
STATA July 1994

TECHNICAL STB-20

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

Sean Becketti J. Theodore Anagnoson, Cal. State Univ., LA
Stata Technical Bulletin Richard DeLeon, San Francisco State Univ.
8 Wakeman Road Paul Geiger, USC School of Medicine
South Salem, New York 10590 Lawrence C. Hamilton, Univ. of New Hampshire
914-533-2278 Stewart West, Baylor College of Medicine
914-533-2902 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an44.1. StataQuest disk enclosed (really) 2
an46. Stata and Stage now available for IBM PowerPC 2

crc36. Clarification on analytic weights with linear regression 2
dm19. Merging raw data and dictionary files 3
dm20. Date functions 6

ip6. Storing variables in vectors and matrices 8
ip6.1. Data and matrices 10
os14. A program to format raw data files 10
sg25. Interaction expansion 12
ssi6. Routines to speed Monte Carlo experiments 18

ssi6.1. Simplified Monte Carlo simulations 22
sts7.3. A library of time series programs for Stata (Update) 25

sts8. Hansen’s test for parameter instability 26
zz3.4. Computerized index for the STB (Update) 32

2 Stata Technical Bulletin STB-20

an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an44.1 StataQuest disk enclosed (really)

Patricia Branton, Stata Corporation, FAX 409-696-4601

Although an44 stated that a StataQuest disk would be included with STB-19 for those who subscribe with magnetic media,
we forgot. The disk is included with this issue.

To enter StataQuest, put the diskette into the drive, select that drive, and type go.

There have been a few enhancements to the original StataQuest software. After entering StataQuest, if you select “Read
StataQuest release 2 notes”, you will see a list of the new features.

Reference
Loll, S. 1994. an44: StataQuest: Stata for teaching. Stata Technical Bulletin 19: 3–4.

an46 Stata and Stage now available for IBM PowerPC

Tim McGuire, Stata Corporation, FAX 409-696-4601

Stata 3.1 and the Stata Graphics Editor (Stage) are now available for the IBM PowerPC running AIX (IBM’s version of Unix).
The PowerPC chip is the result of a joint venture of Motorola, IBM, and Apple. IBM’s version is available in both desktop and
notebook computers, and supports Unix (in the form of AIX and the X Window standard (in the form of Motif.)

Stata 3.1 on the PowerPC is like Stata 3.1 on all other platforms; thus version 3.1 data sets, graphs, and ado-files from other
computers can be used without translation. Pricing is the same as for all other Stata/Unix systems.

crc36 Clarification on analytic weights with linear regression

A popular request on the help line is to describe the effect of specifying [aweight=exp] with regress or fit in terms
of transformation of the dependent and independent variables. The mechanical answer is that typing

. regress y x1 x2 [aweight=n]

is equivalent to estimating the model:

yj
p
nj = �0

p
nj + �1x1j

p
nj + �2x2j

p
nj + uj

p
nj

This regression will reproduce the coefficients and covariance matrix produced by the aweighted regression. The mean square
errors (estimate of the variance of the residuals) will, however, be different. The transformed regression reports s2t , an estimate

Stata Technical Bulletin 3

of Var(uj
p
nj). The aweighted regression reports s

2
a, an estimate of Var(uj

p
nj

p
N=
P

k nk), where N is the number of
observations. Thus,

s
2
a =

NP
k nk

s
2
t =

s
2
t

�n
(1)

The logic for this adjustment is as follows: Consider the model:

y = �0 + �1x1 + �2x2 + u

Assume that, were this model estimated on individuals, Var(u) = �
2
u, a constant. Assume that individual data is not available;

what is available are averages (�yj ; �x1j ; �x2j) for j = 1; : : : ; N , and that each average is calculated over nj observations. Then
it is still true that

�yj = �0 + �1�x1j + �2�x2j + �uj

where �uj is the average of nj mean 0 variance �
2
u deviates and so itself has variance �

2
�u = �

2
u=nj . Thus, multiplying through

by
p
nj produces

�yj
p
nj = �0

p
nj + �1�x1j

p
nj + �2�x2j

p
nj + �uj

p
nj

and Var(�uj
p
nj) = �

2
u. The mean square error s

2
t reported by estimating this transformed regression is an estimate of �

2
u.

Alternatively, the coefficients and covariance matrix could be obtained by aweighted regress. The only difference would be
in the reported mean square error, which per equation 1, is �2u=�n. On average, each observation in the data reflects the averages
calculated over �n =

P
k nk=N individuals, and thus this reported mean square error is the average variance of an observation

in the data set. One can retrieve the estimate of �2u by multiplying the reported mean square error by �n.

More generally, aweights are used to solve general heteroskedasticity problems. In these cases, one has the model

yj = �0 + �1x1j + �2x2j + uj

and the variance of uj is thought to be proportional to aj . If the variance is proportional to aj , it is also proportional to �aj ,
where � is any positive constant. Not quite arbitrarily, but with no loss of generality, let us choose � =

P
k(1=ak)=N , the

average value of the inverse of aj . We can then write Var(uj) = k�aj�
2, where k is the constant of proportionality that is no

longer a function of the scale of the weights.

Dividing this regression through by the
p
aj ,

yj=
p
aj = �0=

p
aj + �1x1j=

p
aj + �2x2j=

p
aj + uj=

p
aj

produces a model with Var(uj=
p
aj) = k��

2, which is the constant part of Var(uj). Notice in particular that this variance is a
function of �, the average of the reciprocal weights; if the weights are scaled arbitrarily, then so is this variance.

We can also estimate this model by typing

. regress y x1 x2 [aweight=1/a]

This will produce the same estimates of the coefficients and covariance matrix; the reported mean square error is, per equation
1,
�
N=
P

k(1=ak)
�
k��

2 = k�
2. Note that this variance is independent of the scale of aj .

dm19 Merging raw data and dictionary files

Jonathan Nash, CS First Boston, FAX 212-318-0748

I maintain several Stata data sets of selected financial market data. These data are updated regularly by tapping the massive
financial market data sets maintained by CS First Boston. The data from the First Boston data sets are converted to dictionary
files and then merged (by date) into my existing Stata data sets.

Stata’s merge command merges a .dta file into the current data set but it will not handle raw data or dictionary files.
My do-files for updating my data sets contained code for infiling my dictionary files, sorting them by date, saving them to
temporary data sets, using my existing data set, and—finally—merging the new data into the existing data.

4 Stata Technical Bulletin STB-20

I wrote mergedct.ado to avoid these steps. mergedct is just like Stata’s merge command except mergedct combines
the current data set with a raw or dictionary file rather than a .dta-file. The syntax for mergedct is

mergedct

�
varlist

�
using filename

�
, automatic byvariable(#)

nolabel u2(filename2) vlist(varlist)
�

Options

mergedct combines the options of infile and merge. The automatic, byvariable(#), and u2(filename2) options
have the same effect as the infile options automatic, byvariable(#), and using(filename2), respectively. The nolabel

option has the same effect as the merge command’s nolabel option.

The vlist(varlist) option is new. It is used to identify the variables when merging raw (non-dictionary) data files. The
command

. mergedct using rawdata, vlist(x y z)

indicates that the raw data can be read using the following infile command:

. infile x y z using rawdata

Examples

Here’s an example of merging a dictionary file. Note that mergedct does not require the disk data set to be sorted in
advance.

. use dta, clear

. describe

Contains data from dta.dta

Obs: 10 (max= 32766)

Vars: 2 (max= 99)

Width: 6 (max= 200)

1. order int %8.0g

2. x float %9.0g

Sorted by: order

. list

order x

1. 1 1.605509

2. 2 -1.363875

3. 3 1.255479

4. 4 .6902485

5. 5 .7910749

6. 6 -1.067126

7. 7 1.471047

8. 8 -1.971935

9. 9 1.805707

10. 10 -.5496167

. type indict1.dct

dictionary f
int order

float y

g
10 .7764114

1 -1.849471

2 .4429037

3 2.122414

4 .3309246

5 -.6871347

6 1.272875

7 -.4236486

8 -1.741924

9 -.4869484

. mergedct order using indict1

. list

Stata Technical Bulletin 5

order x y _merge

1. 1 1.605509 -1.849471 3

2. 2 -1.363875 .4429037 3

3. 3 1.255479 2.122414 3

4. 4 .6902485 .3309246 3

5. 5 .7910749 -.6871347 3

6. 6 -1.067126 1.272875 3

7. 7 1.471047 -.4236486 3

8. 8 -1.971935 -1.741924 3

9. 9 1.805707 -.4869484 3

10. 10 -.5496167 .7764114 3

mergedct can also merge the same data stored in a raw, rather than a dictionary, file:

. use dta, clear

. type inraw1.raw

10 .7764114

1 -1.849471

2 .4429037

3 2.122414

4 .3309246

5 -.6871347

6 1.272875

7 -.4236486

8 -1.741924

9 -.4869484

. mergedct order using inraw1, vlist(order y)

. list

order x y _merge

1. 1 1.605509 -1.849471 3

2. 2 -1.363875 .4429037 3

3. 3 1.255479 2.122414 3

4. 4 .6902485 .3309246 3

5. 5 .7910749 -.6871347 3

6. 6 -1.067126 1.272875 3

7. 7 1.471047 -.4236486 3

8. 8 -1.971935 -1.741924 3

9. 9 1.805707 -.4869484 3

10. 10 -.5496167 .7764114 3

mergedct can handle match merging as well:

. use dta, clear

. type indict2.dct

dictionary f
int z

g
101

102

103

104

105

106

107

108

109

110

. mergedct using indict2

. list

order x z _merge

1. 1 1.605509 101 3

2. 2 -1.363875 102 3

3. 3 1.255479 103 3

4. 4 .6902485 104 3

5. 5 .7910749 105 3

6. 6 -1.067126 106 3

7. 7 1.471047 107 3

8. 8 -1.971935 108 3

9. 9 1.805707 109 3

10. 10 -.5496167 110 3

6 Stata Technical Bulletin STB-20

dm20 Date functions

Alan Riley, Stata Corporation, FAX 409-696-4601

Since the publication in the STB of A library of time series programs (see sts7.3 below), Stata Corp. has received numerous
requests for additional commands to manipulate dates. One request in particular piqued our interest and led to the development
of the commands described below. The user in question maintains Stata data sets of daily financial data which are collapsed
to create monthly averages and then used to generate financial forecasts. The Stata commands used to calculate these averages
and forecasts are stored in do-files that are executed automatically (they are executed as cron jobs on a Unix system). The user
wanted to make sure only full months of daily data were used; if the most recent month was not yet over, the user wanted to
discard its data.

This is a more subtle problem than it first appears. How can we tell in a do-file if the last observation comes from the last
day of the month? We wrote lastday to answer this question. But the problem isn’t solved yet. The last day of the month may
fall on a weekend. How can we tell if the last observation falls on the last business day of the month? lastbday addresses this
question. Now, when a forecast is produced, how can we distinguish the historical observations from the projections? One way
is to compare the observation date to today’s date. Hence, the today command.

I hope the following commands will satisfy many of your requests. I am particularly interested in hearing from users about
other date-related problems for which Stata may not yet provide a ready solution. Any other comments or suggestions that you
have concerning these date-conversion programs are also appreciated.

New date commands

downame dowvar, generate(dayvar)

namedow dayvar, generate(dowvar)

mnthname mvar, generate(mthvar)

namemnth mthvar, generate(mvar)

mdytodow mvar dvar yvar, generate(dowvar)

lastday mvar yvar, generate(dvar)

lastbday mvar yvar, generate(dvar)

ystrday mvar dvar yvar, generate(mvar dvar yvar)

today, generate(mvar dvar yvar)

where

dayvar string variable containing day (Sunday–Saturday)
mthvar string variable containing month (January–December)
dowvar, dvar, mvar, and yvar are defined as in [5d] dates.

These commands perform various date conversions. downame converts a numeric day of week to the corresponding name.
namedow performs the opposite conversion. Likewise, mnthname converts a numeric month to the corresponding name, and
namemnth performs the opposite conversion. mdytodow calculates the numeric day of the week from the month, day, and year.
lastday calculates the last calendar day for a given month and year, while lastbday calculates the last business day for a
particular month and year. (“Business day” is defined as a day from Monday through Friday. Holidays are not taken into account).

ystrday calculates the previous month, day, and year given any month, day, and year. today simply reads the S DATE

global macro (see [2] macros) and generates variables containing the current month, day, and year.

Stata Technical Bulletin 7

Example

The following example shows the use of a few of the commands on a short artificial data set.

. list

m y

1. 2 1992

2. 2 1994

3. 4 1994

4. 7 1994

5. 12 1994

. lastbday m y, generate(lbday)

. list

m y lbday

1. 2 1992 28

2. 2 1994 28

3. 4 1994 29

4. 7 1994 29

5. 12 1994 30

. mdytodow m lbday y, gen(dow)

. list

m y lbday dow

1. 2 1992 28 Fri.

2. 2 1994 28 Mon.

3. 4 1994 29 Fri.

4. 7 1994 29 Fri.

5. 12 1994 30 Fri.

. list, nolabel

m y lbday dow

1. 2 1992 28 5

2. 2 1994 28 1

3. 4 1994 29 5

4. 7 1994 29 5

5. 12 1994 30 5

. describe

Contains data

Obs: 5 (max= 5088)

Vars: 4 (max= 99)

Width: 12 (max= 200)

1. m float %9.0g

2. y float %9.0g

3. lbday int %8.0g

4. dow int %8.0g Dayslab

Sorted by:

Note that the new variable dow is an integer, but has been given the label Dayslab.

Each of these date commands may also be used in immediate form. To use the command in immediate form, simply type
the name of the command along with the numbers or strings for the day, month, or year you want converted. The command
will display its results to the screen as well as saving them in the global macros S 1–S 4.

Example

. lastday 2 1992

29

Saturday, February 29, 1992

. disp_s

S_1: 29

S_2: Saturday

S_3: Sat

S_4: Sat.

. today

July 1, 1994

8 Stata Technical Bulletin STB-20

. disp_s

S_1: 7

S_2: 1

S_3: 1994

S_4: Sat.

Note that today did not mistakenly put “Sat.” in S 4. today happens to use only S 1–S 3, leaving S 4 from the lastday

command.

ip6 Storing variables in vectors and matrices

Ken Heinecke, Federal Reserve Bank of Kansas City, FAX 816-881-2199

mkmat takes the variables listed in varlist and stores them in column vectors; that is, N � 1 matrices where N = N, the
number of observations in the data set. The syntax of mkmat is

mkmat varlist
�
if exp

� �
in range

� �
, matrix(matname)

�
If the matrix() option is specified, the vectors are also combined in a matrix.

Discussion

Although it is possible to load variables into a matrix using the matrix accum command, programmers may find it more
convenient to work with the variables in their data sets as vectors instead of as cross products. mkmat allows the user a simple
way to load specific variables into matrices in Stata’s memory.

Example
. describe

Contains data from test.dta

Obs: 10 (max= 2562)

Vars: 3 (max= 200)

Width: 12 (max= 402)

1. x float %9.0g

2. y float %9.0g

3. z float %9.0g

Sorted by:

. list

x y z

1. 1 10 2

2. 2 9 4

3. 3 8 3

4. 4 7 5

5. 5 6 7

6. 6 5 6

7. 7 4 8

8. 8 3 10

9. 9 2 1

10. 10 1 9

. mkmat y z

. matrix list y

y[10,1]

y

r1 10

r2 9

r3 8

r4 7

r5 6

r6 5

r7 4

r8 3

r9 2

r10 1

. matrix list z

Stata Technical Bulletin 9

z[10,1]

z

r1 2

r2 4

r3 3

r4 5

r5 7

r6 6

r7 8

r8 10

r9 1

r10 9

The variables can be restricted using if and in subcommands as well.

. mkmat x if z<9 in 7/l

. mat l x

x[2,1]

x

r1 7

r2 9

Note that mkmat uses the variable name to name the single column in the vector. This feature guarantees that the variable
name will be carried along in any additional matrix calculations. This feature is also useful when vectors are combined in a
general matrix.

. matrix drop _all

. mkmat x y z, matrix(xyzmat)

. matrix dir

xyzmat[10,3]

z[10,1]

y[10,1]

x[10,1]

. matrix list xyzmat

xyzmat[10,3]

x y z

r1 1 10 2

r2 2 9 4

r3 3 8 3

r4 4 7 5

r5 5 6 7

r6 6 5 6

r7 7 4 8

r8 8 3 10

r9 9 2 1

r10 10 1 9

Caveats

The size of any matrix will be restricted by your matsize specification. A variable can have a maximum of 399 observations
under Unix and Intercooled versions of Stata and 40 for regular versions of Stata. Variables containing more data points will
not fit into a single vector.

Finally, if one of the variables has missing values, you will receive an error message and no matrices will be created.

. matrix drop _all

. replace y = . in 5

(1 real change made, 1 to missing)

. mkmat x y z

matrix y would have missing values

r(504);

. matrix dir

.

This problem can be taken care of by restricting the matrix to nonmissing values.

10 Stata Technical Bulletin STB-20

ip6.1 Data and matrices

William Gould, Stata Corporation, FAX 409-696-4601

Heinecke’s mkmat program (ip6) provides a useful addition to Stata’s matrix commands. The addition is so useful, in
fact, that you may wonder how it was ever omitted from Stata. Indeed, we must admit that a popular question among Stata’s
matrix-programming language users is how to create data matrices.

Heinecke’s program provides a solution, but it is a solution that will work only with small data set sizes. Stata limits
matrices to being no more than matsize�matsize which, by default, means 40� 40 and, even with Intercooled Stata, means no
more than 400� 400. Such limits appear to contradict Stata’s claims of being able to process large data sets. By limiting Stata’s
matrix capabilities to matsize�matsize, has not Stata’s matrix language itself been limited to data sets no larger than matsize?
It would certainly appear so; in the simple matrix calculation for regression coefficients (X0X)�1X0y, X is an n � k matrix
(n being the number of observations and k the number of variables) and, given the matsize constraint, n must certainly be less
than 400.

Our answer is as follows: Yes, X is limited in the way stated but note that X0X is a mere k � k matrix and, similarly,
X0y only k � 1. Both these matrices are well within Stata’s matrix-handling capabilities and Stata’s matrix accum command
(see [6m] accum) can directly create both of them.

Moreover, even if Stata could hold the n � k matrix X, it would still be more efficient to use matrix accum to form
X0X. X0X, interpreted literally, says to load a copy of the data, transpose it, load a second copy of the data, and then form
the matrix product. Thus, two copies of the data occupy memory in addition to the original copy Stata already had available
(and from which matrix accum could directly form the result with no additional memory use). For small n, the inefficiency
is not important but, for large n, the inefficiency can be such as to actually make the calculation infeasible. (For instance, with
n = 12,000 and k = 6, the additional memory use is 1,125K bytes.)

More generally, matrices in statistical applications tend to have dimension k � k, n � k, and n � n, with k small and
n large. Terms dealing with the data are of the generic form X0k1�nWn�nZn�k2 . (X0X fits the generic form with X = X,
W = I, and Z = X.) Matrix programming languages are not capable of dealing with the deceivingly simple calculation X0WZ

because of the staggering size of the W matrix. For n = 12,000, storing W requires a little more than a gigabyte of memory.
In statistical formulas, however, W is given by formula and, in fact, never needs to be stored in its entirety. Exploitation of this
fact is all that is needed to resurrect the use of a matrix programming language in statistical applications. Matrix programming
languages may be inefficient because of copious memory use, but in statistical applications, the inefficiency is minor for matrices
of size k � k or smaller. Our design of the various matrix accum commands allow calculating terms of the form X0WZ and
this one feature, we have found, is all that is necessary to allow efficient and robust use of matrix languages.

Programs for creating data matrices such as that offered by Heinecke are useful for pedagogical purposes and, in addition,
I can imagine myself using it in some specific application where Stata’s matsize constraint is not binding; it seems so natural.
On the other hand, it is important that general tools not be implemented by forming data matrices because such tools will
be drastically limited in terms of the data set size. Coding the problem in terms of the various matrix accum commands is
admittedly more tedious but, by abolishing data matrices from your programs, you will produce tools suitable for use on large
data sets.

os14 A program to format raw data files

Phillip Swagel, Department of Economics, Northwestern University

Stata can easily read raw data from ASCII files as long as the data are stored rectangularly. For example, the file

11 12 13

21 22 23

31 32 33

can be read by typing infile x1 x2 x3 using filename. In fact, this infile command will work even if the data are stored
in the following arrangement:

11 12 13

21 22

23 31 32 33

Stata Technical Bulletin 11

Stata would have problems, however, if the same data arrangement appeared in a dictionary file:

. type in1.dct

dictionary f
int x1

int x2

int x3

g
11 12 13

21 22

23 31 32 33

. infile using in1

dictionary

int x1

int x2

int x3

(4 observations read)

. list

x1 x2 x3

1. 11 12 13

2. 21 22 .

3. . . .

4. 23 31 32

Stata’s dictionary files are the preferred form for storing and documenting raw data. The dictionary subcommands can handle
most kinds of formatted data including multi-line records and data sets without carriage returns ([5d] infile). Nonetheless, Murphy’s
law guarantees that you will occasionally confront data sets that confound Stata’s dictionary capabilities. More commonly, you
will have a data set that Stata’s dictionary features can handle but only with difficulty. Clearly, life would be simpler if all raw
data sets were rectangular, as in the first example.

I have written a C program called block that makes my life simpler. block takes an arbitrary ASCII file as input and
produces as output the same information arrayed rectangularly. The following example illustrates how to use block.

C:> type in1

11 12 13

21 22

23 31 32 33

C:> block

Name of the input file: in1

Name of the output file: out1

Number of columns: 3

...

Read in 9 fields from in1

Wrote out 3 rows of 3 columns to out1

C:> type out1

11 12 13

21 22 23

31 32 33

block handles non-rectangular data gracefully:

C:> type in2

11 12 13

21 22

23 31 32 33 44

C:> block

Name of the input file: in2

Name of the output file: out2

Number of columns: 3

...

Read in 10 fields from in2

Wrote out 3 rows of 3 columns to out2

WARNING: last row not complete.

C:> type out2

11 12 13

21 22 23

31 32 33

44

12 Stata Technical Bulletin STB-20

Both the source (block.c) and a DOS executable (block.exe) are available on the STB-20 diskette. Unix users can modify
block.c and recompile it if they wish, although there are already several tools in Unix that provide the same service as block.
DOS users who have purchased DOS versions of Unix utilities may also have tools that replicate block. For me, block is a
simple, special-purpose tool. It does one job easily and well; it’s nice to have when you need it.

sg25 Interaction expansion

William Gould, Stata Corporation, FAX 409-696-4601

The syntax of xi is
xi term(s)

xi: any stata command varlist with terms : : :

where a term is of the form:
i.varname or I.varname
i.varname1*i.varname2 I.varname1*I.varname2
i.varname1*varname3 I.varname1*varname3
i.varname1|varname3 I.varname1|varname3

varname, varname1, and varname2 denote categorical variables and may be numeric or string. varname3 denotes a continuous,
numeric variable.

xi expands terms containing categorical variables into dummy variable sets by creating new variables and, in the second
syntax (xi: any stata command) executes the specified command with the expanded terms.

Background

The terms continuous, categorical, and indicator or dummy variables are used below. Continuous variables are variables
that measure something—such as height or weight—and at least conceptually can take on any real number over some range.
Categorical variables, on the other hand, take on a finite number of values each denoting membership in a subclass, for example
excellent, good, and poor—which might be coded 0, 1, 2 or 1, 2, 3 or even “Exc,” “Good,” and “Poor.” An indicator or dummy
variable—the terms are used interchangeably—is a special type of two-valued categorical variable that contains values 0, denoting
false, and 1, denoting true. The information contained in any k-valued categorical variable can be equally well represented by
k indicator variables. Instead of a single variable recording values representing excellent, good, and poor, one can have three
indicator variables, the first indicating the truth or falseness of “result is excellent,” the second “result is good,” and the third
“result is poor.”

xi provides a convenient way to convert categorical variables to dummy or indicator variables when estimating a model
(say with regress, logistic, etc.).

For instance, assume the categorical variable agegrp contains 1 for ages 20–24, 2 for ages 25–39, and 3 for ages 40–44.
(There is no one over 44 in our data.) As it stands, agegrp would be a poor candidate for inclusion in a model even if one
thought age affected the outcome. It would be poor because the coding would force the restriction that the effect of being in
the second age group must be twice the effect of being in the first and, similarly, the effect of being in the third must be three
times the first. That is, if one estimated the model,

y = �0 + �1 agegrp+X�2

the effect of being in the first age group is �1, the second 2�1, and the third 3�1. If the coding 1, 2, 3 is arbitrary, we could
just as well have coded the age groups 1, 4, and 9, and the effects would now be �1, 4�1, and 9�1.

The solution to this arbitrariness is to convert the categorical variable agegrp to a set of indicator variables a1, a2, and
a3, where ai is 1 if the individual is a member of the ith age group and 0 otherwise. We can then estimate the model:

y = �0 + �11a1 + �12a2 + �13a3 +X�2

Stata Technical Bulletin 13

The effect of being in age group 1 is now �11; 2, �12; and 3, �13; and these results are independent of our (arbitrary) coding. The
only difficulty at this point is that the model is unidentified in the sense that there are an infinite number of (�0; �11; �12; �13)
that fit the data equally well.

To see this, pretend (�0; �11; �12; �13) = (1; 1; 3; 4). Then the predicted values of y for the various age groups are

y =

(1 + 1 +X�2 = 2 +X�2 (age group 1)
1 + 3 +X�2 = 4 +X�2 (age group 2)
1 + 4 +X�2 = 5 +X�2 (age group 3)

Now pretend (�0; �11; �12; �13) = (2; 0; 2; 3). Then the predicted values of y are

y =

(2 + 0 +X�2 = 2 +X�2 (age group 1)
2 + 2 +X�2 = 4 +X�2 (age group 2)
2 + 3 +X�2 = 5 +X�2 (age group 3)

These two sets of predictions are indistinguishable: for age group 1, y = 2+X�2 regardless of which coefficient vector is used,
and similarly for age groups 2 and 3. This arises because we have 3 equations and 4 unknowns. Any solution is as good as any
other and, for our purposes, we merely need to choose one of them. The popular selection method is to set the coefficient on
the first indicator variable to 0 (as we have done in our second coefficient vector). This is equivalent to estimating the model:

y = �0 + �12a2 + �13a3 +X�2

How one selects a particular coefficient vector (identifies the model) does not matter. It does, however, affect the interpretation
of the coefficients.

For instance, we could just as well choose to omit the second group. In our artificial example, this would yield
(�0; �11; �12; �13) = (4;�2; 0; 1) instead of (2; 0; 2; 3). These coefficient vectors are the same in the sense that,

y =

(2 + 0 +X�2 = 2 +X�2 = 4� 2 +X�2 (age group 1)
2 + 2 +X�2 = 4 +X�2 = 4 + 0 +X�2 (age group 2)
2 + 3 +X�2 = 5 +X�2 = 4 + 1 +X�2 (age group 3)

but what does it mean that �13 can just as well be 3 or 1? We obtain �13 = 3 when we set �11 = 0, and so �13 = �13 � �11

and �13 measures the difference between age groups 3 and 1.

In the second case, we obtain �13 = 1 when we set �12 = 0, so �13 � �12 = 1 and �13 measures the difference between
age groups 3 and 2. There is no inconsistency. According to our �12 = 0 model, the difference between age groups 3 and 1 is
�13 � �11 = 1� (�2) = 3, exactly the same result we got in the �11 = 0 model.

The issue of interpretation, however, is important because it can affect the way one discusses results. Imagine you are
studying recovery after a coronary bypass operation. Assume the age groups are (1) children under 13 (you have 2 of them),
(2) young adults under 25 (you have a handful of them), (3) adults under 46 (of which you have more yet), (4) mature adults
under 56, (5) older adults under 65, and (6) elder adults. You follow the prescription of omitting the first group, so all of your
results are reported relative to children under 13. While there is nothing statistically wrong with this, readers will be suspicious
when you make statements like, “compared to young children, older and elder adults : : :”. Moreover, it is likely that you will
have to end each statement with “although results are not statistically significant” because you have only 2 children in your
comparison group. Of course, even with results reported in this way, you can do reasonable comparisons (say to mature adults),
but you will have to do extra work to perform the appropriate linear hypothesis test using Stata’s test command.

In this case, it would be better if you forced the omitted group to be more reasonable, such as mature adults. There
is, however, a generic rule for automatic comparison group selection that, while less popular, tends to work better than the
omit-the-first-group rule. That rule is to omit the most prevalent group. The most prevalent is usually a reasonable baseline.

In any case, the prescription for categorical variables is

1. Convert each k-valued categorical variable to k indicator variables.

2. Drop one of the k indicator variables; any one will do but dropping the first is popular, dropping the most prevalent is
probably better in terms of having the computer guess at a reasonable interpretation, and dropping a specified one often
eases interpretation the most.

14 Stata Technical Bulletin STB-20

3. Estimate the model on the remaining k � 1 indicator variables.

It is this procedure that xi automates.

Using xi: Overview

xi provides a convenient way to include dummy or indicator variables when estimating a model (say with regress,
logistic, etc.). For instance, assume the categorical variable agegrp contains 1 for ages 20–24, 2 for ages 25–39, 3 for ages
40–44, etc. Typing

. xi: logistic outcome weight i.agegrp bp

estimates a logistic regression of outcome on weight, dummies for each agegrp category, and bp. That is, xi searches out
and expands terms starting with “i.” but leaves the other variables alone. xi will expand both numeric and string categorical
variables, so if you had a string variable race containing “white,” “black,” and “other,” typing

. xi: logistic outcome weight bp i.agegrp i.race

would include indicator variables for the race group as well.

The i. indicator variables xi expands may appear anywhere in the varlist, so

. xi: logistic outcome i.agegrp weight i.race bp

would estimate the same model.

You can also create interactions of categorical variables; typing

xi: logistic outcome weight bp i.agegrp*i.race

estimates a model including indicator variables for all agegrp and race combinations.

You can interact dummy variables with continuous variables:

xi: logistic outcome bp i.agegrp*weight i.race

And, of course, you can include multiple interactions:

xi: logistic outcome bp i.agegrp*weight i.agegrp*i.race

We will now back up and consider each of xi’s features in detail.

Indicator variables for simple effects

When you type ‘i.varname’, xi internally tabulates varname (which may be a string or a numeric variable) and creates
indicator (dummy) variables for each observed value, omitting the indicator for the smallest value. For instance, say agegrp

takes on the values 1, 2, 3, and 4. Typing

xi: logistic outcome i.agegrp

creates indicator variables named Iagegr 2, Iagegr 3, and Iagegr 4. (xi chooses the names and tries to make them readable;
xi guarantees that the names are unique.) The expanded logistic model then is

. logistic outcome Iagegr_2 Iagegr_3 Iagegr_4

Afterwards, you can drop the new variables xi leaves behind by typing ‘drop I*’ (note capitalization).

xi provides the following features when you type ‘i.varname’:

1. varname may be string or numeric.

2. Dummy variables are created automatically.

3. By default, the dummy-variable set is identified by dropping the dummy corresponding to the smallest value of the variable
(how to specify otherwise is discussed below).

4. The new dummy variables are left in your data set. You can drop them by typing ‘drop I*’. You do not have to do this;
each time you use the xi prefix or command, any previously created automatically generated dummies are dropped and
new ones created.

5. The new dummy variables have variable labels so you can determine to what they correspond by typing ‘describe’ or
‘describe I*’.

6. xi may be used with any Stata command (not just logistic).

Stata Technical Bulletin 15

Controlling the omitted dummy

By default, i.varname omits the dummy corresponding to the smallest value of varname; in the case of a string variable,
this is interpreted as dropping the first in an alphabetical, case-sensitive sort. xi provides two alternatives to dropping the first:
xi will drop the dummy corresponding to the most prevalent value of varname or xi will let you choose the particular dummy
to be dropped.

To change xi’s behavior to dropping the most prevalent, you type,

. global S_XIMODE "prevalent"

although whether you type “prevalent” inside the quotes or “yes” or anything else does not matter. You need type this command
only once per session and, once typed, it affects the expansion of all categorical variables. If, during a session, you want to
change the behavior back to the default drop-the-first rule, you type

. global S_XIMODE

Once you set S XIMODE, i.varname omits the dummy corresponding to the most prevalent value of varname. Thus, the coefficients
on the dummies have the interpretation of change from the most prevalent group. For example,

. global S_XIMODE "prevalent"

. xi: regress y i.agegrp

might create Iagegr 1 through Iagegr 4 and would result in Iagegr 2 being omitted if agegr = 2 is most common (as
opposed to the default dropping of Iagegr 1). The model is then:

y = b0 + b1 Iagegr 1+ b3 Iagegr 3+ b4 Iagegr 4+ u

Then,
Predicted y for agegrp 1 = b0 + b1 Predicted y for agegrp 3 = b0 + b3

Predicted y for agegrp 2 = b0 Predicted y for agegrp 4 = b0 + b4

Thus, the model’s reported t or z statistics are for a test of whether each group is different from the most prevalent group.

Perhaps you wish to omit the dummy for agegrp 3 instead. Whether you have set the global macro S XIMODE or not, you
do this by creating a global macro with the same name of the variable containing “xi omit value”. In this case:

. global agegrp "xi omit 3"

Now when you type

. xi: regress y i.agegrp

Iagegr 3 will be omitted and you will estimate the model:

y = b
0

0 + b
0

1 Iagegr 1+ b
0

2 Iagegr 2+ b
0

4 Iagegr 4+ u

Later, if you want to return to the default omission, you type

. global agegrp

thus clearing the macro.

In summary, i.varname omits the first group by default but if you define

. global S_XIMODE "prevalent"

then the default behavior changes to that of dropping the most prevalent group. Either way, if you define a macro of the form

. global varname "xi omit #"

of, if varname is a string,

. global varname "xi omit string-literal"

then the specified value will be omitted.

Examples: . global agegrp "xi omit 3"

. global race "xi omit White" (for race a string variable)

. global agegrp (to restore default for agegrp)

16 Stata Technical Bulletin STB-20

Categorical variable interactions

i.varname1*i.varname2 creates the dummy variables associated with the interaction of the categorical variables varname1
and varname2. The identification rules—which categories are omitted—are the same as for i.varname. For instance, assume
agegrp takes on four values and race takes on three values. Typing,

. xi: regress y i.agegrp*i.race

results in the model:

y = a + b2 Iagegr 2+ b3 Iagegr 3+ b4 Iagegr 4 (agegrp dummies)
+c2 Irace 2+ c3 Irace 3 (race dummies)
+d22 IaXr 2 2+ d23 IaXr 2 3+ d32 IaXr 3 2+ d33 IaXr 3 3 (agegrp*race dummies)
+d42 IaXr 4 2+ d43 IaXr 4 3

+u

That is,

. xi: regress y i.agegrp*i.race

results in the same model as typing:

. xi: regress y i.agegrp i.race i.agegrp*i.race

While there are lots of other ways the interaction could have been parameterized, this method has the advantage that one can
test the joint significance of the interactions by typing:

. testparm IaXr*

Returning to the estimation step, whether you specify i.agegrp*i.race or i.race*i.agegrp makes no difference (other than
in the names given to the interaction terms; in the first case, the names will begin with IaXr; in the second, IrXa). Thus,

. xi: regress y i.race*i.agegrp

estimates the same model.

You may also include multiple interactions simultaneously:

. xi: regress y i.agegrp*i.race i.agegrp*i.sex

The model estimated is

y = a + b2 Iagegr 2+ b3 Iagegr 3+ b4 Iagegr 4 (agegrp dummies)
+c2 Irace 2+ c3 Irace 3 (race dummies)
+d22 IaXr 2 2+ d23 IaXr 2 3+ d32 IaXr 3 2+ d33 IaXr 3 3 (agegrp*race dummies)
+d42 IaXr 4 2+ d43 IaXr 4 3

+e2 Isex 2 (sex dummy)
+f22 IaXs 2 2+ f23 IaXs 2 3+ f24 IaXs 2 4 (agegrp*sex dummies)
+u

Note that the agegrp dummies are (correctly) included only once.

Interactions with continuous variables

i.varname1*varname2 (as distinguished from i.varname1*i.varname2, note the second i.) specifies an interaction of a
categorical variable with a continuous variable. For instance,

. xi: regress y i.agegr*wgt

results in the model:

y = a + b2 Iagegr 2+ b3 Iagegr 3+ b4 Iagegr 4 (agegrp dummies)
+c wgt (continuous wgt effect)
+d2 IaXwgt 2+ d3 IaXwgt 3+ d4 IaXwgt 4 (agegrp*wgt interactions)
+u

A variation on this notation, using | rather than * omits the agegrp dummies. Typing

. xi: regress y i.agegr|wgt

Stata Technical Bulletin 17

estimates the model:

y = a
0 +c0 wgt (continuous wgt effect)
+d02 IaXwgt 2+ d

0

3 IaXwgt 3+ d
0

4 IaXwgt 4 (agegrp*wgt interactions)
+u0

The predicted values of y are

agegrp*wgt model agegrp|wgt model

y = a+ c wgt a
0 + c

0
wgt if agegrp = 1

a+ c wgt+ b2 + d2 wgt a
0 + c

0
wgt+ d

0

2 wgt if agegrp = 2
a+ c wgt+ b3 + d3 wgt a

0 + c
0
wgt+ d

0

3 wgt if agegrp = 3
a+ c wgt+ b4 + d4 wgt a

0 + c
0
wgt+ d

0

4 wgt if agegrp = 4

That is, typing

. xi: regress y i.agegr*wgt

is equivalent to typing:

. xi: regress y i.agegr i.agegr|wgt

Also note that in either case, it is not necessary to specify separately the continuous variable wgt; it is included automatically.

Using ci: Interpreting output

. xi: regress mpg i.rep78

i.rep78 Irep78_1-5 (naturally coded; Irep78_1 omitted)

(output from regress appears)

Interpretation: i.rep78 expanded to the dummies Irep78 1, Irep78 2, : : :, Irep78 5. The numbers on the end are “natural”
in the sense that Irep78 1 corresponds to rep78 = 1, Irep78 2 to rep78 = 2, and so on. Finally, the dummy for rep78 = 1
was omitted.

. xi: regress mpg i.make

i.make Imake_1-74 (Imake_1 for make==AMC Concord omitted)

(output from regress appears)

Interpretation: i.make expanded to Imake 1, Imake 2, : : :, Imake 74. The coding is not natural because make is a string
variable. Imake 1 corresponds to one make, Imake 2 another, and so on. We can find out the coding by typing ‘describe’.
Imake 1 for the AMC Concord was chosen to be omitted.

How xi names variables

The names xi assigns to the dummy variables it creates are of the form:

Istub groupid

You may subsequently refer to the entire set of variables by typing ‘Istub*’. For example:

name = I + stub + + groupid Entire set

Iagegr 1 I agegr 1 Iagegr*

Iagegr 2 I agegr 2 Iagegr*

IaXwgt 1 I aXwgt 1 IaXwgt*

IaXr 1 2 I aXr 1 2 IaXr*

IaXr 2 1 I aXr 2 1 IaXr*

xi as a command rather than a command prefix

xi can be used as a command prefix or as a command by itself. In the latter form, xi merely creates the indicator and
interaction variables. Equivalent to typing,

18 Stata Technical Bulletin STB-20

. xi: regress y i.agegrp*wgt

i.agegrp Iagegr_1-4 (naturally coded; Irep78_1 omitted)

i.agegrp*wgt IaXwgt_1-4 (coded as above)

(output from regress appears)

is

. xi i.agegrp*wgt

i.agegrp Iagegr_1-4 (naturally coded; Irep78_1 omitted)

i.agegrp*wgt IaXwgt_1-4 (coded as above)

. regress y Iagegr* IaXwgt*

(output from regress appears)

Warnings

1. When you use xi, either as a prefix or a command by itself, xi first drops all previously created interaction variables—variables
starting with capital I. Do not name your variables starting with this letter.

2. xi creates new variables in your data; most are bytes but interactions with continuous variables will have the storage
type of the underlying continuous variable. You may get the message “no room to add more variables”. If so, you must
repartition memory; see [4] memory.

3. When using xi with an estimation command, you may get the message “matsize too small”. If so, see [5u] matsize.

ssi6 Routines to speed Monte Carlo experiments

William Gould, Stata Corporation, FAX 409-696-4601

The syntax of the post commands is

postfile varlist using filename
�
, every(#) replace

�
post exp exp : : : exp

postclos

These commands are utilities to assist Stata programmers in performing Monte Carlo type experiments. postfile declares the
variable and file names of a (new) Stata data set for containing results. post adds a new observation to the declared data set.
postclos declares an end to the posting of observations. All three commands manipulate the new results data without disturbing
the data in memory. After postclos, the new data set contains the posted results and may be loaded with use; see [5d] save.

Options

every(#) specifies how often posted results are to be written to disk. post attempts to be efficient by buffering results and
writing to disk only occasionally. every() should not be specified; the default value every(32)—23 for non-Intercooled
versions of Stata—is believed to be fastest. If every() is specified, it is taken as merely a suggestion; values that are too
large (larger than 208 for Intercooled and 23 for regular Stata) are treated as meaning every(32) and every(23).

replace indicates that the file specified (may) already exist and, if it does, postfile may erase the file and create a new one.

Remarks

Persons performing Monte Carlo experiments in Stata have, in the past, employed one of two programming approaches.
The first, originally suggested by Hamilton (1991), might be called the display-and-infile method. The basic idea is to start a
session log, display the results of the calculations on the screen (and therefore into the log), close the log, and read back the
results:

set more 1

log using filename
repeat f

draw a sample
make a calculation
display the results of the calculation

g
log close

infile the results previously displayed

Stata Technical Bulletin 19

This method suffers from two disadvantages. First, it requires that the results of the individual simulations be displayed on the
screen which is, at best, inelegant. Second, the simulation cannot itself be logged, meaning that those of us who keep notebooks
of printed logs backing up important results are prevented from doing so.

An alternative programming approach does not have those problems and is therefore widely used in the ado-files we at
Stata Corp. write. It might be called the append method because the approach amounts to adding observations, one at a time, to
a data set being maintained on disk:

create a temporary data set
repeat f

draw a sample
make a calculation
use the temporary data set
append the calculated result(s) to the end of the data
resave the temporary data set

g
erase the temporary data set

This approach is used in Stata’s boot and bsqreg commands; see [5s] boot and [5s] qreg. While not suffering from the
disadvantages of the display-and-infile method, it has its own disadvantage—it is slow.

There is a third way simulations could be programmed in Stata. It could be called the buffered-append method because,
while it is basically the append method, rather than adding observations one at a time to the data, results are temporarily buffered
in memory and then, periodically, the buffers are used to update the data:

create a temporary data set
repeat f

draw a sample
make a calculation
save the results in memory somewhere
when memory is full f

use the temporary data set
append the buffered results to the data
resave the temporary data set

g
g
use the temporary data set

This method has the potential to be faster because the costly use and resave occurs less often. The post commands do this. In
outline, their use is

postfile : : : using : : :

repeat f
draw a sample
make a calculation
post : : :

g
postclos

use the data set

Example

Let us consider the coverage of the 95%, t-based confidence interval for the mean applied to log-normal populations. To
explain, the central limit theorem assures us that, asymptotically, distributions of means are normally distributed regardless of the
underlying distribution of the population. In finite samples, less can be said, but if the underlying population follows a normal
distribution and if one uses estimates of the mean and standard deviation, the mean will follow a t distribution with n � 1

degrees of freedom. (Note that as n!1, the t approaches the normal, so the finite-sample result is consistent with the central
limit theorem.)

In real life, people often apply confidence intervals calculated on the basis of t distributions to means calculated on data that
are far from normal. Do they, on average, nevertheless generate correct predictions? That is, a 95% confidence interval should

20 Stata Technical Bulletin STB-20

include the true mean 95% of the time. If the calculation results in an interval that is too wide, however, that too-wide interval
will include the mean more than 95% of the time. If it is too narrow, that interval will include the mean less than 95% of the
time.

Thus, we could take some distribution—we will use the log normal—and draw samples from it. We could calculate the
mean and perform the classic t test, recording whether the true mean (which we know) lies in the interval. If we do this enough
times, we can answer the question, at least with respect to the log-normal distribution. (A variable z is log-normally distributed
if z = e

u and u is normally distributed. If u has mean � and variance �
2, then z has median, not mean, e�; the mean of z is

e
�
e
�2=2.)

Let us begin by constructing a data set of means and variances for 100-observation samples of a log-normal distribution:

program define lnsim

version 3.1

postfile mean var using results, replace

quietly {

local i = 1

while `i' <= 10000 {

drop _all

set obs 100

gen z = exp(invnorm(uniform()))

summarize z

post _result(3) _result(4)

local i=`i'+1

}

}

postclos

end

The heart of this program are the three lines in the middle, the first two of which are

set obs 100

gen z = exp(invnorm(uniform()))

and correspond to drawing our sample. The third line

summarize z

calculates our results. summarize, in addition to displaying summary statistics (which we suppress with the quietly { }

surrounding the code), stores the sample mean in result(3) and variance in result(4). The new post command allows us
to save those results. Prior to using post, however, the postfile must be declared. This we did at the outset of our program,
declaring that we would be saving two results which we would call mean and var (for mean and variance) in a data set called
results.dta. Then, when we are all done, we must inform post with the postclos command.

The rest of the program was merely concerned with performing the experiment 10,000 times:

local i = 1

while `i' <= 10000 {

: : :

local i=`i'+1

}

The results of running our program are

. lnsim

. describe

Contains data from results.dta

Obs: 10000 (max= 19997)

Vars: 2 (max= 99)

Width: 8 (max= 200)

1. mean float %9.0g

2. var float %9.0g

Sorted by:

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+---

mean | 10000 1.648349 .2165937 1.022719 4.280587

var | 10000 4.720659 6.208903 .6215334 450.1076

Stata Technical Bulletin 21

We now have 10,000 means and variances from independent 100-observation log-normal data sets. On a 25MHz 486, this took
about 14 minutes.

Our log-normal population was based on z = e
u with u � N(0; 1), so the true mean of z is e

1=2 � 1.6487213. Let �xj
and s

2
j represent the calculated mean and variance of the jth sample. Then the 95% confidence bounds that would be calculated

by a standard t test are �xj � t:95

q
s2j=100. Making these calculations, we can mark each sample as rejecting or not rejecting

that the mean is e1=2:

. gen se = sqrt(var/100)

. gen lower = mean - invt(100-1, .95)*se

. gen upper = mean + invt(100-1, .95)*se

. gen accept = lower<exp(1/2) & exp(1/2)<upper

. count if accept

9198

Thus, the coverage of our 95% test is only 92%—the confidence intervals are too narrow. We performed this experiment “only”
10,000 times, so we should verify that the observed 92% differs from 95% due to more than chance:

. cii 10000 9198

-- Binomial Exact --

Variable | Obs Mean Std. Err. [95% Conf. Interval]

---------+---

| 10000 .9198 .002716 .9142983 .9250475

A 95% confidence interval for the coverage is .914 to .925. (Moreover, given a probability of .95, the chances of observing
9198 or fewer successes in 10,000 trials is virtually 0, as you can verify for yourself by typing ‘bitest 10000 9188 .95’.

So, if the standard t test performs poorly, what about the central-limit-theorem result? Rather than using t:95, what if we
use Z:95? The result will be worse: t intervals are wider than normal intervals and we have already determined that the intervals
are too narrow. It will not, however, make much difference since t:95 � 1.97 for 99 degrees of freedom whereas Z:95 � 1.96.
For the record:

. drop lower upper accept

. gen lower = mean - 1.96*se

. gen upper = mean + 1.96*se

. gen accept = lower<exp(1/2) & exp(1/2)<upper

. count if accept

9169

Performance

As I find myself running simulations more and more these days, I went to the effort of timing the display-and-infile, append,
and buffered-append (post) alternatives. The good news is that buffered-append is substantially faster than the append method.
The bad news is that display-and-infile is still the fastest way to run simulations in Stata:

display and infile append buffered append
replications (seconds) (seconds) (seconds)

100 5.22 11.81 8.57
500 25.71 73.77 40.76

1000 51.13 155.99 81.62

The timings above were performed on a 25MHz 486 running Intercooled Stata under DOS.

postfile also provides an every() option which controls how often buffers are flushed. The documentation above
recommends you never specify this option. Using the same simulation with 500 replications, I performed timings for different
values of every():

every() time (sec.) every() time (sec.)

2 64.87 32 40.81
4 49.49 64 41.30
8 43.55 128 43.77

16 41.96 200 46.41

Between every(16) and every(64) the function is virtually flat.

22 Stata Technical Bulletin STB-20

Summary

There is no question that the display-and-infile approach is the fastest way to run simulations in Stata. The 10,000-
replication simulation presented above, I estimate, would have taken only 8.5 minutes rather than the 13.5 minutes actually
observed. Nevertheless, I continue to reject using that method because it does not allow me to maintain logs of what I have done.
Moreover, it is easy to misinterpret these timings unless one remembers that they are absolute, not relative. For instance, the
difference in execution time for 10,000 replications is 5 minutes and that difference remains 5 minutes regardless of the complexity
of the simulation. Thus, I recently performed simulations involving bootstrapped quantile regression (10,000 replications of 50
replications, meaning estimation of 500,000 quantile regressions). This simulation took over 8 hours. The difference in execution
time between the logable buffered append and display-and-infile is still only 5 minutes.

More importantly, buffered append is substantially faster than the simple append method—in fact, regressions of time on
number of replications suggest that the buffered append method is nearly twice as fast once the fixed costs of the routines are
eliminated (for buffered append, each added replication is estimated as costing .0847 seconds; for the simple append, .1604
seconds; and the ratio is thus .1604=.0847 � 1.89). As boot and bsqreg are currently implemented in terms of the simple-append
method, a doubling of performance should be possible by reimplementing these routines in terms of post.

References
Hamilton, L. C. 1991. ssi1: Monte Carlo simulation. Stata Technical Bulletin 1: 25–28.

ssi6.1 Simplified Monte Carlo simulations

William Gould, Stata Corporation, FAX 409-696-4601

The syntax of the simul command is

simul progname, reps(#)
�
args(whatever) dots

�
simul eases the programming task of performing Monte Carlo type simulations. progname is the name of a program that
performs a single simulation. Typing ‘simul progname, reps(#)’ iterates progname for # replications and collects the results.

simul calls progname two ways. At the outset, simul issues “progname ?” and expects progname to set the global macro
$S 1 to contain a list of variable names under which results are to be stored. Thereafter, simul issues straight “progname” calls
and expects it to perform a single simulation and to store the results using post. Details of post can be found in the insert
above, but enough information is provided below to use post successfully.

Options

reps(#) is not optional—it specifies the number of replications to be performed.

args(whatever) specifies any arguments to be passed to progname on invocation. The query call is then of the form “progname
? whatever” and subsequent calls of the form “progname whatever”.

dots requests a dot be placed on the screen at the beginning of every call to progname, thus providing entertainment during a
long simulation.

Remarks

progname must have the following outline:

program define progname
if "`1'"=="?" {

global S 1 "variable names"
exit

}

perform single simulation
post results

end

Stata Technical Bulletin 23

There must be the same number of results following the post command as variable names following the global S 1 command.

Example

Make a data set containing means and variances of 100-observation samples from a log-normal distribution. Perform the
experiment 10,000 times:

program define lnsim

version 3.1

if "`1'"=="?" {

global S_1 "mean var"

exit

}

drop _all

set obs 100

gen z = exp(invnorm(uniform()))

summarize z

post _result(3) _result(4)

end

It is instructive to compare this program to the same example in the previous insert. In any case, lnsim can then be executed
10,000 times by typing:

. simul lnsim, reps(10000)

. describe

Contains data

Obs: 10000 (max= 19997)

Vars: 2 (max= 99)

Width: 8 (max= 200)

1. mean float %9.0g

2. var float %9.0g

Sorted by:

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+---

mean | 10000 1.648349 .2165937 1.022719 4.280587

var | 10000 4.720659 6.208903 .6215334 450.1076

The simul command took 14.5 minutes on a 25MHz DOS 486 computer.

Technical note: debugging a simulation

Before executing our lnsim simulator, we can verify it works by typing

. lnsim

. display $S_1

This verifies that the program sets the global macro $S 1 correctly on a query call. We can then try executing lnsim:

. postfile $S_1 using myfile

. lnsim

The postfile command opens a file for the posted results (see insert above). Invoking lnsim should perform a single simulation.
We could then close the result file and examine it:

. postclos

. use myfile, clear

Passing arguments to the simulation

Consider a more complicated problem: Let’s experiment with estimating

yj = a+ bxj + uj

when the true model has a = 1, b = 1, and uj = 2(zj + cxj) and zj is N(0; 1). We will keep the parameter estimates and
standard errors and experiment with varying c. xj will be fixed across the experiments but will originally be generated as N(0; 1).
We begin by interactively making the true data:

24 Stata Technical Bulletin STB-20

. drop _all

. set obs 100

. gen x = invnorm(uniform())

. gen true_y = 1+2*x

. save truth

Our program is

program define hetero

version 3.1

if "`1'"=="?" {

global S_1 "a se_a b se_b"

exit

}

use truth, clear

gen y = true_y + 2*(invnorm(uniform()) + `1'*x)

regress y x

post _b[_cons] _se[_cons] _b[x] _se[x]

end

Note the use of `1' in our statement for generating y. `1' is an argument. If the argument’s value is 2, then the last part of
the statement is equivalent to “2*x”. We can run 10,000 simulations, setting the argument to 2 by typing

. simul hetero, args(2) reps(10000)

We might then analyze that data and try a different experiment, this time setting the argument to 1.5:

. simul hetero, args(1.5) reps(10000)

Our program hetero could, however, be more efficient because it rereads the file truth once every replication. It would
be better if we could read the data just once and, in fact, we can because we can use the query call to initialize ourselves. A
faster version reads:

program define hetero

version 3.1

if "`1'"=="?" {

use truth, clear (load the data just once)
global S_1 "a se_a b se_b"

exit

}

gen y = true_y + 2*(invnorm(uniform()) + `1'*x)

regress y x

post _b[_cons] _se[_cons] _b[x] _se[x]

drop y (because we will recreate it next time)
end

Assume we plan on replicating the experiment 10,000 times. In our original draft, we used the truth data once per replication,
meaning we performed 10,000 uses. The new version does this only once, saving 9,999 unnecessary uses.

Performance

simul is implemented in terms of post (see insert above) and it must, therefore, be slower. The good news is that it is
not much slower:

N post (sec.) simul (sec.)

100 8.13 8.90
500 49.21 43.83

1000 89.19 87.16

These timings were performed on a 25MHz, DOS 486 computer.

Moreover, on the log-normal example, the direct post implementation took 13.5 minutes to perform 10,000 replications;
the simul solution took 14.5 minutes, for a total cost of 1 minute. post provides more flexibility than simul but, unless that
flexibility is necessary, simul provides a more convenient way to perform Monte Carlo simulations.

Stata Technical Bulletin 25

sts7.3 A library of time series programs for Stata (Update)

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

In sts7, a library of time series programs for Stata was introduced (Becketti 1994). That insert described an approach to
time series analysis that builds on Stata’s core commands and on its extensibility. The insert also cataloged the programs in the
time series library.

This update describes changes and additions to the time series library. An updated catalog of programs is also included. The
updated library is available on the STB diskette. This update will be repeated in each issue of the STB. Consult the original insert
for a general discussion of Stata’s approach to time series analysis. As always, I actively solicit your comments, complaints, and
suggestions.

New features

New date-handling commands: Alan Riley’s new date-handling commands (described in dm20 earlier in this issue) have been
included in the time series library. They are listed in Table 1.

A catalog of programs

Table 1 lists the user-level programs in the time series library. Each program’s status is indicated by a letter grade. An ‘A’
indicates a program that is safe for general use. An ‘A’ program has been documented—in its current form—in the STB and
follows all Stata guidelines for an estimation command, where relevant (see [4] estimate). A ‘B’ program produces accurate
results, but either is not fully documented, not completely compatible with the standard time series syntax adopted in the library,
or not in conformance with the guidelines for an estimation command. Most ‘B’ programs receive that grade because they have
been revised significantly since they were last documented. A ‘C’ program is incomplete in significant ways but can be used
safely by an advanced Stata user. A ‘D’ program has serious deficiencies, however its code may provide a useful model to
advanced Stata users writing their own time series programs. An ‘O’ program is obsolete, that is, it has been superseded by a
newer program. An ‘O’ program is retained if it is still called by one or two user-level programs. There are currently no ‘D’ or
‘O’ programs.

Utilities for time series analysis

Writing programs for time series analysis presents a variety of challenges. In developing this library of programs, I had to
write a pool of utility programs to interpret the time series options, to generate lags, to manipulate the list of variables in a lag
polynomial, and so on. I recommend that you familiarize yourself with these utilities, if you wish to write your own time series
programs. A list of some of the most frequently used utility programs appears in Table 2 below.

Future developments and call for comments

This library of time series programs is under constant revision and extension. Projects under development include programs
to estimate rolling regressions, to estimate vector autoregressions, and to perform maximum-likelihood tests for cointegration.
Older programs are being revised to bring them up to Stata’s standards for estimation programs. A disadvantage of these constant
revisions is the likelihood of inadvertently introducing errors into the programs. The advantage of constant revision is the ease
and rapidity of fixing these errors and the steady increase in Stata’s time series capabilities. I encourage you to alert me to any
errors or inconveniences you find.

If you find an error in any of these commands, I will attempt to correct it by the next issue of the STB. To speed the process,
please send me a diskette containing a do-file that replicates the error. Debugging software is similar to auto mechanics: if I
can’t reproduce the problem, I can’t fix it.

26 Stata Technical Bulletin STB-20

Table 1: User-level programs

Command Status Documentation Description

ac A sts1 display autocorrelation plot
chow C — perform Chow test for a shift in regression coefficients
coint B sts2 perform Engle–Granger cointegration test
cusum B — perform CUSUM test of regression stability. (Note: this name

conflicts with Stata’s cusum command for binary variables.)
datevars A sts4 specify date variables
dickey B sts2 perform unit root tests
dif A sts2 generate differences
downame A dm20 convert code to day-of-week name
dropoper A sts2 drop operator variables
findlag B sts2 find optimal lag length
findsmpl B sts4 display sample coverage
growth A sts2 generate growth rates
growthi A sts2 immediate form of growth

lag A sts2 generate lags
lastday A dm20 calculate last day of month
lead A sts2 generate leads
lstbday A dm20 calculate last business day of month
mdytodow A dm20 calculate day of week from month/day/year
mnthname A dm20 convert code to month name
namedow A dm20 convert name to day of week code
namemnth A dm20 convert name to month code
pac A sts1 display partial autocorrelation plot
pearson A sg5.1 calculate Pearson correlation with p-value
period A sts2 specify period (frequency) of data
quandt B — calculate Quandt statistics for a break in a regression
regdiag B sg20 calculate regression diagnostics
spear A sg5.1 Spearman correlation with p-value
tauprob A sts6 approximate p-values for unit root and cointegration tests
testsum B — test whether the sum of a set of regression coefficients is zero
today A dm20 calculate today
tsfit A sts4 estimate a time series regression
tsload B — load an ad hoc time series equation into memory
tsmult A sts4 display information about lag polynomials
tspred B — dynamically forecast or simulate a time series regression
tsreg A sts4 combined tsfit, tsmult, and regdiag

xcorr A sts3 calculate cross correlations
ystrday A dm20 calculate yesterday from today

For more information on these programs, type ‘help ts’ or ‘help command-name’.

Table 2: Utility programs

Command Description

ac calculate autocorrelations, standard errors, and Q-statistics
addl “add” a lag operator to a variable name
addop “add” an arbitrary operator to a variable name
getrres calculate recursive residuals for a regression model
inlist determine whether a token appears in a token list
invlist determine whether a varname appears in a varlist
opnum decode the operators (and their powers) in a varname
parsevl parse a varlist to replace abbreviations
subchar replace one character in a string with another
ts meqn parse a time series command and generate lags
ts pars parse a time series command into useful macros
faketemp generate temporary variable names that can be lagged

Reference
Becketti, S. 1994. sts7: A library of time series programs for Stata. Stata Technical Bulletin 17: 28–32.

sts8 Hansen’s test for parameter instability

Ken Heinecke and Charles Morris, Federal Reserve Bank of Kansas City, FAX 816-881-2199

In order to conduct statistical inference and prediction with a regression model, the parameters of the model must be stable.
A large number of statistics have been developed to test the null hypothesis of parameter stability. Among the most popular of

Stata Technical Bulletin 27

these statistics are the Chow (1960) test, the Quandt (1958, 1960) test, and the CUSUM and CUSUM of squares tests (Brown,
Durbin, and Evans 1975).

These tests are distinguished by their alternative hypotheses and their power. Not surprisingly, tests with narrowly defined
alternatives have more power, at least against the chosen alternative. Unfortunately, narrowly defined tests can be misleading
when confronted with a more general form of parameter instability.

Among the tests mentioned above, the Chow test is the most sharply focused and, thus, the most powerful. The alternative
hypothesis is that one or more regression parameters changed values at a single, known break point. This form of instability
is frequently not plausible. Moreover, it is rare in observational data to know with certainty and exogenously (that is, without
peeking at the data) when the parameters shifted.

The Quandt test is a generalization of the Chow test; it gives up power to broaden the alternative. In the Quandt test, the
alternative hypothesis is that one or more regression parameters changed values at a single, unknown break point. In essence, the
Quandt test performs a Chow test at all potential break points and chooses the statistic that most strongly favors the alternative
hypothesis. A drawback to the Quandt test is that choosing the break point endogenously gives the statistic an unknown
distribution. Critical values must be developed using Monte Carlo or bootstrap methods each time one wishes to perform the test.
In both the Quandt and the Chow tests, the constancy of the error variance is an important part of the maintained hypothesis.

The CUSUM and CUSUM of squares tests are the most general of these tests. They calculate cumulative sums (and sums
of squares) of recursive (rolling, one-step-ahead) residuals. Under the null, the distribution of these cumulative sums is known.
Any model breakdown can lead the cumulative sums to exceed their critical values. Unfortunately, the extreme generality of
the CUSUM and CUSUM of squares tests reduces their power substantially. In practice, the CUSUM and CUSUM of squares tests
frequently have scant success in detecting parameter instability, particularly in observational (as opposed to experimental) data.

[The Stata time series library contains chow, quandt, and cusum: commands for the Chow, Quandt, and CUSUM (and CUSUM of squares)
tests, respectively. cusum and quandt are level B commands, which means they produce accurate results but are either not fully documented, not
compatible with the standard time series syntax, or not in conformance with Stata’s guidelines for an estimation command. quandt reports the
results of the Quandt test, but it does not calculate Monte Carlo or bootstrap critical values and confidence intervals. These calculations can be very
time-consuming. chow is a level C command, which means it is incomplete in significant ways but can be used safely by an advanced Stata user.
chow also calculates the Farley–Hinich–McGuire test which allows the variable parameters to follow a deterministic trend after the break point. See
sts7.3 above for more information on the Stata time series library—Ed.]

Hansen’s test

The tests discussed above illustrate a common dilemma—the desire to find a test that accommodates a very general alternative
hypothesis while retaining high power. It is rare that a test statistic with these properties and a known, standard distribution
under the null can be developed.

An alternative approach is to derive an asymptotic approximation to the local power, that is, to the slope of the power
function at the null hypothesis in the direction of interest. This asymptotic approximation can be used to develop tests with
maximal local power (Cox and Hinkley 1974). The test statistics will generally follow nonstandard distributions under the null,
but critical values also can be derived from the asymptotic local power function.

Hansen (1992) has followed this approach in developing an alternative statistic that is the locally most powerful test of the
null hypothesis of constant parameters (both the coefficients and the variance of the error term) against the alternative hypothesis
that the parameters follow a martingale. This alternative is very general: it accommodates parameters that change at unknown
times and parameters that follow a random walk.

The only constraint on the application of Hansen’s test is that the variables in the regression model must be stationary,
that is, the variables must follow unconditional distributions that are constant over time. An example of a nonstationary variable
is the United States gross domestic product. GDP grows as population, the capital stock, and productivity grow. Its mean and
variance are growing over time, thus GDP is not drawn from the same distribution at different points in time. Hansen provides
suggestions for treating models with nonstationary variables.

I have written hansen, an ado-file that calculates the Hansen test. The syntax of hansen is

hansen varlist
�
if exp

� �
in range

� �
, regress tsfit-options

�
The test statistics are based on the residuals from the regression model in varlist estimated over the entire sample. hansen uses
tsfit (Becketti 1994) to estimate the regression model, hence all the tsfit options can be used. hansen offers one additional
option, regress, which causes the regression output to be displayed. The default is to suppress the regression output.

28 Stata Technical Bulletin STB-20

Development of the test

Consider the standard linear regression model

yt = x
0

t� + �t;

E(�t j xt) = 0;

E(�
2
t) = �

2
t ;

lim
T!1

1

T

TX
t=1

�
2
t = �

2
; t = 1; : : : ; T

where xt is a K � 1 vector containing the t-th observation on K regressors. The null hypothesis is that the model’s parameters,
� and �

2, are constant.

The first-order conditions for the least squares estimates of the parameters are

TX
t=1

fit = 0; i = 1; : : : ;K + 1

where

fit =

�
xitb�t; i = 1; : : : ;Kb�2t � b�2; i = K + 1.

The first K first-order conditions determine b�. The (K + 1)-st equation defines b�2 to be the maximum-likelihood (rather than
the unbiased) estimator of the error variance.

Hansen’s test statistic for the ith parameter is

Li =
1

TVi

TX
t=1

S
2
it;

where Sit is the cumulative first-order condition through period t for the ith parameter, that is,

Sit =

tX
j=1

fij ;

and where

Vi =

TX
t=1

f
2
it:

The joint test statistic for a change in the model’s parameters is

Lc =
1

T

TX
t=1

S
0

tV
�1
St;

where
ft = (f1t; : : : ; fK+1;t)

0
;

St = (S1t; : : : ; SK+1;t)
0
; and

V =

TX
t=1

ftf
0

t :

Note that the Vi above are just the diagonal elements of the matrix V .

Parameter stability is rejected if the test statistics Li and Lc are large. The test statistics are basically averages of the
squared cumulative first-order conditions, Sit. The cumulative first-order condition for the entire sample, SiT , equals zero by
construction. Intuitively, the cumulative first-order conditions for subsamples ending in period j; j < T , should wander around

Stata Technical Bulletin 29

zero if the parameters are stable, in which case the test statistics will be small. If the parameters are not stable, the cumulative
first-order conditions for the subsamples will wander away from zero, in which case the statistics will be large. Note that the
Hansen statistics are based on full-sample estimates only, in contrast to the CUSUM and CUSUM of squares tests which require
calculation of the recursive (rolling, one-step-ahead) residuals.

The Hansen statistics follow a nonstandard distribution. However this distribution depends only on the number of parameters
being tested. Hansen’s Table 1 (1992) presents asymptotic critical values for the test statistics. The 5 and 10 percent critical
values for tests of individual parameters (tests with one degree of freedom) are 0.470 and 0.353, respectively.

Example

We use hansen to test the stability of the parameters in an error correction model for bank loans. The data and the example
are taken from Becketti and Morris (1993).

An important question in monetary economics is whether nonbank sources of short-term business finance have become
better substitutes for bank commercial and industrial (C&I) loans. In the traditional view, demand for C&I loans is relatively
inelastic. As a consequence, the central bank can exert a powerful influence over economic activity by adjusting the quantity of
bank reserves and thereby adjusting the supply of C&I loans. The increasing globalization of financial markets in recent years
along with the growth both of finance company business lending and of the commercial paper market have raised questions
about the continued relevance of the traditional view. If businesses have come to regard nonbank sources of short-term finance
as good substitutes for C&I loans, the central bank’s ability to influence economic activity through the quantity of bank reserves
may be diminished.

An increase in the substitutability between bank and nonbank loans would be observed as an increase in the own-price-
elasticity of demand for C&I loans. It is difficult to estimate this elasticity directly because it is difficult to estimate the structural
equation for bank loan demand. However, a change in any of the structural parameters of a model will, in general, change all
of the parameters of the reduced form model (the transformation of the structural form that eliminates endogenous variables as
regressors). In other words, the reduced form equation for C&I loans should exhibit parameter instability if bank and nonbank
loans have become better substitutes over time.

Becketti and Morris derive the direction in which some of the reduced form parameters should move if the own-price-
elasticity demand of bank loans has increased. They apply a variety of tests for parameter instability to this reduced form
equation—including the Chow, Quandt, CUSUM, and CUSUM of squares tests—and find little evidence that bank and nonbank
loans have become better substitutes.

The following are the data used by Becketti and Morris:

. use bankloan, clear

(1955:Q2-1992:Q3)

. describe

Contains data from bankloan.dta

Obs: 153 (max= 14182) 1955:Q2-1992:Q3

Vars: 11 (max= 99)

Width: 35 (max= 200)

1. year int %8.0g Year

2. quarter int %8.0g Quarter

3. Dcc int %8.0g Credit controls of 1980 dummy

4. D731 byte %8.0g cp rate > com bank rate dummy

5. cash float %9.0g growth rate of cashflow

6. ci float %9.0g growth rate of C&I loans

7. finr float %9.0g gr rate of business fixed inv

8. invb float %9.0g gr rate of inventories

9. rff float %9.0g change in federal funds rate

10. rmort float %9.0g change in mortgage rate

11. rtb3 float %9.0g change in 3-mo t-bill yield

Sorted by: year quarter

30 Stata Technical Bulletin STB-20

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+---

year | 153 1973.124 11.0842 1954 1992

quarter | 153 2.503268 1.118764 1 4

Dcc | 153 .0065359 .0808452 0 1

D731 | 153 .0065359 .0808452 0 1

cash | 152 .0189988 .0391609 -.1034894 .1195951

ci | 152 .0209342 .0200359 -.0264533 .1192203

finr | 152 .0181174 .0262676 -.0856726 .0946808

invb | 152 .0146167 .0150725 -.015542 .0593133

rff | 152 .0001468 .010778 -.0399067 .0601867

rmort | 152 .000232 .0052554 -.0210667 .0157333

rtb3 | 152 .0001446 .0085612 -.0373367 .0446167

The variables in the Becketti and Morris study, like most economic variables, are nonstationary. When nonstationary variables
obey a stationary linear relation in the long run, the variables are said to be cointegrated, and the relationship between the
variables can conveniently be estimated in error correction form.

Take, as an example, two nonstationary variables, yt and xt, that follow the dynamic statistical relationship

A
�(L)yt = B

�(L)xt + �t:

where L is the lag operator (Lxt � xt�1) and A
�() and B

�() are polynomials in the lag operator. (The lag command in the
Stata time series library can be used to mimic the lag operator.) By rearranging terms, this model can be written as

A(L)�yt = B(L)�xt � �(yt�1 � �xt�1) + �t

where � is the difference operator (�xt � xt � xt�1 � (1�L)xt). (The dif command in the Stata time series library can be
used to mimic the difference operator.) This latter equation is called an error correction model and (yt�1 � �xt�1) is called the
error correction term. If yt and xt are cointegrated, the error correction term is the stationary linear combination of the variables.
The error correction model can be estimated consistently by least squares. The coefficients in the error correction term (1;��)
are called the cointegrating vector. The error correction model and the error correction term generalize in a straightforward way
to models with many variables.

The error correction model has an intuitively appealing interpretation. The cointegrating vector reveals the equilibrium
(long-run) relationship between the variables. The error correction term is a measure of how far the variables have deviated from
their equilibrium relationship. The coefficient on the error correction term, �, is a measure of how rapidly yt responds to these
deviations. Large values of � correspond to rapid speeds of adjustment back to equilibrium. The other coefficients in the model
measure the short-run relationship between the variables, that is, the association between their short-run fluctuations that would
occur even if the variables were in long-run equilibrium.

The error correction term contains lagged values of the nonstationary variables as regressors. The Hansen test cannot be
applied to nonstationary regressors, thus the test cannot be applied directly to the model. If the cointegrating vector is known,
the error correction term—which is stationary—can be entered as a regressor. When the cointegrating vector is not known,
Hansen (1992) recommends a two-step procedure: first estimate the cointegrating vector, then enter the estimated cointegrating
vector as a generated regressor in the error correction model.

Becketti and Morris estimate the following reduced form equation for C&I loans:

�Lt = �+ �1�Lt�1 + �2�Lt�2 + �1;1�It�1 + �1;2�It�2 + �2;1�Vt�1 + �3;1�Ct�1

+ �4;1�rf;t�1 + �5;1�rm;t�1 + �5;2�rm;t�2 + �6;1�r3;t�1

� �(Lt�1 � �1It�1 � �2Vt�1 � �3Ct�1 � �4rf;t�1 � �5rm;t�1 � �6r3;t�1)

where
Lt = the log of bank C&I loans,
It = the log of business fixed investment,
Vt = the log of business inventories,
Ct = the log of corporate cash flow,
rf;t = the federal funds rate,
rm;t = the mortgage interest rate,
r3;t = the secondary market yield on 3-month Treasury bills.

Stata Technical Bulletin 31

Two dummy variables are also included to account for the credit controls of 1980 and for an episode in 1973 where price controls
temporarily held the bank loan rate below the commercial paper rate.

Becketti and Morris find that some of the variables in the model do not enter the error correction term, that is, some of the
�i are zero. They estimate a constrained cointegrating vector using the constrained maximum likelihood procedure of Johansen
and Juselius (1990). In the output for the Hansen test listed below, L.ghat is the lagged value of the estimated error correction
term.

. hansen ci finr invb cash rff rmort rtb3, lags(2,2,1,1,1,2,1) static(L.ghat D731 Dcc) regress

Quarterly data: 1955:2 to 1992:3 (150 obs)

Source | SS df MS Number of obs = 150

---------+------------------------------ F(13, 136) = 23.02

Model | .04111377 13 .003162598 Prob > F = 0.0000

Residual | .018686145 136 .000137398 R-square = 0.6875

---------+------------------------------ Adj R-square = 0.6577

Total | .059799915 149 .000401342 Root MSE = .01172

--

ci | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

L.ci | .5962585 .0811896 7.344 0.000 .4357012 .7568159

L2.ci | -.0936603 .0791853 -1.183 0.239 -.2502542 .0629335

L.finr | .1191324 .0585116 2.036 0.044 .0034221 .2348428

L2.finr | .0383112 .0569799 0.672 0.502 -.0743699 .1509923

L.invb | .1985529 .1010209 1.965 0.051 -.0012221 .398328

L.cash | -.0056775 .0333951 -0.170 0.865 -.0717182 .0603633

L.rff | -.4328891 .2358728 -1.835 0.069 -.899342 .0335638

L.rmort | .1645535 .2592306 0.635 0.527 -.3480907 .6771977

L2.rmor | -.1926119 .2218472 -0.868 0.387 -.6313283 .2461045

L.rtb3 | .4315918 .316005 1.366 0.174 -.1933273 1.056511

L.ghat | .0002538 .0008543 0.297 0.767 -.0014356 .0019433

D731 | .0770014 .0120174 6.407 0.000 .0532362 .1007666

Dcc | -.0340361 .0129517 -2.628 0.010 -.0596489 -.0084232

_cons | .003838 .0026582 1.444 0.151 -.0014188 .0090947

--

Individual Statistics

L.ci = .20142736

L2.ci = .15381964

L.finr = .19617365

L2.finr = .2406588

L.invb = .09370907

L.cash = .31049186

L.rff = .05287014

L.rmort = .0242646

L2.rmor = .0490725

L.rtb3 = .0538896

L.ghat = .38104913

D731 = .52666667

Dcc = .33333333

_cons = .33570572

sigma = .1079207

Model test statistic with 15 degrees of freedom:

_Lc = 2.8214405

The Hansen statistics for changes in the parameters of the reduced form bank loan equation show virtually no evidence of
parameter instability. Among the test statistics for changes in the individual parameters, only the statistic for the error correction
term, L.ghat, is statistically significant at the 10-percent level and only the statistic for the 1973:Q1 dummy, D731, is significant
at the 5-percent level. The joint test for a general breakdown in the equation is not statistically significant. The 5 and 10 percent
critical values with 15 degrees of freedom are 3.54 and 3.26, respectively. Thus the Hansen test supports the conclusion of
Becketti and Morris that the reduced form equation for C&I loans provides little evidence of a change in the elasticity of demand
for bank loans.

Caveat

In addition to tsfit, hansen also utilizes a program called mkmat which stores a variables as an N� 1 matrix, that is,
as a column vector (Heinecke 1994). Matrices in Stata are constrained by the matsize, a parameter that has a limit of 400 in
the Unix and Intercooled versions of Stata ([5u] matsize). Thus, in its current form, hansen cannot accommodate a model with
more than 399 observations.

32 Stata Technical Bulletin STB-20

Also, as noted above, hansen calls tsfit to estimate the regression. As a consequence, the Stata time series library must
be installed in order to use hansen.

[See ip6 earlier in this issue for mkmat. See ip6.1, also in this issue, for a discussion of this approach to matrix calculations. See sts7.3 above

for more information on the Stata time series library—Ed.]

References
Becketti, S. 1994. sts7: A library of time series programs for Stata. Stata Technical Bulletin 17: 30–32.

Becketti, S. and C. Morris. 1993. Reduced form evidence on the substitutability between bank and nonbank loans. Research Working Paper RWP 93–18.
Federal Reserve Bank of Kansas City.

Brown, R. L., J. Durbin, and J. M. Evans. 1975. Techniques for testing the constancy of regression relationships over time. Journal of the Royal
Statistical Society, Series B. 37: 149–192.

Chow, G. C. 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28: 591–605.

Cox, D. R. and D. V. Hinkley. 1974. Theoretical Statistics London: Chapman and Hall.

Hansen, B. E. 1992. Testing for parameter instability in linear models. Journal of Policy Modeling 14: 517–533.

Heinecke, K. 1994. ip6: Storing variables in vectors and matrices. Stata Technical Bulletin 20: 8–9.

Quandt, R. E. 1958. The estimation of the parameters of a linear regression system obeying two separate regimes. Journal of the American Statistical
Association 53: 873–880.

——. 1960. Tests of the hypothesis that a linear regression obeys two separate regimes. Journal of the American Statistical Association 55: 324–330.

Johansen, S. and K. Juselius. 1990. Maximum likelihood estimation and inference on cointegration–with applications to the demand for money. Oxford
Bulletin of Economics and Statistics 52: 169–210.

zz3.4 Computerized index for the STB (Update)

William Gould, Stata Corporation, FAX 409-696-4601

The STBinformer is a computerized index to every article and program published in the STB. The command (and entire
syntax) to run the STBinformer is stb. Once the program is running, you can get complete instructions for searching the index
by typing ? for help or ?? for more detailed help.

The STBinformer appeared for the first time on the STB-16 distribution diskette and included indices for the first fifteen
issues of the STB. The STB-20 distribution diskette contains an updated version of the STBinformer that includes indices for the
first nineteen issues of the STB. As the original insert stated, I intend to include an updated copy of this computerized index on
every STB diskette. I encourage you to contact me with suggestions for changes and improvements in the program.

Reference
Gould W. 1993. Computerized index for the STB. Stata Technical Bulletin 16: 27–32.

