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an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an15.1 Regression with Graphics now available from CRC

Leonard Brown, CRC, 800-782-8272, FAX 310-393-7551

Regression with Graphics, by Lawrence Hamilton, is now available from CRC for $49.95, plus shipping. The book provides
a unique treatment of regression by integrating graphical and regression methods for performing exploratory data analysis. Stata
graphs and output are used throughout the book.

The Table of Contents printed in an15 in STB-4 was based on a pre-publication manuscript. The following is the Table of
Contents as it appears in the published book. Each chapter ends with a Conclusion, Exercises, and Notes (not shown).

Chapter 1: VARIABLE DISTRIBUTIONS—The Concord Water Study; Mean, Variance, and Standard Deviation; Normal Distributions; Median and
Interquartile Range; Boxplots; Symmetry Plots; Quantile Plots; Quantile-Quantile Plots; Quantile-Normal Plots; Power Transformations; Selecting an
Appropriate Power

Chapter 2: BIVARIATE REGRESSION ANALYSIS—The Basic Linear Model; Ordinary Least Squares; Scatterplots and Regression; Predicted Values
and Residuals; R2, Correlation, and Standardized Regression Coefficients; Reading Computer Output; Hypothesis Tests for Regression Coefficients;
Confidence Intervals; Regression through the Origin; Problems with Regression; Residual Analysis; Power Transformations in Regression; Understanding
Curvilinear Regression

Chapter 3: BASICS OF MULTIPLE REGRESSION—Multiple Regression Models; A Three-Variable Example; Partial Effects; Variable Selection;
A Seven-Variable Example; Standardized Regression Coefficients; t-Tests and Confidence Intervals for Individual Coefficients; F-Tests for Sets of
Coefficients; Multicollinearity; Search Strategies; Interaction Effects; Intercept Dummy Variables; Slope Dummy Variables; Oneway Analysis of
Variance; Twoway Analysis of Variance

Chapter 4: REGRESSION CRITICISM—Assumptions of Ordinary Least Squares; Correlation and Scatterplot Matrices; Residual versus Predicted Y
Plots; Autocorrelation; Nonnormality; Influence Analysis; More Case Statistics; Symptoms of Multicollinearity

Chapter 5: FITTING CURVES—Exploratory Band Regression; Regression with Transformed Variables; Curvilinear Regression Models; Choosing
Transformations; Evaluating Consequences of Transformation; Conditional Effect Plots; Comparing Effects; Nonlinear Models; Estimating Nonlinear
Models; Interpretation

Chapter 6: ROBUST REGRESSION—A Two-Variable Example; Goals of Robust Estimation; M-Estimation and Iteratively Reweighted Least Squares;
Calculation by IRLS; Standard Errors and Tests for M-Estimates; Using Robust Estimation; A Robust Multiple Regression; Bounded-Influence Regression

Chapter 7: LOGIT REGRESSION—Limitations of Linear Regression; The Logit Regression Model; Estimation; Hypothesis Tests and Confidence
Intervals; Interpretation; Statistical Problems; Influence Statistics for Logit Regression; Diagnostic Graphs

Chapter 8: PRINCIPAL COMPONENTS AND FACTOR ANALYSIS—Introduction to Components and Factor Analysis; A Principal Components
Analysis; How Many Components?; Rotation; Factor Scores; Graphical Applications: Detecting Outliers and Clusters; Principal Factor Analysis; An
Example of Principal Factor Analysis; Maximum-Likelihood Factor Analysis

Appendices: Population and Sampling Distributions; Computer-Intensive Methods; Matrix Algebra; Statistical Tables

dm3.1 Typesetting correction to automatic command logging for Stata

The profile.add program in \dm3 of the STB-4 diskette contains code that is related to typesetting the STB. The program
will not run correctly in its present form. The code should read as the autolog program shown on page 4 of STB-4. The
corrected program is on the STB-5 diskette. We apologize to Mr. Judson for our error.
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dm5 Creating a grouping variable for data sets

Marc Jacobs, Social Sciences, University of Utrecht, The Netherlands FAX (011)-31-30-53 4405

Sometimes I need a vector that runs from 1 to k, n times. Programs like GLIM (Generalized Linear Interactive Modelling)
or ML3 (Multilevel analysis) make use of those vectors. If necessary it is possible to create such vectors. But both of the
mentioned programs are not very easy to use. Data manipulating is not very simple. Everything that is possible I do in Stata.
That is why I constructed two short programs. The first one, bv.ado, creates a vector, with total length N, consisting of blocks
running from 1 to k, as many times as is possible. The second one, bvs.ado, is similar, but constructs a vector, length N,
consisting of blocks of 1, 2, : : : , n.

Results would be like this:

. bv n 5 . bvs s 5

n s

1 1

2 1

3 1

4 1

5 1

1 2

2 2

3 2

4 2

5 2

. .

. .

n n

Both programs are found on the STB-5 diskette.

dm6 A utility to document beginning and ending variable dates

Sean Becketti, Federal Reserve Bank of Kansas City

finddate varlist
�
if exp

� �
in range

� �
, date(datevars) nobs

�

lists the dates or observation numbers of the first and last nonmissing observations for each variable in varlist. finddate is
useful for documenting data sets when they are constructed and for exploring unfamiliar data sets.

If the date option is specified, the first and last dates are listed; otherwise, the first and last observation numbers are listed.
The data set is assumed to be sorted in the order of datevars.

If nobs is specified, the number of nonmissing observations, the total number of observations, and the number of gaps in
the series are indicated. If there are no gaps, missing values at the beginning or ending of a series are ignored in determining
the “total” number of observations.

Example
. use nfcbout, clear

(Nonfin. corp. liabilities)

. describe

Contains data from nfcbout.dta

Obs: 158 (max= 66571) Nonfin. corp.liabilities

Vars: 5 (max= 99)

1. year int %8.0g Year

2. quarter int %8.0g quarter Quarter

3. corpeq float %9.0g Corporate equities

4. bonds float %9.0g Corporate bonds, NF

5. mortgage float %9.0g Mortgages, NF

Sorted by: year quarter

. finddate corpeq-mortgage

First Last

Obs Obs

------------------------------

corpeq 1 158

bonds 8 158

mortgage 1 158
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. finddate corpeq-mortgage, date(year quarter) nobs

First Last

year quarter year quarter

-----------------------------------------------------

corpeq 1952 Q1 1991 Q2 (158/158/0)

bonds 1953 Q4 1991 Q2 (151/151/0)

mortgage 1952 Q1 1991 Q2 (153/158/2)

ip1 Customizing a Stata menu system

Marc Jacobs, Social Sciences, University of Utrecht, The Netherlands FAX (011)-31-30-53 4405

t menu is a program shell that allows the user to create a customized Stata menu system. The number of menu choices
permitted is limited only by the length of the screen; however, more may be created if one wants to include deeper levels.

* 6 October (10) 1991 (12:33)

* (c) Marc Jacobs, Utrecht, The Netherlands ( Telefax: 31 30 53 44 05)

* ( E-mail: CUSMAR@CC.RUU.NL)

*

* Menu maker in STATA

* Features 1: Is there a dataset in memory? Save it or drop it?

* 2: Test validity of choice, can be more sophisticated

* Problems 1: Pause in program? (via DOS shell it is possible)

* 2: Clear screen in Stata (now via the DOS shell, inelegant)

* 3: Displaying ASCII > 128 seems impossible

* Trying 1: Calling other programs or do-files

program define t_menu

capture confirm existence %S_FN

if (_rc~=6) {

!cls

mac def _bad 1

while %_bad {

di in bl "WARNING! " in gr "Current data set in use is %S_FN"

di in gr "Do you want me to save it first?" _n

di in ye _col(15) "1" in bl " - SAVE " in gr "%S_FN"

di in ye _col(15) "2" in bl " - DROP " in gr "%S_FN"

di _newline(2) in gr "Your choice? " _request(_dr_sv)

if ("%_dr_sv" == "1") {

save, replace

capture drop _all

capture label drop _all

mac def _bad 0

}

else if ("%_dr_sv" == "2") {

capture drop _all

capture label drop _all

mac def _bad 0

}

}

}

mac def _cont 1

while %_cont {

!cls /* schoon het scherm, via de shell */

/* zet het woord menu in het midden neer */

disp in ye _col(38) " MENU "

disp _n(3)

disp in ye _col(15) "1" in gr " - Prepare data set 1"

disp in ye _col(15) "2" in gr " - Prepare data set 2"

disp in ye _col(15) "3" in gr " - Prepare data set 3"

disp in ye _col(15) "4" in gr " - Option 4"

disp in ye _col(15) "5" in gr " - Option 5"

disp in ye _col(15) "6" in gr " - Option 6"

disp in ye _col(15) "7" in gr " - Option 7"

disp in ye _col(15) "8" in gr " - Option 8"

disp in ye _col(15) "9" in gr " - Just quit"

disp _newline(1)

disp in gr "make choice " _request(_choice)

if "%_choice" == "1" {

disp in bl "Preparing data set 1 for analyses"

/* Stata commands */

}
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else if "%_choice" == "2" {

disp in bl "Preparing data set 2 for analyses"

/* Stata commands */

}

else if "%_choice" == "3" {

disp in bl "Preparing data set 3 for analyses"

/* Stata commands */

}

else if "%_choice" == "4" {

}

else if "%_choice" == "5" {

}

else if "%_choice" == "6" {

}

else if "%_choice" == "7" {

}

else if "%_choice" == "8" {

}

else if "%_choice" == "9" {

disp in bl "Bye bye"

exit

}

else {

disp _newline(2)

disp in bl "WARNING!" in gr /*

*/ " Choice not valid, choose number smaller then 9."

!pause

}

}

end

t menu is found on the STB-5 diskette. To create your own customized menu, just edit t menu.ado with any ASCII editor, and
fill in the menu options with your own choices.

[I am interested in receiving example menu systems created with this shell.—Ed.]

gr9 Partial residual graphs for linear regression

Joseph Hilbe, Editor, STB, FAX 602-860-1446

partres depvar varlist
�
, lowess

�
produces partial residual graphs for each independent variable in varlist. The program implements the lowess option by invoking
ksm (gr6, Royston 1991), so you must install gr6 for this option to work. lowess graphs a lowess smoother over the partial
residual graph, allowing the user to determine more easily the shape of partial residuals. With or without the lowess curve, the
graphs aid in detecting nonlinearities as well as identifying cases with high-residual values.

Each variable is calculated separately and is not standardized. The formula for partial residuals is

r = Xij�ij + (yi � �i)

where (yi��i) are the values of the residuals produced as a result of linear regression of y on Xi. The partial residual graph is
a scatterplot of the partial residuals on the y-axis versus the actual variable values on the x-axis. Unlike the leverage command,
partres displays all independent variables automatically.

Using the auto.dta provided on one of the disks that came with Stata, I will graph price on mpg and gratio using
both the leverage and partres commands.

. leverage price mpg gratio (Figure 1)

. leverage price gratio mpg (Figure 2)

. partres price mpg gratio, lowess (Figures 3 and 4)
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References
Royston, J. P. 1991. gr6: Lowess smoothing. Stata Technical Bulletin 3: 7–9.

gr10 Printing graphs and creating WordPerfect graph files

Thomas R. Saving & Jeff Montgomery, Dept. of Economics, Texas A&M University

The ability to print graphs and create WordPerfect graphs directly from Stata is something I found important enough to
write ado commands to perform. The commands are gphprt and gphwp. gphwp creates the WordPerfect file and is printer
independent, and gphprt—the print graph command—is printer specific.

gphprt takes any Stata .gph file, creates the appropriate print file, sends the file to your printer, and then erases the print
file, leaving the original .gph file in place. Because I find the Stata default portrait-size graph too small, the command changes
the default to landscape at 150% of the portrait size. This scale is the largest graph that can be printed on standard 11 x 8 1

2
paper.

While the entire graph does fit on the page, Stata gives an erroneous error message that some of the graph may be chopped at
this scale. The syntax for gphprt is

gphprt graphfilename scale

where the full path name of the graph file is required and scale is expressed as a percent of a full landscape page. If you want
a smaller image, express your desired size as a percent of 100. For example, a scale of 75 will give you an image that has x-
and y-axes 75% of the axes for the full-page graph. The file extension need not be included if you have used the Stata default
extension .gph. The scale parameter need not be included if the default of full page landscape is satisfactory.

Example: gphprt c:nstatanfilesnmygraph 75

The gphwp command writes a HP Graphics Language (HP-GL) file from a Stata .gph file for importation into WordPerfect.
It has been my experience that HP-GL files produce WordPerfect graphs that exactly duplicate the original. I should also note
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that I have never been able to successfully import a Stata generated Postscript graphics file into WordPerfect. The syntax for
gphwp is

gphwp graphfilename

where the full path name of the graph file is required. As in the graph print command, the file extension need not be included
if you have used the Stata default extension .gph. The gphwp command creates a file in your WordPerfect file directory called
graph.hgl. This file can be directly imported into WordPerfect.

gphwp c:nstatanfilesnmygraph
The two ado programs are

gphprt

program define gphprt

if "%_1"=="" {

di in red "invalid syntax -- see help gphprt"

exit 198

}

if "%_2"=="" {

mac def scale=150

}

else {

mac def scale=int(%_2*1.5)

}

! gphpen %_1 /n /ogphprt.ps /r%scale

! copy c:\stata\gphprt.ps lpt1

! erase c:\stata\gphprt.ps

end

gphwp

program define gphwp

if "%_*"=="" {

di in red "invalid syntax -- see help gphwp"

exit 198

}

! gphpen %_1 /dhp7475ls /oc:\wp51\files\graph.hpl

end

sbe4 Further aspects of RIA analysis

Paul J. Geiger, USC School of Medicine, pgeiger@vm.usc.edu

Statistical calculations for RIA (radioimmunoassay) using Stata with the logit-log method were described in sbe3 (Geiger 1991).
The logit-log method (Rodbard and Lewald 1970) is based on a transformation of data defined as logit(Y ) = loge(Y=(1�Y )).
The transformed variable must be Y =B/Bo, where B is CPM (counts per minute) of bound, labeled antigen (above nonspecific
CPM) divided by Bo, the CPM in the absence of unlabeled antigen (above nonspecific CPM). The unlabeled antigen is that present
in the unknown or sample being assayed. It is also present in the standards with which the standard curve is constructed.
The logit-log transformation reduces the hyperbolic curve of CPM vs. dose to a straight line, logit(B/Bo) vs. log10(dose). The
hyperbolic curve can be seen by graphing cpm vs. stds pg using the data supplied in sbe3 (Geiger 1991). The logit-log method
and its application have been extensively described (Chard 1990; Rodbard et al. 1987; and Tijssen 1985).

In fact this method works for 90%–95% of experimental cases. These cases might deal not only with RIA but also with
any analytical system that provides a hyperbolic curve when response is plotted vs. dose. Two examples are EIA, enzyme
immunoassay, and ELISA, enzyme-linked immunosorbent assay. Unfortunately, in about 5%–10% of assays, the logit-log method
fails to provide an adequate description of the dose response curve. This performance failure can be found by plotting the
residuals after fitting the regression line. An alternative is to observe an unacceptable coefficient of determination, R2, that is,
significantly less than 0.99–1.0 (ideal).

In the event of failure of the logit-log method, the more complicated four-parameter logistic model covers most of the rest
of the cases. Further fixes are also possible as detailed by (Rodbard et al. 1987). In point of fact, the four-parameter logistic
method is superior to the logit-log method, both theoretically and in practice, and should be regarded as the primary, not the
secondary approach (Rodbard et al. 1987). This model is expressed by the following equation:

y =
a� d

1 + (x=c)b
+ d
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The value a is the expected response when dose=0 (mean of b100 in sbe3) and d is the expected response for infinite dose
(mean of NSB in sbe3). The value c is ED50, effective dose 50%, which can be estimated from the midpoint of the logit-log
plot. It can be estimated more easily from the plot of CPM vs log10(dose), midway between the upper and lower plateaus of the
sigmoidal curve. The exponent b is the slope factor, corresponding to the slope of a logit-log plot, or the pseudo-Hill coefficient
(Segel 1976 , 309–311; Atkinson et al. 1987, 141–148).

The nonlinear regression program, nonlin.ado (Danuso 1991; nonlin.ado is included in the n sbe4 directory) is ideal
for this type of application. It is a little slower than the ado-files supplied for the logit-log plot in sbe3 because it is interactive
and the above equation must be typed in and the parameters, %b1=a, %b2=b, %b3=c, %b4=d, assigned when prompted. If many
experiments are to be analyzed, a macro program such as SmartKey or Superkey may be useful to enter the equation and shorten
computation time.

For the present demonstration, the values to be typed into nonlin.ado are selected as above for a and d from the ria.dct

(in the nsbe3 directory on the STB-3 disk) file or the table in sbe3. The value 1 is estimated for b, and ED50 (c) can be chosen
from the midpoint of the standards concentrations, 50 pg/ml. Of course, y is cpm and x is stds pg from the same file. After the
values are entered, the number of iterations is chosen and six or eight converged for the data in sbe3. The results are illustrated
in the following table:

=====NONLINEAR REGRESSION RESULTS=====

File: RIAPAR4.DTA N. of iterations: 8

Variable Y : cpm

Variables Xi: stds_pg

Model: cpm=((1559.6904-87.57836)/(1+(stds_pg/38.066223)^ 1.0845367))+87.57836

Data selection: if 1

Residual Statistics:

Residual Average = -2.657e-06 Stand. Dev. = 20.344944

Skewness = -.33118934 Kurtosis = 1.7274191

------------------------------------------------------------

Variation d.f. SS MS

------------------------------------------------------------

Model 4 23339744 5834936

Residual 23 10761.835 467.90587

Total 27 23350506 864833.55

Corr Total 26 6347782.7 244145.49

------------------------------------------------------------

R^ 2 = .9983

------------------------------------------------------------------

Parameter Standard Error t Prob. t

------------------------------------------------------------------

b1 1559.6904 20.334942 76.700017 0

b2 1.0845367 .05226691 20.749968 0

b3 38.066223 1.4343017 26.5399 0

b4 87.57836 22.027671 3.9758339 .0005973

------------------------------------------------------------------

=== CORRELATION COEFFICIENT AMONG PARAMETERS ===

| a1 a2 a3 a4

--------+------------------------------------

a1| 1.0000

a2| -0.8372 1.0000

a3| -0.3826 -0.0093 1.0000

a4| -0.6016 -0.8491 -0.4171 1.0000

Computations for the unknown samples are made by using par4.ado:

/* Do file for computing 4-parameter model answers to RIA

data analysis. Please input b1 b2 b3 b4 from the nonlin output

by typing "do par4 b1 b2 b3 b4" */

. gen pg_ml = %_3* ((-1+(%_1-%_4)/(Scpm-%_4))^ (1/%_2))

. gen answer = pg_ml/Vol_ml

. format answer %8.2f

. noisily list smpl pg_ml answer

This short file computes the answers from the four-parameter equation rearranged to solve for x in pg/ml. This file is not
interactive so the command ‘do par4 a b c d’ must be typed in carefully. The values a b c d from the four-parameter logistic
equation are the estimated parameters, b1 b2 b3 b4, taken from the nonlinear regression table illustrated above. The following
table allows comparison of the nonlinear, four-parameter logistic method with the results obtained using the logit-log method
and the same data used in sbe3:
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pg/ml pg/ml pg/ml

Sample four- logit- Ref.[1]

ID no. param. log in sbe3

---------------------------------------------

11772 1728.94 1767.13

11772 1742.05 1781.31 1859.11

11772 1472.59 1544.25

11772 1493.71 1567.16 1634.48

11773 1325.08 1332.42

11773 1247.85 1300.03 1389.57

11774 1194.67 1193.03

11774 1170.23 1167.37 1227.63

11774 1001.48 1032.11

11774 1040.83 1074.86 1105.71

11775 1711.63 1748.40

11775 1764.14 1805.22 1861.62

11775 1447.79 1517.34

11775 1485.21 1557.94 1615.47

11776 1335.13 1343.17 1401.00

11776 1241.16 1292.76 1358.63

11777 1209.68 1209.31 1258.64

11777 998.92 1029.33 1080.38

11778 1468.81 1486.53 1553.45

11778 1443.71 1512.91 1589.77

11779 1487.33 1506.45

11779 1506.08 1526.62 1585.31

11779 1354.05 1415.52

11779 1303.08 1360.10 1458.23

11780 998.95 986.39

11780 967.70 953.58 1004.17

11780 904.62 927.03

11780 836.67 853.50 932.07

The power of the four-parameter logistic may be appreciated even more in that the zero and “infinite” doses actually need
not be known. In fact in some cases they, or one of them, might be very difficult or impossible to obtain. Further, one of them
might be lost in the experiment or the “infinite” dose might require too much of a very expensive antigen to estimate it. Without
good values for both, analysis with the logit-log method is not possible. In this case, values for a and d are chosen from the
highest and lowest values of the responses in the set of standards, provided enough standards have been included to indicate the
high and low plateaus of the dose response curve. The other two parameters, b and c, are chosen as before. This approach was
used with the data from sbe3 and gave identical results after the same number of iterations.

Finally, the Danuso nonlin.ado program will show various residual plots and a graph of the hyperbolic curve fitted to the
experimental values. Uncertainties are indicated by means of circles of varying sizes around the plotted points. The illustration
from nonlin.ado shown here is the predicted line fitted to the experimental values (see Figure 1). If a plot of the sigmoidal
curve is desired in order to view the regression fit in this form, one has only to plot ycal and cpm vs. log10(stds pg) (see
Figure 2).

cpm=((1559.69-87.578)/(1+(std/38.066)^1.084)) + 87.578
r^2=.9983
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sg3.7 Final summary of tests of normality

William Gould, CRC, FAX 310-393-7551

In this insert, I update the tables last presented in sg3.4 to account for the final round of improvements by Royston in sg3.5
and in private communications with me. This discussion has dragged on long enough that, before presenting the final results, it
is worth summarizing what has happened.

CRC first introduced a homegrown test for normality that it dubbed sktest, the sk standing for the skewness and kurtosis
on which the test was based. In keeping a promise I made, I compared our homegrown test to that of D’Agostino, et al. (1990)
and to Bera-Jarque (Judge et al. 1985). The survivors from this comparison were the homegrown sktest and that of D’Agostino.

Royston in sg3.1 retorted with strong evidence of problems with sktest and of lessor problems with D’Agostino and, in
sg3.2, promoted the Shapiro–Wilk and Shapiro–Francia tests, dubbed swilk and sfrancia. In sg3.4, Rogers and I compared
the (now) four tests and, agreeing with Royston, withdrew our sktest. We also discovered certain problems with swilk in
dealing with aggregated data. Meanwhile, Royston in sg3.5 went on to make an empirical correction to the D’Agostino test in
the spirit of our sktest designed to fix the problems he had previously observed. Since then, in private communication, Royston
has further improved the D’Agostino test and made improvements to swilk.

Thus, we are still left with four tests. In the results below, D’Agostino refers to the original D’Agostino test. sktest now
refers to the D’Agostino test with the empirical corrections introduced by Royston. swilk is the Shapiro–Wilk test as most
recently updated by Royston. sfrancia is the Shapiro–Francia test as submitted by Royston in sg 3.2. The results are

True Distribution Test 1% 5% 10% True Distribution 1% 5% 10%

Normal Contaminated Normal
D’Agostino .018 .059 .100 .965 .970 .973
sktest .011 .051 .104 .963 .968 .973
swilk .009 .051 .102 .961 .966 .971
sfrancia .010 .057 .108 .963 .970 .973

Uniform Long-tail Normal
D’Agostino .985 .997 .999 .081 .179 .263
sktest .975 .997 .999 .057 .165 .267
swilk .949 .997 .999 .068 .179 .269
sfrancia .767 .970 .993 .089 .229 .343

t(5) t(20)
D’Agostino .453 .595 .673 .069 .137 .197
sktest .406 .578 .676 .054 .127 .201
swilk .413 .558 .639 .043 .112 .174
sfrancia .466 .629 .712 .055 .142 .215

chi2(5) chi2(10)
D’Agostino .883 .977 .995 .606 .806 .895
sktest .837 .970 .995 .540 .784 .899
swilk .986 .997 1.000 .763 .903 .949
sfrancia .974 .996 .998 .711 .880 .933

grouped Normal group t(5)
D’Agostino .019 .057 .101 .444 .583 .661
sktest .011 .050 .103 .395 .566 .664
swilk .005 .024 .046 .352 .482 .547
sfrancia .003 .016 .033 .386 .528 .602

To refresh your memory, the numbers reported are the fraction of samples that are rejected at the indicated significance level.
Tests were performed by drawing 10,000 samples, each of size 100, from the indicated distribution. Each sample was then run
through each test and the test statistic recorded. (Thus, each test was run on exactly the same sample.)
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I will leave the interpretation of the table to the reader except to note that all tests now perform well. In particular, sktest
(D’Agostino with the Royston correction) performs quite well even on aggregated data and swilk now performs as least as
satisfactorily as sfrancia on aggregated data. Final versions of all tests are provided on the STB diskette.
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sg5 Correlation coefficients with significance levels

Sean Becketti, Federal Reserve Bank of Kansas City

corrprob varname1 varname2
�
in range

� �
if exp

��
, type

�
where type is one of all all correlation measures

pearson Pearson’s product-moment correlation
spearman Spearman’s rank-correlation
kendall Kendall’s ��

displays one or more correlation coefficients between varname1 and varname2 along with a normal-approximation to the test
that the rank correlation is zero. If no type is specified, then pearson is assumed.

Examples . use census

(Census data by state, 1980)

. describe

Contains data from census.dta

Obs: 50 (max= 32249) Census data by state, 1980

Vars: 4 (max= 99)

1. state int %8.0g fips State

2. region int %8.0g cenreg Census region

3. brate float %9.0g Births per 100,000

4. dvcrate float %9.0g Divorces per 100,000

Sorted by: region

. set rmsg on

r; t=0.00 10:27:52

. corrprob brate dvcrate

(nobs=50)

Pearson's r = 0.28

Prob z > |r| = 0.05

r; t=1.20 10:27:54

. corrprob brate dvcrate, all

(nobs=50)

Pearson's r = 0.28

Prob z > |r| = 0.05

Spearman's r = 0.41

Prob z > |r| = 0.00

Kendall's tau = 0.29

Prob z > |tau| = 0.00

r; t=158.29 10:30:33 Note that calculation of Kendall’s �� takes a long time.

References
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sg6 Regression switching models

Daniel Benjamin, Clemson University, and William Gould, CRC, FAX 310-393-7551

[The following exchange occurred by FAX on the Stata help line—Ed.]

Question

Consider the regression:
y = b0 + b1x1 + b2x2 + e

I have a theory that implies both b0 and b2 depend on x2. In particular for x2 > x
?
2, b?0 > b0 > 0 and b

?
2 < 0 < b2. The theory

does not tell me the value of x?2, so I propose to determine it empirically running a series of paired regressions of the form:

y =

�
b0 + b1x1 + b2x2 + e; if x2 < x

?
2

b
?
0 + b

?
1x1 + b

?
2x2 + e

? otherwise

The value of x?2 that produces the lowest combined residual sum of squares for the two regressions will then be my value of
x2. Once this value is determined, I will utilize a regression that incorporates shift and slope dummies tailored to the estimated
value of x?2. I have tediously done this by hand, but now I want to automate this. How?

Answer

Let’s begin by considering a different way to parameterize the model. In particular, we will rewrite the model as

y = f(x2) + b1x1 + g(x2)x2 + e

That is, the intercept is a function of x2 as is the coefficient on x2. In your formulation, f(x2) = b0 or b?0 depending on whether
x2 < x

?
2, and similarly g(x2) = b2 or b?2. Let us introduce the notation b

?
0 = b0+�b0, so �b0 measures the difference between

b0 and b
?
0, and b

?
2 = b2 +�b2. Letting � = 1 if x2 > x

?
2 and 0 otherwise, we can rewrite the model:

y = (b0 +�b0�) + b1x1 + (b2 +�b2�)x2 + e

= b0 +�b0� + b1x1 + b2x2 +�b2(�x2) + e

The coefficients to be estimated are b0, �b0, b1, b2, and �b2. This is a preferable way to estimate the model because it constrains
b1 to be the same regardless of x2 and it constrains the variance of the residuals to be the same.

The above model can be estimated by least squares conditional on � (or, equivalently, conditional on the cutoff x?2). If,
however, you attempt to find the � (cutoff x?2) that minimizes the sum of squares, you can still use least squares to obtain the
coefficients, but the standard errors will be wrong since they do not account for the fact that � is an estimate. They are wrong
and too small.

Before opting for the cutoff model, I would ask myself—does my theory really imply switching behavior? That is, are the
coefficients really one value if x2 < x

?
2 and some other value otherwise, as opposed to a smooth function? For instance, another

alternative would be f(x2) = f0 + f1x2 and g(x2) = g0 + g1x2. Then the model is

y = (f0 + f1x2) + b1x1 + (g0 + g1x2)x2 + e

= f0 + b1x1 + (f1 + g0)x2 + g1x
2
2 + e

The coefficients to be estimated are f0, b1, (f1 + g0), and g1. This equation can be estimated directly by least squares and the
standard errors are all estimated correctly. In most cases, this second formulation is preferable. It is not preferable, of course, if
your theory really implies switching behavior.

If you want to estimate the switching model, the following program should work:

program define gsearch

* Assumptions:

* Model is y = f(x1,x2), where x1 and x2 are the variable names.

* gsearch takes three parameters

* 1. lower bound for search

* 2. upper bound for search

* 3. increment

* e.g.,

* gsearch 0 10 .1

* will search X=0, .1, .2, ..., 10.



Stata Technical Bulletin 13

mac def _X0 %_1

mac def _X1 %_2

mac def _Xd %_3

mac def _minrss 1e+30

mac def _X .

capture drop delta deltax2

quietly {

while %_X0 <= %_X1 {

gen delta = x2 > %_X0

gen deltax2 = x2 * delta

regress y delta x1 x2 deltax2

di "for X= %_X0 rss = " _result(4)

if _result(4) < %_minrss {

mac def _minrss = _result(4)

mac def _X %_X0

}

drop delta deltax2

mac def _X0 = %_X0 + %_Xd

}

}

mac def _X0 %_X

di "Optimum value is X= %_X0"

gen delta = x2 > %_X0

gen deltax2 = x2 * delta

di "Model is"

regress y delta x1 x2 deltax2

di "note: standard errors conditional on estimated X"

end

Typing ‘gsearch 1 2 .01’, for instance, will search for the optimal value of x?2 between 1 and 2 by trying x
?
2 = 1, 1.01,

1.02, : : :, 1.98, 1.99, and 2. The best value found will be reported along with the corresponding regression.

smv2.1 Minor change to single factor repeated measures ANOVA

A replacement ranova.ado program is included on the STB-5 disk. It fixes a problem that is unlikely to occur which
concerns Stata automatically dropping programs that are not used and then reloading them if you execute the command later.

smv3 Regression based dichotomous discriminant analysis

Joseph Hilbe, Editor, STB, FAX 602-860-1446

discrim depvar varlist
�
if exp

� �
in range

� �
, anova detail graph

�
allows the user to perform a discriminant analysis on a Bernoulli-distributed response or grouping variable; that is, a response
variate with values of either 0 or 1. It is not for use with a multinomial response variable. Moreover, since certain simulated
matrix routines involve the creation of variables, the user may need to use the set maxvar # command prior to loading the data
set upon which the discriminant analysis is to be performed.

discrim command options include an anova table of the discriminant scores by the response variable, a detail option
that, for each observation, lists the values of the response, the predicted value, the logistic probability of group 1 membership, the
discriminant index, and the discriminant score. A column is also provided that prints a star when an observation is misclassified.
Finally, the graph option graphs the logistic probability versus the discriminant index score. Each misclassified observation is
distinguished by a ‘+’ mark. Negative index values represent group 1 predictions.

Discriminant analysis (DA) is primarily used to generate classification coefficients which one can use to classify additional
extra-model cases. The discriminant function is a linear function of the variates that maximizes the ratio of the between-group
and within-group sum of squares. In essence, it is an attempt to separate the groups in such a manner that they are as distinct
as possible. The procedure is based on the assumptions that both group covariance matrices are nearly the same and that the
independent variables are multivariately normal. Although DA is fairly robust against violations, it has been demonstrated that
logistic regression (LR) does a far better job at classification when the above violations exist. Conversely, LR does not allow
classification at all when there is perfect prediction. DA has no such limitation. As a side, when there are significantly fewer
covariate patterns in the data set than observations, the LR program utilizing Hosmer and Lemeshow (LRHL) methodology
generally yields superior correct classification rates than either DA or ordinary LR. LRHL is implemented in Stata by logiodd2

(Hilbe 1991). Hence, DA is appropriate to use in cases where there is perfect prediction, that is, when LR cannot be used without
modification of model variables, or when there is near equality of group covariance matrices and fairly normal variates.
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The default output from the discrim command includes the following statistics: number of independent variables, observations
in group 0 and in group 1, R2, Mahalanobis distance, group centroids, grand centroid, eigenvalue, canonical correlation, �2, �,
�
2 and significance, a confusion matrix, percentages of correctly predicted observations, model sensitivity, model specificity, false

positive and false negative, and a table listing both the discriminant classification coefficients and the unstandardized canonical
discriminant function coefficients.

Discriminant analysis is typically performed using linear algebra. Some matrix operations may be simulated using the
Stata programming language; however, it clearly does not allow matrix inversion—a necessary prerequisite to determining
discriminant functions. However, since discriminant and regression coefficients are proportional, it is possible to use regression,
which involves a matrix inversion, as a base to determine discriminant coefficients. In other words, we can use the (X 0

X)�1

matrix inversion routine in regression as a substitute for the inversion of the pooled within-groups covariance matrix required
in normal discriminant analysis. Then all that needs to be accomplished is to determine the nature of the proportionality.

There are several references in the literature regarding the ability of regression to determine discriminant classification
coefficients. Those that I became acquainted with, however, simply state that there is a constant *k by which one can multiply a
regression coefficient to yield a corresponding discriminant function. However, *k changes for each separate analysis. Hence the
actual proportion for a given operation is not inherently clear given only the regression coefficients. I shall outline the solution
that I derived and upon which the discrim command is based. Feel free to optimize or alter it according to your requirements.
I have tried to outline the steps in such a manner that it can be, if so desired, programmed into environments other than Stata.

Create a dummy variable ( dummy) with two values according to the following

c0 = n0=n and c1 = �n1=n

where n0 is the number of observations in group 0 and n1 is the number of observations in group 1. Assign the value of c0 to
dummy if group 0 and c1 to dummy if group 1. Equal-sized groups will consist of dummy having the value of .5 if group 0 and
�:5 if group 1. Regress dummy on the remaining independent variables. The statistic of interest is R2. From it the multivariate
statistic Mahalanobis distance may be calculated. The desired proportion is the result of dividing R

2 by Mahalanobis.

M =
R

2

1�R
2

n(n� 2)

n0n1

and P =
R

2

M

Divide each of the coefficients generated by the regression of dummy on X by the above proportion P . The result is an array of
discriminant classification coefficients. The constant is calculated separately and involves matrix operation simulation. Do not try
to interpret the sign of the coefficients as you would regression coefficients. They may be arbitrary; the point of the discriminant
analysis is foremost classification and prediction.

Calculation of the discriminant classification constant entails the summation of group variable means; for example, sum the
mean of var1 in group 0 with the mean of var1 in group 1, etc. The result is a vector of group mean sums. Then matrix multiply
this vector by the vector of discriminant coefficients. Finally multiply the sum by �.5. Given b

r
i as the dummy regression

coefficients,

b
c
i =

b
r
i

P

S
m
i = �

X0i + �
X1i b

c
0 = �1

2

X
b
c
iS

m
i

where b
c
i are the discriminant classification coefficients. Note that the usual adjustment made for unbalanced groups is not

required at this point; adjustment was accommodated by the dummy variable.

Unstandardized canonical discriminant function coefficients (UDF) are obtained by simply dividing each classification
coefficient by minus the square root of the Mahalanobis distance. The constant is determined by multiplying each resultant UDF

by the respective variable mean, summing and multiplying by �1.

b
u
i = �M�

1

2 b
c
i b

u
0 = �

X
b
u
i
�
Xi

Discriminant index values are determined by summing the variate fits, based on the classification coefficients, and adding the
constant. The same procedure, but using UDF, applies to calculating the discriminant scores. Group centroids are simply the
mean of the discriminant scores for each respective group.

D
x
i = b

c
0 + b

c
1Xi + b

c
2Xi + � � �+ b

c
nXn

D
s
i = b

u
0 + b

u
1Xi + b

u
2Xi + � � �+ b

u
nXn

The observation logistic probability for group 1 membership is calculated by p
1
i = 1=(1 + e

Dx

i ).
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Performing a one-way ANOVA of the discriminant scores on the response or grouping variable produces an ANOVA table
that can be used for diagnostics. The eigenvalue is determined by dividing the between-groups Sum of Squares (SSb) by the
within-groups SS (SSw). That is, e = SSb

SSw
.

The eigenvalue is a means of evaluating the discriminating power of the model. An eigenvalue of near 0 indicates that the
discriminant model has little discriminating power. Eigenvalues in excess of 0.40 are desirable.

Canonical correlation is similar to the eigenvalue, with the exception that its values are limited to 0.0–1.0. It is the same as
the Pearson R

2 between the discriminant scores and the grouping variate. cc = SS
b

SSt
where SSt is the total SS of the model.

Wilk’s � is a statistic that measures the degree of difference between group means. It can range from 0.0 to 1.0. Lower
values indicate a model with better discriminating power. For example, a � of .20 means that the differences between the two
groups account for some 80 percent of the variance in the independent variables. Eta-squared (�2) is simply 1� � or SS

b

SSt
. It

indicates the ratio of total variance (SSt) in the discriminant scores that can be explained by differences between the two groups.
� = SSw

SSt

The significance of � is determined by creating a �2 variable from � with p degrees of freedom. It is a test that the group
means are equal.

�
2 = �(n� p+ 2

2
� 1) ln(�)

where p is the number of predictor variables in the model.

The anova option provides an F statistic by which we can evaluate the equality of the means of the two groups. Bartlett’s
test for equal variances is also displayed. High values of �2 significance indicate that we cannot reject the assumed hypothesis
that the variances are homogeneous. This is, of course, exactly what we desire in discriminant analysis.

Example

I shall model foreign mpg price gratio using the auto.dta data set as provided on one of the disks that came with
Stata. First I shall employ discrim, then logit and finally logiodd2. foreign is the classification variable. This example
demonstrates an occasion when discriminant analysis correctly classifies observations into groups with greater success than does
logistic regression. Again, when both groups have fairly equal covariance matrices and the variables are multivariately normal,
discriminant analysis will often outperform logistic regression. Unfortunately this is not often the case.

Classification outputs are provided using discrim with the optional classification graph (Figure 1), logit, and logiodd2

with the code to produce a graph similar to that of discrim (Figure 2). The two logistic commands yield identical classification
results since the number of covariate patterns is identical to the number of observations in the data set (Hilbe 1991). For this
example, the discrim command yields a correct classification percentage of 89.18 % while logistic regression correctly classifies
86.49 %.

. use auto

(1978 Automobile Data)

. discrim foreign mpg price gratio, a d g

Dichotomous Discriminant Analysis

Observations = 74 Obs Group 0 = 52

Indep variables = 3 Obs Group 1 = 22

Centroid 0 = -0.7596 R-square = 0.5836

Centroid 1 = 1.7954 Mahalanobis = 6.5277

Grand Cntd = 1.0358

Eigenvalue = 1.4016 Wilk's Lambda = 0.4164

Canon. Corr. = 0.7639 Chi-square = 61.7673

Eta Squared = 0.5836 Sign Chi2 = 0.0000

----- Predicted -----

Actual | Group 0 Group 1 | Total

---------+--------------------------+--------

Group 0 | 48 4 | 52

Group 1 | 4 18 | 22

---------+--------------------------+--------

Total | 52 22 | 74

---------+--------------------------+--------

Correctly predicted = 89.19 %

Model sensitivity = 92.31 %

Model specificity = 81.82 %
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False Positive (G1) = 7.69 %

False negative (G0) = 18.18 %

Discrim Function Unstandardized

Variable Coefficients Coefficients

-------------------------------------------------

mpg -0.0672 0.0263

price -0.0006 0.0002

gratio -8.5901 3.3622

Constant 32.1269 -12.0566

Discriminant Scores v Group Variable

Analysis of Variance

Source SS df MS F Prob > F

---------------------------------------------------------------

Between groups 100.914538 1 100.914538 100.91 0.0000

Within groups 72.0000153 72 1.00000021

--------------------------------------------------------------

Total 172.914553 73 2.36869251

Bartlett's test for equal variances:chi2(1)=0.3163 Prob>chi2=0.574

---------------------------------------------------------------

PRED = Predicted Group DIFF = Misclassification

LnProb1 = Probability Gr 1 DscScore = Discriminant Score

DscIndex = Discriminant Index

---------------------------------------------------------------

foreign PRED DIFF LnProb1 DscIndex DscScore

1. 0 1 * 0.9179 -2.4141 1.4628

2. 0 0 0.0014 6.5752 -2.0556

3. 0 0 0.1140 2.0501 -0.2845

4. 0 0 0.0522 2.8998 -0.6171

5. 0 0 0.0025 6.0056 -1.8327

70. 1 1 0.9962 -5.5696 2.6978

71. 1 1 0.9979 -6.1403 2.9212

72. 1 1 0.9907 -4.6707 2.3460

73. 1 1 0.9972 -5.8841 2.8209

74. 1 1 0.7981 -1.3742 1.0558

. logit foreign mpg price gratio, nolog tab

Logit Estimates Number of obs = 74

chi2(3) = 52.45

Log Likelihood =-18.807429 Prob > chi2 = 0.0000

Variable | Coefficient Std. Error t Prob > |t| Mean

---------+--------------------------------------------------------

foreign | .2972973

---------+--------------------------------------------------------

mpg | .0488955 .1008566 0.485 0.629 21.2973

price | .0004591 .000185 2.482 0.015 6165.257

gratio | 6.402314 1.606307 3.986 0.000 3.014865

_cons | -24.81679 5.552434 -4.470 0.000 1

---------+--------------------------------------------------------

Comparison of Outcomes and Probabilities

Outcome | Pr < .5 Pr >= .5 | Total

---------+------------------------+-----------

Failure | 48 4 | 52

Success | 6 16 | 22

---------+------------------------+-----------

Total | 54 20 | 74

. logiodd2 foreign mpg price gratio, i

<< partial output >>

Number of Predictors = 3

Number of Non-Missing Obs = 74

Number of Covariate Patterns = 74

Pearson X^ 2 Statistic = 40.9854

P>chi2(70) = 0.9978

Deviance = 37.6149

P>chi2(70) = 0.9995
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Additional diagnostic variables created...

logindex = Logit; Index value

sepred = Standard error of index

pred = Probability of success (1)

. gen a=1 if pred<.5 & foreign==0

(26 missing values generated)

. gen d=1 if pred>=.5 & foreign==1

(58 missing values generated)

. count if a==1

48

. count if d==1

16

. gen LP=pred if (pred>=.5 & foreign==1) | (pred<.5 & foreign==0)

(10 missing values generated)

. gen LM=pred if LP==.

(64 missing values generated)

. lab variable LP "Classified"

. lab variable LM "Misclassified"

. gr LP LM logindex, s(.p) xlab ylab border yline(.5)

      Probabil i ty of Classif ication
Discriminant Index

 Classif ied  Misclassif ied

-10.0000 -5.0000 0.0000 5.0000 10.0000

.1

.3

.4

.5

.6

.7

.9

logindex

 Classif ied  Misclassif ied

-10 -5 0 5

0

.5

1

Figure 1 Figure 2
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sqv1.4 Typographical correction to enhanced logistic regression

The formula for deltax in sqv1.3 (STB-4, p. 17) contains a typographical error. The listed ‘q’ should be changed to a ‘1’.
The formula on the STB-4 disk is correct.

srd7 Adjusted summary statistics for logarithmic regressions

Richard Goldstein, Qualitas, Brighton, MA, EMAIL goldst@harvarda.bitnet

The syntax of logsumm is
logsumm varlist

Because of the types of calculations that must be made, if and in are not allowed; instead, drop cases that you don’t want
to use in the regression (or keep only those cases that you want).
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Choice of functional form is one of the hardest, and least capable of automation, modeling decisions in regression analysis.
Probably the most important criterion is the analyst’s substantive, or theoretical, knowledge of the situation. However, this is
rarely sufficient in itself. A number of tools have been devised to help analysts choose the appropriate functional form. This
ado-file presents a number of those tools in one package for the special, but widely applicable, case of choosing between a linear
and a log-linear form.

The general situation involves a choice among at least the following four forms:

1. Linear: y = �0 + �1X1

2. Semi-logarithmic: log(y) = �0 + �1X1

3. Quadratic: y = �0 + �1X1 + �2(X1
2
)

4. Logarithmic: log(y) = �0 + �1 � log(X1)

This particular ado-file is primarily aimed at helping users to distinguish between the first two of these forms, but can also be
helpful regarding the other two (some additional comments appear below).

There are also other competitors, such as a log-transform of only (some of) the right-hand-side variables, or transforming
the left-hand-side variable by taking its square root, or other fractional power, or by taking its inverse or inverse fractional power.
I do not include the first alternative (log-transforming only the right-hand-side variables) because I have never found it useful in
my own work. I do not include other possible transforms of the dependent variable because (1) I have found them less useful
than the log-transform, and, (2) they require different forms of adjusted re-transformation to the original units (Miller 1984). It
should prove easy, however, to modify this ado-file for any of the other dependent variable transformations.

Although there are many discussions of how to make such a choice in the statistical literatures of several disciplines, many
users just compare the summary statistics from the two regressions. However, when the dependent variable in a linear regression
is a logarithmic transform, the summary statistics are not comparable to the summary statistics from an untransformed regression.
Maddala (1988, 177) puts it this way:

When comparing the linear with the log-linear forms, we cannot compare the R
2’s because R

2 is the ratio
of explained variance to the total variance and the variances of y and log(y) are different. Comparing R

2’s
in this case is like comparing two individuals, A and B, where A eats 65% of a carrot cake and B eats 70%
of a strawberry cake. The comparison does not make sense because there are two different cakes.

Kvålseth (1985, 280) is less entertaining but more straightforward when he says

One of the most frequent mistakes occurs when comparing the fits of a linear and a nonlinear model by
using the same R

2 expression but different variables: the original variable y and the fitted ŷ for the linear
model and transformed variables for the nonlinear model.

Granger (1989, 131) says

The R
2 values are of no importance ... [if] the form of the dependent variable is not the same for the two

models.

Scott and Wild (1991, 127) say

The use of R2 is particularly inappropriate if the models are obtained by different transformations of the
response scale.

Since many of the other summary statistics, including RMSE and the F statistic are problems for the same reason (different
amount of variation in the dependent variable), this program provides these statistics also.

These summary statistics, as shown in the example below, are provided for five models: the raw variable model, the semi-log
model (log of dependent variable), the adjusted output from the raw model (adjusted by taking the logs of the predicted values
and the dependent variable and calculating the summary statistics), and two adjusted versions of the log model.

Note that this presentation is not meant to imply that you should choose between these functional forms based solely on these
summary statistics. Lots of other things, including substantive knowledge (is a multiplicative or an additive scale preferable?),
need to be taken into account. Another thing you may find helpful is a plot, created by specifying the rescale and rlog graph

options, showing both the untransformed variable (using, say, the left scale) and the transformed variable (using, say, the right
scale).

Two sets of adjusted statistics are provided: (1) “adj. exp” is an adjustment of the anti-log to take account of the changing
skewness; (2) “exp” is just the anti-log. Many people re-transform the results from log-transformed equations by just using
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the anti-log (exponential); however, if the log transformation is correct, then this gives you the median rather than the mean
(regression normally gives you an expected, or conditional, mean value). To get the mean, you must adjust this by using the
variance from the regression. See, for example, Miller (1984), Greene (1990, 168), Granger (1989, 132), or, any of the papers
cited in logdummy.hlp. [logdummy.hlp is found in the nsrd8 directory of the STB-5 disk—Ed.]

The summary statistics from all five models, including from the two regressions that are shown anyway, appear together in
a table. The summary statistics shown are R-squared, adjusted R-squared, the F value for the regression, the root mean squared
error (RMSE) for the regression, and the coefficient of variation for the regression. Also, at the bottom of each regression output, I
provide the Durbin–Watson statistic in unadjusted form; this is provided since often a log transform is used because of problems
that will cause D–W to fail.

The program automatically transforms the dependent variable for you. Note that this ado-file does not in any way transform
the right-hand-side, or independent, variables. Thus, if you think the real competition is between the log-transformed model
and an untransformed model with a quadratic effect on the right-hand-side, then you will probably need to run this ado-file
twice—once with the quadratic term included on the right, and once without it. As a side-benefit you might even find that the
log-transformed model with a quadratic term is best! Similarly, if you want to compare a model that is transformed to logs on
both the right and left sides, then again you should probably use this ado-file twice.

I also include two other procedures in the output: (1) a “test” of whether it is possible to reject either the linear or the
log-transformed version; and, (2) a simple run of the boxcoxg transformation ado-file. [See srd9 and/or the associated help file
on the STB-5 disk for more information—Ed.] The test is by R. Davidson and J. G. MacKinnon and is called the PE test. It
is discussed in a number of texts as well as in the following two articles: Davidson and MacKinnon (1985) [their data set is
included in the nsrd7 directory of the STB-5 disk as cansim.dta—Ed.] (this ado-file does not exactly match the results printed
in the article, but I think the difference is just due to a typo in the printed data set); and Godfrey, McAleer, and McKenzie
(1988). Two texts with good discussions are Greene (1990, 340–343) and Maddala (1988, 180). This test amounts to: (1) obtain
the predicted values from the two regressions; (2) form the variables (prediction � transform of other predicted); (3) estimate
each regression as before but include the relevant new variable from step 2 (i.e., include “prediction from log equation minus log
of prediction from raw equation” in raw model, and vice versa for log model); (4) examine t-tests for this new right-hand-side
variable: if t-test is statistically significant then you can reject that model as being insufficient (because you can improve it). The
problem is that both models might be either significant or not significant leaving you with an unsolved problem.

The Godfrey et al., article (1988) compares a number of tests and finds that the PE test, included here, and the Ramsey
RESET test, included in STB-2 (Goldstein 1991) as ramsey are among the best tests even when assumptions are violated.

There are other worthwhile things to do, at least two of which are possible in Stata. First, and very easy in Stata, is a graph
showing both the transformed and untransformed dependent variable on one graph, with one y-axis in the untransformed scale
and the other in the transformed scale. Two examples, one of made-up data and one of real data, show this. The other procedure
requires the use of the bootstrap. [Stata’s ado-file for this—boot—is included in the ncrc directory of the STB-5 disk—Ed.]
Use of the bootstrap to help choose between non-nested models is discussed in Efron (1984).

The logdummy.ado file (see srd8) canNOT be used at the end of a run using this file since the last regression actually
estimated by this ado-file is for the boxcoxg run. Thus, to use logdummy, you must actually re-estimate the log-transformed
regression. (See logdummy.hlp.)

Example using nwk.dta (Neter, Wasserman, and Kutner 1989, 150):

. use nwk

. logsumm plasma age

Source | SS df MS Number of obs = 25

---------+------------------------------ F( 1, 23) = 70.21

Model | 238.056198 1 238.056198 Prob > F = 0.0000

Residual | 77.9830691 23 3.39056822 R-square = 0.7532

---------+------------------------------ Adj R-square = 0.7425

Total | 316.039267 24 13.1683028 Root MSE = 1.8413

Variable | Coefficient Std. Error t Prob > |t| Mean

---------+--------------------------------------------------------------

plasma | 9.1112

---------+--------------------------------------------------------------

age | -2.182 .2604062 -8.379 0.000 2

_cons | 13.4752 .6378622 21.126 0.000 1

---------+--------------------------------------------------------------

Durbin Watson Statistic = 1.6413435
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Source | SS df MS Number of obs = 25

---------+------------------------------ F( 1, 23) = 134.02

Model | 2.77338628 1 2.77338628 Prob > F = 0.0000

Residual | .475948075 23 .020693395 R-square = 0.8535

---------+------------------------------ Adj R-square = 0.8472

Total | 3.24933435 24 .135388931 Root MSE = .14385

Variable | Coefficient Std. Error t Prob > |t| Mean

---------+--------------------------------------------------------------

logdepv | 2.141985

---------+--------------------------------------------------------------

age | -.2355159 .0203437 -11.577 0.000 2

_cons | 2.613017 .0498318 52.437 0.000 1

---------+--------------------------------------------------------------

Durbin Watson Statistic = 1.7528526

Following are some summary statistics for each of the above two models.

3 of the 5 sets of statistics are 'adjusted', the other two just repeat

what was shown above for ease of comparison.

The first column shows the unadjusted statistics for the linear model,

just as shown in the first regression above; the second column shows

summary statistics for the same model but this time adjusted by

transforming to logs; the third column repeats the unadjusted figures

from the transformed regression (the second regression above); this is

followed by two sets of adjusted statistics: (1) a less biased

re-transformation than the standard one (see the help file or the

STB article); (2) using the 'standard', biased, re-transformation

by just exponentiating the predicted values from the log model.

| Adjusted Better Standard

| Raw Raw Log Adj'd Log Adj'd Log

----------------------------------------------------------------------

R-Square | 0.7532 0.7981 0.8535 0.7911 0.7945

Adjusted R-SQ| 0.7425 0.7893 0.8472 0.7820 0.7856

F-Value | 70.21 90.93 134.02 87.09 88.93

RMSE | 1.8413 0.1689 0.1439 1.6944 1.7037

CV (*100) | 20.21 7.88 6.72 18.59 20.00

Results of the MacKinnon-Davidson (PE) test:

The t-statistic (p-value) for test of linearity is 2.068 0.050

The t-statistic (p-value) for test of log-linearity is -1.114 0.277

Note that it is quite possible that BOTH the above tests might be

significant (non-significant)!!

This means that this test is indeterminate for this model;

in this case, the use of boxcoxg.ado may be particularly helpful;

regardless, you might also want to use ramsey.ado (STB-2).

If only one test is significant, then we reject the functional

form for which the test is significant and 'accept' the other form.

Following is a crude look using boxcoxg; if this appears to be informative,

you might want to use boxcoxg again with a finer grid; see boxcoxg.hlp

lambda SSE Log-likelihood

-3.00 132.62 -61.0932

-2.50 89.93 -56.2381

-2.00 61.86 -51.5602

-1.50 44.01 -47.3064

-1.00 33.91 -44.0460

-0.50 30.56 -42.7460

0.00 34.52 -44.2690

0.50 48.37 -48.4862

1.00 77.98 -54.4561

1.50 135.17 -61.3314

2.00 243.05 -68.6657

2.50 446.86 -76.2781

3.00 835.78 -84.1046

A number of variables are kept, but not saved in your data file. Here is the data after the above estimation, with automatic
variable labels. You may want to use some of these; for example, comparing quantile graphs of the two different sets of residuals
can be informative.
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. describe, detail

Contains data from nwk.dta

Obs: 25 (max= 28324) Neter, et al., 1989, p. 150

Vars: 21 (max= 254)

Width: 108 (max= 510)

1. age float %9.0g

2. plasma float %9.0g

3. logdepv float %9.0g Log of Original D.V.

4. yhatr float %9.0g Pred. Values/Untransformed Reg.

5. yhatl float %9.0g Log of Pred. Values/Untransform

6. _resr double %10.0g Residuals/Untransformed Reg.

7. _DWr double %10.0g D-W/raw regression

8. _SSEr float %9.0g Log transformed SSE

9. _SSTr float %9.0g Log transformed SST

10. yhat double %10.0g Pred.Values/Transformed Reg, Lo

11. _res double %10.0g Residuals/Transformed Reg, Logs

12. stdf double %10.0g Forecast Err/Transformed Reg, L

13. yhata float %9.0g Retransformed, Adj., Pred. Valu

14. yhate float %9.0g Retransformed, UNadj., Pred. Va

15. _SSEa float %9.0g Retransformed, Adjusted, SSE

16. _SSEe float %9.0g Retransformed, UNadjusted, SSE

17. _SSTa float %9.0g Retransformed, Adjusted, SST

18. _SSTe float %9.0g Retransformed, UNadjusted, SST

19. _DW double %10.0g D-W from Transformed Reg.

20. lidiff float %9.0g Difference between Raw and Re-t

21. lodiff float %9.0g Difference between Log and Logg

Sorted by:

Note: Data has changed since last save

Note that use of this ado-file does not match the results presented in Kvålseth’s article (Kvålseth 1985); however, given
that he has some strange definitions (e.g., RMSE is NOT the square root of MSE), I am not bothered.
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Kvålseth, T. O. 1985. Cautionary note about R2. The American Statistician 39: 279–285.

Maddala, G. S. 1988. Introduction to Econometrics. New York: Macmillan Publishing Company.

Miller, D. M. 1984. Reducing transformation bias in curve fitting. The American Statistician 38: 124–126.

Neter, J., W. Wasserman, and M. H. Kutner. 1989. Applied Linear Regression Models. 2d ed. Homewood, IL: Richard D. Irwin.

Scott, A. and C. Wild. 1991. Transformations and R2. The American Statistician 45: 127–129.

srd8 Interpretations of dummy variables in regressions with log dependent variable

Richard Goldstein, Qualitas, Brighton, MA, EMAIL goldst@harvarda.bitnet

The syntax for logdummy is

logdummy varlist

No options are allowed or needed.

When the dependent variable in a linear regression is a logarithmic transform, the interpretation of the right-hand-side
variables is that they show the percentage change in the untransformed dependent variable per one-unit change in the right-hand-
side variable, if the right-hand-side variable is in original units. If the variable has been transformed also, by taking logs, then
its coefficient is interpreted as the percentage change in the untransformed dependent variable for a one percent change in the
untransformed right-hand-side variable. This is fine for continuous variables, but is biased for dummy (categorical) variables (this
provides the estimated median of the distribution rather than the mean). logdummy gives a simple change for dummy variables
that is consistent and, though still biased, is very close to the unbiased result and is much easier to compute. For discussion, see
the references below.
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srd9 Box–Cox statistics for help in choosing transformations

Richard Goldstein, Qualitas, Brighton, MA, EMAIL goldst@harvarda.bitnet

[It merely happened that Goldstein and Royston separately submitted inserts on the Box–Cox transform, so also see srd10. I have placed Goldstein
first because he provides a more thorough explanation of the transform and its uses. Goldstein and Royston solve the problem differently; Goldstein
provides a way to search powers while Royston provides the maximum-likelihood solution. Appropriately using either method should produce the
same results.—Ed.]

The syntax for the boxcoxg command is

boxcoxg lsl ul ss varlist
�
if exp

� �
in range

�

where lsl is the lower-search limit, ul is the upper-limit, and ss is the step-size.

In many cases, we cannot be sure that our regression model should include the dependent variable in its original form—we
may want to, or need to, transform it. While it is sometimes possible to determine a transformation based on theoretical
considerations, usually this is not the case. Many other methods have been used over the years, including plots of residuals
from a regression, and plots of the raw data. For an excellent description of this last technique, now not very useful, see Hoerl
(1954). Also, some people have used programs such as ladder.ado (see sed2 in STB-2).

The problem with these techniques is that they are either too subjective (graphs) or they examine the wrong problem—what
is the relation between the non-normality of a variable examined in isolation and the need to transform a variable when examined
with other variables?

In a famous paper, Box and Cox (1964) suggested a numerical procedure for choosing a transformation of the dependent
variable in a linear model (regression, anova). This paper limits the choice to the “power family,” as follows:

y
� =

8<
:

y��1
�

if � 6= 0

ln(y) if � = 0

This includes many types of transformations, but certainly not all that might be useful; further, this family is not useful when the
dependent variable is a proportion. Of course, it is obvious that this family cannot be used when negative numbers are possible.
Finally, note that this procedure is specifically aimed at transformations of the dependent variable only.

Other transformation families have been suggested and are discussed in Atkinson (1987, esp. chapter 7), and Draper and
Smith (1981, 236–241). Transformations of variables on the right are discussed in Box and Tidwell (1962). Transformations of
both sides simultaneously are discussed in Carroll and Ruppert (1988).

Within these limits, however, this seems to be a very useful procedure. The problem is that, as presented in the original
paper, it is hard to compute. A number of people, however, have discovered computational shortcuts. These shortcuts do not
necessarily give the same numerical answer as in the original paper, but they do appear to give the same qualitative answer;
that is, the “solution” regarding what is the best transformation parameter (�) is the same. Such shortcut formulas can be found
in Atkinson (1987, 87; boxcox2.dta is Atkinson’s example—see below); Draper and Smith (1981, 226 and example on page
228; data from this example appears in drapsmth.dta—see below); Maddala (1988, 178–179; no example provided); Neter,
Wasserman, and Kutner (1989, 150; example on page 150 is nwk.dta—see below); Weisberg (1985, 148; example is provided
as weisberg.dta—see below).

Weisberg also provides a formula for computing the log-likelihood—his are the ones I have used—and provides a formula
for a confidence interval for � (p. 151). His results are matched to the precision shown, as is the nwk example (see below). The
conclusion is the same for the other examples, but the numbers are not the same. This is also true regarding other software:
Dallal’s ODDJOB (version 6.03), SHAZAM (6.2) and LIMDEP (6.0); note that both SHAZAM and LIMDEP use full MLE and their
log-likelihoods agree to four decimal places.

The reason for the various transformations is to make the residual sum of squares and the log-likelihood comparable across
transformations; they would not be without some form of transformation of the results or the data.

Note that sometimes the result of boxcoxg will be a missing value—this means that this particular transformation is not
possible with the data provided.
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boxcoxg can be used to search for the best transformation or to examine just one particular transformation. In either case,
you must enter three numbers prior to entering the variable list. The first number is the minimum value of � that you want
to search over, the second is the maximum, and the third number is the step size. If you just want to see the results for one
particular value of �, enter the same number for the minimum and the maximum and enter any positive value for the step size
(do not enter a step size of 0). If you want to search over the space 0 (log transform) to 1 (no transform) with a step size of .1,
enter ‘boxcoxg 0 1 .1 varlist’. Negative numbers are allowed for either the minimum or the maximum.

The data set is automatically cleared when the ado-file is finished so you can immediately re-enter boxcoxg with a finer
search pattern if you so desire. For example, your first search might be from �3 to 3 with a step size of .25; you might then
search from one step smaller than the minimum found to one step larger with a much smaller step size (e.g., �:5 0 .01). Do
not attempt to use a step size smaller than .01 as this is not allowed.

The only output is a three-column list; the first column is �, the transformation parameter, the second is the error sum of
squares, and the third is the log-likelihood. You choose the smallest SSE (largest log-likelihood) as the best transformation, or
something close to this that makes substantive sense. The code could be easily modified to allow likelihood-ratio tests, using
the CRC-provided ado-file lrtest (see crc6 in STB-1) if the user cared to do so. The code could also be easily modified so that
the results, either SSE or log-likelihood, could be graphed if so desired.

Examples
. use boxcox1

(Box & Cox, 1964, p. 220)

. boxcoxg -3 1 .2 survive treat poison Results in article (p. 221)
lambda SSE Log-likelihood SSE Log-Likelihood
-3.00 3.61 -30.7812 2.0489 75.69
-2.80 2.96 -26.0329

-2.60 2.45 -21.5120

-2.40 2.05 -17.2496

-2.20 1.74 -13.2823

-2.00 1.50 -9.6518 0.6639 102.74
-1.80 1.31 -6.4038

-1.60 1.16 -3.5872 0.4625 111.43
-1.40 1.05 -1.2509 0.4007 114.86
-1.20 0.98 0.5594 0.3586 117.52
-1.00 0.93 1.8053 0.3331 119.29
-0.80 0.90 2.4591 0.3225 120.07
-0.60 0.90 2.5073 0.3258 119.82
-0.40 0.92 1.9508 0.3431 118.58
-0.20 0.97 0.8051 0.3752 116.44
0.00 1.04 -0.9034 0.4239 113.51
0.20 1.14 -3.1402

0.40 1.28 -5.8669

0.60 1.46 -9.0442

0.80 1.69 -12.6346

1.00 2.00 -16.6035 1.0509 91.72

. use boxcox2, replace

(Box & Cox, 1964,p.223 (At., p.82))

. boxcoxg -1 1 .2 cycles x1 x2 x3 Results in article (p. 224)
lambda SSE Log-likelihood SSE Log-Likelihood
-1.00 3995487.00 -205.2091 3.9955 25.79
-0.80 2139587.82 -196.7777 2.1396 34.22
-0.60 1103484.66 -187.8388 1.1035 43.16
-0.40 547841.84 -178.3855 0.5478 52.61
-0.20 292011.00 -169.8914 0.2920 61.11
0.00 251900.41 -167.8966 0.2519 63.10
0.20 411520.34 -174.5228 0.4115 56.48
0.40 817792.18 -183.7939 0.8178 47.21
0.60 1596824.29 -192.8276 1.5968 38.17
0.80 2997794.61 -201.3307 2.9978 29.67
1.00 5480980.89 -209.4767 5.4810 21.52

. use drapsmth, replace

(Draper & Smith, 1981, p. 228)
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. boxcoxg -1 1 .05 W f p Results in book (p. 229)
lambda SSE Log-likelihood SSE Log-Likelihood
-1.00 2455.65 -89.7707 -53.7
-0.95 2168.15 -88.3387

-0.90 1906.45 -86.8595

-0.85 1668.55 -85.3267

-0.80 1452.66 -83.7333 -47.8
-0.75 1257.15 -82.0710

-0.70 1080.57 -80.3303

-0.65 921.60 -78.5003

-0.60 779.09 -76.5684 -40.52
-0.55 651.99 -74.5203

-0.50 539.40 -72.3402

-0.45 440.52 -70.0115

-0.40 354.68 -67.5191 -31.46
-0.35 281.31 -64.8537

-0.30 219.92 -62.0227

-0.25 170.16 -59.0722

-0.20 131.73 -56.1287 -20.07
-0.15 104.47 -53.4619 -17.40
-0.10 88.28 -51.5254 -15.47
-0.05 83.17 -50.8402 -14.78
0.00 89.25 -51.6518 -15.60
0.05 106.73 -53.7080 -17.65
0.10 135.90 -56.4869 -20.43
0.15 177.18 -59.5373

0.20 231.09 -62.5922 -26.53
0.25 298.27 -65.5269

0.30 379.48 -68.2963

0.35 475.62 -70.8932

0.40 587.74 -73.3273 -37.27
0.45 717.02 -75.6137

0.50 864.84 -77.7692

0.55 1032.74 -79.8096

0.60 1222.46 -81.7492 -45.69
0.65 1436.00 -83.6006

0.70 1675.55 -85.3748

0.75 1943.59 -87.0814

0.80 2242.91 -88.7286 -52.67
0.85 2576.61 -90.3236

0.90 2948.14 -91.8727

0.95 3361.37 -93.3812

1.00 3820.60 -94.8539 -58.80

. use nwk, replace

(Neter, et al., 1989, p. 149)

. boxcoxg -1 1 .1 plasma age Results in book (p. 150)
lambda SSE Log-likelihood SSE Log-Likelihood
-1.00 33.91 -44.0460 33.9
-0.90 32.70 -43.5939 32.7
-0.80 31.76 -43.2294

-0.70 31.09 -42.9613 31.1
-0.60 30.69 -42.7979 30.7
-0.50 30.56 -42.7460 30.6
-0.40 30.72 -42.8109 30.7
-0.30 31.18 -42.9957 31.2
-0.20 31.95 -43.3016

-0.10 33.06 -43.7272 33.1
0.00 34.52 -44.2690 34.5
0.10 36.37 -44.9216 36.4
0.20 38.64 -45.6779

0.30 41.36 -46.5300 41.4
0.40 44.59 -47.4690

0.50 48.37 -48.4862 48.4
0.60 52.76 -49.5727

0.70 57.84 -50.7203 57.8
0.80 63.67 -51.9213

0.90 70.35 -53.1686 70.4
1.00 77.98 -54.4561 78.0

. use weisberg, replace

(Weisberg, 1985, p. 149)
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. boxcoxg -2 2 .5 area peri Results in book (p. 150)
lambda SSE Log-likelihood SSE Log-Likelihood
-2.00 90372.63 -142.6462

-1.50 19289.59 -123.3415

-1.00 4708.16 -105.7132

-0.50 1301.88 -89.6446

0.00 377.30 -74.1632 377.3043 -74.16
0.50 116.26 -59.4482 116.2636 -59.45
1.00 217.96 -67.3039

1.50 1168.32 -88.2915

2.00 5493.07 -107.6405
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srd10 Maximum-likelihood estimation for Box–Cox power transformation

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740 3119

The syntax of boxcoxr is

boxcoxr yvar
�
xvar(s)

� �
in range

� �
if exp

� �
, delta(#) zero(#) ci(#) iter(#)

lstart(#) ropt(regression options) gen(newvar) anova symm quiet detail

�

The Box–Cox transform,

y
(�) =

y
� � 1

�

represents a family of popular transformations used in data analysis. For instance:

y =

8<
:
y � 1 if � = 1

ln(y) if � = 0

1� 1=y if � = �1

The value of � may be calculated from the data. boxcoxr finds the maximum-likelihood value of � for the model

y

(�)

i = �0 + �1x1i + : : :+ �kxki + �i

where x1i, : : :, xki are the xvars in the syntax diagram, if any, and �i is assumed to be normally distributed and homoscedastic.
Thus, typing ‘boxcoxr y’ finds the Box–Cox transform for y; typing ‘boxcoxr y x’ finds the Box–Cox transform for y in the

model y(�)i = �0 + �1xi.

The ci(#) option requests that a # confidence interval be calculated for �; ci(.95) produces a 95% percent confidence
interval. The default is to not calculate confidence intervals. Confidence intervals are calculated from the log-likelihood function
and should strictly be called “support intervals.”

The gen(newvar) option creates newvar containing the transformed values of yvar.
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The symm option produces the mean-symmetry version of the Box–Cox transform:

sign(y � �y)
(jy � �yj+ 1)� � 1

�

This version can be used for yvars that are negative or have no natural meaning to the value recorded as zero.

quiet suppresses output. detail reports progress on the convergence of the iterative process as it happens and gives a
plot of the log-likelihood function against � (the “profile likelihood”).

The remaining options control technical features of the program. delta(#) specifies a small increment for calculating
derivatives of the log-likelihood function and is by default 0.01. zero(#) specifies a value for the derivative of the log-likelihood
which is regarded as small enough to be considered zero to determine convergence and is by default 0.001. iter(#) is the
maximum number of iterations to be permitted and defaults to 10. lstart(#) forces a specific starting value for �; the default
is 1.

Individual values of the log-likelihood function can be obtained by specifying zero(0) and the lstart() option. In this
case, boxcoxr does not continue to find the maximum-likelihood value of �, but simply reports the value of the log-likelihood
function corresponding to lstart().

If xvar(s) are specified, yvar is regressed on xvars with regression options defined in ropt(). If anova is specified,
analysis-of-variance rather than regression is done.

The program is iterative and is not guaranteed to converge. Convergence may be achieved in difficult cases by varying
(typically increasing) the value of delta and/or by trying different starting values for �. A cruder approximate maximum-
likelihood estimate may be obtained by increasing the value of zero. Alternatively, the program may be used “manually” by
specifying single values of � and inspecting the log-likelihood values which result. The plot previously obtained when detail

was specified may help here.

. boxcoxr mpg, ci(.95)

Variable | Obs Lambda 95% confidence interval LL(raw) LL(x^lambda)

---------+------------------------------------------------------------------

mpg | 74 -0.459 -1.210 0.287 -132.759 -125.303

. boxcoxr mpg price foreign, ci(.95) gen(xmpg)

Variable | Obs Lambda 95% confidence interval LL(raw) LL(x^lambda)

---------+------------------------------------------------------------------

mpg | 74 -0.879 -1.572 -0.179 -116.326 -102.608

In the last case, xmpg is created equal to the transformed values of mpg. We could not obtain the regression by typing ‘regress
xmpg price foreign’.
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ssa2 Tabulating survival statistics

Wim L. J. van Putten, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands

survtab timevar deadvar
�
if exp

� �
in range

� �
, by(groupvar) at(t1

�
,t2
�
,t3...

��
)

�
generates a survival table in a tabular format. Stata output in log-files generally forms the basis of a statistical report. It only
takes a general text editor to delete or modify parts and add comments, chapters and discussions to the log file. In order to
minimize the amount of editing, it is useful if the Stata output can be restricted to what is really needed. survtab.ado helps
in this. survtab.ado is based on survcurv.ado, and makes use of crcsrvc.ado, but with a slight modification to this
program. The new version is called crcsrv2.ado. The modification consists of the addition of a new variable atrisk, the
number at risk at time t#.

Example

. d surv dood hazrt

45. surv int %5.0f Survival time in days

64. dood int %8.0g Death indicator

76. hazrt float %9.0g hazrt Risk group * RT
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. tab hazrt dood

Risk group| Death indicator

* RT| 0 1 | Total

-----------+----------------------+----------

Low RT- | 61 13 | 74

Low RT+ | 72 15 | 87

Med RT- | 16 10 | 26

Med RT+ | 75 19 | 94

High RT- | 8 11 | 19

High RT+ | 34 25 | 59

-----------+----------------------+----------

Total| 266 93 | 359

. survtab surv dood ,by(hazrt ) at(1827,3653)

hazrt _TIME _atrisk _surv _stds

31. Low RT- 1827 43 0.857 0.042

57. Low RT- 3653 17 0.767 0.064

103. Low RT+ 1827 58 0.880 0.036

144. Low RT+ 3653 17 0.771 0.056

174. Med RT- 1827 13 0.692 0.091

183. Med RT- 3653 4 0.639 0.098

224. Med RT+ 1827 57 0.834 0.039

268. Med RT+ 3653 13 0.788 0.049

293. High RT- 1827 7 0.461 0.118

298. High RT- 3653 2 0.395 0.118

329. High RT+ 1827 30 0.643 0.062

352. High RT+ 3653 7 0.508 0.081

422. . 1827 96 0.768 0.035

479. . 3653 39 0.624 0.046

The column hazrt shows the classes of the groupvar; the column TIME shows the time in days (1827=5 years, 3653=10 years.);
the column atrisk shows the number still at risk just after TIME; the column surv shows the survival probability at TIME

for the value of hazrt; and the column stds shows the corresponding standard deviation.

sts1 Autocorrelation and partial autocorrelation graphs

Sean Becketti, Federal Reserve Bank of Kansas City

The syntax diagrams for the commands are

ac varname
�
if exp

� �
in range

� �
, nlags(#)

�
pac varname

�
if exp

� �
in range

� �
, nlags(#)

�
no

�
constant

�

The Box–Jenkins approach to time-series models relies heavily on examining graphs of autocorrelations and partial
autocorrelations to check for deviations from stationarity (diagnostics) and to infer an appropriate parameterization (identification).
ac and pac produce these graphs along with standard-error bands. By default, the first twenty autocorrelations or partial
autocorrelations are graphed, but this can be overridden. The standard error of the autocorrelations is estimated by Bartlett’s
approximation. The standard error of the partial autocorrelations is approximated by 1/

p
n where n is the number of observations.

The partial autocorrelations are estimated from a sequence of nlag() regressions. If noconstant is specified, the regressions
will be estimated without a constant; otherwise, a constant will be included in the regressions.

Examples

To examine the autocorrelations and partial autocorrelations of real GNP, we could

. use gnp

. describe

Contains data from gnp.dta

Obs: 178 (max= 32252)

Vars: 3 (max= 99)

1. year int %8.0g Year

2. quarter int %8.0g Quarter

3. gnp82 float %9.0g Real GNP (1982 dollars)

Sorted by: year quarter

. generate lgnp82 = log(gnp82)

. label variable lgnp82 "Log of real GNP"
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. gen dlgnp82 = lgnp82 - lgnp82[_n-1]

(1 missing value generated)

. ac lgnp82

Autocorrelat ions of  Log of  Real  GNP
Lag
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Figure 1

The autocorrelation plot shows clearly that the log level of real GNP is nonstationary.

. ac dlgnp82

. pac dlgnp82
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Figure 2 Figure 3

These graphs suggest that the growth rate (log difference) of real GNP is stationary.
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