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an57 Stata is on the Web

Chinh Nguyen, webmaster@stata.com

As of February 1, Stata has a site on the World Wide Web. To view our home page, point your browser to
http://www.stata.com. This site contains useful materials for Stata users as well as potential users. Let us know what
you like, dislike, and what you would like to see added.

crc43 Wald test of nonlinear hypotheses after model estimation

The syntax of testnl is

testnl eqnamelist
�
, g(matname1) r(matname2)

�
testnl tests (linear or nonlinear) hypotheses about the estimated parameters from the most recently estimated model. The
equations to be tested must be previously defined by eq; see [5s] eq.

Options

g(matname1) specifies a matrix name to be created containing G, the matrix of derivatives of R(b) with respect to b; see
Methods and Formulas below. This option is intended for programmers needing an internal ingredient of the calculation.

r(matname2) specifies a matrix name to be created containing R(b) � q; see Methods and Formulas below. This option is
intended for programmers needing an internal ingredient of the calculation.

Remarks

There are three steps to using testnl: first, estimate a model using any of Stata’s estimation commands (regress, fit,
logistic, etc.); second, define the equation(s) to be tested using eq; finally, perform the test using testnl. For example,

. regress y x1 x2 x3 x4

(output omitted)

. eq one: _b[x1]/_b[x2] = _b[x3]

. testnl one

one: _b[x1]/_b[x2] = _b[x3]

F(1, 69) = 0.01

Prob > F = 0.9322

. eq two: _b[x4] = _b[x1]

. testnl one two

one: _b[x1]/_b[x2] = _b[x3]

two: _b[x4] = _b[x1]

F(2, 69) = 3.40

Prob > F = 0.0392

testnl reports the constraints being tested followed by an F or �2 test, as appropriate. testnl is not restricted to being used
solely after linear regression; it can be used after any estimation command:

. logit outcome x1 x2 x3 x4

. testnl one two

one: _b[x1]/_b[x2] = _b[x3]

two: _b[x4] = _b[x1]

chi2(2) = 2.66

Prob > chi2 = 0.2648

Using testnl to perform linear tests

testnl may be used to test linear constraints, but test (see [5s] test) is faster. For instance, in the above example, if you
wanted to test constraint two by itself, you could type

. testnl two

but it would take less computer time if you typed

. test _b[x4] = _b[x1]
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Specifying constraints

You specify the constraints to be tested using eq. Although eq has various syntaxes, the best for storing hypotheses is

eq eqname: exp = exp

You may double the equals sign if you wish:

eq eqname: exp == exp

The algebraic form in which you specify the constraint does not matter; you could type

. eq mult: _b[mpg]*_b[weight] = 1

or

. eq mult: _b[mpg] = 1/_b[weight]

or you could express the constraint any other way you wished.

You must, however, exercise one caution: Users of test often refer to the coefficient on a variable by specifying the
variable name, e.g.,

. regress price weight mpg

. test mpg = 0

More formally, they should type

. test _b[mpg] = 0

but test allows the b[ ] surrounding the variable name to be omitted. testnl does not allow this shorthand. Typing

. eq zero: mpg=0

specifies the constraint that the value of variable mpg in the first observation is zero. If you make this mistake, in some cases
testnl will catch it:

. testnl zero

eq zero: contains reference to X rather than _b[X]

r(198);

In other cases testnl may not catch the mistake; in that case, the constraint will be dropped without explanation because it
does not make sense:

. testnl zero

zero: mpg=0

Constraint zero dropped

Note that there are other reasons constraints may be dropped; see Dropped constraints below.

The worst case, however, is

. eq mult: _b[weight]*mpg = 1

when what you mean is not that b[weight] equals the reciprocal of the value of mpg in the first observation, but rather

. eq mult: _b[weight]*_b[mpg] = 1

Sometimes this mistake will be flagged by the “contains X and not b[X]” error and sometimes not. Be careful.

Use of testnl after multiple-equation estimation commands

testnl, like test, can be used after any Stata estimation command. When used after a multiple-equation command such
as mlogit or heckman, you refer to coefficients using Stata’s standard syntax: [eqname] b[varname].

Stata’s single equation estimation output looks like:

| Coef : : :

----------+---------- : : :

weight | 12.27 : : :  coefficient is _b[weight]
mpg | 3.21 : : :

--------------------- : : :
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Stata’s multiple equation output looks like:

| Coef : : :

----------+---------- : : :

cat1 | : : :

weight | 12.27 : : :  coefficient is [cat1]_b[weight]
mpg | 3.21 : : :

----------+---------- : : :

8 | : : :

weight | 5.83 : : :  coefficient is [8]_b[weight]
mpg | 7.43 : : :

--------------------- : : :

Dropped constraints

testnl automatically drops constraints when

1. They are nonbinding, e.g., b[mpg]= b[mpg]. More subtle cases include

b[mpg]* b[weight] = 4

b[weight] = 2

b[mpg] = 2

In this example, the 3rd constraint is nonbinding since it is implied by the first two.

2. They are contradictory, e.g., b[mpg]=2 and b[mpg]=3. More subtle cases include

b[mpg]* b[weight] = 4

b[weight] = 2

b[mpg] = 3

The 3rd constraint contradicts the first two.

Saved Results

testnl saves in the global S # macros:

$S 3 test (numerator) degrees of freedom
$S 5 denominator degrees of freedom (F ) or . (�2)
$S 6 F or �2 statistic

Methods and Formulas

You have estimated a model. Define b as resulting the 1� k parameter vector and V as the k� k covariance matrix. The
(linear or nonlinear) hypothesis is given by R(b) = q, where R is a function returning a j � 1 vector. The Wald test formula
is (Greene 1993, p. 336)

W = (R(b)� q)0[GVG0]�1(R(b)� q)

where G = @R(b)=@b is the derivative matrix of R(b) with respect to b.

W is distributed �
2 with j degrees of freedom if V is an asymptotic covariance matrix.

F = W=j is distributed F with j numerator and n� k denominator degrees of freedom in the case of linear regression.

References
Greene, W. H. 1993. Econometric Analysis. 2d ed. New York: Macmillan.

dm27.1 Correction to improved collapse

William Gould, Stata Corp., FAX 409-696-4601

A typographical error in coll2.ado produced the error message “x not found” when the maximum (max) of a variable
was requested. This error is now fixed.
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dm37 Extended merge capabilities

Jon Faust, Board of Governors of the Federal Reserve System, faustj@frb.gov

Stata’s merge command can merge only two data sets at a time. This insert presents xmerge and xmerged, two programs
that overcome this limitation. xmerge match-merges two or more Stata data sets, while xmerged match-merges two or more
Stata dictionary files.

The syntax of these commands is

f xmerge j xmerged g varlist using file-list

For xmerge, the file-list refers to .dta files; for xmerge, it refers to .dct files.

In addition to merging more than two files at a time, xmerge and xmerged have some other differences from merge.

1. xmerge and xmerged destroy the current data set without warning.

2. xmerge and xmerged perform only match-merges.

3. The current data set is not included in the merge.

4. merge is not preserved.

Example
. set obs 5

obs was 0, now 5

. generate int index = 900 + _n

. generate one = _n

. sort index

. list

index one

1. 901 1

2. 902 2

3. 903 3

4. 904 4

5. 905 5

. save one

file one.dta saved

. outfile using one, dictionary

. drop one

. generate int two = 2*_n

. save two

file two.dta saved

. outfile using two, dictionary

. drop two

. generate int three = 3*_n

. save three

file three.dta saved

. outfile using three, dictionary

. drop _all

. xmerge index using one two three

. list

index one two three

1. 901 1 2 3

2. 902 2 4 6

3. 903 3 6 9

4. 904 4 8 12

5. 905 5 10 15

. drop _all

. xmerged index using one two three
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. list

index one two three

1. 901 1 2 3

2. 902 2 4 6

3. 903 3 6 9

4. 904 4 8 12

5. 905 5 10 15

dm38 A more automated merge procedure

Robert M. Farmer, Alabama Quality Assurance Foundation, Inc., 205-970-1600

In addition to providing a wide range of statistical commands, Stata also provides a full set of data management commands.
Perhaps the most powerful of these is merge, which combines the current data set (the master data set) with a data set on disk
(the using data set). Commonly, the data sets are merged based on the values of a matching variable that determines which
observations from each data set are joined.

The user must complete several steps to perform a successful match-merge in Stata. First, the user must sort both data sets
by the matching variable. In addition, the user must make sure that neither data set contains merge, the diagnostic variable
created by the merge command. Finally, the user must use the master data set and type

. merge mergevar using mergefile

where mergevar is the matching variable and mergefile is the using data set.

This process is fraught with potential errors:

1. Both the master and the using data sets must contain the matching variable. No provision is made for data sets that contain
matching variables with different names.

2. Both data sets set must be sorted by the matching variable.

3. The variable merge cannot exist in either data set.

4. The resulting merged data set must fit in the current memory partition.

This insert presents mergein, a program that automates much of the process of merging data sets. mergein guarantees
that both the master and using data sets are sorted correctly and that neither set contains a variable called merge. In addition,
mergein permits the matching variable to have a different name in each data set.

Syntax

mergein mergevar mergefile
�

mergevar-2
�

mergevar is the matching variable in the master data set. If mergevar-2 is omitted, the matching variable in the using data set
is assumed to be called mergevar, consistent with the behavior of Stata’s merge command. mergefile is the filename (with path,
if necessary) of the using data set.

mergein has some known problems. On data sets with small numbers of variables or observations, mergein will sometimes
fail. In these cases, the original master data set is left in place. Also, merging a small master data set with a much larger using
data set can cause problems. mergein is more robust when the larger data set is the master.

Examples
. set obs 10

obs was 0, now 10

. generate int onedex = 900 + _n

. generate int one = _n

. list

onedex one

1. 901 1

2. 902 2

3. 903 3

4. 904 4

5. 905 5

6. 906 6

7. 907 7

8. 908 8
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9. 909 9

10. 910 10

. save one

file one.dta saved

. drop _all

. set obs 5

obs was 0, now 5

. generate int twodex = 900 + _n

. generate int two = 2 * _n

. save two

file two.dta saved

. drop _all

. set obs 25

obs was 0, now 25

. generate int thrdex = 900 + _n

. generate int three = 3 * _n

. save three

file three.dta saved

. use one

. mergein onedex two twodex

. list

onedex one two _merge

1. 901 1 2 3

2. 902 2 4 3

3. 903 3 6 3

4. 904 4 8 3

5. 905 5 10 3

6. 906 6 . 1

7. 907 7 . 1

8. 908 8 . 1

9. 909 9 . 1

10. 910 10 . 1

. use one, clear

. mergein onedex three thrdex

. list

onedex one three _merge

1. 901 1 3 3

2. 902 2 6 3

3. 903 3 9 3

4. 904 4 12 3

5. 905 5 15 3

6. 906 6 18 3

7. 907 7 21 3

8. 908 8 24 3

9. 909 9 27 3

10. 910 10 30 3

11. 911 . 33 2

12. 912 . 36 2

13. 913 . 39 2

14. 914 . 42 2

15. 915 . 45 2

16. 916 . 48 2

17. 917 . 51 2

18. 918 . 54 2

19. 919 . 57 2

20. 920 . 60 2

21. 921 . 63 2

22. 922 . 66 2

23. 923 . 69 2

24. 924 . 72 2

25. 925 . 75 2
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dm39 Using .hlp files to document data analysis

Michael Hills, London School of Hygiene and Tropical Medicine, London, mhills@lshtm.ac.uk

As every data analyst knows, without documentation the details of exactly what happened during the analysis fade beyond
recall within a few months. Anything which makes the rather tedious chore of documentation easier is welcome. The use of
help files is suggested as an additional tool for documentation which can be used along with standard Stata tools such as labeling
variables and values, using describe, keeping log files, and using dtainfo (Schmidt 1995).

Stata users will be familiar with help which pulls in the documentation for a command and displays it on the screen. This
information is in a file called name.hlp, where name is the name of the command. The .hlp file is usually in same directory
as the corresponding .ado file, but can be anywhere in the adopath. The file contains text with the additional convention that
text enclosed by hat signs, as in ^text^, is highlighted in the display. To use this facility for documenting data and analysis
you simply create documentation files with the extension .hlp. These can then be pulled in and displayed at any time during
a Stata session using help, and the edit command can be used to edit them. The convenient place to put these files is in the
current working directory, along with the files they document. An example of a simple help file for the data file diet.dta, used
in teaching, follows.

^Diet and heart disease^

These data arose from a pilot study of the use of a weighed diet over

7 days in epidemiological studies. The data in ^diet^ relate subsequent

incidence of ischemic heart disease (IHD) to dietary energy intake.

The data are unpublished - further details about the study are given in

^Morris JN et al, British Medical Journal, 19 Nov 1977, 2, 1307-1314^

^id^ identity number

^agein^ age at entry

^y^ observation time in years

^d^ 1=ischemic heart disease, 0 otherwise

^job^ 0=driver 1=conductor 2=bank

^month^ month when weighed dietary survey took place

^loweng^ 1=total energy less than 2750 kcals, 0 otherwise

^toteng^ total energy (kcals/day)

^height^ height(cms)

^weight^ weight(kgs)

^htgroup^ grouped height with cutpoints min/165/170/175/180/max

coded 1, 2, 3, 4, 5.

For a large project I find it convenient to have a help file for the project which lists all of the data files involved, with a
short description of each. For each data file I have a help file which starts with a description of what is in the file, and then lists
the variable names (highlighted) together with how they are coded. Opening a log file and using describe is a good way of
starting this help file. Full details about coding can then be added, and further comments can be included as time passes. Finally
I have a help file which documents the various .do files which are used to carry out the analysis. Keeping all documentation in
the computer in this way has advantages—it means that you can check on coding details at any time, and document as you go
along.

Reference
Schmidt, T. J. 1995. dm35: A utility for surveying Stata format data sets. Stata Technical Bulletin 28: 7–9.

dm40 Converting string variables to numeric variables

Robert M. Farmer, Alabama Quality Assurance Foundation, Inc., 205-970-1600

Very often, numeric variables obtained from an outside source or another program will be stored as strings. Stata can read
these values into string variables, but they must be converted into numeric variables before they can be used in any calculations.

Stata provides the real() function for this purpose. However, this function has a couple of inconvenient features. First,
real() cannot determine the most economical datatype for storing a converted string. Second, real() does not recognize some
of the suffixes that other programs, such as spreadsheets, commonly attach to numbers. Thus, strings like “12.5%” and “72d”
are converted to missing values by real().

This insert presents conv2num, a utility program that makes string-to-numeric conversion more convenient. The syntax is

conv2num string-var
�
, nocompress generate(numeric-var) label(variable-label)

�
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If only the string-var is specified, it is converted to a numeric variable in place. Any completely nonnumeric values are
converted to missing. conv2num converts string-var to the most economical datatype possible without losing precision unless
the nocompress option is specified. If the numeric-var is also specified, a new variable with that name is generated to hold the
numeric values and the string-var is left as is. By default, the numeric-var is given the same variable label as the string-var.
However, if a label() is specified, it is used instead.

conv2num uses the real() function to perform the conversions, hence any precision limitations of real() are also
limitations of conv2num.

Examples
. use example

. describe

Contains data from example.dta

Obs: 6 (max= 71392)

Vars: 1 (max= 99) 14 Jan 1996 20:08

Width: 12 (max= 200)

1. strvar str12 %12s String containing numbers

Sorted by:

. list

strvar

1. 12.5%

2. 27

3. -5.0e-2

4. 0.3333333333

5. 1234567.89

6. hello, world

. conv2num strvar, generate(numeric) label("Numeric variable")

. describe

Contains data from example.dta

Obs: 6 (max= 71386)

Vars: 2 (max= 99) 14 Jan 1996 20:08

Width: 20 (max= 200)

1. strvar str12 %12s String containing numbers

2. numeric double %10.0g Numeric variable

Sorted by:

Note: Data has changed since last save

. list

strvar numeric

1. 12.5% 12.5

2. 27 27

3. -5.0e-2 -.05

4. 0.3333333333 .33333333

5. 1234567.89 1234567.9

6. hello, world .

. generate str12 newstr = string(int(10*numeric))

. conv2num newstr, generate(newnum)

. describe

Contains data from example.dta

Obs: 6 (max= 71386)

Vars: 4 (max= 99) 14 Jan 1996 20:08

Width: 36 (max= 200)

1. strvar str12 %12s String containing numbers

2. numeric double %10.0g Numeric variable

3. newstr str12 %12s

4. newnum long %10.0g

Sorted by:

Note: Data has changed since last save

. list

strvar numeric newstr newnum

1. 12.5% 12.5 125 125

2. 27 27 270 270

3. -5.0e-2 -.05 0 0

4. 0.3333333333 .33333333 3 3

5. 1234567.89 1234567.9 1.23e+07 12300000

6. hello, world . . .
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gr18 Graphing high-dimensional data using parallel coordinates

John R. Gleason, Syracuse University, 73241.717@compuserve.com

Effective methods for visualizing high-dimensional data sets are among the cornerstones of modern data analysis. Many
graphical tools have been devised for this task, an example of which is the widely used scatterplot matrix that Stata’s graph

command offers as an option. A scatterplot matrix is easy to understand and often reveals many interesting features of a data
set, but no single tool is likely to be best for all data analysis problems. This insert describes a command that implements an
alternative visualization tool, the parallel coordinates plot, a display that may be useful as an alternative or supplement to the
familiar scatterplot matrix. (For the sake of brevity, the phrase parallel coordinates will often be replaced with the acronym
ParC.)

A scatterplot represents the values of two variables (say, y1 and y2) as positions along the axes of the Cartesian coordinate
system, plotting each observation with some symbol (e.g., a dot). The key idea of a parallel coordinates plot is to rotate one axis
so that the y1- and y2-axes are parallel rather than perpendicular to each other. An individual observation consists of a position
on each axis, and is plotted as the line segment connecting those two positions. Let us pause, briefly, to demonstrate these two
approaches to graphing a set of bivariate observations.

Cartesian and parallel coordinates in the bivariate case

Consider a data set used by Campbell (1989) to locate bushfire scars. The raw data consist of satellite measurements on five
frequency bands for each of 38 pixels, and appear in Table 4 of Maronna and Yohai (1995), as well as in the file bushfire.dta

included with this insert.

. use bushfire

(Bushfire Scars)

. describe

Contains data from bushfire.dta

Obs: 38 (max= 10531) Bushfire Scars

Vars: 7 (max= 99) 29 Oct 1995 14:57

Width: 12 (max= 204)

1. f1 int %8.0g Frequency 1

2. f2 int %8.0g Frequency 2

3. f3 int %8.0g Frequency 3

4. f4 int %8.0g Frequency 4

5. f5 int %8.0g Frequency 5

6. pixel byte %8.0g Pixel No.

7. cluster byte %9.0g pix Pixel cluster

Sorted by:

A no-frills scatterplot of f1 versus f2 is created by the graph command below; the corresponding ParC plot is created by
the parcoord command below. The resulting graphs are shown in Figures 1 and 2.

. graph f1 f2, symbol(o)

(graph appears, see Figure 1)

. parcoord f1 f2

(graph appears, see Figure 2)

In Figure 1, each observation is represented by a small circle, and few readers will fail to detect a strong correlation between
f1 and f2. (In fact, the Pearson r = .80.) In Figure 2, the same data are represented as 38 line segments and, given the relative
novelty of this presentation, a bit more effort is required to recognize that f1 and f2 are positively correlated. But a strong
positive correlation means that f1 is roughly a linear re-expression of f2. Given that one may arbitrarily set the location and
scale for the axes of any graph, this means that position along the f1 axis should strongly resemble position along the f2 axis.
That is, a positive correlation should result in many line segments that are nearly parallel to each other; Figure 2 has just that
appearance. (Similarly, a strong negative correlation should result in many lines that cross each other in an X-shaped manner.)

This might seem an arcane way to view a bivariate distribution, though this is partly a matter of greater familiarity with
the scatterplot. But extending the scatterplot to p > 2 variables is problematic, while extending the ParC plot is straightforward.
A scatterplot matrix for p variables is not, in fact, a p-dimensional scatterplot, but a clever arrangement of many 2-dimensional
scatterplots. To increase the dimensionality of a ParC plot, however, additional variables are merely represented as further axes
positioned parallel to the original axis pair. The main limitation on the number of variables that can be portrayed is a familiar
practical one—the resolution of the output device. Further, each observation in a ParC plot is encoded by a set of line segments
joined end-to-end, an object that might in other contexts be called a profile. An advantage is that the viewer can easily track
sets of observations across the variables plotted—a kind of visual cluster analysis. It is rather more difficult, even with clever
use of plot symbols and colors, to simultaneously track more than a few observations across the panels of a scatterplot matrix.
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Inselberg (1985) devised the ParC representation of multivariate data for use in computational geometry. Wegman (1990)
introduced the ParC plot as a visual tool for statistical analysis with high-dimensional data sets. These authors also explored a
number of geometric and statistical properties of data represented in the ParC system. The interested reader is strongly encouraged
to consult these and related references for additional information about the ParC representation. The remainder of this insert
focuses more narrowly, presenting some examples of ParC plots, examining their structures, and describing a Stata command
(parcoord.ado) that creates such plot.

A command for parallel coordinates plots

The syntax of parcoord is

parcoord varlist
�
if exp

� �
in range

� �
, by(byvar) center colorby(idvar) echo tour graph options

�
parcoord uses Stata’s graph command to draw a ParC plot in which the variables in varlist are represented as parallel vertical
axes of identical length, arranged left-to-right across the plot. varlist must be present and may not contain string variables. An
observation will be ignored if it has missing values for any of the varlist variables, the byvar variable, or the idvar variable;
if and in clauses may also be used to select subsets of observations. The term graph options stands for certain of the options
allowed with graph, twoway; see Remark 6, below, for details. The other options are explained in the sections that follow.

As an example, using bushfire.dta, draw a scatterplot matrix and a ParC plot for the variables f1-f5:

. graph f1-f5, matrix half

(graph appears, see Figure 3)

. parcoord f1-f5

(graph appears, see Figure 4)

Examining Figure 3, it is clear that variables f4 and f5 are very highly correlated (r = .999), as are f3 and f4 (r = .974)
and f3 and f5 (r = .976). These high correlations manifest themselves in Figure 4 as nearly parallel line segments. By contrast,
the predominance of intersecting line segments connecting the f2 and f3 axes is a sign of negative correlation (r = �.525).
But, closer examination of the f2 and f3 axes points to a more interesting feature; in particular, much of the negative correlation
is induced by a small subset of observations with very low f2 values and very high f3 values. (Without those observations,
r = +.259.) Now, track those observations outward away from the f2-f3 region, and it becomes clear that they form a cluster
distinctly different from the remaining observations. In this cluster, f1 and f2 have low values, while the f3-f5 values are the
highest in the data set. Scanning from left to right, observations in this cluster follow a path that is nearly a mirror image of
the path followed by the remainder of the data set. It is considerably more difficult to detect this kind of behavior in Figure 3,
particularly if the presence of such a cluster has not already been signaled in some other way.
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Portraying subsets of observations in parallel coordinates

parcoord has two options to aid in examining interesting subsets of observations. The colorby(idvar) option assigns
different pens to the values of idvar; on color monitors, this draws observations at different values of idvar in different colors.
To illustrate, Maronna and Yohai (1995) suggested that observations 8–9 and 32–38 represent two distinct types of outliers.
These subsets are encoded by the variable cluster in bushfire.dta:

. tab cluster

Pixel|

cluster| Freq. Percent Cum.

------------+-----------------------------------

Others | 29 76.32 76.32

8-9 | 2 5.26 81.58

32-38 | 7 18.42 100.00

------------+-----------------------------------

Total | 38 100.00

Then, the ParC plot in Figure 4 can be created with these three subsets drawn in different colors using

. parcoord f1-f5, colorby(cluster)

(graph appears)

Color-coding is a very effective way to study high-dimensional data, though this is difficult to demonstrate in a monochrome
medium. But the by(byvar) option draws a separate ParC plot for each value of byvar. For example:

. parcoord f1-f5, by(cluster) total

(graph appears; see Figure 5)

Thus, the option colorby(cluster) produces a single plot resembling the sub-plot labeled Total in Figure 5, but with the
observations in each of the other sub-plots of Figure 5 drawn in distinct colors. Notice that observations 32–38, in the lower left
sub-plot of Figure 5, form the cluster seen earlier in Figure 4.

Permuting the axes of a ParC plot

Unlike a scatterplot matrix, a ParC plot is strongly affected by the order in which the variables are arranged. For example,
if the axes of Figure 4 are drawn in the order f5 f1 f4 f2 f3, the very high correlations among f3, f4, and f5 will be more
difficult to discern. For this reason, it is usually important to draw several versions of a ParC plot, varying the left-right order
of the axes as required. By default, parcoord orders the axes of the plot to match the order of the variables in the varlist, so
that different views of a data set can be created by repeatedly invoking parcoord. However, this would often be inefficient,
because of the number of possible permutations of the varlist, and because of the (redundant) processing at each invocation to
prepare the data set for plotting.



Stata Technical Bulletin 13

Graphs by Pixel cluster
f1 f2 f3 f4 f5

Others

Low

High

8-9

32-38

f1 f5

Low

High

Total

f1 f5

Figure 5

Wegman (1990) showed that each of the p(p� 1)=2 possible pairs of p variables can be plotted as adjacent axes using just
b(p+ 1)=2c permutations of the variables. The tour option initiates Wegman’s efficient tour of the possible reorderings of the
varlist. For example, with the data in bushfire.dta,

. parcoord f1-f5, tour

(a sequence of graphs appears)

produces a sequence of ParC plots, the first three of which present all 10 pairs of the five variables as adjacent axes. The tour
pauses at each plot, displays --more--, and waits for the user to press a key; the tour then continues, endlessly, until the user
presses the Break key. However, the tour is largely redundant after the first b(p+ 1)=2c plots: the next b(p+ 1)=2c plots are
minor variations (usually, left-right reflections) of the initial set of plots, and the (p+ 1)-st plot is identical to the first plot on
the tour.

Scaling the axes of a ParC plot

Conventionally, axes in a ParC plot have identical lengths and orientations (upward movements correspond to increases
in each variable). By default, parcoord scales each axis so that the endpoints are the minimum and maximum values of the
variable represented. The ParC plots of Figures 1–3 have been scaled in this way. The center option provides another scaling:
The axes are drawn so that the median of each variable coincides with the axis midpoint, the length is set so that all observations
fit on the axis, and a reference line is drawn at the median.

To illustrate, using the familiar automobile data (auto.dta),

. parcoord price-gratio, tour center by(foreign) total

(a sequence of graphs appears)

begins a tour in which all 45 pairs of the 10 variables appear on adjacent axes during the first five ParC plots; separate plots
are drawn for domestic and foreign autos. Figure 6 shows the sixth stop on this tour. Notice that, on each of the leftmost six
variables, nearly the entire group of 22 foreign autos falls at or below the overall median of the combined set of 74 autos. It
can also be seen from the Total panel of Figure 6 that the variables price and mpg have a strong positive skew; such aspects
are more difficult to detect with the default axis scaling.

Remarks

1. In some respects, the ParC plot uses space more efficiently than does a scatterplot matrix. Figure 6 presents three ParC
plots for p = 10 variables, with enough detail to be usable. The corresponding set of scatterplot matrices will contain 135
scatterplots which, if drawn in the same space, will be too small to be useful.

2. On the other hand, space for labeling the axes in a ParC plot is very limited, and parcoord works hard to make the most
of that space. If the by option is not present, the variable names are drawn at the bottoms of the axes if p < 10; for p � 10,
the names are drawn alternately at the bottoms and tops of successive axes. This strategy generally prevents variable names
from overwriting each other for p � 18 or so. Beyond this point, it may be necessary to reset Stata’s textsize parameter
to keep the variable names readable. As a rough guideline, setting textsize to b1800=pc if p > 18 will generally avoid
overlap in the axis names.
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3. If the by option is present, parcoord abandons any attempt to label every axis, and instead labels only the first and last
axis in each plot. The full set of axis names—abbreviated, if necessary—is then written as a title at the bottom of the
plot. Figures 5 and 6 provide examples. Also, the mapping of colors to values of idvar is not identified when both by and
colorby are requested.

4. If the axis names are difficult to read, the echo option may be useful. echo prints the current axis ordering to the screen
before drawing the plot. In windowed versions of Stata, one can alternate between viewing the ParC plot in a Graph window
and the axis names in the Results window. In addition, it is possible to capture the list of axis names (in a log file, perhaps)
and, after minor editing, issue a parcoord command to reconstruct a particular plot observed during the Wegman tour.

5. The parcoord options may be given in any combination. If by(byvar) and colorby(idvar) are both present, byvar and
idvar may or may not be the same variable. In any case, idvar may not have more than 20 distinct values; this is a limitation
of the graph command.

6. The following options of the graph command are set by parcoord and may not be altered by the user: by, b2title,
connect, noaxis, pen, symbol, tlabel, xlabel, xline, ylabel, yline. Other graph options (especially saving) may
be supplied, though many of them would not be helpful.

Graphs by Car type
weight length trunk turn hdroom displ rep78 gratio mpg price
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Figure 6
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gr19 Misleading or confusing boxplots

John C. Nash, Faculty of Administration, University of Ottawa
jcnash@aix1.uottawa.ca

Boxplots provide a convenient summary of univariate distributional properties. This note points out that the scaling of data
and/or missing values may give rise to misleading or confusing plots. Keen observations by Laszlo Engleman of Systat were
the motivations for these notes.
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Background

As part of an analysis of data relating to the performance of three optimization algorithms (Nash and Nash 1994; based
on Nash and Nocedal 1991), various performance information was recorded for three programs as they minimized twenty large
test functions (in 200 to 10000 variables) from prescribed starting points. Table 1 shows the data recorded for two of these
programs, labeled CG and TN, for the number of function/gradient evaluations required by each of the problems. The problems
are labeled by letters of the alphabet from A to T. Note that we do not have data for the CG code for problem F where the
program failed; this program also reached an evaluation limit for problem A. How such important matters should be dealt with
in the performance analysis is outside the present discussion.

Table 1 Partial data for algorithm performance analysis

psize cgfg tnfg pname

200 9999 929 A
200 2491 456 B
200 6847 599 C
500 4889 3446 D

1000 36 58 E
1000 . 200 F  note missing value
1000 456 75 G

500 98 54 H
200 14 20 I

1000 573 208 J
961 519 387 K

10000 33 111 L
1000 56 75 M
1000 302 160 N

10000 76 118 O
1000 615 68 P
1000 591 210 Q
1000 91 370 R

10000 13 19 S
403 144 100 T

Graphs, transformations, and missing values

Because the problem sizes are quite different, the count data has a very wide range. A comparative plot, as in Figure 1,
has most of the points in the lower left corner, and the marginal boxplots and one-way distributional plots have data compressed
into small regions.

tn
fg

Nash/Nocedal  TN vs CG FG Counts
cgfg

13 9999

19

3446

lt
n

fg

Nash/Nocedal  TN vs CG FG Counts - -  log VARIABLE
lcgfg

2.56495 9.21024

2.94444

8.14497

Figure 1. Unscaled data Figure 2. Log-transformed data

A logarithmic transformation of the variables gives the plot in Figure 2. Note that now we have the data nicely distributed
over the graph. Points no longer coalesce in the one-way plots. The boxplots show the relative positions of the median and
hinges. However, a count of the points on the one-way plot shows some points have still coalesced. Moreover, the missing value
in CG implies there are only 19 data points, so the median must correspond to one of the points, which it does. For the TN data,
however, the median does not correspond to an observation. The boxplot has, in fact, been drawn using all available data. This
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is clear from Figure 3, which presents boxplots of logarithmically transformed data for the TN program where we artificially set
the appropriate observation to missing in the lower plot. The medians are highlighted with arrows in Figure 3.

More troubling in its initial appearance is Figure 4, where the marginal boxplot at the top appears to have lost its whisker.
This graph has been drawn using the original data, but the axes have been logarithmically scaled. In fact, the box at the top
of Figure 1 has simply been stretched out. The resulting graph can be considered correct, but requires an unusual interpretation
and so may be the cause of confusion.

Artificial examples of axis scaling

We can also use artificial data. As an example, 100 uniformly spaced values 0.05, 0.10, : : : , 5.0 were generated (uniform)
along with their squares (square), square roots (sqroot) and exponentials (exp). Figure 5 shows the graphs of these drawn
with no axis scaling, log scaling of the y-axis, and both x and y-axes log-scaled. Note that the axes are scaled, but the axis
labeling refers to the original data scale. A spline summary of the data has been drawn and this overlays the points. Of course,
when there is a modest volume of data, we could simply plot the points and not draw connecting lines or a spline summary.
Since boxplots are a mechanism to bring out the distributional shape for a set of data, and use distances in the original scale to
adjust the whisker, outlier and far out points, we should clearly not carry out transformations of the data scale. However, such
transformations may be invoked inadvertently or automatically by statistical software. We can avoid misinterpretation, even with
high volumes of data, by noting (as in the examples)

� that the axis ticks tell the reader that a log or similar scale has been used;

� that boxplots and one-way (distributional) plots show how the shape of the two-way graphs may be supported by many
or few data points. For example, relatively few points are involved in the lower-left part of the graph of sqroot versus
uniform when both axes are log-scaled.

ltnfg2.944439 8.144969

ltnfgmis2.944439 8.144969

tn
fg

Nash/Nocedal  TN vs CG FG Counts - -  log SCALE
cgfg

13 9999

19

3446

Figure 3. Effect of a missing value Figure 4. Unscaled data, log-scaled axes

Conclusion

Graphs can, as always, convey misleading impressions. The exercise above points out specific concerns when logarithmic
scales are used and/or there is missing data, especially if graphics are combined so that different elements may use or not use
all the data, or may be transformed or rendered in ways that could have unintended interpretations.
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ip11 A tool for manipulating S # objects

John R. Gleason, Syracuse University, 73241.717@compuserve.com

This insert describes a command (s no) that displays or erases Stata macros, scalars, or matrices with names of the form
S 1, S 2, etc. s no is principally a tool for programmers, as ordinary Stata users will rarely have need to directly manipulate
Stata objects in this way.

Stata programs often make their arguments and results available for use by other programs. Traditionally, this has been
accomplished by storing important objects in the S # macros. However, Stata now has scalars and matrices so that numerical
objects can, and perhaps should, be saved in S # scalars and matrices. In any case, the programming guidelines offered in [4]
program fragments suggest that programs should store in objects named S #, where # is a small positive integer; often this
will result in objects with consecutive names, for example, S 1, S 2, etc. When developing Stata programs, it can be helpful
to display S # objects, perhaps to verify that a program saves results in the intended way. Similarly, it may be useful to erase
all S # objects before testing a program, to guarantee that when those objects are next examined, their contents will have been
deposited by the program just invoked.

The command s no displays or drops objects (macros, scalars, or matrices) named according to Stata’s S # convention.
This combines and extends the abilities of the command disp s (which displays S # macros) and the undocumented command
zap s (which drops S # scalars and matrices). The syntax is

s no
�
, drop gap(gcount) high(hcount) numeric

�
By default, s no displays the S # macros S 1, S 2, etc.; the options are explained in the text that follows.

S # macros

To illustrate, suppose that no S # macros are currently defined, as would be true when Stata is launched. As will be explained
shortly, this situation can also be created (almost surely) by the command

. s_no, drop gap(10)
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Then, create contents for the following S # macros.

. global S_1 "Here's S_1"

. global S_2 "and S_2"

. global S_3 "and then S_3"

. global S_5 "skip past S_4"

. global S_8 "as well as S_6 and S_7"

The default response of s no is to display some of those contents:

. s_no

S_1: Here's S_1

S_2: and S_2

S_3: and then S_3

This is similar to giving the command disp s, with an important exception: disp s checks the first 30 S # macros, S 1,
S 2, : : : , S 30, displaying those that happen to exist. s no follows a different strategy: it displays S # macros until it encounters
a gap or break in the numbering of the macros. In our example, S 4 does not exist, so that s no encounters a gap after displaying
S 3 and thus exits. The size of the gap that causes s no to halt is controlled by the gap(gcount) option. The default value of
gcount is 1, but gap(2) requires a gap of size 2 to exit:

. s_no, gap(2)

S_1: Here's S_1

S_2: and S_2

S_3: and then S_3

S_5: skip past S_4

Choosing a sufficiently large value for gcount will tolerate large gaps and thus force the display of all currently defined S #
macros:

. s_no, gap(10)

S_1: Here's S_1

S_2: and S_2

S_3: and then S_3

S_5: skip past S_4

S_8: as well as S_6 and S_7

The high(hcount) option restricts attention to S # objects where # is no greater than hcount. The default value of hcount
is 32766 so that, as just observed, supplying a large value of gcount will normally find all of the S # macros. On the other
hand, combining a large value for gcount with a given value of hcount finds all S # objects in a certain range. Continuing our
example,

. s_no, gap(10) hi(5)

S_1: Here's S_1

S_2: and S_2

S_3: and then S_3

S_5: skip past S_4

tolerates gaps of size 9 but exits at S 5, and thus does not display macro S 8, while s no, gap(10) hi(10) would show all
currently defined macros in the range S 1: : :S 10.

The option drop causes s no to silently drop rather than display S # objects; the gap and high options function as before.
Thus,

. s_no, drop

drops S # macros, beginning at S 1 until a gap of size 1 is encountered. In our running example, S 1, S 2, and S 3, but not S 5

or S 8, would be dropped:

. s_no, gap(5)

S_5: skip past S_4

S_8: as well as S_6 and S_7

The command s no, gap(10) hi(10) drop removes all macros in the range S 1: : :S 10, which includes all of the S # macros
defined in this example.
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S # scalars and matrices

For reasons of accuracy and speed, a programmer should often prefer to pass numerical results as scalars or matrices rather
than as macros (see [6a] scalars). Stata’s scalars and matrices share a common name space so that, in a sense, together they
form a single class of numerical objects. The option numeric causes s no to operate on objects in that class named according
to the S # convention. The other options continue to function as described above so that, for example,

. s_no, num

lists all currently defined S # scalars and matrices with consecutive names, and

. s_no, num drop gap(3) high(10)

drops S # scalars and matrices from memory, stopping at the first gap of size 3, or at scalar or matrix S 10, whichever occurs
first. The latter command differs from the undocumented zap s only in that zap s attempts to drop each of the numerical objects
S 1: : :S 30.

ip12 Parsing tokens in Stata

Sean Becketti, Stata Technical Bulletin, stb@stata.com

This insert presents xparse and readtok, two programs that build on and extend Stata’s low-level parse command.

Background

Stata’s parse command is the secret to Stata’s extensibility ([6a] parse). High-level parsing with parse makes it easy to
write ado-files that are indistinguishable from internal Stata commands. In high-level parsing, the program author specifies the
complete syntax in just a few lines by creating local macros that define the type of variable list permitted or required, whether
in or if clauses are allowed, and so on. Then the parse command handles all the drudgery of parsing and error-checking. By
forcing the program author to conform to Stata’s syntax, the high-level parsing mode of parse encourages good programming
practices and style.

parse also performs low-level parsing, although this feature is used less frequently by novice Stata programmers. In
low-level mode, parse splits a string into separate tokens. The user specifies a list of parsing characters, that is, characters that
mark the boundaries between tokens.

Low-level parsing is used most commonly to process lists of user-specified options. For instance, I might write a program
xyzzy with the syntax

xyzzy varlist
�
if exp

� �
in range

� �
, list(#[,#[,: : :]])

�
where list() contains a list of one or more numbers used by xyzzy. This program might begin with the following parsing
code:

program define xyzzy

version 4.0

local varlist "required existing"

local if "optional prefix"

local in "optional prefix"

local options "List(str)"

parse "`*'"

Since the number of items specified in the list option can vary, the argument of the option is left as a general string.
The next step is to use low-level parsing to break this string into separate tokens in order to test them for validity (are they all
numbers), to count them (are there too many, not enough), and to apply them in the body of the program. In the mythical xyzzy
program, the tokens in the list option are separated by commas (and, optionally, spaces). Thus, the program might continue
as follows:

if "`list'"=="" {

noi di in red "You must specify a list of numbers"

error 98

}

parse "`list'", parse(" ,")
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Low-level parsing in Stata does not remove the parsing characters. Instead, it leaves them behind as space-delimited tokens.
As a consequence, xyzzy must contain logic to ignore commas when the list() option is processed.

Normally, this characteristic of parse is a minor nuisance. However, Stata’s conventions for separating arguments in lists
are sometimes ambiguous. In some commands and options, arguments are separated by spaces. In others, arguments are separated
by commas, even when spaces would be sufficient to distinguish the arguments. For example, according to the syntax diagram,
the following is a legal use of xyzzy:

. xyzzy price weight if foreign, list(1,2,3,5,99)

Note that the meaning of this statement could be conveyed just as well by typing

. xyzzy price weight if foreign, list(1 2 3 5 99)

To my mind, it is poor design to force the user to remember whether commas or spaces are required to separate the numbers
in list. A lazy programmer will require the arguments to be separated by spaces, since that design will simplify parsing the
option. I prefer to make the program smarter in order to allow the user to separate arguments with either commas or spaces. I
wrote xparse to simplify this task.

xparse: Excluding parsing characters

xparse splits a string into tokens and removes the parsing characters. The following, somewhat unusual data set is used
to illustrate xparse and readtok.

. use example

. describe

Contains data from example.dta

Obs: 4 (max= 14460)

Vars: 1 (max= 500) 15 Jan 1996 12:14

Width: 44 (max= 1002)

1. line str44 %44s

Sorted by:

. list

line

1. 27 | 15 | California | unemployed

2. 18:27501:sbeckett:mach21:zkdjewiodj

3. |Hello|:|:|world|

4. The quick brown fox jumped

This file contains lines with tokens separated by colons and vertical bars. Stata’s parse command will not remove these
characters. xparse will.

. local l = line[1]

. parse "`l'", parse(":|")

. local n : word count `*'

. display "`n' tokens: `*'"

7 tokens: 27 | 15 | California | unemployed

. xparse, parse(":|") string("`l'")

. local n : word count $S_1

. display "`n' tokens: $S_1"

4 tokens: 27 15 California unemployed

readtok: Breaking a string variable into token variables

xparse breaks a string into tokens and stores the list of tokens in the global macro S 1, separated by spaces. readtok
operates on a string variable, breaking each observation into tokens, and generating new variables to hold the individual tokens.

. readtok line, field(:|) prefix(v)

. describe

Contains data from example.dta

Obs: 4 (max= 14458)

Vars: 6 (max= 500) 15 Jan 1996 12:14

Width: 84 (max= 1002)

1. line str44 %44s

2. v1 str5 %9s
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3. v2 str5 %9s

4. v3 str10 %10s

5. v4 str10 %10s

6. v5 str10 %10s

Sorted by:

Note: Data has changed since last save

. list v*

v1 v2 v3 v4 v5

1. 27 15 California unemployed

2. 18 27501 sbeckett mach21 zkdjewiodj

3. Hello world

4. The quick brown fox jumped

Syntax

xparse , parse(str) string(str)

readtok string-variable
�
, field(str) prefix(str)

�
The parse() option in xparse specifies the parsing characters, while the string() option specifies the string to be parsed.

The field() option in readtok specifies the field separators (that is, parsing characters). Spaces are the default field separators.
The prefix() option specifies a prefix for the new variables. The default prefix is v, and the suffixes are the integers from 1
to the largest number of tokens found.

sg29.1 Tabulation of observed/expected ratios and confidence intervals (Update)

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269 3429

This insert updates sg29 , my earlier article on standardized mortality ratios. SMRs are commonly used in epidemiology to
summarize the results of cohort studies. Observed incidences of a particular condition in a cohort are compared to expected
incidences to see whether they are unusually large or small. Under standard assumptions, the total observed count, O, is a Poisson
random variable with mean E, the expected count. E is assumed to be known without error. The SMR is just 100�O=E.

This insert replaces my original program, smr, with an improved version called smrby. This new program has a slightly
different syntax and improved formatting. smr calculated a separate SMR for each observation. smrby allows the user to collapse
the data according to the levels of a variable specified in the by option.

Consider, for instance, an example used in the previous insert. In this example, we had data on the observed and expected
numbers of cancers at different sites in a cohort who previously had melanoma. The data consisted of one observation per site.
Suppose, however, that we had recorded many observations per site. There might have been a separate observation for each
combination of age-at-diagnosis, year-of-diagnosis, time-since-melanoma, and so on. We could have handled this situation with
collapse and the old smr, but the new smrby permits us to complete the analysis more conveniently, without using collapse.

Syntax

smrby obsvar expvar
�
if exp

� �
in range

� �
, by(byvar) hetero level(#) ordinal total trend

�
Users of smr will notice that the options icd, rowlab, and sumonly have been eliminated. Instead of icd or rowlab, use
by(). Instead of sumonly, just omit the by() option.

Options

by specifies groups for which the observed/expected ratios are to be calculated separately. These groups are used to label the
rows. byvar can be either a numeric or a string variable. If it is a noninteger number, it is advisable to read and store the
variable as a double rather than as a float to avoid unattractive display. If the by() option is not used, smrby treats all
observations as a single group (see total below).

hetero produces the chi-squared test for unequal SMRs (heterogeneity).

ordinal is only effective in conjunction with the trend option (see below).

total specifies that the total observed count together with its expectation, the ratio O=E, and confidence interval should be
calculated and displayed in addition to the usual output.
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trend produces the score test for a linear trend in SMRs against the byvar. If the ordinal option is also specified, then the test
is carried out using the values 1; 2; 3; : : :

Examples and discussion

In a recent STB, Clayton and Hills (1995) provided a suite of programs for analyzing follow-up studies. One of their
programs, tabrate, is also designed to compute SMRs. However they have a different data structure in mind, thus their syntax
is rather different. In our notation, their syntax is

tabrate obsvar byvar
�
if exp

� �
in range

�
, exposure(expvar)�

graph level(#) per(#) smr trend graph-options
�

The syntax is similar to that used for regression-type commands, that is, the outcome variable is followed by the covariates
and additional variables such as the offset or censoring are given as options. Note that, by default, tabrate assumes the exposure
variable contains the number of person-years at risk, so the ratios of obsvar over expvar will be the rates of the observations.
The command has options graph and trend. When smr was written, I wanted to produce SMRs for different diseases in a single
cohort of individuals. It would not have been appropriate to perform a trend test or even to graph the ratios against the ICD

number. The byvar in tabrate is considered to be a covariate (they call it xvar), such as different levels of exposure, time since
exposure, or age groups. In such circumstances, the trend test and graph are certainly appropriate and provide a nice addition
to the program. The trend option (but not the graph option) has been added to smrby.

Example 1

The first example uses the same data as in sg29 , except now we have labeled the values of the variable icd f and named
it "ICD Site". The new program uses the value labels in the tabulated display.

. use eye

. describe icd_f

13. icd_f float %9.0g icd ICD Site

. smrby m_o m_e if icd<155 & icd>145, by(icd_f)

Observed Expected -- Poisson Exact --

ICD Site | Male Obs Male Exp O/E (%) [95% Conf. Interval]

------------+----------------------------------------------------------------

Oesophag | 2 1.4304 139.8 17 505

Stomach | 11 8.6345 127.4 64 228

Sm. inte | 0 0.3177 0.0 0 1161+

Colon | 9 8.6651 103.9 47 197

Rectum | 11 7.3252 150.2 75 269

(+) one-tail, 97.5% confidence interval

Example 2

The second example is modified from Clayton and Hills (1995).

. use kcal,clear

(Heart disease and diet survey)

. lexis agein d y, gen(ageband) br(40,50,60,70)

26 records start before first break - left censored

392 extra records created

NOTE: Following lexis expansion on agein

the following variables have been updated: agein

. sort height

. generate int ht5 = autocode(height,5,152,192)

(10 missing values generated)

. replace ht5 = ht5 - 4

(719 real changes made)

. generate e_d = y/100

. label variable e_d "Expected no. ihd"

. tabrate d loweng, e(e_d) smr
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table of failures (D), expected failures (E), and SMR's

loweng _D _E _SMR ci_low ci_high

0 18 24.8 72.523 45.693 115.108

1 28 20.3 138.246 95.453 200.224

Chisq test for unequal SMRs = 4.72 (1 df, p = 0.030 )

. tabrate d loweng, e(e_d) smr trend

table of failures (D), expected failures (E), and SMR's

loweng _D _E _SMR ci_low ci_high

0 18 24.8 72.523 45.693 115.108

1 28 20.3 138.246 95.453 200.224

chi-squared for trend 4.62 ( 1 df, p = 0.032 )

. smrby d e_d, by(loweng) trend hetero

Observed Expected -- Poisson Exact --

low energy | ihd deaths e_d O/E (%) [95% Conf. Interval]

------------+----------------------------------------------------------------

0 | 18 24.8197 72.5 43 115

1 | 28 20.2537 138.2 92 200

Chi-squared for trend 4.72 ( 1 df, p = 0.030 )

Chisq test for unequal SMRs = 4.72 (1 df, p = 0.030 )

Notice how smrby displays both the trend test and the test for unequal SMRs. When there are only two groups, these tests
should give identical answers. (There is a very minor error in the way that tabrate calculates the variance of the test for
unequal SMRs.)

The confidence intervals produced by tabrate are based on a normal approximation to the Poisson distribution. The lower
limit is too high even when the observed number of deaths is relatively large.

Example 3

The final example uses data from Breslow and Day (1987, Table 3.12). Note how the ordinal trend test gives the same
statistic as that quoted by Breslow and Day.

. use bdp105, clear

. describe

Contains data from bdp105.dta

Obs: 5 (max= 30415)

Vars: 4 (max= 99) 20 Nov 1995 16:43

Width: 11 (max= 200)

1. age byte %9.0g Age employ

2. exp float %9.0g Exp. nasal

3. obs byte %9.0g Obs. No. nasal ca.

4. Age str5 %9s

Sorted by:

. smrby obs exp, by(age)

Observed Expected -- Poisson Exact --

Age employ | obs Exp. nasal O/E (%) [95% Conf. Interval]

------------+----------------------------------------------------------------

16 | 2 5.3600 37.3 5 135

20 | 9 11.3000 79.6 36 151

25 | 13 12.2600 106.0 56 181

30 | 8 6.3400 126.2 54 249

35 | 8 4.7300 169.1 73 333

. smrby obs exp, by(age) trend ord tot

Observed Expected -- Poisson Exact --

Age employ | obs Exp. nasal O/E (%) [95% Conf. Interval]

------------+----------------------------------------------------------------

16 | 2 5.3600 37.3 5 135

20 | 9 11.3000 79.6 36 151

25 | 13 12.2600 106.0 56 181

30 | 8 6.3400 126.2 54 249

35 | 8 4.7300 169.1 73 333

------------+----------------------------------------------------------------

Total | 40 39.9900 100.0 71 136

Chi-squared for trend (coded 1,2,...) 5.20 ( 1 df, p = 0.023 )

. smrby obs exp, by(Age) trend hetero
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Observed Expected -- Poisson Exact --

Age | obs Exp. nasal O/E (%) [95% Conf. Interval]

------------+----------------------------------------------------------------

20-24 | 9 11.3000 79.6 36 151

25-29 | 13 12.2600 106.0 56 181

30-34 | 8 6.3400 126.2 54 249

<20 | 2 5.3600 37.3 5 135

>=35 | 8 4.7300 169.1 73 333

Trend test not possible on string variable

Chisq test for unequal SMRs = 5.31 (4 df, p = 0.257 )
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sg46 Huber correction for two-stage least squares estimates

Mead Over, The World Bank, aover@worldbank.org
Dean Jolliffe, The World Bank, djolliffe@worldbank.org

Andrew Foster, University of Pennsylvania, afoster@pop.upenn.edu

In applied microeconometric analysis, instrumental variable estimation by two-stage least squares is frequently used to
estimate structural parameters when explanatory variables are endogenous. In Stata’s regress command, instrumental variable
estimation is neatly implemented by placing the list of exogenous variables in parentheses, after the list of independent variables
and before the comma that demarcates the options. Because the Stata command for least squares with Huber- (or White-)
corrected standard errors residuals, hreg, has almost the same syntax as the regress command, it is natural to infer that it
would also accept a list of instrumental variables in parentheses before the comma as a signal to perform instrumental variable
estimation before correcting the standard errors. In fact, hreg does not correctly interpret the variables in parentheses. (It simply
ignores the parentheses and treats the list of supposed instrumental variables as if they were additional members of the list of
independent variables.)

hreg2sls is an altered version of hreg which does recognize the set of variables in parentheses as a set of instrumental
variables. It is identical to hreg in all respects except that it allows instrumental variable estimation.

Syntax

hreg2sls
�

depvar [ varlist1 [ (varlist2) ]]
� �

weight
� �

if exp
� �

in range
� �

,

group(varname) level(#) regress-options
�

Example

A typical use of hreg2sls will follow the pattern

.hreg2sls y1 y2 x1 x2 x3 (x1 x2 x3 z1 z2), group(cluster)

where y1 and y2 are endogenous variables, x1-x3 are exogenous variables, z1-z2 are the excluded instruments, and cluster is
a variable designating the first stage of a two-stage sample design (for example, the town or city in a household survey). If
residuals in the same region are correlated or residual variances differ systematically by region then a 2SLS procedure such as
regress that assumes homoscedasticity and independence will in general produce inconsistent standard errors.

For another example of hreg2sls, consider a slightly modified version of the model used in the Stata manual to describe
two-stage least squares estimation.

hsngval = �0 + �1faminc+ �2pcturban+ �

rent = �0 + �1hsngval + �2pcturban+ �

hsngval is the median value of housing in each state, rent is the state-level, median monthly rent, faminc is the median
value of family income, and pcturban is the percentage of the state population living in urban areas. The data are found in the
hsng.dta file distributed with Stata. The only difference between this example and the one used in the Stata manual is that the
region dummy variables have been dropped from the hsngval equation. For this example, it is assumed that the inter-region



Stata Technical Bulletin 25

variation of the residuals is different from the intra-region variation, which results in a heteroscedastic error structure. Use of
the group() option in hreg2sls will correct the estimated standard errors for this form of heteroscedasticity. Below are the
two-stage least squares estimates of this model, and then following are the two-stage least squares estimates with Huber-corrected
standard errors.

. use hsng

(1980 Census housing data)

. regress rent hsngval pcturban (pcturban faminc)

(2SLS)

Source | SS df MS Number of obs = 50

---------+------------------------------ F( 2, 47) = 24.18

Model | 17681.4852 2 8840.74262 Prob > F = 0.0000

Residual | 43561.6348 47 926.843293 R-squared = 0.2887

---------+------------------------------ Adj R-squared = 0.2584

Total | 61243.12 49 1249.85959 Root MSE = 30.444

------------------------------------------------------------------------------

rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

hsngval | .0031938 .0006401 4.990 0.000 .0019062 .0044815

pcturban | -.5064118 .4966869 -1.020 0.313 -1.505617 .4927933

_cons | 113.8143 21.17164 5.376 0.000 71.22248 156.4062

------------------------------------------------------------------------------

. hreg2sls ren hsngval pcturban (pcturban faminc), group(region)

(obs=50)

Regression with Huber standard errors (2SLS) Number of obs = 50

R-square = 0.2887

Adj R-square = 0.2584

Root MSE = 30.4441

Grouping variable: region

------------------------------------------------------------------------------

rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

hsngval | .0031938 .0004785 6.674 0.000 .0022311 .0041565

pcturban | -.5064118 .7125682 -0.711 0.481 -1.939914 .9270905

_cons | 113.8143 21.43369 5.310 0.000 70.6953 156.9334

------------------------------------------------------------------------------

Methods and Formulas

The Huber variance–covariance matrix for ordinary least squares estimates of � in the linear expression yi = �
0
xi + ui is
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where buj is the estimated residual for observation j. The formula corresponding to equation (1) for two-stage least squares
estimation (White 1984, p. 141) is obtained by replacing the vector xi in (1) with bxi, its predicted value from the first stage
regressions. After this correction, we have
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Extension of these formulae to the case of clustered data is straightforward as illustrated, for equation (1), in the Stata manual
([5s] huber).

hreg2sls takes advantage of the similarity between equations (2) and (1) by replacing each of the x variables in the data
set by its respective predicted value and then calling Stata’s Huber engine, huber. The preserve command is used to ensure
that the x variables are restored to their original values upon termination of the procedure.
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sg47 A plot and a test for the �
2 distribution

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-181-259-8573

Stata’s qnorm and swilk commands are designed to produce normal probability plots and to test samples for departure
from normality. Here I present two programs, qchi and a2, which perform similar tasks for the �2 distribution.

Quantile–quantile plots for �2

qchi produces a quantile–quantile (Q–Q) plot for the �2 distribution. If a variable Y has approximately a �2 distribution
with � degrees of freedom, the plot produced by qchi will be roughly a straight line. Due to the skewness, there will be a much
greater concentration of points in the lower-left quadrant of the diagram than in the upper right. The values in the upper-right
quadrant will be highly variable and often will not lie on the “ideal” line, even if Y really does. The slope in the lower-left
quadrant indicates whether the degrees of freedom are about right or not. If � is too small, the slope will be > 1 and the points
will form a curve above the line. If � is too large, the slope will be < 1 and the points will fall mostly below the line.

The syntax of qchi is

qchi varname
�
if exp

� �
in range

�
, df(#)

�
transform graph options

�
Options

df() is not optional; it specifies the degrees of freedom for the �2 variable.

transform transforms the values on both axes to their cube roots, which transforms a �
2 variable to approximate normality.

Since this transformation suppresses the straggly upper tail, the graph may be easier to interpret.

graph options are any of the options allowed with graph, twoway.

The Anderson–Darling goodness-of-fit test

a2 performs the Anderson–Darling A
2 goodness-of-fit test for three different distributions: normal, uniform and �

2. The
A
2 test is one of a family of tests based on the empirical distribution function or EDF (see Stephens 1974). A large, significant

value of the test statistic indicates departure from the hypothesized distribution. (As always, a non-significant value does not
prove that the data follow the hypothesized distribution.)

The syntax of a2 is

a2 varlist
�
if exp

� �
in range

�
, dist(normal j uniform j chisquare)

�
df(#)

�
Options

dist(normaljuniformjchisquare) is not optional; it specifies the assumed distribution to be tested. Only the first letter of
the name of the distribution is required.

df() is required for dist(chisquare); it specifies the degrees of freedom for the �2 distribution.

Example

The Pearson X
2 statistic for association between proportions of observations in the r rows and c columns in a two-way

contingency table has a �
2 distribution with (r � 1)(c� 1) degrees of freedom in large samples. Here I use the qchi and a2

commands to investigate the �2 assumption in 3� 3 tables based on four sample sizes: 5, 10, 20, 45.

Traditionally, the �2 assumption is taken to be adequate when the cell occupancies exceed five. With nine cells this condition
will hold on average for n = 45 and above.

For each of the four sample sizes, I simulated 500 random samples with no association between the rows and columns and
tabulated the results by using the commands

generate row=1+int(3*uniform())

generate col=1+int(3*uniform())

tabulate row col, chi
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Stata stores the �2 statistic in result(4), so the results for each randomly-generated table were displayed, saved to a log file
for further processing and re-read into Stata.

The figure shows plots of the simulated �
2 statistics for each of the 4 sample sizes. The mean cell occupancy for n = 5 is

5/9 and the distribution of X2 is discrete, which makes the plot appear as a step function. The lines for n = 10 and n = 20
are curved, indicating departure from a �2 distribution, but perhaps less markedly than one might expect given the small sample
sizes. The plot for n = 45 is close to linear.
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Figure 1

The p-values from the Anderson–Darling A2 statistic are 0.000, 0.000, 0.001, and 0.094 for n = 5, 10, 20, 45, respectively,
so only the results for n = 45 suggest that the �2 assumption is not rejected at the 5% level of significance. Nevertheless, it is
clear from the shapes of the graphs that even for n = 10 the �2 assumption is not badly violated.

For the benefit of readers who wish to experiment further (for example, with rectangular rather than square tables), I have
also included on the STB-29 diskette the do-files which do the work. sim.do simulates the X

2 statistics, saving to a log-file
(sim.sto). sim2.do reads back the data (suitably edited from sim.sto) and carries out the analyses.
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sg48 Making predictions in the original metric for log-transformed models

Richard Goldstein, Qualitas, Inc., richgold@netcom.com

The advice often given, for many relatively simple regression problems, is to transform the dependent variable. If the
transformed version makes sense (is interpretable), then this is fine. However, if the transformation is made only for estimation
purposes and predicted values are desired in the original metric (for example, dollars), then there can be problems because
the obvious retransformation is often not what is wanted. For example, if one transforms the dependent variable by taking
logarithms, the simple retransformation of just exponentiating the predicted values will give you a conditional median rather
than the expected, and usually desired, conditional mean. If the conditional mean is actually what is wanted, then the median is
a biased retransformation.

In several disciplines, ranging from ecology to economics, a different retransformation has been suggested: exponentiate
the sum of the predicted value and one half the square of the root mean square error from the regression. (See, for instance,
Miller 1984. Note that Miller has similar retransformations for other common transforms, including square root and reciprocal).
However, Duan (1983) has shown that in many cases there is a better retransformation.

This insert presents predlog, an ado file that calculates all three retransformations. These predictions are added to the data
as three new variables: YHATRAW (just exponentiated), YHTNAIVE (the Miller version) and YHTSMEAR (Duan’s smearing estimate
retransform).
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The syntax of predlog is

predlog varlist
�
if exp

� �
in range

� �
, fppredict

�
predlog estimates, but does not display, the regression that would be estimated by the command

. regress varlist

If the fpredict option is used, the predictions will be calculated only for the cases used in the regression; otherwise predictions
will be calculated for all possible cases. In effect, Stata’s predict ([5s] predict) command is used if there is no option, and
Stata’s fpredict ([5s] fit) command is used if the user adds the option.

Duan argues that his retransformation is less biased than the naive one if there is any skewness remaining after transforming
the dependent variable; this is especially so if the underlying data are a mixture of normals rather than a truly skewed variable.
He shows in his paper that the naive retransform is no more efficient than his as long as the square of the RMSE is no more than
0.5. It is not much less efficient even if the square of the RMSE is about 1.0 and not much less efficient in any case where there
are at least ten independent variables in the model (see the examples below).

predlog does not display the underlying regression, since predlog is likely to be used only after one has examined a
number of regressions to come up with one best model (or a small number of competitive models).

Examples

The examples use the familiar automobile data. These examples consist of three regressions that use the log of price as the
dependent variable. Note the relationship between YHTNAIVE and YHTSMEAR as the RMSE gets better.

. use auto

(1978 Automobile Data)

. generate weightsq = weight*weight

. generate logprice=log(price)

. fit logprice mpg

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 1, 72) = 22.87

Model | 2.70578153 1 2.70578153 Prob > F = 0.0000

Residual | 8.51775155 72 .118302105 R-squared = 0.2411

---------+------------------------------ Adj R-squared = 0.2305

Total | 11.2235331 73 .153747029 Root MSE = .34395

------------------------------------------------------------------------------

logprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | -.033277 .0069581 -4.782 0.000 -.0471478 -.0194062

_cons | 9.349342 .153489 60.912 0.000 9.043367 9.655317

------------------------------------------------------------------------------

. predlog price mpg

. summarize Y* price

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

YHATRAW | 74 5755.228 1022.923 2936.537 7708.038

YHTNAIVE | 74 6105.926 1085.255 3115.476 8177.73

YHTSMEAR | 74 6127.065 1089.012 3126.262 8206.043

price | 74 6165.257 2949.496 3291 15906

. fit logprice foreign mpg

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 2, 71) = 17.80

Model | 3.74819416 2 1.87409708 Prob > F = 0.0000

Residual | 7.47533892 71 .105286464 R-squared = 0.3340

---------+------------------------------ Adj R-squared = 0.3152

Total | 11.2235331 73 .153747029 Root MSE = .32448

------------------------------------------------------------------------------

logprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

foreign | .2824445 .0897634 3.147 0.002 .1034612 .4614277

mpg | -.0421151 .0071399 -5.899 0.000 -.0563517 -.0278785

_cons | 9.4536 .1485422 63.643 0.000 9.157415 9.749785

------------------------------------------------------------------------------
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. predlog price mpg foreign

. summarize Y* price

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

YHATRAW | 74 5796.027 1250.718 3008.888 9380.918

YHTNAIVE | 74 6109.323 1318.324 3171.529 9887.989

YHTSMEAR | 74 6131.136 1323.031 3182.853 9923.294

price | 74 6165.257 2949.496 3291 15906

. fit logprice foreign weight* turn hdroom

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 5, 68) = 24.60

Model | 7.22811292 5 1.44562258 Prob > F = 0.0000

Residual | 3.99542016 68 .058756179 R-squared = 0.6440

---------+------------------------------ Adj R-squared = 0.6178

Total | 11.2235331 73 .153747029 Root MSE = .2424

------------------------------------------------------------------------------

logprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

foreign | .4285643 .0822997 5.207 0.000 .2643378 .5927907

weight | -.0002047 .0002962 -0.691 0.492 -.0007958 .0003864

weightsq | 1.34e-07 4.65e-08 2.891 0.005 4.16e-08 2.27e-07

turn | -.0322146 .0131998 -2.441 0.017 -.0585544 -.0058749

hdroom | -.080939 .0383812 -2.109 0.039 -.1575276 -.0043505

_cons | 9.345836 .6135071 15.233 0.000 8.121602 10.57007

------------------------------------------------------------------------------

. testparm weight*

( 1) weight = 0.0

( 2) weightsq = 0.0

F( 2, 68) = 39.82

Prob > F = 0.0000

. predlog price foreign weight* turn hdroom

. summarize Y* price

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

YHATRAW | 74 5963.625 2180.224 3036.252 15128.19

YHTNAIVE | 74 6141.424 2245.225 3126.775 15579.22

YHTSMEAR | 74 6134.279 2242.613 3123.137 15561.1

price | 74 6165.257 2949.496 3291 15906
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snp9 Kornbrot’s rank difference test

Richard Goldstein, Qualitas, Inc., richgold@netcom.com

Kornbrot’s rank difference test (Kornbrot 1990), used exactly as one would use Wilcoxon’s signed-ranks test ([5s] signrank),
is an alternative that is useful when one has ordinal data. This insert presents kornbrot, a Stata ado-file that calculates Kornbrot’s
rank difference test.

Wilcoxon’s signed-ranks test generally is used in two situations: (1) with continuous data that are, or may be, distributed
non-normally, and (2) with ordinal data. However, as Kornbrot points out, “a procedure is meaningful for ordinal data if it gives
the same result when applied to the original data, or any strictly monotone transformation of the data.” As she points out, and
as we illustrate below, Wilcoxon’s signed-ranks test fails this criterion (also see Maritz 1985). Kornbrot’s rank difference test
overcomes this problem with Wilcoxon’s test.

The syntax of kornbrot is

kornbrot varname = exp
�
if exp

� �
in range

�
This syntax is exactly the same as the syntax for signrank, Stata’s command to perform Wilcoxon’s signed-ranks test. Further,
the result is in the same format since Stata’s signrank command is used. Unfortunately, the statement of the hypothesis in the
test results uses temporary variables so the names are not interpretable; however, the command shows the names, and you can
always use signrank also if you want.
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Example

This example uses the data from Kornbrot’s article.

. use kornbrot

. list

id placebo drug placebo2 drug2

1. 1 4.6 2.9 13.0 20.5

2. 2 4.3 2.8 13.8 21.1

3. 3 6.7 12.0 9.0 5.0

4. 4 5.8 3.8 10.3 16.0

5. 5 5.0 5.9 12.0 10.1

6. 6 4.2 6.5 14.2 9.2

7. 7 6.0 3.3 10.0 18.0

8. 8 2.0 2.3 30.0 26.5

9. 9 2.6 2.1 23.0 29.0

10. 10 10.0 14.3 6.0 4.2

11. 11 3.4 2.4 17.7 24.6

12. 12 7.1 14.0 8.4 4.3

13. 13 8.6 4.9 7.0 12.2

Note that the final two variables are equal to the first occurrence of the variable divided into 60; this transformation turns a time
result into a rate result. Following are the results from using signrank on the two sets of variables; note the difference in the
results (a p-value of .86 versus a p-value of .09!).

. signrank placebo=drug

Wilcoxon signed-rank test

sign | obs sum ranks expected

---------+---------------------------------

positive | 7 43 45.5

negative | 6 48 45.5

zero | 0 0 0

---------+---------------------------------

all | 13 91 91

unadjusted variance 204.75

adjustment for ties 0.00

adjustment for zeros 0.00

----------

adjusted variance 204.75

Ho: median of placebo = drug

z = -0.175

Prob > |z| = 0.8613

. signrank placebo2=drug2

Wilcoxon signed-rank test

sign | obs sum ranks expected

---------+---------------------------------

positive | 6 21 45.5

negative | 7 70 45.5

zero | 0 0 0

---------+---------------------------------

all | 13 91 91

unadjusted variance 204.75

adjustment for ties 0.00

adjustment for zeros 0.00

----------

adjusted variance 204.75

Ho: median of placebo2 = drug2

z = -1.712

Prob > |z| = 0.0869
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Here are the results from using Kornbrot’s test on the two sets; now the p-values agree.

. kornbrot placebo=drug

Wilcoxon signed-rank test

sign | obs sum ranks expected

---------+---------------------------------

positive | 6 29 45.5

negative | 7 62 45.5

zero | 0 0 0

---------+---------------------------------

all | 13 91 91

unadjusted variance 204.75

adjustment for ties -1.00

adjustment for zeros 0.00

----------

adjusted variance 203.75

Ho: median of __000038 = __000039

z = -1.156

Prob > |z| = 0.2477

. kornbrot placebo2=drug2

Wilcoxon signed-rank test

sign | obs sum ranks expected

---------+---------------------------------

positive | 7 62 45.5

negative | 6 29 45.5

zero | 0 0 0

---------+---------------------------------

all | 13 91 91

unadjusted variance 204.75

adjustment for ties -1.00

adjustment for zeros 0.00

----------

adjusted variance 203.75

Ho: median of __00003U = __00003V

z = 1.156

Prob > |z| = 0.2477

Caveat on p-values

Kornbrot provides extensive tables of p-values, based on simulations, for the Kornbrot test in samples smaller than twenty.
These tables appear to be particularly important for samples smaller than eight. However, I have followed Stata by ignoring
these adjustments and simply using the normal approximation. If you use tables for the Wilcoxon test itself for small samples,
you will be a little conservative. Note that I have also followed Stata in not using a continuity correction, something which
Kornbrot strongly advocates.

Reference
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of Mathematical and Statistical Psychology 43: 241–264.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.
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