 2 2.0 16 3220
18. 3667 24 2 2.0 7 2750

browse (7 for help):
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Finally, a (or F2) is used to repeat the last command issued; R (F10) is used to redisplay the current “page” of observations; q
allows you to quit browse and return to Stata’s dot prompt.

browse (? for help): . q

sg16.3 Quasi-likelihood modeling using an enhanced glm command

Joseph Hilbe, Sociology & Statistics, Arizona State University, EMAIL atjmh@asuvm.inre.asu.edu

As currently structured the glm command allows modeling of Gaussian, binomial (logit, probit, and complementary loglog),
Poisson, gamma, inverse Gaussian, and negative binomial regressions. All valid GLM links are provided, including the full range
of power links. Each GLM model is based upon a probability (density) function which is a member of the exponential family of
distributions. Given such a probability function, the method of moments allows one to determine the mean and variance for the
regression model. The log-likelihood function is also directly determined from the probability function. The deviance function,
upon which convergence is based, is defined as twice the difference between the maximal and fitted log-likelihoods; so it too
is dependent upon the specific probability function. Hence, for each standard GLM model, there is a direct relationship between
the probability, deviance, and variance functions.

There are times when it may be desirable to add an extra multiplicative factor to the variance, for instance when dealing with
limited overdispersed-Poisson count and binomial proportion data. When such a factor is introduced into the variance function,
the relationship between probability function and variance breaks down—and a new deviance function must be constructed. In
1974 Robert Wedderbrun discovered that standard GLM deviance functions could be derived, independently of a knowledge of
the underlying probability functions, from the following formula:

Yy
y—p
5 / Y= E o
w Vi)

That is, given a variance function, it may be possible to calculate an appropriate log-likelihood and deviance function. For
example, the Poisson variance is p. Integration of (y — u)/u determines the log likelihood: ylog(p) — p. Subtracting this LL
from that of the maximal model, i.e., one where y is substituted for each p, and multiplying by 2, results in the deviance function:
2{ylog(y/p) — (y — 1) }. This is the same Poisson deviance function calculated more laboriously from the Poisson probability
function. Adding an extra multiplicative constant to the Poisson variance, mk, results in a deviance function which is divided
by the multiplicative constant, D /k. However, the corresponding probability function is not a member of the exponential family
and the model is thus not strictly speaking a GLM—it is called a quasi-likelihood (QL) model. Many QL models fortunately
share asymptotic properties characteristic of GLMs; hence allowing users a wide variety of meaningful modeling and diagnostic
capabilities. Other QL models can only be tenuously interpreted. However, QL modeling does allow interesting and useful
extensions to the standard GLM models.

An enhanced glm program is supplied on the STB diskette which allows the addition of a multiplicative factor into the
variance function. Moreover, I have withdrawn the k1 option which was to be used for linearly specified negative binomial
models (LNB). The LNB is a QL model with a deviance function proportional to that of the Poisson deviance. You may calculate
this for yourself by using the LNB variance function, y + kp, as the denominator in the formula earlier described. The resultant
QD function is [1/(k + 1)](Poisson Deviance). Hence, a separate LNB program is unnecessary; simply use an overdispersed
Poisson model to model a LNB. Of course, the use of the log-linked negative binomial GLM will probably yield a more satisfactory
modeling result, particularly if the Poisson cells are gamma distributed. Display the glm help file to determine how to use this
feature.

There are many other QL models which are not directly accommodated by the glm program. I have constructed several
including generalized power variances, distribution mixtures, and so forth. All may be programmed using Stata programming
facilities.
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sg16.4 Comparison of nbreg and glm for negative binomial
William H. Rogers, Stata Corporation, FAX 409-696-4601

Stata 3.1’s nbreg command (see [5s] nbreg) estimates negative binomial models. The previously published glm command
(Hilbe 1993b) can also estimate such models. The two programs are based on very different philosophies: they estimate slightly
different models and yield slightly different answers.

nbreg is based on a full maximum-likelihood (ML) estimates that include regression parameters for the log expected count
and also the ancillary dispersion parameter . The reported standard errors are unconditional estimates derived from the second
derivative of the log-likelihood function.

glm is embedded in a standard power-link GLM framework (McCullagh and Nelder 1989). Using a power of zero results
in estimates of the log expected count. The ancillary parameter is not estimated; it must be previously known and is specified
using glm’s k() option where k = «. (The parameter k is defined as 1/« in McCullagh and Nelder, but glm’s k() option uses
the inverse.) Standard errors are defined conditionally.

Using the kyphsp.dta data (Hastie and Tibshirani 1990, 200; available in Stata format in Hilbe 1993a), I estimated a
negative binomial model using nbreg and also with glm. Since glm does not estimate the ancillary parameter, I specified its
value to be that found by nbreg. The results were as follows: nbreg reported a higher log-likelihood value, but the difference
was only at the 10th significant digit and the reported log likelihoods were even closer when glm’s 1tolera(1e-8) option was
specified. The parameter estimates agreed to four significant digits. The standard errors, however, agreed to only 1.5 significant
digits.

There are four possible explanations as to why the standard errors might differ: (1) nbreg’s standard errors are unconditional
whereas glm’s are conditional on the value specified for the ancillary parameter; (2) nbreg’s standard errors are computed
numerically whereas glm’s standard errors are based on analytic formulas; (3) The differences in the standard errors could be
due to the (small) differences in the parameter estimates; (4) nbreg’s standard errors are based on second derivatives whereas
glm’s are based on another type of approximation.

Possibility 1 can be examined by setting the appropriate partial derivatives to zero and thus allowing us to compare the
conditional and unconditional standard errors. I found that making nbreg’s results conditional would have changed the answers
only slightly—at the sixth significant digit. To examine possibilities 2 and 3, I wrote a program to evaluate the derivatives at
the maximum found by glm using a different numerical differentiation technique. This produced answers that agreed to four
significant digits. Thus, possibilities 1, 2, and 3 are not the principal reasons for the observed differences in the standard errors.

Further examination revealed that the principal reason is possibility 4. Both procedures estimate standard errors from a
matrix of the form XWX where W is a diagonal matrix of weights. As it turns out, the GLM procedure estimates roughly the
same weight for every observation whereas the maximum-likelihood nbreg estimates different weights for each observation. For
nbreg, the weights are a function of the dependent variable and the independent variables. For glm, they are only a function of
the independent variables. For a given set of independent variables, the two sets of weights have constant expected ratio. If the
negative binomial regression model holds, the two answers will agree asymptotically and will be consistent. In small samples,
the glm answer is more stable. If the model is a little off, however, the ML standard errors produced by nbreg are probably
slightly better, although neither answer would be asymptotically consistent (correct). The ML standard errors are more conditional
on the data than those of GLM.

In summary, it is difficult to know which standard errors should be considered “better.” If there are substantial differences
in the standard errors and the data set was large, however, chances are the negative binomial assumption should be questioned.

From a practical standpoint, the ML procedure nbreg is easier to use because the user does not have to specify the ancillary
parameter and can test its values. With the ancillary specified, glm is faster. The standard errors produced by glm depend on
the ancillary parameter’s value and will be biased if this ancillary parameter is misspecified. This might be fixed by using glm’s
scale() option. Still, the best way we know to find the ancillary value is to run nbreg first.

References
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snp6 Exploring the shape of univariate data using kernel density estimators

Isafas Hazarmabeth Salgado-Ugarte, Makoto Shimizu, and Toru Taniuchi,
University of Tokyo, Faculty of Agriculture, Department of Fisheries, Japan
FAX (011)-81-03-3812-0529

There are many graphical devices for examining the distribution of a single variable. Examples include one-way scatterplots,
stem-and-leaf displays, boxplots, and histograms. There are also several types of quantile plots that use the empirical cumulative
distribution function (for example, see Wilk and Gnanadesikan, 1968). According to Fox (1990), though, it is easier to spot
important features when an empirical distribution is displayed as a density function rather than as a cumulative distribution
function. While frequency plots (histograms) provide an accurate picture of variables from discrete distributions, smooth density
functions are needed to represent variables drawn from continuous distributions such as the normal distribution. Because the
density function is the derivative of the cumulative distribution function, areas under the density function are probabilities.

This insert introduces some kernel estimators that provide nonparametric density estimates along with ado-files to calculate
them. Kernel density estimators are an essential component of many more complicated estimators, such as semiparametric
procedures. In this insert, we will stress the use of kernel estimators as tools for the exploratory stage of data analysis. In this
context, kernel estimators can be regarded as nonparametric histogram smoothers. From an exploratory point of view, density
estimates are valuable because they can reveal skewness, heavy or light tails, and multimodality in the data, characteristics that
can be investigated further at the confirmatory stage (Silverman 1986).

This insert is based in large part on the account in Fox (1990). We begin by discussing the histogram, one of the earliest
and simplest density estimators. The disadvantages of the histogram serve to motivate the discussion of density traces and kernel
density estimators. We illustrate the performance of these alternative estimators on a variable that exhibits multiple modes.
We close by considering techniques for selecting an optimal kernel estimator and by documenting the heavy computational
requirements of these conceptually simple estimators.

The histogram: Some remarks on the classical density estimator

The method most widely used to represent the shape of a probability density function is the histogram. Tarter and Kronmal
(1976) provide a critical review of this procedure and note that the histogram is useful for data description and can provide a
crude estimate of density (Chambers et al. 1983). However, the histogram density estimate frequently is too crude for many
purposes. The more sophisticated estimators presented below are all refinements, however, of the simple histogram.

The histogram is calculated by partitioning the real line into equal-sized line segments, called bins. The fraction of
observations of the variable of interest that fall within a given bin is taken as an estimate of the probability of observing future
realizations in that bin. The histogram is drawn as a sequence of bars, representing the simplifying assumption that the probability
density is constant within each bin.

Silverman (1986) and Fox (1990) give a formal definition of the histogram density estimator.

Let x = the variable of interest,

m = the number of bins,

h = half the width of each bin,
f(z) = the density function.

If x¢ is the origin of the histogram, that is, the lower endpoint of the leftmost bin, the end points of the bins are given by the
sequence
Zo, o + 2h,xo + 4h, ..., xo + m(2h).

A particular observation X; falls in bin j if

By this definition, an observation falling on a bin boundary is placed in the higher bin. Formally, the density function is continuous
from the left.

The histogram density estimator is given by

> #lwo+ (- 1)2h < X <m0 + j(2h)]
Ju(z) = n(2h)

for z located in bin j. In this expression, the symbol #[-] means a count of the number of observations for which the expression
in brackets is true. Thus, the numerator counts the number of observations in the bin. The denominator, n(2h) ensures that the
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total area enclosed by the histogram is unity. It is common to ignore the denominator and instead scale the vertical axis so that
the heights of the bars represent frequency or percent (Fox 1990, Chambers et al. 1983).

Figures 1 and 2 display Stata’s version of the histogram. The data are adapted from Goeden (1978) and consist of 316
length observations of the coral trout Plectropomus leopardus. These data are included on the STB distribution disk in the file
trocolen.dta. Figure 1 is Stata’s default version, a histogram with five bins. It was produced by the command:

. graph length, xlabel ylabel

Figure 2 is a histogram for the same data using 50 bins. The command was

. graph length, xlabel ylabel(0,.02,.04,.06) bin(50)

.06

.04

Fraction

.02

T T T T T T T T T T
400 500 600
Trout length (mm)

400
Trout length (mm)

Figure 1: 5-bin histogram Figure 2: 50-bin histogram

These two graphs give very different impressions of the distribution of trout length. Figure 1 gives the impression that
trout length follows a smooth, unimodal distribution, perhaps the normal or log-normal distribution. Figure 2, in contrast, is very
irregular. It is not clear whether trout length follows a multimodal distribution or whether the narrowness of the bins highlights
the noise in the data.

The differences between these two figures illustrate some of the problems with using histograms either to estimate a
probability density function or to provide a good simple descriptive representation of the distribution of a batch. Fox (1990)
identifies four distinct problems with the histogram:

1. The result is dependent on the origin xg.

In constructing a histogram, the investigator must choose the position at which to place the origin of the bins. This decision
is commonly made on the basis of convenience, with the bins beginning at or centered on “round” numbers. This element of
choice in the construction of the histogram can interact with other choices, such as the number and width of bins, to give
misleading pictures (Tarter and Kronmal 1976). Silverman (1986) and Fox (1990) present examples where changing the origin
of a histogram significantly changes the impression given of the underlying distribution. For example, a change in the origin can
change the apparent number of modes in the sample. To protect against this problem, it is recommended that several histograms
with different origins be drawn. Unfortunately, this procedure can lead the analyst, intentionally or not, to select the histogram
that best matches the analyst’s prior notion of the underlying distribution.

2. The result is dependent of the width and number of bins.

As with the choice of origin, the choices of number and size of the bins can significantly affect the appearance of the
histogram. Again, these choices can lead the researcher to bias, consciously or unconsciously, the presentation of data.
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The number and width of bins determines the smoothness of the resulting display (Chambers et al. 1983, Silverman 1986).
Tarter and Kronmal (1976) argue that the number of bins should be some function of the size of the sample. For large batches, a
large number of bins gives a smooth representation of the unknown density function. Using only a few bins, however, eliminates
any detail of the underlying distribution. On the other hand, choosing a large number of bins with a small data set produces a
unidimensional scatterplot. Considering too few bins, though, produces a featureless picture. Frequently, the number of bins and
their width are determined arbitrarily despite their importance.

More precise guides for the number and/or the width of the bins have been published, but rarely implemented: see
Sturges (1926), Dixon and Kronmal (1965), Doane (1976), Velleman (1976), Scott (1979), Freedman and Diaconis (1981a, b);
also see Emerson & Hoaglin (1983), Geiger (1991) and the Stata Reference Manual (Computing Resource Center, 1992).

3. The histogram is discontinuous, with jumps at the ends of the bins.

The histogram discontinuities are primarily a function of the arbitrary bin locations and the discreteness of the data rather
than of the population that is sampled (Fox 1990). The local density is only computed at the midpoint of each bin, and then
the bars are drawn assuming a constant density throughout each bin (Chambers et al. 1983). Silverman (1986) notes that the
discontinuity of histograms causes difficulties if derivatives of the estimates are required.

4. The fixed bin width results in disproportional representation of density at the center and in the tails of the distribution.

If the bins are narrow enough to capture detail where density is high—in the center of the distribution—they may be too
narrow to avoid noise where density is low—in the tails (Fox 1990). To address this problem, the bin widths can be varied
(Silverman 1986). This is frequently done for the first and last bins of the histogram, which are generally constructed to contain
all of the points below a certain value and all those above another value (Tarter and Kronmal 1976). However, the resulting
histograms are subject to misinterpretation, since the height of a bar is no longer proportional to its area (Fox 1990).

Tarter and Kronmal (1976) argue that these problems make the histogram ill-suited for estimating the distribution of the
underlying population, for inferential purposes, and for comparing the distribution of several populations. We now turn our
attention to some refinements and extensions of the histogram that attempt to overcome these problems. The next sections present
several of these methods along with ado-files to perform them.

Density traces

Some of the problems of the histogram derive from the technique of selecting the bins as a partition of the x-axis. Chambers
et al. (1983) propose an alternative technique that mitigates these problems: they suggest computing the local density at every data
point. In essence, fixed-width bins are constructed around each data point. These bins overlap where observations are clustered,
thus the discontinuous appearance of the histogram is avoided. These local densities comprise the density trace.

Formally, for each data point x, we compute

number of observations in [z — h,z + h]

local density at z =
Y 2h x total number of observations

The density trace can be defined for x that are not observed in the sample by passing a “window” through the range of the
data that “smears” each data point across the interval [z — h,x + h]. Formally, the window is a weight function that assigns
positive weight to each observed data point within the interval and zero weight outside the interval. A simple weight function
is the “boxcar” weight function:

1, if jul <1/2;

W) = {0, otherwise.

This is a weight function with a rectangular shape, hence the name “boxcar.” The density trace estimate at an arbitrary point x
is the average of the smears of all x; at x, that is,

Frla) = g oW (57
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boxdetra calculates this boxcar-weighted density trace. The syntax of boxdetra is

boxdetra x width dtrace

where x, as before, is the variable being analyzed, widrth is the bin width (= 2h), and dfrace is the name of a new variable
which, on output, contains the density estimate, the density trace.

Figure 3 displays a boxcar-weighted density trace of the coral-trout-length data. Figure 3 was produced by the following
commands:

. boxdetra length 40 dtrace
(output omitted )

. label variable dtrace "Density trace"

. graph dtrace length, xlab ylab(0,.002,.004,.006) c(1) s(.) twoway oneway box

In this example, the bin width (2h) is set at 40 mm. The density trace is calculated at each data point and the estimated densities
are connected with straight lines. Boxplots and oneway scatterplots are displayed along the margins of the figure, permitting us
to compare the information each of the graphical techniques conveys about the distribution of trout lengths. The density trace
reveals four clearly defined modes, confirming the impression of the histogram with fifty bins. These modes are not revealed at
all by the boxplot and are difficult to find in the oneway scatterplot.

One drawback of boxdetra is that it requires n summarize commands to obtain the density estimates. As a consequence,
boxdetra may execute very slowly with a large data set. Chambers et al. (1983) suggest that, in practice, it is sufficient to
calculate the density trace at a modest number of equally spaced points over the range of the data and to interpolate linearly
between these points.

boxdetr2 uses this approach in calculating the boxcar-weighted density trace. boxdetr2 calculates the density trace at
50 points from the minimum value of x (226 mm) to the maximum (582 mm). The syntax of boxdetr2 is

boxdetr2 x width dtrace midpt

where x, width, and dtrace are defined as in boxdetra and midpt is a new variable that, on output, contains the 50 values of
x at which the density trace is calculated. Figure 4 displays the density trace for the coral-trout-length data, again with a bin
width of 40 mm.
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Figure 3: Density trace (all data points) Figure 4: 50-point density trace

Figure 4 was produced by the commands:

. boxdetr2 length 40 dtrace2 midpt
(output omitted )

. label variable dtrace2 "Density trace"
. label variable midpt "Trout length (mm)"
. graph dtrace2 midpt in £/50, xlab ylab c(1) s(.)
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The estimate calculated by boxdetr2 gives the same general impression as the estimate calculated by boxdetra, although the
boxdetr2 estimate is smoother.

These density traces eliminate the discontinuities at the boundaries of the histogram bins, but these estimates are still
somewhat ragged. One reason for the raggedness is the rectangular shape of the boxcar weight function. To further smooth the
density estimate, we can use a different weight function that varies gradually along the interval h. An example of such a function
is the cosine weight function:

W (u) = {1 + cos2mu, if |u] < 1/2;
0, otherwise.

cosdetra calculates density traces using the cosine weight function. The syntax of cosdetra is

cosdetra x width dtrace midpt

As with boxdetr2, cosdetra calculates the density trace at 50 points spaced equally over the range of data. Figure 5 displays
a cosine-weighted density trace of the coral-trout-length data.

The width of the weight function window (2h) also affects the smoothness of the density estimate. A wider window (larger
value of 2h) smooths the density trace by basing each value of f(z) on more data points. Conversely, a narrower window
(smaller value of 2h) makes the density trace more ragged; since fewer data points are averaged into each value of f(x), more
data noise is retained.

Figure 6 displays the cosine-weighted density trace with A = 20, half the width of the density trace in Figure 5. The
reduction in h gives Figure 6 a rougher appearance. The first and second modes now show a series of additional subcomponents,
an additional component appears between the third and fourth modes, and additional modes appear in the right tail of the
distribution.
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Figure 5: Cosine density trace (2h=40 mm) Figure 6: Cosine density trace (2h=20 mm)

A simple (naive) density estimator

Fox (1990), following Silverman (1986), motivates a density estimate with a rectangular (boxcar) weight function that
provides a natural introduction to kernel density estimators. The density at a point « can be thought of as the limit of the height
of a histogram bar centered at x as the half-width A of the bar goes to zero:

. 1
f(x):]}bli%ﬁPr(x—h<X<x+h)

Thus a simple density estimator is one which replaces the probability in a small region (window) around z with the sample
proportion, scaling the estimate so the total area under f(z) integrates to unity:
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_ix#[x_h<Xi<x+h]
"~ 2h n

fs(x)
As with the boxcar-weighted density trace, this density estimator is similar to a histogram with bin width equal to 2h, but with
every point as the center of a bin, that is, with no fixed origin.

The weight function S(-) for this simple estimator is given by
~ 1 & z— X;
o= 25 (75
i=

where
_J1/2, if 2] < 1,
5(2) = {0, otherwise.

This weight function is similar to, but slightly different from, the boxcar weight function calculated by boxdetra and boxdetr2.

kernsim calculates this simple density estimator. As before, the density is estimated at only 50 points to save computing
time. Since this simple estimator integrates to one between x(;) — h and () + h, the 50 points are located (in a conventional
way) from x(1) — h + (d/2) to x(,) +h+(d/2), where d is the interval defined by range/50, and the range goes from z(1) — h
t0 Z () + h. This convention is used by all the subsequent ado programs (except adgakern). The convenience of this definition
is that these points (except the last) can be regarded as the midpoints of intervals in similar histograms for comparison and for
Gaussian component determination and characterization.

The syntax of kernsim is

kernsim x halfwidth density midpt

where x is the variable to analyze, halfwidth is h, half the width of a bin, density is a new variable that, on output, contains the
density estimates, and midpt is a new variable that contains the 50 points at which the density is estimated.

An estimate of the density of the coral-trout-length data (with h = 20) is displayed in Figure 7. Not surprisingly, this
estimate is virtually identical to one obtained by boxdetr2, the boxcar-weighted density trace.
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Figure 7: Simple (rectangular) density estimate (h=20 mm)

More sophisticated kernel estimators

A kernel density estimator is an estimator of the form of kernsim where the weight function S(-) is replaced by a kernel
function K[-]. A kernel function is a smooth, symmetric probability density integrating to unity:

+o0
Klzldz=1

— 00
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In essence, a kernel estimator generates the density estimate by summing the kernels. Formally,

Using a smooth kernel eliminates some of the discontinuities caused by the square corners of the weight function used by the
simple estimator above (Silverman 1986, Fox 1990).

Table 1, adapted from Silverman (1986), lists some kernel functions along with their efficiencies.

Table 1: Some kernels and their efficiencies

Kernal Efficiency

(1- L2V, it < VB

3
Epanechnikov K[z] = g thotwi
otherwise

{
{ 2(1-2%)2% if |2] < 1;
{

Biweight K[z = ] e, ~ 0.9939
, otherwise

Triangular K[z] = (1) ~ Iz, gtl|1ezr‘w<is:; ~ 0.9859
’

Gaussian K|z] = ﬁe*zzﬂ ~ 0.9512

Rectangular K[z] = { (1)/2’ i)ft}‘liwfsi; ~ 0.9295
’

To evaluate the performance of a kernel, it is necessary to consider the trade-off between variance and bias. The sum of
the integrated variance and integrated bias is called the Mean Integrated (total) Squared Error (MISE). A good kernel function
minimizes bias by assigning greater weight to observations close to the x value at which the density is being estimated (for
example, by using a Gaussian function). Epanechnikov (1969) derived the maximally efficient (minimum MISE) kernel function
named after him. The efficiencies listed in Table 1 for each kernel are their MISEs relative the MISE of the Epanechnikov kernel.
As Silverman pointed out, based on MISE, there is very little to choose between the various kernels. Even the rectangular kernel
function used by the simple density estimator has 93 percent relative efficiency. As a consequence, a kernel estimator can be
chosen on the basis of other considerations such as the degree of differentiability or computational effort (Silverman 1986).

Implementations of the Epanechnikov and Gaussian kernel functions are provided on the STB-16 distribution diskette. These
programs can easily be modified to calculate other kernel density estimators.

kernepa estimates the density using the Epanechnikov kernel function. The syntax of kernepa is

kernepa x halfwidth density midpt

where the arguments are defined as in kernsim above. Figure 8 displays an Epanechnikov kernel estimate of the density of the
coral-trout-length data. Figure 8 is calculated using a half-width (k) of 20. This figure appears oversmoothed, although there are
still indications that trout length follows a polymodal distribution. Decreasing h to 10 produces the density estimate shown in
Figure 9, which gives almost the same impression as the “naive” estimator of Figure 7, with four clearly defined modes.
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Figure 8: Epanechnikov kernel estimate (h=20 mm) Figure 9: Epanechnikov kernel estimate (h=10 mm)

kerngaus calculates the Gaussian kernel density estimate. The syntax of kerngaus is the same as that of kernepa:

kerngaus x halfwidth density midpt

Figures 10 and 11 display two Gaussian kernel estimates of the density of the coral-trout-length data. Figure 10 sets h to
15 mm. Figure 11 reduces h to 5 mm. Both the noise and the detail increase as h becomes smaller, and in the latter figure
it is possible to distinguish a more complex second component and an intermediate concentration between modes three and
four. Some irregularities appear at the upper tail of the distribution including a lump around the maximal length observation (a
mild outlier according to the boxplot of Figure 3). These irregularities may be artifacts of the fixed window width employed.
Nevertheless, some of these structures seem to be meaningful in this particular case, suggesting some bimodal and multimodal
age-groups (due to compound recruitment) and one age group overlapped by the third and fourth dominant age classes (clearly
defined modes in Figure 11)—characteristics also identified by other methods used to estimate age and growth equations for

these data (see for example Pauly 1988, Sparre et al. 1989).
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Figure 10: Gaussian kernel estimate (h=15 mm) Figure 11: Gaussian kernel estimate (h=5 mm)
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Adaptive kernel estimators

The kernel estimators described above all employ fixed window widths. This feature makes the estimates vulnerable to
noise in the tails or any other low count interval of the distribution. Several adaptive methods have been proposed to address this
problem. The idea is to reduce the window width in areas of high data densities and increase the window width in areas of low
data densities. This adaptive procedure retains detail where observations concentrate and eliminates noise fluctuations where data
are sparse. The algorithm to calculate this adaptive kernel estimator is taken from Fox, who adapted it from Silverman (1986).
The steps are

1. Calculate a preliminary density estimate, for example, that provided by any of the fixed-window-width kernel functions,
fK (l‘)

2. At each observation X, calculate a local window factor, w;, that is inversely related to the density estimate:

)
fr(X;)

n 1/n
fg = (H fK(Xz)>

is the geometric mean of the f(X;), and thus the w; weights have a product and geometric mean of one.

where

3. Use the weights to calculate the adaptive-kernel estimator

xT

-~ 1 1 -X;
=—) —K :
fa(z) Y ; o [ wih ]

Note that applying the weights to h produces a varying-width window with a geometric mean half-width of h. The factor
1/w is required to ensure that the total area under the density estimate is unity.

4. Iterate steps 2 and 3, using fA in place of fK. In practice, iteration produces little change in the estimated densities (Fox
1990).

The choice of window width

The choice of the window width h determines the qualitative features of a kernel density. One approach, suggested by
Tarter and Kronmal (1976), is to vary h until a pleasing (usually smooth) figure results. This procedure relies on the subjective
assessment of the researcher, but it may be adequate for exploratory purposes (Silverman 1986). Indeed, it is useful to compare
several levels of smoothing, since important aspects of the density will “appear” and “disappear” as the window width changes
(Silverman 1981a).

Statistical theory provides some guidance in this selection of an optimal window width. Unfortunately it is generally not
possible to optimize the window width without previous knowledge of the shape of the true density. Of course, if this shape
were known beforehand, there would be no estimation problem.

Following Tukey (1977), Scott (1979), and Silverman (1978, 1986), the Gaussian distribution can be employed as a reference
standard in choosing h. Applying a Gaussian kernel and minimizing the MISE, the following scale estimate can be calculated

(Fox 1990):
2 1/2
. S(z; — )2 H spread
S_mml( n—1 * T 1.349

Then h can be chosen as
_ 0.9s

T opl/s

s is the smaller of two estimates of the Gaussian distribution spread (scale) parameter o: the classical, unbiased standard deviation
and the robust F'-pseudosigma based on the data fourth or hinge spread (Hoaglin 1983, Fox 1990). This adjustment provides
resistance to heavy tails and will work well for a wide range of densities, but, as indicated by Silverman (1986), it tends to
oversmooth highly skewed and multimodal distributions. If this is the case, this “optimal” window half-width can be considered
as a starting point for subsequent fine tuning.



Density

Stata Technical Bulletin 17

Examples of the adaptive kernel density estimator

adgakern calculates an adaptive Gaussian kernel density estimator using the algorithm described above without iteration.
The syntax of adgakern is

adgakern x halfwidth density

The “optimal” window width for the coral-trout-length data was calculated according to the formula given above, using
the summarize and 1lv (letter values) commands. For these data, s = 74.0629 and F' — pseudosigma = 70.8814. Thus
h = 0.9(70.8814) /3161/ > = 20.18. adgakern calculates an initial Gaussian kernel estimate using the specified h value,
determines the w; weights, and then calculates adaptive density values for each observation.

Figure 12 displays the adaptive kernel estimate of the coral-trout-length data. Figure 12 shows two clearly defined modes at
the center and two apparently oversmoothed modes at the tails. Since adgakern, like boxdetra, calculates the density at every
data point, it is possible to display the results in combination with the oneway and box graph options. In light of the previous
figures, which document the multimodal distribution of these data, we conclude that h = 20.18 is too large and oversmooths the
data.

Because of the many calculations required, adgakern executes very slowly. To save time, adgaker?2 evaluates the density
only at 50 equally spaced points after steps 1 and 2 of the algorithm. The syntax of adgaker2 is

adgaker2 x halfwidth density midpt

where the arguments are familiar by now.

Figure 13 displays the output of adgaker2 for the coral-trout-length data. The window half-width h was reduced to 15 mm
to counteract the oversmoothing observed in Figure 12. In Figure 13, the separation and definition of the four modes is readily
apparent. Because adgaker?2 adjusts the window half-width according to the number of observations in the neighborhood of each
estimate, adgaker2 is particularly useful for analyzing size frequency distributions. In contrast, fixed bin-width methods lose
detail in high data concentration areas and become contaminated by noise in low data concentration areas. Another exploratory
approach that applies nonlinear resistant smoothers to minimally grouped histograms is proposed in Salgado-Ugarte (1992) and
Salgado-Ugarte and Curts-Garcia (1992, 1993).

As a general practice, Fox (1990) suggests starting with “optimal” window half-width described above. Then this value can
be adjusted downward to the smallest h that does not produce unacceptable roughness in the estimated density. Silverman (1986)
provides additional guidelines and suggestions.
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Figure 12: Adaptive kernel estimate (h=20.18 mm) Figure 13: 50-point adaptive kernel estimate (h=15 mm)

Comments on program performance

Despite their simplicity, kernel density estimators were not proposed until 1956 in a paper by Rosenblatt. One reason for
this delay is certainly the computational burden of calculating these estimates. Only when substantial computing power became
available was it possible to undertake them. Indeed, the kernel estimators are well suited for computer implementation.



18 Stata Technical Bulletin STB-16

Surprisingly, though, these procedures are not included in any widely known computer package. Stata’s programming
language provides an adequate environment in which to program such procedures and to plot the results. Even in Stata, kernel
density estimation programs tend to execute slowly. Table 2 reports some representative timing of each of the programs described
in this insert. These are the times required to calculate density estimates for the coral-trout-length data (n = 316) on a 486 DOS
computer using regular (not Intercooled) Stata.

Table 2: Execution times

(in minutes)

boxdetra 11
boxdetr2 3
cosdetra 3
kernsim 3
kernepa 4
kerngaus 35
adgakern 50
adgaker2 25

In our implementations, we incorporated some suggestions to reduce computations and accelerate execution. In all the
programs using a Gaussian kernel (kerngaus, adgakern and adgaker?2), the calculations are carried out considering only
|z| < 2.5. In addition, most of the programs calculate the density at only 50 equally spaced points along the data range. If there
are less than 50 observations in the data set, it is necessary to set obs 50 before using any of these kernel density estimators.

Using these programs as a model, other different kernel functions can be programmed. The number of points estimated
can be also modified if needed. Additional and alternative procedures as well as details are provided by Silverman (1986) and
Fox (1990).

As a check, these ado-files were applied to data presented in Chambers et al. (1983) and in Fox (1990) (adapted (corrected)
from Leinhardt and Wasserman (1979)). These data sets—ozone.dta and infamora.dta—are provided on the STB distribution
diskette. As an additional check, the programs were rewritten in Pascal and applied to these data sets. These Pascal programs
produced the same results (except for negligible rounding errors) as the Stata versions.

A final comment: How many modes?

The polymodal character of size-frequency data in Fisheries Sciences and Ecology is well known. It usually indicates mixed
unimodal distributions. In this regard, the kernel density estimates provide several ways to test and evaluate multimodality. For
details see Silverman (1981b, 1983, 1986). Other approaches have been suggested by Cox (1966) and Good and Gaskins (1980).

The kernel density estimates obtained by the programs presented in this insert may serve as an initial point to attempt
estimating the parameters of each of the underlying components in the mix. We hope to present our programs designed to achieve
this aim in a later issue of the STB.
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ssi5 Equation solving by bisection

William Gould, Stata Corporation, FAX 409-696-4601

The syntax of bisect is
bisect fecnmask = exp, from expy to exp; [tol expt]
where exp,, expo, expy, and exp; are expressions (but are typically specified as numbers) and where fcnmask is either

(1) an expression containing X
(2) progname [args] X [args] returns { exp|macro } name

tol le-6 is assumed if tol is not specified.

Description

bisect finds the value of x such that f(z) = exp,, or, more precisely

|f(2) — exp,| <€

where € = exp, max(|exp, |, 1). The search is carried out over the range expy < x < exp;. The function f() may be specified
on the command line (first syntax for fcnmask) or as a user-written program (second syntax).

Example 1
Find the value of x? with 2 degrees of freedom that is just significant at the 5% level.

Stata does not provide the inverse x? function that could directly answer this question, but it does provide a chiprob(d, )
function that returns the reverse cumulative for 2 value = with d degrees of freedom. If you type ‘display chiprob(2,3)’,
Stata will respond with .22313017, meaning a x? of 3 with 2 degrees of freedom is significant at the 22% level. ‘display
chiprob(2,8)’ results in .01831564, meaning the 1.8% level. The answer for = lies somewhere between 3 and 8. Thus, we
want to find x such that chiprob(2,z) = .05 and we can look for z in the range 3 to 8:

. bisect chiprob(2,X)=.05 from 3 to 8
Find chiprob(2,X)=£f() == c=.05, |£()-c|<1.000e-06

lower upper

iteration bound fO-c bound fO-c midpoint fO-c
0. 3 .1731302 8 -.0316844 5.5 .0139279
1. 5.5 .0139279 8 -.0316844 6.75 -.0157819
2. 5.5 .0139279 6.75 -.0157819 6.125 -.0032294
3. 5.5 .0139279 6.125 -.0032294 5.8125 .0046804
4. 5.8125 .0046804 6.125 -.0032294 5.96875 .0005711
5. 5.96875 .0005711 6.125 -.0032294 6.046875 -.0013662
6. 5.96875 .0005711 6.046875 -.0013662 6.007813 -.000407
7. 5.96875 .0005711 6.007813 -.000407 5.988281 .0000796
8. 5.988281 .0000796 6.007813 -.000407 5.998047 -.0001643
9. 5.988281 .0000796 5.998047 -.0001643 5.993164 -.0000425
10. 5.988281 .0000796 5.993164 -.0000425 5.990723 .0000186
11. 5.990723 .0000186 5.993164 -.0000425 5.991943 -.000012
12. 5.990723 .0000186 5.991943 -.000012 5.991333 3.29e-06
13. 5.991333 3.29e-06 5.991943 -.000012 5.991638 -4.34e-06
5.991486 -5.26e-07

The answer is 5.991486, shown in the last row under midpoint.

The —5.26e—07 printed to the right of the solution means that chiprob(2,5.991486) = .05—5.26 x 10™". bisect stopped
iterating when the difference between the desired and obtained answer fell below 1076, If we would be satisfied with an answer
yielding a result accurate to 10~ %, we would type
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. bisect chiprob(2,X)=.05 from 3 to 8 tol le-4
Find chiprob(2,X)=£f() == c=.05, [f()-c[<.0001

lower upper
iteration bound fO-c bound fO-c midpoint £fO-c
0. 3 .1731302 8 -.0316844 5.5 .0139279
1. 5.5 .0139279 8 -.0316844 6.75 -.0157819
2. 5.5 .0139279 6.75 -.0157819 6.125 -.0032294
3. 5.5 .0139279 6.125 -.0032294 5.8125 .0046804
4. 5.8125 .0046804 6.125 -.0032294 5.96875 .0005711
5. 5.96875 .0005711 6.125 -.0032294 6.046875 -.0013662
6. 5.96875 .0005711 6.046875 -.0013662 6.007813 -.000407

5.988281 .0000796

Similarly, if we wanted a more accurate answer, we could specify a smaller tolerance.

Example 2

Let us repeat example 1 but undertake a slightly different solution. This time, we will write a program to calculate the
function. Our program is

program define mychi

global S_1 = chiprob(2,~1°)
end

The ~1° in our program means substitute the first argument here. Typing ‘mychi 3’, for instance, will store the evaluation of
chiprob(2,3) in the global macro $S_1. This time, to obtain the solution, we type

. bisect mychi X returns macro S_1 =.05 from 3 to 8
(output omitted )

The output we see will be the same as in our first example. Let us decipher the bisect command. “mychi X” tells bisect
that the way to evaluate the function is to issue the command mychi followed by the number at which the function is to be
evaluated—the X is a placeholder. “returns macro S_1” tells bisect that mychi is not a Stata function but a user-written
program and that it returns the results of its calculation in the macro $S_1. The rest of the command is just as previously; “from
3 to 8” says to search the range 3 to 8.

We could have written our program to take two arguments:
program define mychi

global S_1 = chiprob(*1°,72")
end

We would then obtain the solution to our problem by typing

. bisect mychi 2 X returns macro S_1 =.05 from 3 to 8
(output omitted )

Had we also written our function to return its calculation in the scalar answer rather than the macro $S_1,
program define mychi

scalar answer = chiprob(*17,%27)
end

we would type

. bisect mychi 2 X returns exp answer = .05 from 3 to 8

to obtain the solution.

Example 3

Consider the recursive definition: )
_ 1.1\ |
S, = [(L —2) (_)}
\/f%__l ag

Assume a; = 1.5 and a; = 1, ¢t = 2,.... A program to calculate Sy, t =2,...,19, given Sy is
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program define simul

quietly {
drop _all
set obs 19

gen a = cond(_n==1,1.5,1)
gen S="17 in 1
replace S=((al_n-1]1/sqrt(S[_n-1])-2)*(1.1/a))"-2 in 2/1

end

With this program, typing ‘simul .1’ would create the series based on S; = .1:

. simul .1
. list
a S

1. 1.5 1
2. 1 .1098073
3. 1 .7978578
4. 1 1.066079
5. 1 .T767599
(output omitted )

19. 1 .5265746

Now consider the following problem: Find the value of S; such that S;9 = 1/222. Solving this problem analytically is
difficult. With bisect, the problem is easy:

. bisect simul X returns exp S[19] = 1/(2272) from .1 to .5
Find simul X =f() == ¢=.00206612, |f()-c|<1.000e-06

lower upper
iteration bound f(O)-c bound f(O)-c midpoint f()-c
0. .1 .5245085 .5 .2487174
range does not bound solution

r(409);

One requirement bisect does make is that the range you specify for the bisect contains the solution. We specified a range that
is too narrow.

. bisect simul X returns exp S[19] = 1/(22°2) from .001 to .75
Find simul X =f() == ¢=.00206612, |f()-c|<1.000e-06

lower upper
iteration bound f(O)-c bound f(O)-c midpoint f()-c
0. .001 -.0020287 .75 .2133531 .3755 .2503633
1. .001 -.0020287 .37556 .2503633 .18825 33.91137
2. .001 -.0020287 .18825 33.91137 .094625 .2211156
3. .001 -.0020287 .094625 .2211156 .0478125 2593.315
4. .001 -.0020287 .0478125 2593.315 .0244063 11117.92
5. .001 -.0020287 .0244063 11117.92 .0127031 857.6943
6. .001 -.0020287 .0127031 857.6943 .0068516 5.248867
7. .001 -.0020287 .0068516 5.248867 .0039258 -.0011359
8. .0039258 -.0011359 .0068516 5.248867 .0053887 .0035936
9. .00392568 -.0011359 .0053887 .0035936 .0046572 .0000211
10. .00392568 -.0011359 .0046572 .0000211 .0042915 -.0006933
11. .0042915 -.0006933 .0046572 .0000211 .0044744 -.0003811
12. .0044744 -.0003811 .0046572 .0000211 .0045658 -.0001931
13. .0045658 -.0001931 .0046572 .0000211 .0046115 -.0000896
14. .0046115 -.0000896 .0046572 .0000211 .0046344 -.0000352
15. .0046344 -.0000352 .0046572 .0000211 .0046458 -7.31e-06
16. .0046458 -7.31e-06 .0046572 .0000211 .0046515 6.81e-06

.0046487 -2.59e-07

Sp = .00465 produces S1g = 1/227%

Saved Results

bisect saves the solution in the global macro $S_1.
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Methods and Formulas

bisect engages in bisection for the solution. This is a variation of the guess-the-number game. I’'m thinking of a number
between 0 and 100; you make guesses and I will tell you if you are correct or whether the number is higher or lower. Your
best strategy is to guess the midpoint of the range, so you should make an opening guess of (100 4+ 0)/2 = 50. I say higher.
You now know the number lies in the range 50 to 100, so you guess (50 4 100)/2 = 75. I say lower. You know the number is
bounded by 50 and 75, so you guess (50 4+ 75)/2 = 62.5. And thus does the game continue until you guess the right number.

To translate this to solving f(z) = ¢ for z, let zy and z; be two values of z, zp < 1, such that f(zo) < cand f(z1) > ¢,
or that f(xg) > cand f(z1) < ¢ If f() is continuous, there must be at least one value z*, x; < z* < x5 such that f(z*) = c.
bisect checks that f(zo) and f(x) lie on either side of ¢ and, if not, issues the error message that the range does not bound
the solution. It also checks that x¢p < x; and interchanges them if not.

bisect then calculates z,, = (xg + z1)/2. Either f(z,,) = c (or is close enough to ¢ to call it equal) and we have a
solution, or it is not. If it is not, we can halve the width range in which the solution is known to lie by resetting either zg or
as appropriate. We can then repeat the process. (The resetting logic is as follows: First, assume f(z¢) < ¢ and f(xy) > c. If
f (xm) < ¢, the lower limit z is reset to x,,; otherwise, the upper limit x; is reset. Now take the alternative case, f (xo) >c
and f(x1) < c. If f(zm) < c, the upper limit x; is reset and otherwise we reset the lower limit.)

Bisection is not the necessarily fastest way to obtain a solution to f(x) = ¢, but it is relentless and will find a solution as
long as the function is continuous, which means only that the function is not disjoint; the function need not be smooth or in any
other way well behaved. Bisection is not, unfortunately, a panacea:

1. To obtain x such that f(z) = ¢, you must specify two numbers xo and x; that evaluate to results on either side of c.
bisect makes the assertion that the “range does not bound the solution” if not. The message is carefully worded—the
range does not bound the solution, but it very well may contain a solution. Think of the parabola f(z) = z% —4; z = £2
are solutions for f(z) = 0. Yet, if you perform bisection over the range —5 to 5, you will be told that the range does not
bound the solution because f(—5) =21 > 0 and f(5) = 21 > 0. In this case, you must specify a narrower range, not a
wider one (say —5 to O or O to 5).

2. Even when the range does bound a solution, that does not mean the range does not include more than one solution, and
bisection will never discover that fact. Consider the cubic f(z) = (z — 1)(x — 2)(x — 3), which has roots at 1, 2, and 3.
A bisection search over the range 0 to 5 uncovers the root at 3; —1 to 5 the root at 2; and —2 to 5 the root at 1.

For a further discussion of the bisection method, see Press et al. (1992, 350-354).

References
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ssi5.1 Graphing functions

William Gould, Stata Corporation, FAX 409-696-4601

The syntax of fcnplot is
fcnplot fenmask from expg to exp [obs expo] [, replace slow graph_options ]

where expg, exp1, and exp, are expressions (but are typically specified as numbers) and where fcnmask is either

(1) an expression containing X
(2) progname |args| X [args] returns { exp|macro} name

If obs is not specified, obs 101 is assumed if fcnmask is specified using the first syntax and slow is not specified; otherwise,
obs 21 is assumed. obs may be specified as any integer between 2 and 350.

Description

fcnplot graphs the specified function—which may be specified by a user-written program and so quite complicated—and
optionally leaves behind the data set of values of z and f(x) just graphed.
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Options

replace specifies that the data just graphed, = and f(z), be left in memory at the conclusion of the command. If replace is
not specified, the original data in memory, if any, remains unchanged. If replace is specified, the original data is discarded
and a data set with variables x and y is left in its place. replace may not be abbreviated.

slow is an option only when fcnmask is specified using the first syntax—an expression containing X. If the second syntax is
used, slow is the default and therefore need not be specified. Say the first syntax is used and slow is not specified. Then
fcnplot preserves the original data (if necessary, see replace above), discards that data, and generates  and f(x) with
two generate statements. The data is graphed and finally the original data is restored if replace was not specified.

In slow mode, the data is preserved (if necessary) but it is then left in place during the calculation of the f(z). The
function or user-written program is asked to calculate function values one at a time. The function or user-written program
can make use of the existing data in memory or even change it if it so desires. Once all the function values have been
calculated, the data is discarded (remember, the original was preserved if replace was not specified), the values of x and
f(z) loaded, the graph drawn, and then, if replace was not specified, the original data restored.

graph_options refers to any of the options of the graph, twoway command.

Example 1
You wish to draw a graph of chiprob(2,z) over 0 < z < 10. You type

. fcnplot chiprob(2,X) from 0 to 10

See Figure 1. Any data you have in memory remains unchanged. If you typed

. fcnplot chiprob(2,X) from O to 10, replace

any data you have in memory would be discarded and left behind would be the points plotted:

. describe

Contains data

Obs: 101 (max= 5101) y= chiprob(2,x)
Vars: 2 (max= 99)
Width: 8 (max=  200)

1. x float %9.0g

2.y float %9.0g chiprob(2,x)
Sorted by:
Note: Data has changed since last save
. list

X y

1. 0 1

2. .1 .9512295

3. .2 .9048374

(output omitted
100. 9.9 .0070834
101. 10 .0067379

You could then redraw the graph just shown by fcnplot by typing

. graph y x, c(1) s(o)

or you might make a dressier version of the graph by typing

. graph y x, c(1) s(i) ylab xlab border

You could have made the dressier version at the outset, with or without the replace option:
. fcnplot chiprob(2,X) from O to 10, s(i) ylab xlab border

The c(1) option is not necessary (but you could specify it) because fcnplot by default knows you want to connect the points;
see [3] connect.

Example 2

Not all functions can be specified on the command line. Some are simply too complicated to be expressed on a single
line—you need to write a Stata program. We will consider such a function in the third example below. To begin, however, let
us write a program to calculate a simple function: y = exp(—z/6) sin(x).
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program define myfcn
global S_1 = exp(-"1°/6)*sin(*17)

end

To graph this function over the range 0 to 47, you type

. fcnplot myfcn X returns macro S_1 from O to 4*_pi

In Figure 2, we show a version with a few options to make the graph look better:

. fcnplot myfcn X returns macro S_1 from O to 4*_pi obs 101, s(i) yline(0) noaxis

The “s(i) yline(0) noaxis” are standard graph options. Note the “obs 101”, however, before the comma. Had we not
specified this, the graph would have been drawn using 21 points over the range O to 4m. Functions implemented as user-written
programs take longer to evaluate than functions that are built into Stata’s expression parser (such as chiprob()). fcnplot tries
to be speedy, so when you specify the function using a user-written program, it changes the number of points it calculates by

default from 101 to 21. Specifying “obs 101” forces fcnplot to use 101 points, making a smoother-looking graph.

Our program does not have to return the result in a macro. If the result is returned in any other way, it is said to be returned
in an expression. For instance, saving the result in the scalar answer,

program define myfcn
scalar answer = exp(-~1°/6)*sin(*1°)

end

Figure 2 would be drawn by typing

. fcnplot myfcn X returns exp answer from O to 4*_pi obs 101, s(i) yline(0) noaxis

As a final note, you might be tempted to think that y = exp(—z/6) sin(z) could have been drawn by typing

. fcnplot exp(-X/6)#*sin(X) from O to 4*_pi

Unfortunately, it could not. Although the function is “simple,” X appears in it more than once. When a function is specified on
the fcnplot command line, X can appear only once.

Example 3

Consider the recursive definition:

Assume a; = 1.5 and a; = 1, t = 2,.... Graph the values of Sig as a function of S; over the range .001 to .50.

si- (-9 (B)]

The first step in drawing this graph is to write a program to calculate Sy, t = 2,...,19, given S;. Here is such a program:

program define simul
quietly {

end

drop _all

set obs 19

gen a = cond(_n==1,1.5,1)

gen S="1" in 1

replace S=((al_n-1]1/sqrt(S[_n-1])-2)*(1.1/a))"-2 in 2/1

With this program, typing ‘simul .1’ would create the series based on S1 = .1:

. simul .1
list
a
1. .5
2. 1
3. 1
4, 1
5. 1
(output omitted )
19. 1

S
.1
.1098073
.7978578
1.066079
7767599

.5265746

With this program, we can now draw the graph:
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. fcnplot simul X returns exp S[19] from .001 to

.5

The result is shown in Figure 3. We will be better able to see the details of the function if we graph it on a log y axis. While

we are at it, we will add more points to the graph:

The result is shown in Figure 4.

Final comment

References
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Since fcnplot follows the same syntax as bisect, it can provide a visual check for the problems discussed with bisect
(Gould 1993, 23).
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More on time series regression

Sean Becketti, Stata Technical Bulletin, FAX 913-888-6708

In sts4 (STB-15), I presented a suite of programs for time series regression. Unfortunately, there was a small, but crucial,

error in one of the ado-files on the STB-15 disk. The program define statement was missing from _addl.ado. You can either
add this line to _addl1.ado (make it the third line, after the two comment lines) or copy the corrected program from the STB-16
disk. I would like to thank Jon S. Ebeling of Chico, California who was the first one to contact me about this problem.
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Also, in sts4 I promised to publish additional time series programs in this STB. In particular, I promised to publish a program
for dynamic forecasts from a time series regression. I have delayed the publication of those programs to make space for articles
by other authors. These programs will be published in a later issue.

Reference
Becketti, S. 1993. A suite of programs for time series regression. Stata Technical Bulletin 15: 20-28.

zz3 Computerized index for the STB

William Gould, Stata Corporation, FAX 409-606-4601

Through STB-15, some 266 inserts have been published in the STB, which is to say that the STB is now old enough that
finding a particular insert you only partially recollect, or finding all the inserts on a particular subject, is becoming tedious. The
automated system presented below is an attempt to alleviate the difficulty.

The system is called (too gloriously) the STBinformer, the command is stb, and the syntax is just that: stb.

. stb

/I ]

./ [/ /___/ informer

(indexes for STB-1 through STB-15 found)

——Top level-- Enter search specification, 7, 7?7, or end —> . _

The STBinformer allows you to find inserts based on the insert identifier (such as zz3), the title (“Computerized index for the
STB”), the author (Gould), a word appearing in the title (“index” or “STB”), or a file associated with it (such as stb.ado).

For example (but not very useful), if we wanted to find out about sgi11.2, we could type sgil.2 to the prompt:

--Top level-- Enter search specification, 7, 7?7, or end -> . sgll1.2

STB-13 sgil1.2 Quantile regression standard errors W. H. Rogers
There is no software associated with sgl1l.2

——Top level-- Enter search specification, 7, 7?7, or end —> . _

The STBinformer can produce more useful listings based on more reasonable search specifications. The search can result
in no matches (in which case you can try again), in one match (as above), or in multiple matches. In the latter case, you may
review the list and you may select matches one at a time to find out about the software (filenames) associated with each.

Specifying searches

When we typed sg11.2 in response to the top-level request to enter a search specification, the sg11.2 was taken to be an
insert number. In answer to the top question, you can type

form example explanation
insert sgll.2 look up a particular insert
partialinsert* look for all inserts starting with partialinsert

s* all starting with s (statistics)

sg* all starting with sg (general statistics)

sglix all starting with sgi1 (related to sgll)
/word look for all inserts with word in title

/errors all with errors in title (capitalization irrelevant)
\author look for all insert written by author

\royston all written by Royston (capitalization irrelevant)
=filename all supplying filename

=arctic.dta all supplying arctic.dta

=pause.ado all supplying pause.ado

=pause all supplying filenames starting with pause (includes pause.ado)

=+.dta all supplying filenames ending in .dta (data sets)
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Related insert search
We started by listing sgl1.2, let us now find all the sg11 inserts:

--Top level-- Enter search specification, ?, 7?7, or end —> . sgllx*
--Top Level-- --3 matches found--
Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)

insert number such as sgll.l (see detail on insert)
-> .

To our query for sgl1#*, meaning all inserts that start with sg11, we are told that 3 matches were found. The matches are not,

however, listed. We can choose to list the matches by typing ‘1’ or ‘2’:

-> .1
STB-9 sgill Quantile regression standard errors W. H. Rogers
STB-9 sgll.1 Quantile regression bootstrapped standard errors W. Gould
STB-13 sgil1.2 Quantile regression standard errors W. H. Rogers
-=Top Level-- --3 matches found--
Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)

insert number such as sgll.l (see detail on insert)
-> .

Having listed the matches, we can now specify one for further examination:

-> . sgll.1
STB-9 sgll.1 Quantile regression bootstrapped standard errors W. Gould
.ado and .hlp files:

_bsqgreg.ado (not installed)
bsqreg.ado now part of Stata 3.1
bsqreg.hlp now part of Stata 3.1

--Top Level-- --3 matches found--

Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)

insert number such as sgll.l (see detail on insert)
=-> .

Insert sgl1.1 provided three files. One is not installed; the other two are now part of Stata 3.1. Typically, the file summary will
not be so contradictory. When sgl1.1 was written, the utility _bsqreg.ado was necessary but, in rewriting these routines for
Stata 3.1, the utility was no longer necessary. More instruction on how to interpret the file information is provided below under

the heading Interpreting the detailed information.

We are now being asked to enter a 1, 2, or an insert number from the list. Typing nothing and pressing Return will return

us to the top level where we can perform another search:

--Top Level-- --3 matches found--

Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)

insert number such as sgll.l (see detail on insert)
-> . We press Enter

--Top level-- Enter search specification, ?, 7?7, or end —> . _

Category searches

One way to find useful inserts on a particular subject is to list all the inserts published in an STB category. Since you may

not remember the category codes, typing ‘?’ will prompt your memory:

--Top level-- Enter search specification, ?, 7?7, or end -> . ?

an  announcements ip instruction on programming

cc communications & letters os operating systems, hardware, &

dm data management interprogram communication

dt data sets gs questions & suggestions

gr graphics tt  teaching

in  instructions zz not elsewhere classified

sbe biostatistics & epidemiology srd robust methods & statistical diag.
sed exploratory data analysis ssa survival analysis

sg general statistics ssi simulation & random numbers

smv multivariate analysis sss social science & psychometrics
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snp nonparametric methods sts time series & econometrics
sqc quality control sxd experimental design

sqv analysis of qualitative vars szz not elsewhere classified
--Top level-- Enter search specification, ?, 7?7, or end —>

(Typing ‘7?7’ will provide more detailed assistance.)

dm is the STB category for data management. Let us list all inserts published in this category:

--Top level-- Enter search specification, ?, 7?7, or end -> . dm*
--Top Level-- --20 matches found--
Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)
insert number such as dm2 (see detail on insert)
-> .1

STB-2 dml Date calculator M. Ureta
STB-3 dm2 Data format conversion: DBMS/Copy & Stat/Transfer J. Hilbe
STB-3 dm2.1 Vendors” response to review S. Dubnoff
STB-6 dm2.2 Stat/Transfer 2.0 review update J. Hilbe
STB-4 dm3 Automatic command logging for Stata D. H. Judson
STB-5 dm3.1 Typesetting correction to automatic command loggin
STB-4 dm4 A duplicate-value identification program M. Jacobs
STB-5 dmb Creating a grouping variable for data sets M. Jacobs
STB-5 dm6 Utility to document beginning and ending variable

S. Becketti
STB-7 dm7 Utility to reverse variable coding M. Jacobs
STB-7 dm8 Command to unblock data sets J. Hilbe
STB-7 dm9 An ANOVA blocking utility P. A. Lachenbruch
STB-9 dml0 Infiling data: Automatic dictionary creation W. Gould
STB-12 dm11l Matching the Current Population Surveys (CPS) F. R. Welch
STB-12 dmi2 Selecting claims from medical claims data bases R. J. Vaughn
STB-13 dmi2.1 Selecting claims from medical claims data bases R. J. Vaughn
STB-13 dm13 Person name extraction W. Gould
STB-13 dmi13.1 String manipulation functions W. Gould
STB-14 dmi4 Converting Julian dates to Stata elapsed dates C. Chapin
STB-14 dmi14.1 Converting Stata elapsed dates to Julian dates S. Becketti
--Top Level--  --20 matches found--

Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)
insert number such as dm2 (see detail on insert)
->

Title searches

Let us find all inserts with the word correlation in the title. The forward slash (/) specifies this kind of search:

--Top level-- Enter search specification, 7, 7?, or end -> . /correlation
--Top Level--  --6 matches found--
Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)
insert number such as sgb.l (see detail on insert)

-> .1
STB-8 crcl4 Pairwise correlation coefficients
STB-5 sgb Correlation coefficients with significance levels S. Becketti
STB-13 sgb.1 Correlation coefficients with significance levels §S. Becketti
STB-3 snp3 Phi coefficient (fourfold correlation) R. Goldstein
STB-5 stsl Autocorrelation & partial autocorrelation graphs S. Becketti
STB-13 sts3 Cross correlations S. Becketti

Author searches

Let us find all inserts written by Hamilton. The backwards slash \ specifies this kind of search:

——Top level-- Enter search specification, 7, 7?7, or end -> . \hamilton
--Top Level-- --6 matches found--
Enter 1 (list by insert) 2 (list by issue) end or nothing (back up)
insert number such as sqv8 (see detail on insert)
-> .1
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STB-3 sed4 Resistant normality check and outlier identificati

L. C. Hamilton
STB-6 sed6 Quartiles, outliers, & normality: Some Monte Carlo

L. C. Hamilton
STB-13 sqv8 Interpreting multinomial logistic regression L. C. Hamilton
STB-2 srdl How robust is robust regression? L. C. Hamilton
STB-1 ssil Monte Carlo Simulation L. C. Hamilton
STB-4 ssi2 Bootstrap programming L. C. Hamilton

Filename searches

You have on your disk the file weisgas.dta and wonder if you obtained it from the STB. At the top level, you enter the
filename preceded by an equal sign (=):

--Top level-- Enter search specification, ?, 7?7, or end -> . =weisgas.dta

STB-10 srdi4 Cook-Weisberg test of heteroscedasticity R. Goldstein

.ado and .hlp files:
cwhetero.ado installed in C:\ADOD
cwhetero.hlp installed in C:\ADO
"Optional" files (files not installed in normal way):
cwhetero.log
mtb_tree.dta
weisflok.dta
weisgas.dta

You could get a list of all STB inserts contributing .dta data sets by typing ‘=*.dta’.

Interpreting the detailed information

Once the STBinformer locks onto one insert, which can happen at the outset or can happen subsequently when you choose
an insert from the list, it provides detailed information about the software associated with that insert.

One possibility is that there is no software:

STB-13 sgil1.2 Quantile regression standard errors W. H. Rogers
There is no software associated with sgl1l.2

More typically, however, the output will look like this:

STB-7 dm7 Utility to reverse variable coding M. Jacobs
.ado and .hlp files:
omscore.ado (not installed)
omscore.hlp (not installed)

There are two files associated with this insert, omscore.ado and omscore.hlp, and neither is installed. If you had installed
dm7, you would see something like,

STB-7 dm7 Utility to reverse variable coding M. Jacobs
.ado and .hlp files:
omscore.ado installed in C:\ADO

omscore.hlp installed in C:\ADOD

although the details of where the files are installed will differ across platforms. In Unix, you might see that the files are installed
in “/ado and, on a Macintosh, in ~:Ado. In any case, the STBinformer is able to tell whether the files are installed by looking
for them in system and user directories.

When the STBinformer finds the file in a “system” directory, its report differs slightly:

STB-8 sg7 Centile estimation command P. Royston
.ado and .hlp files:
centile.ado now part of Stata 3.1
centile.hlp now part of Stata 3.1
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The determination that centile.ado and centile.hlp are not merely installed but are now a part of Stata 3.1 was made thusly:
centile.ado and centile.hlp were files supplied with sg7. When the STBinformer looked for those files, it found them in
the “official” ado-file directory (such as c:\stata\ado under DOS or /usr/local/stata/ado under Unix or ~:Stata:ado
on a Mac; the “official” directory on your computer is the one listed first when you type ‘adopath’.) In the previous case of
omscore.ado and omscore.hlp, it also found the files, but it found them in some other directory. In the case before that,
omscore.ado and omscore.hlp were not found at all and so were deemed to be not installed.

Sometimes, you will get a mixture of these determinations:

STB-9 sgill.1 Quantile regression bootstrapped standard errors W. Gould

.ado and .hlp files:
_bsqgreg.ado (not installed)
bsqreg.ado now part of Stata 3.1
bsqreg.hlp now part of Stata 3.1

These are a bit more difficult to interpret but such listings often occur when an insert is incorporated into a subsequent Stata
release. At the time bsqreg was originally written, it evidently needed a subroutine called _bsqreg. When bsqreg was updated
for inclusion in Stata 3.1, that subroutine was no longer required. If you see something is now an official part of Stata, assume
that anything that is not installed is no longer necessary.

Now imagine you had previously installed sgl1.1. Here is what you would see from the detailed report on the insert:

STB-9 sgll.1 Quantile regression bootstrapped standard errors W. Gould

.ado and .hlp files:
_bsqgreg.ado installed in C:\ADO

bsqreg.ado now part of Stata 3.1
old version also found in C:\ADO
bsqreg.hlp now part of Stata 3.1

old version also found in C:\ADO

There is nothing wrong with having both the official and old versions installed, but the old version is doing you no good. Stata
always executes the official version in preference to the old one. You could save some disk space by deleting the old files.

The STBinformer is only able to track installation of files installed in the “normal” way, which is to say, those copied into
your personal ado directory. Files that are not installed this way are labeled “optional”:

STB-14 sgl8 An improved R-squared P. Royston
.ado and .hlp files:
brsq.ado installed in C:\ADO
brsq.hlp installed in C:\ADO
"Optional" files (files not installed in normal way):
scott2.dta

The file scott2.dta provided with sgI8 was the data used in demonstrating the command. The author thoughtfully provided
the data in case we wanted to experiment with it, but it was not required that we install it. Even if we did install it, there is no
telling where we might have put the file.

The term “optional” is often correct, but sometimes the “optional” files are the whole point of the insert:

STB-15 dt1 Five data sets for teaching J. T. Anagnoson

"Optional" files (files not installed in normal way):
executed.dta
fertilty.dta
gulfwar.dta
pacrim.dta
unionmem.dta

Finally, the STBinformer does not track updates to Stata made in crc inserts. Whenever you ask to see the detail on a crc
insert, it always gives the message that this update has been installed:
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STB-15 crc33 Linear spline construction
Your Stata has this update installed.

You are warned that at this stage of the development, the reassuring message is not necessarily true. See Future developments
and current bugs below. Of course, if you always install the official crc updates upon receiving an STB diskette, as you should,
the message will be true.

The STB calendar

The STBinformer has one other feature. At the top-level menu, you can type ‘>cal’ to obtain the STB calendar:

--Top level-- Enter search specification, 7, 7?7, or end -> . >cal

STB volume 1:
May 1991  STB-1 (Stata 2.1)
Jul 1991 STB-2 (Note: ado-files from this period must be
Sep 1991 STB-3 modified to include "version 2.1"
Nov 1991  STB-4 at the top; see [0] new.)
Jan 1992  STB-5
Mar 1992 STB-6 (Stata 2.1, Stata 3.0 announced)

STB volume 2:
May 1992  STB-7 (Stata 3.0)
Jul 1992 STB-8 (Note: ado-files from this period will work
Sep 1992 STB-9 unmodified with the current version
Nov 1992  STB-10 of Stata.)

Jan 1993 STB-11
Mar 1993 STB-12

STB volume 3:
May 1993 STB-13
Jul 1993 STB-14 (Stata 3.0, Stata 3.1 announced)
Sep 1993 STB-15 (Stata 3.1)
Nov 1993 STB-16
Jan 1994 STB-17
Mar 1994 STB-18

The production of the calendar is automated, so as of May 1994, it will extend itself another year.

Future developments and current bugs

The STBinformer is being developed for ultimate inclusion in every issue of the STB. The idea is that when you install the
official crc updates, you will automatically update the on-line indexes. That is why the code assumes that if crc update is listed
in the index, the corresponding software must be installed—it could not be any other way.

As things stand right now, however, I have not yet worked out all the kinks. The major problem is the size of the files.
The code for stb is only 15,360 bytes, but the data files (STB-1 through STB-15) consume 128,000 bytes and, over time, this
will grow. Corresponding to each issue of the STB is a .dta data set containing the contents and filenames for the issue. The
current design makes no attempt to conserve disk space—for instance, the title and author of an insert is repeated in the data set
for every file corresponding to the insert. Titles are stored as str50s and authors as str30s so, if corresponding to an insert
are 10 files, the title and author are recorded unnecessarily nine additional times for a total waste of 9 x 80 = 720 bytes.

Of the current 128,000 bytes of .dta index files, I estimate that 49,120 bytes (38%) are unnecessary. In my defense, I can
only say that, at the outset, I was more concerned with features than file size.

In any case, the file-size problem is somewhat fixable. Doing away with the redundancy, the index files would shrink to
78,880 bytes. Each new issue of the STB will consume another few thousand bytes. This may still be too much for some users,
so perhaps we need to rethink the automatic installation of the index.

The other bug of which I am aware is that spelling has not been verified in the index files. A bug I suspect is that stb is
probably not robust to blanks in the folder names (such as the name of the hard disk) on a Macintosh. If you do have trouble,
rename your hard disk to remove the blank and then let me know.

Before continuing with this project, I seek advice. Is the system usable and adequate?



