
STATA March 2000

TECHNICAL STB-54

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

H. Joseph Newton Nicholas J. Cox, University of Durham
Department of Statistics Francis X. Diebold, University of Pennsylvania
Texas A & M University Joanne M. Garrett, University of North Carolina
College Station, Texas 77843 Marcello Pagano, Harvard School of Public Health
979-845-3142 J. Patrick Royston, Imperial College School of Medicine
979-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c
 by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

stata54. Multiple curves plotted with stcurv command 2
stata55. Search web for installable packages 4
dm73.1. Contrasts for categorical variables: update 7

dm76. ICD-9 diagnostic and procedure codes 8
dm77. Removing duplicate observations in a dataset 16

gr34.3. An update to drawing Venn diagrams 17
gr43. Overlaying graphs 19

ip29.1. Metadata for user-written contributions to the Stata programming language: extensions 21
sbe32. Automated outbreak detection from public health surveillance data 23

sg84.2. Concordance correlation coefficient: update for Stata 6 25
sg116.1. Update to hotdeck imputation 26
sg120.2. Correction to roccomp command 26

sg130. Box–Cox regression models 27
sg131. On the manipulability of Wald tests in Box–Cox regression models 36
sg132. Analysis of variance from summary statistics 42
sg133. Sequential and drop one term likelihood-ratio tests 46
sg134. Model selection using the Akaike information criterion 47
sxd1.2. Random allocation of treatments balanced in blocks: update 49

2 Stata Technical Bulletin STB-54

stata54 Multiple curves plotted with stcurv command

Mario Cleves, Stata Corporation, mcleves@stata.com

Abstract: Stata’s stcurv command which is used after streg to plot the fitted cumulative hazard, survival, and hazard functions,
has been modified so that multiple curves can be plotted on the same graph.

Keywords: parametric survival, survival models, regression.

stcurv has been modified so that multiple curves can be plotted on the same graph. This is done by specifying multiple
options, at1(), at2(), : : : , one for each curve to be plotted.

Syntax

stcurv

�
, cumhaz survival hazard range(# #)�

at1(varname=#
�
varname=#: : :

�
)

�
at2(varname=#

�
varname=#: : :

�
)

�
: : :

���
graph options

�
The multiple at1(), at2(), : : : , options are new. See [R] streg for a description of the other options.

stcurv is used after streg to plot the cumulative hazard, survival, and hazard functions at the mean value of the covariates
or at values specified by the at() options.

New options

at1(varname=# : : :), at2(varname=# : : :), : : : , at10(varname=# : : :) specify that multiple curves (up to ten) are to be
plotted on the same graph. at1(), at2(), : : : , at10() work like the at() option: the option causes the function to be
evaluated at the value of the covariates specified and at the mean of all unlisted covariates. at1() specifies the values of
the covariates for the first curve, at2() specifies the values of the covariates for the second curve, and so on.

Up to ten at() options can be specified at one time. Each at() option produces a separate curve on the same graph.

Example

We demonstrate the use of the multiple at() options by fitting a log-logistic regression model to the cancer data distributed
with Stata, and plotting several predicted survival curves at various covariate values. For this example, we combine drug==2

and drug==3 into one group.

. use cancer, clear

(Patient Survival in Drug Trial)

. replace drug=2 if drug==3

(14 real changes made)

. stset studytim, failure(died)

(output omitted)

. streg age drug, dist(llog) nolog

failure _d: died

analysis time _t: studytim

Log-logistic regression -- accelerated failure-time form

No. of subjects = 48 Number of obs = 48

No. of failures = 31

Time at risk = 744

LR chi2(2) = 35.14

Log likelihood = -43.21698 Prob > chi2 = 0.0000

--

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

age | -.0803289 .0221598 -3.625 0.000 -.1237614 -.0368964

drug | 1.420237 .2502148 5.676 0.000 .9298251 1.910649

_cons | 5.026474 1.225037 4.103 0.000 2.625446 7.427502

--

/ln_gam | -.8456552 .1479337 -5.716 0.000 -1.1356 -.5557104

--

gamma | .429276 .0635044 .3212293 .5736646

--

Stata Technical Bulletin 3

We first obtain a graph with two predicted survival curves, one for each drug treatment group, at the overall average age.

. stcurv, survival at1(drug=1) at2(drug=2) c(ll) xlab ylab

S
u

rv
iv

a
l

Log- logist ic regression
analysis t ime

 drug=1 drug=2

0 10 20 30 40

0

.5

1

Figure 1. Predicted survival curves for drug treatment groups at overall average age.

We specified two at() options, one for each drug group. Now let’s plot the two treatment groups, not at the average patient
age, but, for example, at age 40.

. stcurv, survival at1(drug=1 age=40) at2(drug=2 age=40) c(ll) xlab ylab

S
u

rv
iv

a
l

Log- logist ic regression
analysis t ime

 drug=1 age=40 drug=2 age=40

0 10 20 30 40

0

.5

1

Figure 2. Predicted survival curves for drug treatment groups at age 40.

Again we specified at() twice, but now we included age=40 in each option’s argument. We could include additional curves in
the graph; for example, to the previous graph we now add two more curves each at age 65.

. stcurv, survival at1(drug=1 age=40) at2(drug=2 age=40) at3(drug=1 age=65)

> at4(drug=2 age=65) c(llll) xlab ylab

(Graph on next page)

4 Stata Technical Bulletin STB-54

S
u

rv
iv

a
l

Log- logist ic regression
analysis t ime

 drug=1 age=40 drug=2 age=40
 drug=1 age=65 drug=2 age=65

0 10 20 30 40

0

.5

1

Figure 3. Predicted survival curves for drug treatment groups at ages 40 and 65.

stata55 Search web for installable packages

William Gould, Stata Corporation, wgould@stata.com
Alan Riley, Stata Corporation, ariley@stata.com

Abstract: webseek searches the web for user-written additions to Stata, which is to say, new commands. The search includes
but is not limited to additions published in the STB. The commands found are available for immediate installation using the
net command or, under Windows and Macintosh, by clicking on the link shown in webseek’s output. webseek can find
additions based on topic, author name, or the command name.

Keywords: search, net, web, user-written additions, programs, commands.

Syntax

webseek keywords
�
, or nostb tocpkg toc pkg everywhere filenames help result type errnone

�
Description

webseek searches the web for user-written additions to Stata, which is to say, new commands. The search includes, but is
not limited to, additions published in the STB.

The commands found are available for immediate installation using the net command or, under Windows and Macintosh,
by clicking on the link shown in webseek’s output. webseek can find additions based on topic, author name, or the command
name.

Options

or is relevant only when multiple keywords are specified. By default, only packages that include all the keywords are listed. or
changes this to list packages that contain any of the keywords.

nostb restricts the search to non-STB sources or, said differently, causes webseek not to list matches that were published in the
STB.

tocpkg, toc, and pkg determine what is searched. tocpkg is the default, meaning that both table of contents (tocs) and packages
(pkgs) are searched. toc restricts the search to table of contents only. pkg restricts the search to packages only.

everywhere and filenames determine where in packages webseek looks for keywords. The default is everywhere. filenames
restricts webseek to search for matches only in the filenames associated with a package. Specifying everywhere implies
pkg.

help, result, and type determine how and where results are displayed.

help specifies that results are to be displayed in the help window, where you can point and click to visit the links. help
is the default with Stata for Windows and Stata for Macintosh. help may not be specified with Stata for Unix (because
there is no help window).

result specifies that results are to be displayed in the standard Stata results window. result is the default with Unix but
the option may be specified with Windows or Macintosh.

Stata Technical Bulletin 5

type is the default on no platform but may be specified on all. It presents output much like result, but without highlighting.
Its advantage is that the results of a search can be logged.

In addition, you may set the global macro $webseek to contain help, result, or type and so specify your own default.

errnone is an option for programmers using webseek as a subroutine. It causes the return code to be 111 rather than 0 when
no matches are found.

Remarks

Not just we at Stata, but others can write new commands for Stata, so if Stata cannot do something it may be that someone
has written an addition to do it. The problem is finding that addition.

webseek searches the web for net-installable additions to Stata. net (see [R] net) is the Stata command that can install
new additions to Stata. If you knew, for instance, that a user A. Smith wrote an addition you wanted and that it was available
as package veryneat at http://www.university.edu/˜asmith, you could type

. net from http://www.university.edu/~asmith

. net install veryneat

and then you would have the veryneat command. Probably A. Smith provided a help file to go with the new command, so
typing help veryneat should now tell you something about how to use this new command. Eventually, you would discover
that command veryneat was very useful or it was not worth the disk space it occupied. If the latter, you could type

. ado uninstall veryneat

and so remove it from your computer.

The problem is in finding the veryneat command in the first place. webseek helps with that.

Example 1: Find what is available about “random effects”
. webseek random effect

Comments:

1. It is best to search for the singular. ‘webseek random effect’ will find both “random effect” and “random effects”.

2. ‘webseek random effect’ will also find “random-effect” (note the hyphen) because webseek performs a string search,
not a word search.

3. ‘webseek random effect’ lists all packages containing the words “random” and “effect”, not necessarily used together.

4. If you wanted all packages containing the word “random” or the word “effect”, you would type ‘webseek random effect,

or’.

Example 2: Find what is available by author Jeroen Weesie
. webseek weesie

Comments:

1. You could type ‘webseek jeroen weesie’ but that might list less because perhaps the last name is used without the first.

2. You could type ‘webseek Weesie’ and that would produce the same results. Capitalization, both in what you type and
what is at the site, is ignored in the search.

Example 3: Same as example 2, but do not list STB materials
. webseek weesie, nostb

Comments:

1. The STB tends to dominate search results because so much has been published in the STB. If you know what you are looking
for is not in the STB, specifying the nostb option will narrow the search.

2. ‘webseek weesie’ lists everything ‘webseek weesie, nostb’ lists, and more. If you just type ‘webseek weesie’, look
down the list. STB materials are listed first and non-STB materials are listed after that.

6 Stata Technical Bulletin STB-54

Example 4: Find the user-written command kursus
. webseek kursus, file

Comments:

1. You could just type ‘webseek kursus’ and that will list everything ‘webseek kursus, file’ lists, and more. Since you
know kursus is a command, however, there must be a kursus.ado file associated with the package. Typing ‘webseek
kursus, file’ narrows the search.

2. You could also type ‘webseek kursus.ado, file’ to narrow the search even more.

Where does webseek look?

webseek looks everywhere, not just at www.stata.com. webseek begins by looking at www.stata.com, but then follows
every link, which takes it to other places, and it then follows every link, which takes it to yet more places, and so on.

Authors: please let us know if you have a site we should include in our search by sending email to webseek@stata.com.
We will then link to your site from ours and so ensure that webseek finds your materials. That is not strictly necessary, however,
as long as your site is linked from some site that is linked to ours, even if that link is indirect.

How does webseek really work?

www.stata.com

The Internet

crawler

webseek database

Your computer
talks to www.stata.com

www.stata.com maintains a database of Stata resources. When you use webseek, webseek contacts stata.com with your
request, stata.com searches its database, and returns the result to you.

Another part of the system is called the crawler: it searches the web for new Stata resources to add to the webseek database
and it verifies that the resources already found are still available. Given how the crawler works, when a new resource becomes
available, the crawler takes about two days to notice it and, similarly, if a resource disappears, the crawler takes roughly two
days before it is removed from the database.

Note

When you use webseek, it creates file wseekres.hlp in the current directory. If the file bothers you, you may erase it.

Stata Technical Bulletin 7

dm73.1 Contrasts for categorical variables: update

John Hendrickx, University of Nijmegen, Netherlands, J.Hendrickx@mailbox.kun.nl

Abstract: Bug fixes and enhancements to desmat and associated programs for models with categorical independent variables
are described.

Keywords: Contrasts, interactions, categorical variables.

Changes to desmat

The program desmat can be used to create dummy variables for categorical variables using a variety of contrasts (Hendrickx
1999). This update corrects bugs in the original version and adds a minor enhancement. These bugs can occur if categorical
variables have values other than their rank number, in which case dummies using the deviation, difference, or Helmert contrasts
will be incorrect. It also turns out that orthpoly can produce errors if large values such as years are used. This problem has
been reported and circumvented in desmat by subtracting the lowest value of the variable before calling orthpoly.

An enhancement to desmat is the option to assign a contrast to a variable by using a pzat characteristic. For example, to
specify that the variable educ should be treated as continuous by desmat, use

. char educ[pzat] dir

The pzat characteristic overrides the default parameterization specified as an option to the desmat statement. For example:

. desmat educ focc, dif

desmat will treat educ as a continuous variable but will use the difference contrast for focc. This can also be achieved by
appending =par[(ref)] to specific model terms; for example:

. desmat educ=dir focc, dif

Using the pzat characteristic can be more practical in large models where a specification per variable would become overly
long. A specification per variable can be used to override the pzat characteristic. For example, specifying educ=sim(1) in the
above statement will cause the simple contrast to be used for educ.

Changes to desrep

desrep can be used after estimating a model to produce an overview of the results using informative labels. It will now
work properly with mlogit (the previous version stripped equation names from b() and se() when formatting the results).
desrep will also print model results such as the procedure name, dependent variable, sample size, log likelihood, F -statistic,
chi-square, etc. If certain e() macros have been defined by a procedure, they will be printed by desrep with a suitable label.

Replacement of tstall by destest

In Hendrickx (1999), tstall was provided to perform a Wald test on all model terms after estimating a model generated
by desmat. An enhanced version renamed destest can now do tests on specific terms only. The syntax is

destest

�
termlist

� �
, equal joint

�
The termlist consists of one or more terms as specified in desmat. A term can consist of a single variable, or two or more

variables separated by either asterisks or periods. If asterisks are used, they will be changed into periods by destest, that is,
only the highest order interaction will be tested. This syntax makes it easier to copy the model syntax and test the highest order
terms, which is what people will usually want to do. If destest is specified without any arguments, all terms from the last
desmat model will be tested.

The default is to test whether the effects of each separate term are equal to zero. If the option joint is specified, destest
will test instead whether all the effects in termlist are jointly equal to zero. If the option equal is specified, destest will test
whether the effects of each separate term are equal. The joint and equal options may be combined to test whether all effects
are jointly equal, although this would be a somewhat peculiar hypothesis.

Reference
Hendrickx, J. 1999. dm73: Using categorical variables in Stata. Stata Technical Bulletin 52: 2–8.

8 Stata Technical Bulletin STB-54

dm76 ICD-9 diagnostic and procedure codes

William Gould, Stata Corporation, wgould@stata.com

Abstract: Two commands are provided for dealing with ICD-9 codes; icd9 for use with diagnostic codes and icd9p for use
with procedure codes.

Keywords: ICD-9-CM diagnostic codes, ICD-9-CM procedure codes.

Completing the installation

The installation process for the icd9 and icd9p commands are a little different than the standard. In addition to net

install, you must net get and then you must type icd9 install and icd9p install:

. net install dm76

. net get dm76

. icd9 install

. icd9p install

The net get copies two datasets that icd9 and icd9p need that contain the mapping from codes to text. The icd9 install

and icd9p install then moves each of the datasets from the current directory to the directory in which the commands are
installed.

Syntax

Note: icd9 is for use with ICD-9 diagnostic codes and icd9p is for use with procedure codes. These are two commands whose
syntax exactly parallels each other. Below we write icd9[p] to mean both commands:

icd9[p] check varname
�
, any list generate(newvar)

�
icd9[p] clean varname

�
, dots pad

�
icd9[p] generate newvar = varname, main

icd9[p] generate newvar = varname, description

�
long end

�
icd9[p] generate newvar = varname, range(icd9rangelist)

icd9[p] lookup icd9rangelist

icd9[p] search

�
"

�
text

�
"

� ��
"

�
text

�
"

� �
: : :

�� �
, or

�
icd9[p] install

�
, replace

�
icd9[p] query

icd9rangelist is
icd9code meaning the particular code
icd9code* meaning all codes starting with icd9code
icd9code/icd9code meaning the code range including endpoints

or any combination of the above, such as “001* 018/019 E* 018.02”. Note that icd9codes must be typed with leading zeros:
1 is an error; type 001 (diagnostic code) or 01 (procedure code).

Description

icd9 and icd9p assist with working with ICD-9-CM codes. ICD-9-CM refers to the fifth edition of the International
Classification of Diseases, 9th revision, Clinical Modification.

ICD-9 codes come in two forms: diagnostic codes and procedure codes. 001 (cholera), 572.0 (abscess of liver), 941.45 (deep
3rd deg burn nose), and E873 (watercraft explosion) are examples of diagnostic codes, although some people write (and datasets
record) 94145 rather than 941.45. icd9 understands both ways of recording the codes. 01 (incise-excis brain/skill), 01.5 (skill
biopsy), 55 (operations on kidney), and 55.01 (nephrotomy) are examples of procedure codes, although some people write 5501
rather than 55.01. icd9p understands both ways of recording codes.

icd9 and icd9p exactly parallel each other, it is just that icd9 is for use with diagnostic codes and icd9p for use with
procedure codes. Below we will write icd9[p] to mean both commands.

Stata Technical Bulletin 9

icd9[p] check verifies that already existing variable varname contains valid ICD-9 codes. If not, icd9[p] check provides
a full report on the problems. Use of icd9[p] check is optional. icd9[p] check is useful for tracking down problems when
any of the other icd9[p] commands tell you “variable does not contain ICD-9 codes”. icd9[p] check is a little more thorough,
too, in that it verifies that each of the recorded codes actually exists in the official list.

icd9[p] clean also verifies that already existing variable varname contains valid ICD-9 codes and, if it does, icd9[p] clean
modifies the variable to contain the codes in either of two standard formats—with or without the periods separating the main
code from the detail. Use of icd9[p] clean is optional; all icd9[p] commands work equally well with cleaned or uncleaned
codes. There are numerous ways of writing the same ICD-9 code and icd9[p] clean is designed (1) to ensure consistency and
(2) to make subsequent output look better.

icd9[p] generate produces new variables based on already existing variables containing (cleaned or uncleaned) ICD-9
codes. icd9[p] generate, main produces newvar containing the main code. icd9[p] generate, description produces
newvar containing a textual description of the ICD-9 code. icd9[p] generate, range() produces numeric newvar containing
1 if varname records an ICD-9 code in the range listed and 0 otherwise.

icd9[p] lookup and icd9[p] search are utility routines useful interactively. icd9[p] lookup simply displays descriptions
of codes specified on the command line, so if you have a yearning to know what diagnostic E913.1 means, you can type “icd9
lookup e913.1”. Whatever data you have in memory is irrelevant—and remains unchanged—when using icd9[p] lookup.
icd9[p] search is like icd9[p] lookup except that it turns the problem around; icd9[p] search looks for relevant ICD-9
codes from the description given on the command line. For instance, you could type “icd9 search liver” or “icd9p search

liver” to obtain a list of codes containing the word liver.

icd9[p] install has to do with installation of the icd9[p] command. See the section Completing the installation above.

icd9[p] query displays the identity of the source from which were obtained the ICD-9 codes and textual descriptions that
icd9[p] uses.

Note that ICD-9 codes are commonly written two ways, with and without periods. For instance, with diagnostic codes, one
can write 001, 86221, E8008, and V822, or one can write 001., 862.21, E800.8, and V82.2. With procedure codes, one can write
01, 50, 502, 5021, or one can write 01., 50., 50.2, 50.21. The icd9[p] command does not care which syntax you use or even
whether you are consistent. Case also is irrelevant: v822, v82.2, V822, and V82.2 are all equivalent. Codes may be recorded
with or without leading and trailing blanks.

Options for use with icd9[p] check

any tells icd9[p] check to verify the codes fit the format of ICD-9 codes but to skip checking whether the codes are actually
valid. This makes icd9[p] check run faster. For instance, diagnostic code 230.52 (or 23052 if you prefer) looks to be
valid, but in fact there is no such ICD-9 code, at least currently. Without the any option, 230.52 (23052) would be flagged
as an error. With any, 230.52 (23052) is not considered an error.

list tells icd9[p] check that invalid codes found in the data—1, 1.1.1, and perhaps 230.52 assuming any is not also
specified—are to be individually listed.

generate(newvar) specifies that icd9[p] check is to create new variable newvar containing, for each observation, 0 if the code
is valid and a number from 1 to 10 if not. The positive numbers indicate the kind of problem and correspond to the listing
produced by icd9[p] check. For instance, 10 means the code could be valid, it just turns out not to be on the official list.

Options for use with icd9[p] clean

dots specifies whether periods are to be included in the final format. Do you wish diagnostic codes recorded, for instance,
86221 or 862.21? Without the dots option, the former format is used. With the dots option, the latter format is used.

pad specifies that the codes are to be padded with spaces, front and back, to make the codes line up vertically in listings.
Specifying pad makes the resulting codes look better when used with most other Stata commands.

Technical Note: If you specify pad, the following character positions are used with diagnostic codes:

position nodot position dot

1 E or " " 1 E or " "

2–4 rest of main code 2-4 rest of main code
5–6 detail code or spaces 5 "." or " "

6–7 detail code or spaces

10 Stata Technical Bulletin STB-54

If pad is not specified, the ICD-9 diagnostic code is written without leading or trailing blanks, meaning

position nodot

1–3 or 1–4 optional E + rest of main code
4–5 or 5–6 detail code or nothing

and
position dot

1–3 or 1–4 optional E + rest of main code
4 or 5 "." or nothing

5–6 or 6–7 detail code or nothing

With procedure codes (which never have leading letters), the column positions when pad is specified are

position nodot position dot

1–2 main code 1-2 main code
3–4 detail code or spaces 3 "." or " "

5 " " 4–5 detail code or spaces

If pad is not specified, the ICD-9 procedure code is written without trailing blanks.

Options for use with icd9[p] generate

main, description, and range() specify what icd9[p] generate is to calculate. In all cases, varname specifies a variable
containing ICD-9 codes.

main specifies that the main code is to be extracted from the ICD-9 code. For procedure codes, the main code is the first two
characters. For diagnostic codes, the main code is usually the first three or four characters (the characters before the dot if
the code has dots). In any case, icd9[p] generate does not care whether the code is padded with blanks in front or how
strangely it might be written; icd9[p] generate will find the main code and extract it. The resulting variable is itself an
ICD-9 code and may be used with the other icd9[p] subcommands. This includes icd9[p] generate, main because main
codes of main codes are main codes.

description creates newvar containing descriptions of the ICD-9 codes.

long is for use with description. It specifies that the new variable, in addition to containing the text describing the code,
is to contain the code, too. Without long, newvar in an observation might contain “bronchus injury-closed”. With long,
it would contain “ 862.21 bronchus injury-closed”.

end modifies long and places the code at the end of the string: “bronchus injury-closed 862.21”. Specifying end implies
long.

range() allows you to create indicator variables equal to 1 when the ICD-9 code is in the inclusive range specified.

Options for use with icd9[p] search

or specifies that ICD-9 codes are to be searched for any entry that contains any of the words specified after icd9[p] search.
The default is to list only entries that contain all the words specified.

Options for use with icd9[p] install

replace specifies that the completion of the installation is to be done again. Specify replace if you type icd9[p] install,
are told that you have already done that, and really do want to reinstall.

Remarks

Let us begin with diagnostic codes—the codes icd9 processes. The format of an ICD-9 diagnostic code is�
blanks

��
0–9,V,v

	�
0–9

	�
0–9

	�
.

��
0–9

�
0–9

���
blanks

�
or �

blanks
��
E,e
	�

0–9
	�

0–9
	�

0–9
	�
.

��
0–9

�
0–9

���
blanks

�
icd9 can deal with ICD-9 diagnostic codes written any of the ways the above allows. Items in square brackets are optional. The
code might start with some number of blanks. Braces

�	
indicate required items. The code either then has a digit from 0 to 9

Stata Technical Bulletin 11

or the letter V (uppercase or lowercase) (first line) or it has the letter E (uppercase or lowercase, second line). After that, it has
two or more digits, perhaps followed by a period, and after that it may have up to two more digits (perhaps followed by more
blanks).

All of the following meet the above definition:

001

001.

001

001.9

0019

86222

862.22

E800.2

e8002

V82

v82.2

V822

Meeting the above definition does not make the code valid. There are 233,100 possible codes meeting the above definition, of
which 15,186 are currently defined.

Examples of currently defined diagnostic codes include

code description

001 cholera*
001.0 cholera d/t vib cholerae
001.1 cholera d/t vib el tor
001.9 cholera nos
: : :

999 complic medical care nec*
: : :

V01 communicable dis contact*
V01.0 cholera contact
V01.1 tuberculosis contact
V01.2 poliomyelitis contact
V01.3 smallpox contact
V01.4 rubella contact
V01.5 rabies contact
V01.6 venereal dis contact
V01.7 viral dis contact nec
V01.8 communic dis contact nec
V01.9 communic dis contact nos
: : :

E800 rr collision nos*
E800.0 rr collision nos-employ
E800.1 rr coll nos-passenger
E800.2 rr coll nos-pedestrian
E800.3 rr coll nos-ped cyclist
E800.8 rr coll nos-person nec
E800.9 rr coll nos-person nos
: : :

“Main codes” refer to the part of the code to the left of the period. 001, 002, : : : , 999, V01, : : : , V82, E800, : : : , E999
are main codes. There are 1,182 diagnostic main codes.

The main code corresponding to a detailed code can be obtained by taking the part of the code to the left of the period,
except for codes beginning with 176, 764, 765, V29, and V69. Those main codes are not defined and yet, there are more detailed
codes under them:

(Continued on next page)

12 Stata Technical Bulletin STB-54

code description

176 CODE DOES NOT EXIST, but 8 codes starting with 176 do exist:
176.0 skin - kaposi’s sarcoma
176.1 sft tisue - kpsi’s srcma
: : :

764 CODE DOES NOT EXIST, but 44 codes starting with 764 do exist:
764.0 lt-for-dates w/o fet mal*
764.00 light-for-dates wtnos
: : :

765 CODE DOES NOT EXIST, but 22 codes starting with 765 do exist:
765.0 extreme immaturity*
765.00 extreme immatur wtnos
: : :

V29 CODES DOES NOT EXIST, but 6 codes stating with V29 do exist:
V29.0 nb obsrv suspct infect
V29.1 nb obsrv suspct neurlgcl
: : :

V69 CODE DOES NOT EXIST, but 6 codes starting with V69 do exist:
V69.0 lack of physical exercse
V69.1 inapprt diet eat habits
: : :

Our solution is to define four new codes:
code description

176 kaposi’s sarcoma (Stata)*
764 light-for-dates (Stata)*
765 immat & preterm (Stata)*
V29 nb suspct cnd (Stata)*
V69 lifestyle (Stata)*

Thus, there are 15,186 + 5 = 15,191 diagnostic codes of which 1,181 + 5 = 1,186 are main codes.

Things are less confusing with respect to procedure codes—the codes processed by icd9p. The format of ICD-9 procedure
codes is �

blanks
��
0–9

	�
0–9

	�
.

��
0–9

�
0–9

���
blanks

�
Thus, there are 10,000 possible procedure codes of which 4,275 are currently valid. The first two digits represent the main code,
of which there are 100 feasible and 98 are currently used (00 and 17 are not used).

Descriptions

The descriptions given for each of the codes is as found in the original source with, in the case of procedure codes, the
addition of five new codes by us. An asterisk on the end of a description indicates that the corresponding ICD-9 diagnostic code
has subcategories.

icd9[p] query reports the original source of the information on the codes:

. icd9 query

_dta:

1. Dataset obtained 24aug1999

2. from http://www.hcfa.gov/stats/pufiles.htm

3. file http://www.hcfa.gov/stats/icd9v16.exe

4. Codes 176, 764, 765, V29, and V69 defined

5. -- 176 kaposi's sarcoma (Stata)*

6. -- 765 immat & preterm (Stata)*

7. -- 764 light-for-dates (Stata)*

8. -- V29 nb suspct cnd (Stata)*

9. -- V69 lifestyle (Stata)*

. icd9p query

_dta:

1. Dataset obtained 24aug1999

2. from http://www.hcfa.gov/stats/pufiles.htm

3. file http://www.hcfa.gov/stats/icd9v16.exe

Example

You have a dataset containing up to three diagnostic codes and up to two procedures on a sample of 1,000 patients:

Stata Technical Bulletin 13

. use patients, clear

. list in 1/10

patid diag1 diag2 diag3 proc1 proc2

1. 1 65450 9383

2. 2 23v.6 37456 8383 17

3. 3 V10.02

4. 4 102.6 629

5. 5 861.01

6. 6 38601 2969 9337

7. 7 705 7309 8385

8. 8 v53.32 7878 951

9. 9 20200 7548 E8247 0479

10. 10 464.11 20197 4641

Do not try to make sense of this data because, in constructing this example, the diagnostic and procedure codes were chosen at
random.

Begin by noting that variable diag1 is recorded sloppily—sometimes the dot notation is used, sometimes not, and sometimes
there are leading blanks. That does not matter. We decide to begin by using icd9 clean to clean up this variable:

. icd9 clean diag1

diag1 contains invalid ICD-9 codes

r(459);

icd9 clean refused because there are invalid codes among the 1,000 observations. We can use icd9 check to find out about
the problems:

. icd9 check diag1

diag1 contains invalid codes:

1. Invalid placement of period 0

2. Too many periods 0

3. Code too short 0

4. Code too long 0

5. Invalid 1st char (not 0-9, E, or V) 0

6. Invalid 2nd char (not 0-9) 0

7. Invalid 3rd char (not 0-9) 1

8. Invalid 4th char (not 0-9) 0

9. Invalid 5th char (not 0-9) 0

10. Code not defined 0

Total 1

There is only one observation with a problem. We can find that observation by asking icd9 check to flag the problem observations
(or observation, as it is in this case):

. icd9 check diag1, gen(prob)

diag1 contains invalid codes:

1. Invalid placement of period 0

2. Too many periods 0

3. Code too short 0

4. Code too long 0

5. Invalid 1st char (not 0-9, E, or V) 0

6. Invalid 2nd char (not 0-9) 0

7. Invalid 3rd char (not 0-9) 1

8. Invalid 4th char (not 0-9) 0

9. Invalid 5th char (not 0-9) 0

10. Code not defined 0

Total 1

. list patid diag1 prob if prob

patid diag1 prob

2. 2 23v.6 7

Let’s assume we go back to the patient records and determine that this should have been coded 230.6:
. replace diag1 = "230.6" if patid==2

(1 real change made)

. drop prob

We now try again to clean up the formatting of the variable:
. icd9 clean diag1

(643 changes made)

. list in 1/10

14 Stata Technical Bulletin STB-54

patid diag1 diag2 diag3 proc1 proc2

1. 1 65450 9383

2. 2 2306 37456 8383 17

3. 3 V1002

4. 4 1026 629

5. 5 86101

6. 6 38601 2969 9337

7. 7 705 7309 8385

8. 8 V5332 7878 951

9. 9 20200 7548 E8247 0479

10. 10 46411 20197 4641

Perhaps we prefer the dot notation. icd9 clean can be used again on diag1, and now we will continue to clean up diag2 and
diag3:

. icd9 clean diag1, dots

(936 changes made)

. icd9 clean diag2, dots

(551 changes made)

. icd9 clean diag3, dots

(100 changes made)

. list in 1/10

patid diag1 diag2 diag3 proc1 proc2

1. 1 654.50 9383

2. 2 230.6 374.56 8383 17

3. 3 V10.02

4. 4 102.6 629

5. 5 861.01

6. 6 386.01 296.9 9337

7. 7 705 7309 8385

8. 8 V53.32 7878 951

9. 9 202.00 754.8 E824.7 0479

10. 10 464.11 201.97 4641

We now turn to cleaning the procedure codes. We use icd9p (emphasis on the p) to clean these codes:

. icd9p clean proc1, dots

(816 changes made)

. icd9p clean proc2, dots

(140 changes made)

. list in 1/10

patid diag1 diag2 diag3 proc1 proc2

1. 1 654.50 93.83

2. 2 230.6 374.56 83.83 17

3. 3 V10.02

4. 4 102.6 62.9

5. 5 861.01

6. 6 386.01 296.9 93.37

7. 7 705 73.09 83.85

8. 8 V53.32 78.78 95.1

9. 9 202.00 754.8 E824.7 04.79

10. 10 464.11 201.97 46.41

It is important to understand that both icd9 clean and icd9p clean only verify that the variable being cleaned follows
the construction rules for the code; it does not check that the code is itself valid. icd9[p] check does that:

. icd9p check proc1

(proc1 contains valid ICD-9 procedure codes; 168 missing values)

. icd9p check proc2

proc2 contains invalid codes:

1. Invalid placement of period 0

2. Too many periods 0

3. Code too short 0

4. Code too long 0

5. Invalid 1st char (not 0-9) 0

6. Invalid 2nd char (not 0-9) 0

7. Invalid 3rd char (not 0-9) 0

8. Invalid 4th char (not 0-9) 0

10. Code not defined 1

Total 1

Stata Technical Bulletin 15

Note that diag2 has an invalid code. We could find it using icd9p check, generate() just as we previously found the bad
diagnostic code using icd9 check, generate().

icd9[p] can create new variables containing textual descriptions of our diagnostic and procedure codes. For instance,

. icd9 gen td1 = diag1, desc

. sort patid

. list patid diag1 td1 in 1/10

patid diag1 td1

1. 1 654.50 cerv incompet preg-unsp

2. 2 230.6 ca in situ anus nos

3. 3 V10.02 hx-oral/pharynx malg nec

4. 4 102.6 yaws of bone & joint

5. 5 861.01 heart contusion-closed

6. 6 386.01 meniere dis cochlvestib

7. 7 705 disorders of sweat gland*

8. 8 V53.32 ftng autmtc dfibrillator

9. 9 202.00 ndlr lym unsp xtrndl org

10. 10 464.11 ac tracheitis w obstruct

Note that icd9[p] generate, description does not preserve the sort order of the data (and neither does icd9[p] check
unless you specify the any option).

Recall that procedure-code proc2 had an invalid code. Even so, icd9p generate, description is willing to create a
textual description variable:

. icd9p gen tp2 = proc2, desc

(1 non-missing values invalid and so could not be labeled)

. sort patid

. list patid proc2 tp2 in 1/10

patid proc2 tp2

1. 1

2. 2 17

3. 3

4. 4

5. 5

6. 6

7. 7 83.85 musc/tend lng change nec

8. 8 95.1 form & structur eye exam*

9. 9

10. 10

tp2 contains nothing when proc2 is 17 because 17 is not a valid procedure code.

icd9[p] generate can also create variables containing main codes:

. icd9 gen main1 = diag1, main

. list patid diag1 main1 in 1/10

patid diag1 main1

1. 1 654.50 654

2. 2 230.6 230

3. 3 V10.02 V10

4. 4 102.6 102

5. 5 861.01 861

6. 6 386.01 386

7. 7 705 705

8. 8 V53.32 V53

9. 9 202.00 202

10. 10 464.11 464

icd9p generate, main can similarly generate main procedure codes.

Sometimes one is merely examining an observation:

. list diag* if patid==563

diag1 diag2 diag3

563. 526.4

If we wondered what 526.4 was, we could type

. icd9 lookup 526.4

1 match found:

526.4 inflammation of jaw

16 Stata Technical Bulletin STB-54

icd9[p] lookup has the ability to list ranges of codes:

. icd9 lookup 526/527

12 matches found:

526 jaw diseases*

526.0 devel odontogenic cysts

526.1 fissural cysts of jaw

526.2 cysts of jaws nec

526.3 cent giant cell granulom

526.4 inflammation of jaw

526.5 alveolitis of jaw

526.8 other jaw diseases*

526.81 exostosis of jaw

526.89 jaw disease nec

526.9 jaw disease nos

527 salivary gland diseases*

icd9[p] search has the ability to go from description to code:

. icd9 search jaw disease

4 matches found:

526 jaw diseases*

526.8 other jaw diseases*

526.89 jaw disease nec

526.9 jaw disease nos

Saved results

icd9[p] check saves scalars r(e1), r(e2), : : : , r(e10) reporting the number of errors of type 1, 2, : : : , 10, and r(esum)

reporting the total number of errors.

dm77 Removing duplicate observations in a dataset

Duolao Wang, London School of Hygiene and Tropical Medicine, London, UK, duolao.wang@lshtm.ac.uk

Abstract: A command is given that removes duplicated observations in a dataset and retains the unique observations without
repetition.

Keywords: Duplicated observations.

Syntax

unique1 using filename

Description

unique1 removes the duplicated observations in the current dataset and retains the unique observations without any repetition.
The observations are in the same order as the original dataset except that repeated observations are deleted. If filename is specified
without an extension, .dta is assumed.

Remarks

The disk dataset must be a Stata-format dataset; that is, it must have been created using the save command.

Examples

You have a dataset stored on disk that you wish to remove the duplicated observations.

. use testdata

. list

id x y

1. 2 01/08/76 A

2. 2 01/08/76 A

3. 3 14/04/98 A

4. 3 14/04/98 B

5. 3 14/04/98 B

6. 1 22/01/64 C

7. 1 22/01/64 C

8. 1 14/10/87 C

. clear

Stata Technical Bulletin 17

. unique1 using testdata

. list

id x y

1. 2 01/08/76 A

2. 3 14/04/98 A

3. 3 14/04/98 B

4. 1 22/01/64 C

5. 1 14/10/87 C

gr34.3 An update to drawing Venn diagrams

Jens M. Lauritsen, County of Fyn, Denmark, jm.lauritsen@dadlnet.dk

Abstract: When John Venn (1834-1923) published his work on logic and developed the “Venn Diagram”, he used circles to
indicate the combination of two and three variables and ellipses to show the combination of four variables. The previous
version of the venndiag routine used squares to represent the combinations. The current update extends the design of the
Venn Diagram to use circles or ellipses. Venn diagrams are useful when one wishes to either show overlapping combinations
of simultaneous outcomes e.g., displaying which of the allergens birch tree, cat, molds, and so on, make you wheeze on a
graph, or when the user wishes to calculate a new variable which reflects those combinations.

Keywords: Venn Diagram, ellipse, multiple-choice answers.

Introduction

When John Venn (1834–1923) published his work on logic and developed the “Venn Diagram”, he used circles to indicate
the combination of two and three variables and ellipses to show the combination of four variables. The previous versions of
the venndiag routine introduced in Lauritsen (1999a, 1999b, 1999c) used squares to represent the combinations. The current
update extends the design of the Venn Diagram to use circles or ellipses. The user can specify the desired design as an option.

The syntax has been slightly changed with addition of the design types with options square, ellipse, and circle and
two placement options xoff and yoff which set distances of titles from the top of the diagram and the left margin, respectively.
A few adaptations as a consequence of the changed design have been made to other options, as described in the help file for
venndiag.

New syntax

venndiag varlist
�
if exp

� �
in range

� �
, square ellipse circle label(str) show(str) missing

gen(varnames) list(variables) print saving(filename) c1(#) c2(#) c3(#) c4(#) noframe

nograph nolabel t1title(str) t2title(str) t3title(str) r1title(str) r2title(str) r3title(str)

r4title(str) r5title(str) r6title(str) pen(#) thick(#) xoff(#) yoff(#) ca(#)
�

The varlist must contain from two to four numerical variables and if generating a variable, that variable must be nonexisting.

New options

square shows rectangles as in previous versions.

ellipse shows ellipses with two to four variables (this is the default for four variables).

circle shows circles (this is the default for two or three variables).

xoff(#) defines the top margin, that is, the distance from the top to r1title with a default value of 6000 in Stata’s graphics
coordinates.

yoff(#) defines the left margin, that is, the distance from the left to r1title with a default value of 22000 in Stata’s graphics
coordinates.

ca(#) tells venndiag to count on specified value for all variables, e.g., ca(2) means to use 2 as the outcome.

Examples

Using examples similar to those in Lauritsen (1999a), we show that the default design for two and three variables is circles
as shown in Figures 1 and 2.

. venndiag astma season

18 Stata Technical Bulletin STB-54

 File: venntest.dta (18 Dec 1999) 18 Dec 1999

 Venn Diagram

 N = 3948

 Astma previous year

 Seasonal a l l . symptoms

 (10 %)

 (11 %)

 3360
 (85 %)

 239
 6 %

 200
 5 %

 149
 4 %

 % of total

Figure 1. A simple example of two variables.

. venndiag astma season eczema, saving(figure2)

 Fi le: venntest.dta (18 Dec 1999) 18 Dec 1999

 Venn Diagram

 N = 3922

 Astma previous year

 Seasonal a l l . symptoms

 (10 %)

 (11 %)

 (12 %)

 Current hand eczema

 3060
 (78 %)

 165
 4 %

 100
 3 %

 138
 4 %

 74
 2 %

 300
 8 %

 11
 0 %

 74
 2 %

 % of total

Figure 2. A simple example of three variables.

For four variables, the default is ellipses as shown in Figure 3. Variable labels and percentages are placed in relation to the
circle or ellipse which represents each variable. Some experimentation might be needed if you have long labels.

. venndiag eczema astma season atopia, ellipse

 Fi le: venntest.dta (18 Dec 1999) 18 Dec 1999

 Venn Diagram

 N = 3912

 Current hand eczema

 Astma previous year

 (11 %)

 (10 %)

 (10 %)
 (10 %)

 Seasonal a l l . symptoms

 Chi ldhood atopia

 2950
 (75 %)

 11
 0 %

 114
 3 %

 274
 7 %

 100
 3 %

 110
 3 %

 26
 1 %

 89
 2 %

 24
 1 %

 2 %

 74
 2 %

 76

 64
 2 %

 % of total

Figure 3. Ellipses used for displaying four variables.

Drawing ellipses

When drawing the ellipses, a procedure similar to the following is used. The program lines for drawing ellipses are actually
quite simple. The idea is to first save your own data as a temporary file (before), clear, and generate 1000 (x; y) points based

Stata Technical Bulletin 19

on the formula for an ellipse, draw a graph of this and then finally restore your own data. Try experimenting with the last
parameters, which define the shape of the ellipses.

program define ellipse /* draw ellipse on screen */

version 6

/* parameters 1: Rotation of ellipse in degrees 2:offset X 3:offset Y 4+5: defines shape of ellipse* /

tempfile before

save `before'

local V = (`1'/360)* 2*_pi

local lam = `4' /*size of ellipse ~ length */

local eps = `5' /*shape of ellipse ~ if = 0 the result will be a circle*/

local offx = `2'

local offy = `3'

clear

set obs 1001

tempvar i x y

gen `i' = -_pi+(2*_pi/1000)*(_n-1)

gen `x' = ((1+`eps')*(`lam')*cos(`i'))/(1+(`eps')*cos(`V'-`i'))*100 + `offx'

gen `y' = ((1+`eps')*(`lam')*sin(`i'))/(1+(`eps')*cos(`V'-`i'))*100 + `offy'

gph open

gph vline `y' `x'

gph text 2000 18000 0 -1 Angle in this graph is `1'

gph text 3500 18000 0 -1 Offset X: `2' Offset Y: `3'

gph text 4500 18000 0 -1 Parameter: Size=`4' Shape=`5'

gph close

use `before', clear

end

ellipse 90 15000 20000 15 0.854

more

ellipse 180 5000 6000 8 0.9

more

ellipse 180 5000 8000 25 0.65

Acknowledgments

Martin Villumsen sorted out the mathematics of drawing ellipses in different angles. Thanks to N. Cox who provided the
idea for adding circles to a graph and to Alan Riley at Stata Corporation for help on macros and passing values to programs.

References
Lauritsen, J. M. 1999a. gr34: Drawing Venn diagrams. Stata Technical Bulletin 47: 3–8. Reprinted in Stata Technical Bulletin Reprints, vol. 8,

pp. 65–71.

——. 1999b. gr34.1: Drawing Venn diagrams. Stata Technical Bulletin 48: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 71–72.

——. 1999c. gr34.2: Drawing Venn diagrams. Stata Technical Bulletin 49: 8.

gr43 Overlaying graphs

Adrian Mander, MRC Biostatistics Unit, Cambridge, UK, adrian.mander@mrc-bsu.cam.ac.uk

Abstract: This function allows multiple graphs to be displayed on common axes. As any graphical function is allowed, this
command can produce graphs for longitudinal data or looking at overlayed histograms.

Keywords: Graphs, stratified graphs.

Syntax

overlay varlist
�
if exp

�
, by(varlist)

�
saving(filename) function(str) ylab(numlist) xlab(numlist)

graph options

�
Options

by(varlist) specifies the strata for the multiple graphs.

saving(filename) saves the graph as filename.gph.

function(str) specifies the command that draws the graph. If this is not specified, then the graph function is used.

ylab(numlist) specifies axes labels.

xlab(numlist) specifies axes labels.

20 Stata Technical Bulletin STB-54

Description

This function draws several graphs in one area of the graphics window. As a result this function is very versatile and will
work well with any graph function that allows the user to specify the axes. The function will, by default, try to calculate axes
that remain unchanged for each graph, this may fail and the user then has to specify the axes using xlab and ylab.

Any options for the graphing function can be added to the end of the command line. These can be options such as the
plotting symbol and connecting points.

Examples

Data is taken from a clinical trial that measures peak flow for asthma sufferers over time. To plot individual lines per person
through time is achieved by

. overlay pef day0, by(patient) c(l) s(.) sort saving(graph1)

which produces the graph in Figure 1.

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

P
e

f

Days since randomisation
1 42.93 87

180

426.312

650

Figure 1. Plotting lines for several people in a clinical trial.

The varlist is passed directly to graph so pef is on the y-axis.

To illustrate the use of kdensity instead of graph, consider

. overlay pef if patient<5028, by(patient) function(kdensity) xlab(150,350,680) ylab(0,0.02, 0.045) s(.)

For kdensity it was necessary to specify the axes since otherwise the graph would be incorrect. Figure 2 shows the kernel
density estimates for 4 patients.

D
e

n
s

it
y

Kernel Densi ty Est imate
Pef

150 350 680

0

.02

.045

D
e

n
s

it
y

Kernel Densi ty Est imate
Pef

150 350 680

0

.02

.045

D
e

n
s

it
y

Kernel Densi ty Est imate
Pef

150 350 680

0

.02

.045

D
e

n
s

it
y

Kernel Densi ty Est imate
Pef

150 350 680

0

.02

.045

Figure 2. Kernel density estimates for four people.

Note that overlay can even overlay histograms although this may seem a little confusing in black and white. Consider
Figure 3 which results from

. overlay pef if patient<5028, by(patient) xlab(150,350,680) bin(8) ylab(0,1.1)

Stata Technical Bulletin 21

F
ra

c
ti

o
n

Pef
150 350 680

0

1.1

F
ra

c
ti

o
n

Pef
150 350 680

0

1.1

F
ra

c
ti

o
n

Pef
150 350 680

0

1.1

F
ra

c
ti

o
n

Pef
150 350 680

0

1.1

Figure 3. Overlaying histograms.

ip29.1 Metadata for user-written contributions to the Stata programming language: extensions

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk
Christopher F. Baum, Boston College, baum@bc.edu

Abstract: The archutil package published in STB-52 for working with files or packages in the Statistical Software Components
archive has been extensively revised. archlist has been superseded by archdesc, which offers additional features and
incorporates a correction regarding behavior when logging. A new component, archinst, allows the user to install a
package from the archive in one command.

Keywords: SSC-IDEAS, Statalist, internet, files, packages, archutil.

The archutil package published by Baum and Cox (1999) has been extensively revised. The original version contained
utilities archlist, archtype and archcopy. archlist has been superseded by archdesc, which offers additional features and
incorporates a correction regarding behavior when logging. A new component, archinst, allows the user to install a package
from the archive in one command.

These commands work with files or packages from the Statistical Software Components (SSC) archive (often called the
Boston College archive). They require a net-aware variant of Stata 6.0.

Syntax

archdesc

� f package j letter g �� using filename
��
, replace nolog

�
archinst package

�
, net install options

�
archcopy filename.ext

�
, copy options

�
archtype filename.ext

Description

archdesc describes the contents of the archive.

archdesc, with neither a letter nor a package specified, lists all packages in the archive. By default, it also puts a log of
the listing in ssc-ideas.lst.

archdesc letter (where letter is one of a-z or) lists all packages in the archive whose names begin with that letter.

archdesc package (where package is a name two or more letters long beginning with a-z or) describes that package if
it exists; or all packages beginning with the same letter if it does not. Thus a faulty guess still produces information on nearby
names.

If archdesc is accompanied by logging results to a file, any existing logging is temporarily suspended.

archinst package installs that package from the archive.

archcopy filename.ext copies filename.ext from the SSC archive to the appropriate directory or folder within STBPLUS,
determined automatically. (If curious, type sysdir to see where this is.) This is appropriate for individual .ado or .hlp files.
archcopy is rarely needed, given archinst.

22 Stata Technical Bulletin STB-54

archtype filename.ext types filename.ext from the SSC archive. This is appropriate for individual .ado or .hlp files.

Options

replace specifies that filename is to be overwritten.

nolog overrides the default behavior of archdesc, with no specification of either a letter or a package, which is to log to
ssc-ideas.lst.

net install options are options of net install. See help on net or [R] net.

copy options are options of copy. See help on copy or [R] copy.

archdesc and logging

Depending on how it is called, archdesc varies in whether it echoes results to a log file by default.

archdesc by itself will produce quite lengthy output (as of January 2000, more than 600 lines). Such output may be too
much to scan visually with ease, and it has some value as a reference source. The default is therefore that output will be echoed
to a log file. This default can be overridden with the nolog option.

In contrast, archdesc with a letter or package name produces much less output, which will not be logged to a file unless
explicitly requested.

Logging here refers to opening a log file for archdesc results and closing it afterwards, which are all handled automatically
by archdesc. Any existing logging is temporarily suspended.

However, if you are already logging to a file, and wish the results of archdesc to be included in the log with other results
of your session, then that is achieved by issuing either archdesc, nolog or archdesc whatever within your session. The
earlier opening and (if desired) later closing of the log are the user’s responsibility, as usual.

archdesc and archlist

archdesc supersedes archlist, documented by Baum and Cox (1999).

archlist as published by Baum and Cox (1999) would not resume logging to a log file previously being used if there
was a problem with the using subcommand. Suppose, for example, that a user had typed

. log using log1

...

. archlist using log2

and log2.log already existed. The correct syntax would have been

. archlist using log2, replace

The syntax error would have halted the program, but logging to log1.log would not have been resumed.

archdesc handles this problem more gracefully. In addition, a corrected version of archlist is included on the electronic
media (floppy disk or website copies) accompanying this insert, even though users are recommended to switch to archdesc.

Examples

In the examples below the somewhat lengthy output of these commands is suppressed here to save space.

. archdesc using ssc.txt, replace

. archdesc w

. archdesc whitetst using whitetst.txt

. archinst whitetst

. archcopy whitetst.ado

. archcopy whitetst.hlp

. archtype whitetst.hlp

Acknowledgments

Helpful advice was received from Bill Gould, Jens Lauritsen, Vince Wiggins, and Desmond Williams.

Reference
Baum, C. F. and N. J. Cox. 1999. ip29: Metadata for user-written contributions to the Stata programming language. Stata Technical Bulletin 52: 10–12.

Stata Technical Bulletin 23

sbe32 Automated outbreak detection from public health surveillance data

López Vizcaı́no, M. E.; Santiago Pérez, M. I.; Abraira Garcı́a, L.; Dirección Xeral de Saude Publica, Spain, dxsp3@jet.es

Abstract: The early detection of outbreaks in epidemiological surveillance is an important challenge in order to introduce
effective control measures. In this insert, we adapt and program an algorithm developed by Farrington et al. (1996) to
process weekly reports of infectious diseases, which is based on a loglinear regression model. The output is a threshold
value for the current week above which the observed count is declared to be unusual.

Keywords: Outbreak, regression, threshold, public health surveillance.

Introduction

Epidemiological surveillance is the systematic collection, analysis, and interpretation of data for public health purposes. One
of its aims is the early detection of outbreaks in order to introduce effective control measures. Many available methods for this
purpose are based on parametric procedures, which compare actual numbers of cases with a warning threshold calculated from
historical data. The statistical methodology to do the detection of unusual disease clusters must cope with several difficulties as
fluctuations in the historical data series may be due to seasonal cycles and secular trends, and by past outbreaks. In addition, the
method must be sufficiently robust to accommodate a wide range of microorganisms. The available methodology is reviewed
in Farrington et al. (1996). In this paper, the authors developed an automated procedure to process weekly reports of infectious
diseases, which is based on a loglinear regression model, adjusted for overdispersion, seasonality, secular trends, and past
outbreaks. The model is used to calculate an expected value for the current week based on historical data, together with a
threshold value above which an observed count is declared to be unusual. The baseline data to fit the regression model are
specified by the following mechanism: if the current week is t0, only data from weeks t0 � 3 to t0 + 3 from the previous five
years are included. In this insert, we present a program to calculate threshold values using a modified version of Farrington’s
algorithm. The data are weekly reports of infectious disease from a passive surveillance system based on laboratory reporting.

Methodology

The baseline count yi is assumed to be generated by a Poisson-like process, except that the variation is greater than that of
a true Poisson for some organisms. In this case, negative binomial regression is used to estimate the model for the weekly counts
from historical data. We assume a serial correlation between baseline counts within the same year and independence otherwise.
The model fitted is

yi � Poisson(gi)

gi = exp(�+ �ti + �ni + ui) = exp(�+ �ti + �ni) exp(ui) = miei

where ei is the random effect of the model, and �i is the systematic component. The random effect ei is assumed to follow a
gamma distribution with mean one and variance (�� 1)=�i, � being the overdispersion parameter:

ei � Gamma

�
�i

�� 1
;

�i

�� 1

�

resulting in the negative binomial distribution with mean �i and variance ��i for the baseline count yi. The Poisson model
corresponds to � = 0, while �i, the systematic component, can be modeled as

log�i = �+ �ti + �ni

where �ti is a linear time trend that is omitted if not significant, and �ni adjusts the geographic effect in reporting. This is an
additional component to the model used in Farrington’s algorithm. Moreover, we have introduced several modifications related
to the estimation procedure. The variables included in the model are yi, the number of cases reported at week i, ti, the time
measured in weeks, and ni, the number of hospitals reporting cases at week i.

The model yields a 99% prediction interval for the current week, and the threshold value is calculated as the upper limit
of that interval. When no cases are reported in a week, we assume that no outbreak occurred and thus no model is fitted. As a
consequence, no threshold is calculated.

The output of the program is a table displaying the list of microorganisms with the observed number of cases and the
threshold value for the current week. In addition, a warning message is displayed when the actual report exceeds the threshold.

Syntax

obvset

�
var1 var2 var3 var4 var5

�
outbrk #week #year

24 Stata Technical Bulletin STB-54

where var1 is the numerical variable of reports, var2 is the numerical variable identifying the week, var3 is the numerical
variable identifying the year, var4 is the numerical variable with the number of hospitals reporting the cases, and var5 is
the string variable containing the name of the microorganisms.

The arguments #week and #year are, respectively, the number of the weeks and years in which we want to detect if an outbreak
has occurred. outbrk works after setting the variables with obvset.

Description

outbrk calculates threshold values for outbreak detection of infectious diseases based on historical data. It was developed for
data consisting of weekly reports of positive microbiological diagnostics from a passive surveillance system based on laboratory
reporting.

outbrk can be used for outbreak detection within other surveillance systems of communicable diseases weekly reporting.

obvset doesn’t allow the user to save these settings with the dataset. When exiting Stata, the current settings are cleared.
obvset will be helpful if you need to run outbrk for different weeks. Without arguments, obvset displays current settings, if
any.

Note that outbrk uses poisml introduced in Hilbe (1998).

Example

We illustrate the use of outbrk with salmonella data from the National Microbiological Reporting System (SIM). The data
consist of weekly reports of serotyping salmonella species, one of the most common reported cause of gastrointestinal infection,
from the above surveillance system within the period 1992–1998. In this example, we apply outbrk for the detection of the
possibility of existence of outbreaks due to different salmonella serotypes in the third week of the year 1998. First, we describe
the dataset:

. describe

Contains data from salmo.dta

Microbiological weekly reports of salmonella

obs: 3,360

vars: 5 size: 164,7

--

1. organism str25 %25s microorganism name

2. year float %6.0g year identify number

3. week float %6.0g week identify number

4. counts float %6.0g number of cases reported

5. nhosp float %6.0g number of hospitals

reporting

--

Typing obvset without arguments, we verify that no variables have been set. Therefore, we have to set the variables by typing
. obvset counts week year nhosp organism

Now, if we type obvset without arguments:
. obvset

Reports count is:COUNTS

Week identifier is:WEEK

Year identifier is:YEAR

Hospitals count is:NHOSP

Organism identifier is:ORGANISM

After setting the variables, we can use outbrk:
. outbrk 3 1998

YEAR 1998; WEEK 3

-----------------+-----------------------------------

Organism | Reports Threshold Warning

-----------------+-----------------------------------

S.enteritidis | 17 34.76 -

S.infantis | 0 -

S.typhimurium | 19 18.29 Warning

S.virchow | 0 -

Salmonella gr.B | 6 17.20 -

Salmonella gr.C | 0 -

Salmonella gr.C1 | 0 -

Salmonella gr.C2 | 1 3.01 -

Salmonella gr.D | 2 6.91 -

Salmonella sp. | 15 27.59 -

-----------------+-----------------------------------

Stata Technical Bulletin 25

This table shows the different salmonella serotypes list, the reports in the third week of 1998, the calculated threshold value, and a
warning message if the reported counts exceed that value. In this week, the number of cases reported for Salmonella typhimurium
exceeds the threshold value, so a further epidemiological investigation is needed to check if this warning is an outbreak. There
are no counts reported for S. Infantis, S. Virchow, Salmonella gr. C and Salmonella gr. C1; therefore no threshold value was
calculated. This detection system provides epidemiologists with a tool for use in conjunction with other surveillance methods.
Its main function is to focus attention on a potential outbreak, which is especially valuable when large numbers of different
microorganisms are reported each week.

Acknowledgments

This work was presented at the First Iberian Stata User’s Group meeting, which was held the 20th and 21st of May in
Cordoba, Spain. Thanks to Aurelio Tobias for helpful comments. The data in the example are from the National Microbiological
Reporting System.

References
Farrington, C. P., N. J. Andrews, A. D. Beale, and M. A. Catchpole. 1996. A statistical algorithm for the early detection of outbreaks of infectious

disease. Journal of the Royal Statistical Society, Series A 159: 547–563.

Hilbe, J. 1998. sg91: Robust variance estimators for MLE Poisson and negative binomial regression. Stata Technical Bulletin 45: 26–28. Reprinted in
Stata Technical Bulletin Reprints, vol. 8, pp. 177–180.

sg84.2 Concordance correlation coefficient: update for Stata 6

Thomas J. Steichen, RJRT steicht@rjrt.com
Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Abstract: The program for concordance correlation previously published in STB-43 and STB-45 has been updated to the syntax
of Stata 6.0 and corrected for some deficiencies, principally to do with graphics and speed of calculation. A new option
now permits the saving of the standard normal plot.

Keywords: Concordance correlation, graphics, measurement comparison.

Description

concord computes Lin’s (1989) concordance correlation coefficient, �c, for agreement on a continuous measure obtained
by two persons or methods and provides an optional graphical display of the observed concordance of the measures. concord
also provides statistics and optional graphics for Bland and Altman’s (1986, 1995) limits-of-agreement, loa, procedure. The loa,
a data-scale assessment of the degree of agreement, is a complementary approach to the relationship-scale approach of �c.

This insert documents enhancements and changes to concord and provides the syntax needed to use a new feature. A full
description of the method and of the operation of the original command and options was given by Steichen and Cox (1998a). A
few revisions were documented later by Steichen and Cox (1998b). This updated program does not change the implementation
of the underlying statistical methodology, or modify the original operating characteristics of the program; rather, it follows the
syntax changes of Stata version 6.0.

Syntax

concord var1 var2
�
weight

� �
if exp

� �
in range

� �
, by(byvar) summary level(#) graph(fccc | loag)

noref reg npsaving(filename
�
, replace

�
) nosnd(snd var

�
, replace

�
) graph options

�
New option

npsaving(filename [, replace]) saves the standard normal plot generated by graph(loa). The filename is assumed to have
extension gph. If filename does not exist, it is created. If filename exists, an error will occur unless replace is also
specified. This option is ignored if graph(loa) is not requested. Note that the usual saving() option saves the loa plot
itself when graph(loa) is specified (and the concordance plot when graph(ccc) is specified).

Explanation

The primary purpose of this version is to revise concord to meet and to exploit syntax changes in Stata 6. In addition,
some deficiencies in the previous implementation have been corrected.

First, concord previously failed when attempting a saving() of the loa plot generated by the graph(loa) option. This
has been fixed. Second, the program did not allow the standard normal plot, which is also generated by the graph(loa) option,

26 Stata Technical Bulletin STB-54

to be saved. The new npsaving() option now allows that. Third, it did not allow variable labels to appear on the axes of the
loa graph in place of variable names. They will now appear if they are defined. Fourth, a few minor changes have been made
to speed up calculation.

A consequence of updating to Stata 6 is that the workarounds t1title(".") and t2title(".") to blank out default titles
are no longer required. Blanking out can now be obtained directly by, for example, t1title(" ") and the previous workarounds
now work literally, placing a period in the requested title.

Saved Results

The system S # macros are unchanged. In addition, the saved results are returned in r(). Specifically, if the by() option
is not used, concord saves:

S 1 r(N) number of observations compared S 7 r(z tr ul) upper CI limit (z-transform)
S 2 r(rho c) concordance correlation coefficient, �̂c S 8 r(C b) bias-correction factor, Cb

S 3 r(se rho c) standard error of �̂c, ��̂c S 9 r(diff) mean difference
S 4 r(asym ll) lower CI limit (asymptotic) S 10 r(sd diff) standard deviation of mean difference
S 5 r(asym ul) upper CI limit (asymptotic) S 11 r(LOA ll) lower limit-of-agreement value
S 6 r(z tr ll) lower CI limit (z-transform) S 12 r(LOA ul) upper limit-of-agreement value

References
Bland, J. M. and D. G. Altman. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet I: 307–310.

——. 1995. Comparing methods of measurement: why plotting difference against standard is misleading. Lancet 346: 1085–1087.

Lin, L. I-K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255–68.

Steichen, T. J. and N. J. Cox. 1998a. sg84: Concordance correlation coefficient. Stata Technical Bulletin 43: 35–9. Reprinted in Stata Technical Bulletin
Reprints, vol. 8, pp. 137–143.

——. 1998b. sg84.1: Concordance correlation coefficient, revisited. Stata Technical Bulletin 45: 21–23. Reprinted in Stata Technical Bulletin Reprints,
vol. 8, pp. 143–145.

sg116.1 Update to hotdeck imputation

Adrian Mander, MRC Biostatistics Unit, Cambridge, adrian.mander@mrc-bsu.cam.ac.uk
David Clayton, MRC Biostatistics Unit, Cambridge, david.clayton@mrc-bsu.cam.ac.uk

Abstract: Two additional options have been added to the hotdeck command.

Keywords: Hotdeck imputation method.

Two additional options have been added to the hotdeck command introduced in Mander and Clayton (1999).

New options

seed(#) specifies the random number generator seed.

infiles(filename filename ...) specifies a list of files that have missing values replaced by imputed values. The infiles option
allows the user to analyze several imputed datasets that have been created by other programs.

Reference
Mander, A. and D. Clayton. 1999. sg116: Hotdeck imputation. Stata Technical Bulletin 51: 32–34.

sg120.2 Correction to roccomp command

Mario Cleves, Stata Corporation, mcleves@stata.com

In STB-52 (Cleves 1999), I introduced a series of commands for performing Receiver Operating Characteristic (ROC)
analysis on rating and discrete classification data.

A bug was discovered in the roccomp program when more than two modalities were being compared and the modalities
were not specified in alphabetical order. The output table reordered the modality variable names placing them in alphabetical
order. This could result in the wrong modalities being compared and incorrect significant probabilities reported. This has been
corrected. The output table will now present results for each modality in the same order as specified on the command line.

Reference
Cleves, M. 1999. sg120: Receiver Operating Characteristic (ROC) analysis. Stata Technical Bulletin 52: 19–31.

Stata Technical Bulletin 27

sg130 Box–Cox regression models

David M. Drukker, Stata Corporation, ddrukker@stata.com

Abstract: This article describes the boxcox2 command which obtains maximum likelihood estimates for the parameters from any
of four distinct Box–Cox regression models. The article also includes a brief introduction to the four Box–Cox regression
models. Several examples are used to illustrate how this command can be run and how to interpret the output.

Keywords: Box–Cox regression, nonlinear regression, flexible functional form, specification test.

Syntax

boxcox2 depvar
�
indepvars

� �
weight

� �
if exp

� �
in range

� �
, model(lhsonly j rhsonly j lambda j theta)

notrans(varlist) lrtest from(init specs) noconstant nolog nologlr iterate(#) level(#)
�

fweights, and iweights are allowed; see [U] 14.1.6 weight.

boxcox2 shares the features of all estimation commands; see [U] 23 Estimation and post-estimation commands.

Syntax for predict

predict

�
type

�
newvarname

�
if exp

� �
in range

� �
,

�
yhat j xbt j residuals 	 �

These statistics are available both in and out of sample; type predict : : : if e(sample) : : : if wanted only for the estimation sample.

Description

boxcox2 finds the maximum likelihood estimates of the parameter(s) of the Box–Cox transform, the coefficients on the
independent variables, and the standard deviation of the normally distributed errors for a model in which depvar is regressed on
indepvars. The user has the option of estimating

Option Estimates

lhsonly y

(�)

j = �1x1j + �2x2j + � � �+ �kxkj + �j

rhsonly yj = �1x
(�)

1j + �2x
(�)

2j + � � �+ �kx
(�)

kj + �j

rhsonly notrans() yj = �1x
(�)

1j + �2x
(�)

2j + � � �+ �kx
(�)

kj +
1z1j +
2z2j + � � �+
lzlj + �j

lambda y

(�)

j = �1x
(�)

1j + �2x
(�)

2j + � � �+ �kx
(�)

kj + �j

lambda notrans() y

(�)

j = �1x
(�)

1j + �2x
(�)

2j + � � �+ �kx
(�)

kj +
1z1j +
2z2j + � � �+
lzlj + �j

theta y

(�)

j = �1x
(�)

1j + �2x
(�)

2j + � � �+ �kx
(�)

kj + �j

theta notrans() y

(�)

j = �1x
(�)

1j + �2x
(�)

2j + � � �+ �kx
(�)

kj +
1z1j +
2z2j + � � �+
lzlj + �j

Any transformed variable must be strictly positive.

Note: this command estimates a superset of the models accommodated by the boxcox command of official Stata. See
[R] boxcox for information on the official command.

Options

model(lhsonly j rhsonly j lambda j theta) specifies which of the four models to fit.

model(lhsonly) applies the Box–Cox transform to depvar only. model(lhsonly) is the default value.

model(rhsonly) causes the transform to be applied to the indepvars only.

model(lambda) causes the transform to be applied to both depvar and indepvars, and they are transformed by the same
parameter.

model(theta) causes the transform to be applied to both depvar and indepvars, but this time each side is transformed by
a separate parameter.

notrans(varlist) specifies that the variables in varlist are to be included as nontransformed independent variables.

lrtest specifies that a likelihood-ratio test of significance is to be performed and reported for each independent variable.

28 Stata Technical Bulletin STB-54

from() allows the user to specify the initial values for Box–Cox transformation parameter(s); see [R] maximize.

Model Initial value specification

lhsonly from(�0, copy)
rhsonly from(�0, copy)
lambda from(�0, copy)
theta from(�0 �0, copy)

noconstant suppresses the constant term (intercept) in the model.

nolog suppresses the iteration log when estimating the full model.

nologlr suppresses the iteration log when estimating the restricted models required by the lrtest option. If nologlr is
specified when lrtest is not, then it is ignored.

iterate(#) specifies the maximum number of iterations that the maximum likelihood optimizer will undertake in search of a
solution.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level;
see [U] 23.5 Specifying the width of confidence intervals.

Options for predict

yhat calculates the predicted value of y.

xbt, the default, calculates the “linear” prediction. For all the models except model(lhsonly), all the indepvars are transformed.

residuals calculates the residuals after the predicted value of y has been subtracted from the actual value.

Remarks

The Box–Cox transform

y
(�) =

y
� � 1

�

has been widely used in applied data analysis. Box and Cox (1964) developed the transformation and argued that the transformation
could make the residuals more closely normal and less heteroscedastic. Cook and Weisberg (1982) discuss the transform in
this light. Since the transform embeds several popular functional forms, it has received some attention as a method for testing
functional forms. In particular,

y
(�) =

8<
:
y � 1 if � = 1
ln(y) if � = 0
1� 1=y if � = �1

Davidson and MacKinnon (1993) discuss this use of the transform. Atkinson (1985) also gives a good general treatment.

Theta model

boxcox2 obtains the maximum likelihood estimates of the parameters for four different models. The most general of the
models, the theta model, is

y

(�)

j = �0 + �1x
(�)

1j + �2x
(�)

2j + : : :+ �kx
(�)

kj +
1z1j +
2z2j + � � �+
lzlj + �j

where � � N(0; �2). Here the dependent variable y is subject to a Box–Cox transform with parameter �: Each of the indepvars
x1; x2; : : : ; xk is transformed by a Box–Cox transform with parameter �. The z1; z2; : : : ; zl, specified in the notrans() option,
are independent variables that are not transformed.

Box and Cox (1964) argued that this transformation would leave behind residuals that more closely resemble a normal
distribution than those produced by a simple linear regression model. Users should bear in mind that the normality of � is assumed
and that boxcox2 obtains maximum likelihood estimates of the k + l+ 4 parameters under this assumption. boxcox2 does not
choose � and � so that the residuals are approximately normally distributed. Users interested in this type of transformation to
normality should see the official Stata commands lnskew0 and bcskew0 in [R] lnskew0. However, these commands work on a
more restrictive model in which none of the independent variables are transformed.

Stata Technical Bulletin 29

Example

Consider an example using the auto data.

. boxcox2 mpg weight price, notrans(foreign) model(theta) lrtest

Estimating comparison model

Iteration 0: log likelihood = -234.39434

Iteration 1: log likelihood = -228.26891

Iteration 2: log likelihood = -228.26777

Iteration 3: log likelihood = -228.26777

Estimating full model

Iteration 0: log likelihood = -194.13727

Iteration 1: log likelihood = -184.34212

Iteration 2: log likelihood = -180.18783

Iteration 3: log likelihood = -177.5195

Iteration 4: log likelihood = -176.08846

Iteration 5: log likelihood = -175.67353

Iteration 6: log likelihood = -175.67343

Iteration 7: log likelihood = -175.67343

Estimating comparison models for LR tests

Iteration 0: log likelihood = -179.58214

Iteration 1: log likelihood = -177.59036

Iteration 2: log likelihood = -177.58739

Iteration 3: log likelihood = -177.58739

Iteration 0: log likelihood = -203.92855

Iteration 1: log likelihood = -201.30202

Iteration 2: log likelihood = -201.18246

Iteration 3: log likelihood = -201.18233

Iteration 4: log likelihood = -201.18233

Iteration 0: log likelihood = -178.83799

Iteration 1: log likelihood = -175.98405

Iteration 2: log likelihood = -175.97931

Iteration 3: log likelihood = -175.97931

Number of obs = 74

LR chi2(4) = 105.19

Log likelihood = -175.67343 Prob > chi2 = 0.000

--

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

/lambda | .7601691 .6289991 1.209 0.227 -.4726464 1.992985

/theta | -.7189315 .3244439 -2.216 0.027 -1.35483 -.0830332

--

Estimates of scale-variant parameters

| Coef. chi2(df) P>chi2(df) df of chi2

---------+---

Notrans |

foreign | -.0114338 3.828 0.050 1

_cons | 1.377399

---------+---

Trans |

weight | -.000239 51.018 0.000 1

price | -6.18e-06 0.612 0.434 1

---------+---

/sigma | .0138489

Test Restricted

H0: log likelihood X~chi2 Pr > chi2

theta=lambda = -1 -181.64479 11.94 0.001

theta=lambda = 0 -178.2406 5.13 0.023

theta=lambda = 1 -194.13727 36.93 0.000

The output is composed of the iteration logs and three distinct tables. The first table contains a standard header for a
maximum likelihood estimator and a standard output table for the Box–Cox transform parameters. The second table contains
the estimates of the scale-variant parameters. The third table contains the output from likelihood-ratio tests on three standard
functional form specifications.

30 Stata Technical Bulletin STB-54

If we were to interpret this output, the right-hand-side transformation does not significantly add to the regression while the
left-hand-side transformation makes the 5% but not the 1% cutoff. price is certainly not significant and foreign lies right on
the 5% cutoff. weight is clearly significant. The output also says that both the linear and multiplicative inverse specifications
are strongly rejected. A natural log specification can be rejected at the 5% but not the 1% level.

Technical Note

Spitzer (1984) showed that the Wald statistics of whether the coefficients of the right-hand-side variables, transformed or
untransformed, are significantly different than zero are not invariant to changes in the scale of the transformed dependent variable.
Davidson and MacKinnon (1993) also discuss this point. It is worth noting that this problem is an example of the manipulability
of Wald statistics in nonlinear models. Lafontaine and White (1986) analyze this problem numerically and Phillips and Park
(1988) analyze it analytically using Edgeworth expansions. See Drukker (2000) for a more detailed discussion of this issue.
Since the parameter estimates and their Wald tests are not scale invariant, no Wald tests or confidence intervals are reported for
these parameters. However, when the lrtest option is specified, likelihood-ratio tests are performed and reported. Schlesselman
(1971) showed that, if a constant is included in the model, then the parameter estimates of the Box–Cox transforms are scale
invariant. For this reason, it is highly recommended that the noconstant option not be used.

The lrtest option does not perform a likelihood-ratio test on the constant. Hence, no value for this statistic is reported.
Unless the data are properly scaled, the restricted model frequently does not converge. For this reason, no likelihood-ratio test
on the constant is performed by the lrtest option. However, if a user has a special interest in performing this test, then it can
be done by estimating the constrained model separately. If problems with convergence are encountered, rescaling the data by
their means may help.

Lambda model

A less general model than the one above is called the lambda model. It specifies that the same parameter be used in both
the left-hand side and right-hand side transformations. Specifically,

y

(�)

j = �0 + �1x
(�)

1j + �2x
(�)

2j + � � �+ �kx
(�)

kj +
1z1j +
2z2j + � � �+
lzlj + �j

where � � N(0; �2). Here the depvar variable y and each of the indepvars x1; x2; : : : ; xk are transformed by a Box–Cox
transform with the common parameter �. Again, the z1; z2; : : : ; zl are independent variables that are not transformed.

Example

Again using the auto data we have

. boxcox2 mpg weight price, notrans(foreign) model(lambda) lrtest nolog nologlr

Estimating comparison model

Estimating full model

Estimating comparison models for LR tests

Number of obs = 74

LR chi2(3) = 102.21

Log likelihood = -177.16463 Prob > chi2 = 0.000

--

mpg| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

/lambda | -.3188704 .2185908 -1.459 0.145 -.7473006 .1095597

--

Estimates of scale-variant parameters

| Coef. chi2(df) P>chi2(df) df of chi2

---------+---

Notrans |

foreign | -.0271361 1.924 0.165 1

_cons | 15.11529

---------+---

Trans |

weight | -3.964759 48.047 0.000 1

price | -.5849437 2.478 0.115 1

---------+---

/sigma | .0748609

Stata Technical Bulletin 31

Test Restricted LR statistic P-Value

H0: log likelihood X~chi2 Pr > chi2

lambda = -1 -181.64479 8.96 0.003

lambda = 0 -178.2406 2.15 0.142

lambda = 1 -194.13727 33.95 0.000

The options nolog and nologlr were specified to suppress the iteration logs. Aside from this change, the output of this
example has the same outline as that of the previous one. The most important change is in the first table. Since the requested
model has only one Box–Cox transform parameter, only one is reported. The interpretation is similar to the previous case.

Left-hand-side only model

More restrictive still than a common transformation parameter is transforming the dependent variable only. Since the
dependent variable is on the left hand side of the equation, this model is known as the lhsonly model. In this case, one is
estimating the parameters of the model

y

(�)

j = �0 + �1x1j + �2x2j + � � �+ �kxkj + �j

where � � N(0; �2). In this case only the depvar, y, is transformed by a Box–Cox transform with the parameter �. Note
that the z1; z2; : : : ; zL have been dropped from the specification. Since the indepvars x1; x2; : : : ; xK are not transformed, the
z1; z2; : : : ; zL are superfluous.

This is the model that is estimated by Stata’s boxcox command. Even here, boxcox2 offers some advantages over boxcox.
In particular, one can easily obtain likelihood-ratio tests of the significance of the independent variables. In contrast, boxcox
offers Wald statistics that use variance estimates of the coefficients which are conditional on �. This difference is important.
Spitzer (1984) shows that the variance estimates conditional on � will underestimate the true variance.

Example

In this example, mpg is again hypothesized to be a function of weight, price and foreign in a Box–Cox model in which
only mpg is subject to the transform.

. boxcox2 mpg weight price foreign, model(lhs) lrtest nolog nologlr

Estimating comparison model

Estimating full model

Estimating comparison models for LR tests

Number of obs = 74

LR chi2(3) = 105.04

Log likelihood = -175.74705 Prob > chi2 = 0.000

--

mpg| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

/theta | -.7826999 .281954 -2.776 0.006 -1.33532 -.2300802

--

Estimates of scale-variant parameters

| Coef. chi2(df) P>chi2(df) df of chi2

---------+---

Notrans |

weight | -.0000294 58.056 0.000 1

price | -4.66e-07 0.469 0.493 1

foreign | -.0097564 4.644 0.031 1

_cons | 1.249845

---------+---

/sigma | .013249

Test Restricted LR statistic P-Value

H0: log likelihood X~chi2 Pr > chi2

theta = -1 -176.04312 0.59 0.442

theta = 0 -179.54104 7.59 0.006

theta = 1 -194.13727 36.78 0.000

32 Stata Technical Bulletin STB-54

It is worth noting that this model rejects both the linear and log specification of mpg but fails to reject that 1=mpg is linear
in the independent variables. These findings are in line with the what an engineer would have expected ex ante. In engineering
terms, gallons per mile represent actual energy consumption and energy consumption should be approximately linear in weight.

Right-hand-side only model

The fourth model leaves the depvar alone and transforms a subset of the indepvars using the parameter �. This is the
rhsonly model. In this model the depvar, y, is given by

yj = �0 + �1x
(�)

1j + �2x
(�)

2j + : : :+ �kx
(�)

kj +
1z1j +
2z2j + � � �+
lzlj + �j

where � � N(0; �2). Here each of the indepvars x1; x2; : : : ; xk are transformed by a Box–Cox transform with the parameter
�. Again, the z1; z2; : : : ; zl are independent variables that are not transformed.

Example

Here is an example with the rhsonly model. In this example, price and foreign are not included in the list of covariates.
(You are invited to use the auto data and check that they fare no better here than above.)

. boxcox2 mpg weight, model(rhs) lrtest nolog nologlr

Estimating Full Model

Estimating comparison models for LR tests

Comparison model for LR test on weight is a linear regression

Lambda is not identified in the restricted model

Number of obs = 74

LR chi2(2) = 82.90

Log likelihood = -192.94368 Prob > chi2 = 0.000

--

mpg| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

/lambda | -.4460916 .6551107 -0.681 0.496 -1.730085 .8379017

--

Estimates of Scale Variant Parameters

| Coef. chi2(df) P>chi2(df) df of chi2

---------+---

Notrans |

_cons | 1359.092

---------+---

Trans |

weight | -614.3874 82.901 0.000 2

---------+---

/sigma | 3.281854

Test Restricted LR statistic P-Value

H0: log likelihood X~chi2 Pr > chi2

lambda = -1 -193.2893 0.69 0.406

lambda = 0 -193.17892 0.47 0.493

lambda = 1 -195.38869 4.89 0.027

The interpretation of the output is similar to all the cases above, except for one caveat. As requested, a likelihood-ratio test
was performed on the lone independent variable. However, when it is dropped to form the constrained model, the comparison
model is not a right-hand-side only Box–Cox model, but rather a simple linear regression on a constant model. When weight
is dropped, there are no longer any transformed variables. Hence, � is not identified and it must also be dropped. This process
leaves a linear regression on a constant as the “comparison model”. It also implies that the test statistic has 2 degrees of freedom
instead of 1. At the top of the output, there is a more concise warning which informs the user of this point.

Technical Note

A similar identification issue can also arise in the lambda and theta models when only one independent variable is
specified. In these cases, warnings also appear on the output to remind the user.

Stata Technical Bulletin 33

Saved Results

boxcox2 saves in e():

Scalars
e(N) number of observations e(chi2) LR statistic of full vs comparison
e(ll) log likelihood e(ll0) log likelihood of the restricted model
e(df m) full model degrees of freedom e(df r) restricted model degrees of freedom
e(ll t1) log likelihood of model when �=�=1 e(chi2 t1) LR statistic of �=�=1 vs full model
e(p t1) p-value of �=�=1 vs full model e(ll tm1) log likelihood of model when �=�=�1

e(chi2 tm1) LR statistic of �=�=�1 vs full model e(p tm1) p-value of �=�=�1 vs full model
e(ll t0) log likelihood of model when �=�=0 e(chi2 t0) LR statistic of �=�=0 vs full model
e(p t0) p-value of �=�=0 vs full model e(ic) number of iterations
e(rc) return code

Macros
e(cmd) boxcox2 e(ntrans) yes if there were nontransformed indepvars
e(model) model estimated e(predict) program used to implement predict
e(chi2type) LR e(lrtest) lrtest if requested
e(depvar) name of dependent variable e(wtype) weight type
e(wexp) weight expression

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of the
e(df) degrees of freedom of LR tests on indepvars, estimators (see note below)

if requested e(pm) p-values for LR tests on indepvars, if requested
e(chi2m) LR statistics for tests on indepvars, if requested

Functions
e(sample) marks estimation sample

Note that e(V) contains all zeros except for the element(s) that correspond to the parameter(s) of the Box–Cox transform.

Methods and Formulas

boxcox2 is implemented as an ado-file.

In the internal computations

y
(�) =

8><
>:

y
� � 1

�

if j�j > 10�10

ln(y) otherwise

The unconcentrated log likelihood for the theta model is

lnL =

��N
2

��
ln(2�) + ln(�2)

�
+ (� � 1)

NX
i

ln(yi)�
�

1

2�2

�
SSR

where

SSR =
NX
i

(y
(�)

i � �0 + �1x
(�)

i1 + �2x
(�)

i2 + : : :+ �kx
(�)

ik +
1zi1 +
2zi2 + : : :+
lzil)
2

Writing the SSR in matrix form,

SSR = (Y(�) �X(�)b0 � Zg0)0(Y(�) �X(�)b0 � Zg0)

where Y(�) is an N � 1 vector of elementwise transformed data, X(�) is an N � k matrix of elementwise transformed data, Z
is an N � l matrix of untransformed data, b is a 1 � k vector of coefficients, and g is a 1 � l vector of coefficients. Letting

W� =
�
X(�) Z

�

34 Stata Technical Bulletin STB-54

the horizontal concatenation of X(�) and Z, and

d0 =

�
b0

g0

�
the vertical concatenation of the coefficients, yields

SSR = (Y(�) �W�d
0)0(Y(�) �W�d

0)

For given values of � and �, the solutions for d0 and �
2 are

bd0 = (W0

�W�)
�1W0

�Y
(�)

and b�2 =
1

N

�
Y� �W�

bd0�0 �Y� �W�
bd0�

Substituting these solutions into the log-likelihood function yields the concentrated log-likelihood function,

lnLc =

�
�N

2

��
ln(2�) + 1 + ln(b�2)�+ (� � 1)

NX
i

ln(yi)

The unconcentrated log likelihood for the lambda model is

lnL =

��N
2

��
ln(2�) + ln(�2)

�
+ (�� 1)

NX
i

ln(yi)�
�

1

2�2

�
SSR

where

SSR =
NX
i

(y
(�)

i � �0 + �1x
(�)

i1 + �2x
(�)

i2 + : : :+ �kx
(�)

ik +
1zi1 +
2zi2 + : : :+
lzil)
2

Writing the SSR in matrix form,

SSR = (Y(�) �X(�)b0 � Zg0)0(Y(�) �X(�)b0 � Zg0)

where Y(�) is an N � 1 vector of transformed data and everything else has already been defined. Using W� and d as defined
above, the sum of squared residuals is now

SSR = (Y(�) �W�d
0)0(Y(�) �W�d

0)

For a given value of �, the solutions for d0 and �
2 are

bd0 = (W0

�W�)
�1W0

�Y
(�)

and b�2 =
1

N

�
Y� �W�

bd0�0 �Y� �W�
bd0�

Substituting these solutions into the log-likelihood function yields the concentrated log-likelihood function:

lnLc =

�
�N

2

��
ln(2�) + 1 + ln(b�2)�+ (�� 1)

NX
i

ln(yi)

The unconcentrated log likelihood for the lhsonly model is

lnL =

��N
2

��
ln(2�) + ln(�2)

�
+ (� � 1)

NX
i

ln(yi)�
�

1

2�2

�
SSR

Stata Technical Bulletin 35

where

SSR =
NX
i

(y
(�)

i � �0 + �1xi1 + �2xi2 + : : :+ �kxik)
2

Writing the SSR in matrix form,
SSR = (Y(�) �Xb0)0(Y(�) �Xb0)

where Y(�) is an N � 1 vector of transformed data, X is an N � k matrix of untransformed data, b is a 1 � k vector of
coefficients. For a given value of �, the solutions for b0 and �

2 are

bb0 = (X0X)�1X0Y(�)

and b�2 =
1

N

�
Y(�) �Xbb0�0 �Y(�) �Xbb0�

Substituting these solutions into the log-likelihood function yields the concentrated log-likelihood function:

lnLc =

�
�N

2

��
ln(2�) + 1 + ln(b�2)�+ (� � 1)

NX
i

ln(yi)

The unconcentrated log likelihood for the rhsonly model is

lnL =

��N
2

��
ln(2�) + ln(�2)

�� � 1

2�2

�
SSR

where

SSR =
NX
i

(yi � �0 + �1x
(�)

i1 + �2x
(�)

i2 + : : :+ �kx
(�)

ik +
1zi1 +
2zi2 + : : :+
lzil)
2

Writing the SSR in matrix form,

SSR = (Y �X(�)b0 � Zg0)0(Y �X(�)b0 � Zg0)

where Y is an N � 1 vector of untransformed data, X(�) is an N � k matrix of transformed data, Z is an N � l matrix of
untransformed data, b is a 1 � k vector of coefficients, and g is a 1 � l vector of coefficients. Letting

W� =
�
X(�) Z

�

the horizontal concatenation of X(�) and Z, and

d0 =

�
b0

g0

�
yields

SSR = (Y �W�d
0)0(Y �W�d

0)

For a given value of �, the solutions for d0 and �
2 are

bd0 = (W0

�W�)
�1W0

�Y

and b�2 =
1

N

�
Y �W�

bd0�0 �Y �W�
bd0�

Substituting these solutions into the log-likelihood function yields the concentrated log-likelihood function:

lnLc =

�
�N

2

��
ln(2�) + 1 + ln(b�2)�

36 Stata Technical Bulletin STB-54

References
Atkinson, A. C. 1985. Plots, Transformations, and Regression. Oxford: Clarendon Press.

Box, G. E. P. and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B 26: 211–243.

Cook, R. D. and S. Weisberg. 1982. Residuals and Influence in Regression. New York: Chapman & Hall.

Davidson, R. and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. Oxford: Oxford University Press.

Drukker, D. M. 2000. sg131: On the manipulability of Wald statistics in Box–Cox regression models. Stata Technical Bulletin 54: 36–42.

Lafontaine, F. and K. J. White. 1986. Obtaining any Wald statistic you want. Economics Letters 21: 35–40.

Phillips, P. C. B. and J. Y. Park. 1988. On the formulation of Wald tests of nonlinear restrictions. Econometrica 56: 1065–1083.

Schlesselman, J. 1971. Power families: A note on the Box and Cox transformation. Journal of the Royal Statistical Society, Series B 33: 307–311.

Spitzer, J. J. 1984. Variance estimates in models with the Box–Cox transformation: Implications for estimation and hypothesis testing. The Review
of Economics and Statistics 66: 645–652.

sg131 On the manipulability of Wald tests in Box–Cox regression models

David M. Drukker, Stata Corporation, ddrukker@stata.com

Abstract: This article illustrates the fact that the value of the Wald Test of the significance of a coefficient on an independent
variable in a Box–Cox regression model is not invariant to changes in the scale of any of the transformed variables. The
article shows that this result is a special case of the manipulability of the Wald statistic in nonlinear models, a topic that has
been treated in the literature by Lafontaine and White (1986) and Phillips and Park (1988). The article considers several
candidate methods for dealing with the problem and concludes that using likelihood-ratio tests is the best alternative.

Keywords: Box–Cox regression, nonlinear regression, Wald tests, nonlinear models, scale invariance, scale invariant test statistics,
scale variant test statistics.

Introduction

This article illustrates the fact that the value of the Wald test of the significance of a coefficient on an independent variable
in a Box–Cox regression model is not invariant to changes in the scale of any of the transformed variables. Spitzer (1984)
first discovered this fact in a study of Box–Cox regression models. Later, in independent work, Gregory and Veal (1985) and
Lafontaine and White (1986) showed that certain classes of nonlinear transformations of a Wald test produce significantly different
values and conclusions in a finite sample. Phillips and Park (1988) used Edgeworth expansions to generalize this conclusion to
a very general class of nonlinear transformations.

The manipulability of the Wald test of the significance of an independent variable in a Box–Cox regression is a special case
of the more general phenomenon that Wald tests are not invariant to nonlinear transforms. This article uses two different Stata
commands that perform Box–Cox regression and examples from the auto dataset to illustrate this fact. The first command box

has a syntax similar to the new boxcox2 which is documented in the online help and in Drukker (2000). The command box is
neither an official Stata command nor a command released in another format, such as the STB. box was written by the author
for the purpose of writing this article. Researchers interested in estimating Box–Cox models are encouraged to use boxcox2.

In Box–Cox regressions, some or all of the variables are transformed by the Box–Cox transform which is

w
(�) =

w
� � 1

�

Box–Cox regressions can take one of four different forms, depending on which variables are transformed. The examples in this
article all use the Box–Cox model in which only the dependent variable is transformed. Since the dependent variable appears on
the left-hand-side, this model is called the “left-hand-side only model”. Specifically, the model estimated in these examples is

y

(�)

j = �0 + �1x1j + �2x2j + � � �+ �kxkj + �j

where � � N(0; �2). Although the discussion is focused on this one model, the issues generalize to all four of the models
estimated by boxcox2. For an introduction to Box–Cox models, see Davidson and MacKinnon (1993). For a discussion of their
implementation in Stata, see Drukker (2000).

Obtaining any Wald statistic

The variance of the Wald test to nonlinear transforms is the root of the problem. Hence, a good place to begin our
investigation is with a simple example of this phenomenon. Consider the following example, which is similar to one given in
Lafontaine and White (1986). Running a linear regression of mpg on weight and price, using the auto dataset produces

Stata Technical Bulletin 37

. regress mpg price weight

Source | SS df MS Number of obs = 74

---------+------------------------------ F(2, 71) = 66.85

Model | 1595.93249 2 797.966246 Prob > F = 0.0000

Residual | 847.526967 71 11.9369995 R-squared = 0.6531

---------+------------------------------ Adj R-squared = 0.6434

Total | 2443.45946 73 33.4720474 Root MSE = 3.455

--

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

price | -.0000935 .0001627 -0.575 0.567 -.000418 .0002309

weight | -.0058175 .0006175 -9.421 0.000 -.0070489 -.0045862

_cons | 39.43966 1.621563 24.322 0.000 36.20635 42.67296

--

Now, let’s perform several equivalent tests of whether or not weight is significant in the regression.

. test weight

(1) weight = 0.0

F(1, 71) = 88.75

Prob > F = 0.0000

. testnl _b[weight]=0

(1) _b[weight]=0

F(1, 71) = 88.75

Prob > F = 0.0000

. testnl _b[weight]^2=0

(1) _b[weight]^2=0

F(1, 71) = 22.19

Prob > F = 0.0000

Note that when the same Wald test is performed with test and testnl, the same value of the Wald statistic is obtained.
However, when the logically equivalent, but algebraically distinct test of whether or not �2weight = 0 is performed, the value of
the test is approximately a fourth of its original value. As shown in Lafontaine and White (1986, 35), “because the nonlinear form
of the Wald statistic stems from a Taylor series approximation, different values and possibly different diagnostics are obtained
from the above seeming equivalent tests”.

Phillips and Park (1988) used Edgeworth expansions to generalize the previous research. They were able to demonstrate
that

Under general conditions Wald statistics which are based upon different but algebraically equivalent forms all have
the same asymptotic distribution under the null hypothesis that the restriction holds. However, numerical outcomes of
the tests and their finite sample distributions can be substantially different for different forms of the same restrictions.

Scale-variant Wald statistics in Box–Cox regressions

Spitzer (1984) first discovered that Wald tests of the significance of an independent variable were not invariant to changes
in the scale of any transformed variable in a Box–Cox regression. He derives the variance estimator for the coefficients on
the right-hand-side independent variables in a Box–Cox regression model in which only the dependent variable is transformed.
Spitzer shows analytically that this variance estimator depends on the scale of the dependent variable. He goes on to give
numerical examples that show how the value of the Wald test of the significance of the independent variables can be manipulated
by changing the scale of the dependent variable.

Consider a similar example using the auto dataset. This example will illustrate the lack of scale-invariance and it will also
show how this is a special case of the manipulability of Wald tests via nonlinear restrictions. Begin with a Box–Cox regression
in which only the dependent variable is transformed.

. box mpg weight price , nolog

Estimating comparison model

Maximizing concentrated likelihood

Maximizing the unconcentrated likelihood

Number of obs = 74

LR chi2(3) = 100.40

Log likelihood = -178.06886 Prob > chi2 = 0.0000

38 Stata Technical Bulletin STB-54

--

mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

ntrans |

weight | -.0000263 .0000232 -1.132 0.258 -.0000718 .0000192

price | -1.34e-06 1.18e-06 -1.135 0.256 -3.66e-06 9.75e-07

_cons | 1.272474 .4123654 3.086 0.002 .4642524 2.080695

---------+--

Ancillary|

theta | -.7568509 .2901099 -2.609 0.009 -1.325456 -.1882459

sigma | .0132169 .0116479 1.135 0.256 -.0096125 .0360462

---------+--

. test _b[ntrans: weight]=0

(1) [ntrans]weight = 0.0

chi2(1) = 1.28

Prob > chi2 = 0.2575

A Wald test of the significance of weight is also performed. Note that this test produces a p-value identical to that given
in the output table. This value indicates the unlikely diagnostic that weight does not have a statistically significant effect on
mpg, at any of the standard test sizes.

Now, rescale mpg to mpg/10 and rerun the same procedure.

. gen mpg2=mpg/10

. box mpg2 weight price, nolog

Estimating comparison model

Maximizing concentrated likelihood

Maximizing the unconcentrated likelihood

Number of obs = 74

LR chi2(3) = 100.40

Log likelihood = -7.6775588 Prob > chi2 = 0.0000

--

mpg2 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

ntrans |

weight | -.0001502 .0000344 -4.365 0.000 -.0002177 -.0000828

price | -7.66e-06 3.61e-06 -2.123 0.034 -.0000147 -5.88e-07

_cons | 1.042532 .1589603 6.558 0.000 .7309758 1.354089

---------+--

Ancillary|

theta | -.7568511 .2902993 -2.607 0.009 -1.325827 -.1878749

sigma | .0755057 .0169982 4.442 0.000 .0421898 .1088216

---------+--

Note that the Wald test in the table now indicates that weight is indeed a statistically significant predictor of mpg/10 at all
of the conventional sizes.

Since there is a constant in the model, estimates of the Box–Cox transform parameter and its variance are invariant to
any rescaling of the variables. Schlesselman (1971) demonstrated this point analytically. Using this fact, a few lines of algebra
show that a rescaling of the dependent variable in a left-hand-side only Box–Cox regression model results in a simple nonlinear
transformation of the parameters. Specifically, write the original model as

y� � 1
�

= Xb+ e

where y is an N � 1 vector of observations on the dependent variable, � is the parameter of the Box–Cox transform, X is the
N � k matrix of observations on the independent variables, b is the k � 1 vector of coefficients on the independent variables
and e is the N � 1 vector of normally distributed errors. X contains a vector of ones in its first column.

Now, rescale the regression. �
y

c

�� � 1
�

= Xbs + es

where bs is the k� 1 vector of coefficients in the scaled model. Since estimates of � are invariant to the transform, it needs no
subscript. Solving this equation for

y� � 1
�

Stata Technical Bulletin 39

implies that
y� � 1

�

=
c� � 1

�

+ c�Xbs + c�es

the implication being that, except for the constant,
b = c�bs

It is easy to verify that this formula works for the example at hand.

. scalar b1=_b[ntrans: weight]*10^(_b[theta: _cons])

. di b1

-.0000263

This situation is now similar to the example of �weight and �
2
weight discussed above. Logically, except for the constant,

b = 0 if and only if bs = 0. However, the Wald test on weight in the scaled regression indicates that weight is significant,
while weight is not significant in the unscaled regression. Now, note that the test of significance of weight in the unscaled
regression is obtainable as a nonlinear test on weight in the scaled regression.

. testnl _b[ntrans: weight]*10^(_b[theta: _cons])=0

(1) _b[ntrans: weight]*10^(_b[theta: _cons])=0

chi2(1) = 1.28

Prob > chi2 = 0.2579

Hence, the lack of invariance to scale in the Box–Cox regression model is just an example of the more general lack of
invariance of Wald tests to nonlinear transformations.

Scaling to elasticities

If all data were scaled in natural units, then there would be no issue here and researchers would always analyze data in
their natural units. Of course, most data does not have any natural units and one scale is as arbitrary as another. Spitzer (1984)
argues that the solution to the lack of invariance in the Box–Cox regression model is to always analyze data normalized by its
geometric mean. The following example illustrates that if all data are scaled by their geometric means, then the coefficients on
the independent variables from a left-hand-side only Box–Cox regression are like elasticities. Let G(x) be the geometric mean
of x. The elasticity of the transformed dependent variable with respect to an independent variable evaluated at their geometric
means would be

@y(�)

(G(y))(�)

@x
G(x)

=
@y

(�)

@x

G(x)

(G(y))(�)

Even with the data scaled as Spitzer suggests, this computation will not produce the coefficients on the independent variables in
a left-hand-side only Box–Cox regression. The formula that will reproduce these coefficients is

@y(�)

G(y)�

@x
G(x)

=
@y

(�)

@x

G(x)

G(y)�

The denominators are the same in the two computations. The numerator in the first computation is the change in the transformed
dependent variable as a fraction of the Box–Cox transformation of the geometric mean of the dependent variable. In the second
case the numerator is the change in the transformed dependent variable as a fraction of the geometric mean of the dependent
variable raised to power �. The former equation is an elasticity. The latter equation is “like” an elasticity and is what is produced
by Spitzer’s method.

Now let’s use Stata to calculate these formulas and verify that when all variables are scaled by their geometric means a
left-hand-side only Box–Cox regression produces coefficient estimates that are identical to those produced by the “like elasticity”
formula. We begin by computing the geometric means of the variables of interest and saving them in scalars. Several functions
of these means are also calculated. In particular, elw2 is the elasticity of the transformed dependent variable with respect to
weight evaluated at the mean of both variables. elw is the “like elasticity” computed by the formula given above. Note that
they are not equal.

. box mpg weight price , nolog

(output omitted)

. means mpg

Variable | Type Obs Mean [95% Conf. Interval]

---------+--

mpg | Arithmetic 74 21.2973 19.9569 22.63769

| Geometric 74 20.58444 19.38034 21.86335

| Harmonic 74 19.92318 18.81185 21.17405

---------+--

40 Stata Technical Bulletin STB-54

. scalar mdot=r(mean_g) /* mdot is geometric mean of depvar */

. gen mpgs=mpg/r(mean_g) /* mpgs is scaled depvar */

. scalar mdot2=mdot^(_b[theta: _cons]) /* this is denominator for

like elasticity */

. scalar mdot2b=(mdot^(_b[theta: _cons])-1)/(_b[theta: _cons])

/* This is denominator for elasticity */

. means weight

Variable | Type Obs Mean [95% Conf. Interval]

---------+--

weight | Arithmetic 74 3019.459 2839.398 3199.521

| Geometric 74 2918.284 2743.65 3104.034

| Harmonic 74 2816.578 2649.055 3006.719

---------+--

. scalar wdot=r(mean_g) /* geometric mean of weight */

. gen weights=weight/r(mean_g) /* scaled weight */

. means price

Variable | Type Obs Mean [95% Conf. Interval]

---------+--

price | Arithmetic 74 6165.257 5481.914 6848.6

| Geometric 74 5656.907 5165.664 6194.865

| Harmonic 74 5296.672 4928.901 5723.75

---------+--

. scalar pdot=r(mean_g) /* geometric mean of price */

. gen prices=price/r(mean_g) /* scaled price */

. scalar elw=_b[ntrans: weight]*wdot/mdot2 /* apply like elasticity formula*/

. di elw

-.75713121

. scalar elw2=_b[ntrans: weight]*wdot/mdot2b /* apply elasticity formula */

. di elw2

-.06463091

. scalar elp=_b[ntrans: price]*pdot/mdot2 /* apply like elasticity formula*/

. di elp

-.07486248

Now we need to verify that when all the variables are scaled by their geometric means, the coefficients on the independent
variables are identical to those computed using the “like elasticity” formula. Below is the output from a Box–Cox regression of
mpgs = mpg=G(mpg) on weights = weight=G(weight) and prices = price=G(price).

. box mpgs prices weights, nolog

Estimating comparison model

Maximizing concentrated likelihood

Maximizing the unconcentrated likelihood

Number of obs = 74

LR chi2(3) = 100.40

Log likelihood = 45.746772 Prob > chi2 = 0.0000

--

mpgs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

ntrans |

prices | -.0748625 .0360538 -2.076 0.038 -.1455267 -.0041983

weights | -.7571312 .0680234 -11.130 0.000 -.8904547 -.6238077

_cons | .8398833 .0612024 13.723 0.000 .7199287 .9598378

---------+--

Ancillary|

theta | -.7568508 .2902995 -2.607 0.009 -1.325827 -.1878742

sigma | .1304014 .0107189 12.166 0.000 .1093927 .1514101

---------+--

Note that the coefficients on the independent variables are identical to those calculated by elw and elp above. These
equalities illustrate the claim that when all the variables are scaled by their geometric means, the coefficients on the independent
variables from a left-hand-side only Box–Cox regression are “like elasticities”.

An LR test solution

Software developers must choose how to handle the manipulability issue. There are several options. One would be to
automatically scale all the variables by their geometric mean and produce Wald tests of significance in a standard output table.

Stata Technical Bulletin 41

This alternative would force users interested in the coefficients expressed in another scale to transform them “by hand”. The fact
that the coefficient estimates are not true elasticities in all the Box–Cox models further reduces the appeal of this solution. Since
likelihood-ratio tests are invariant to any rescaling of the variables there is another option. Allow users to run the regression in
any scale desired but only perform likelihood-ratio tests as opposed to Wald tests. I chose the latter in constructing the new
boxcox2. Users can estimate their models in the scale most convenient for them and easily obtain scale invariant test statistics.

The following example from the auto data using the new boxcox2 illustrates that LR statistics are invariant to the scale of
the data.

. boxcox2 mpg weight price , nolog nologlr lrtest

Estimating comparison model

Estimating full model

Estimating comparison models for LR tests

Number of obs = 74

LR chi2(2) = 100.40

Log likelihood = -178.06886 Prob > chi2 = 0.000

--

mpg| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

/theta | -.7568509 .2902995 -2.607 0.009 -1.325828 -.1878744

--

Estimates of scale-variant parameters

| Coef. chi2(df) P>chi2(df) df of chi2

---------+---

Notrans |

weight | -.0000263 72.791 0.000 1

price | -1.34e-06 4.202 0.040 1

_cons | 1.272474

---------+---

/sigma | .0218107

Test Restricted LR statistic P-Value

H0: log likelihood X~chi2 Pr > chi2

theta = -1 -178.41823 0.70 0.403

theta = 0 -181.43399 6.73 0.009

theta = 1 -195.21698 34.30 0.000

. boxcox2 mpg2 weight price , nolog nologlr lrtest

Estimating comparison model

Estimating full model

Estimating comparison models for LR tests

Number of obs = 74

LR chi2(2) = 100.40

Log likelihood = -7.6775588 Prob > chi2 = 0.000

--

mpg2| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

/theta | -.7568511 .2902995 -2.607 0.009 -1.325828 -.1878745

--

Estimates of scale-variant parameters

| Coef. chi2(df) P>chi2(df) df of chi2

---------+---

Notrans |

weight | -.0001502 72.791 0.000 1

price | -7.66e-06 4.202 0.040 1

_cons | 1.042532

---------+---

/sigma | .0869115

Test Restricted LR statistic P-Value

H0: log likelihood X~chi2 Pr > chi2

theta = -1 -8.0269351 0.70 0.403

theta = 0 -11.042697 6.73 0.009

theta = 1 -24.825684 34.30 0.000

42 Stata Technical Bulletin STB-54

There are two important points to note about this output. First, the coefficient estimates exactly match those from the
previous procedures. Second, the LR tests are invariant to changes in the scale of the transformed dependent variable.

Conclusion

This article has illustrated two important facts. First, the value of Wald tests of significance are not invariant to nonlinear
transformations. Second, an important special case of this result is that Wald tests on the significance of an independent variable
are not invariant to changes in the scale of any transformed variable in a Box–Cox regression model. This article has also
illustrated that LR tests are invariant to the scale of transformed variables in a Box–Cox regression model. It has also argued
that allowing researchers to choose their own scale for estimation with LR based inference is superior to boxing them into a
specific scale that has some desirable properties.

References
Davidson, R. and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. Oxford: Oxford University Press.

Drukker, D. M. 2000. sg130: Box–Cox regression models. Stata Technical Bulletin 54: 27–36.

Gregory, A. W. and M. R. Veal. 1985. Formulating Wald tests on nonlinear restrictions. Econometrica 53: 1465–1468.

Lafontaine, F. and K. J. White. 1986. Obtaining any Wald statistic you want. Economics Letters 21: 35–40.

Phillips, P. C. B. and J. Y. Park. 1988. On the formulation of Wald tests of nonlinear restrictions. Econometrica 56: 1065–1083.

Schlesselman, J. 1971. Power Families: A note on the Box and Cox transformation. Journal of the Royal Statistical Society, Series B 33: 307–311.

Spitzer, J. J. 1984. Variance estimates in models with the Box-Cox transformation: Implications for Estimation and Hypothesis Testing. The Review
of Economics and Statistics 66: 645–652.

sg132 Analysis of variance from summary statistics

John R. Gleason, Syracuse University, loesljrg@accucom.net

Abstract: aovsum is a command for performing analysis of variance when the data are available only in summary form; namely,
as group sizes, means, and standard deviations. This is accomplished by synthesizing a dataset to match those summary
values. Other linear model style analyses can then be performed using the synthetic data; for example, multiple comparisons
and trend analysis.

Keywords: ANOVA, univariate summary, linear model.

Introduction

It is common practice in many scientific journals to summarize data with a table showing, for various groups, the sample
size (n), mean (�y), and standard deviation (s) for some collection of variables; possibly, the standard error s=

p
n appears in place

of s. A reader might on occasion wish that the authors had also provided an analysis of variance (ANOVA) for some variable(s).
That desire might spring from curiosity about the ANOVA F -statistic and its p-value, or from a need for the ANOVA’s pooled
estimate of error variance. Or, perhaps the groups in the table correspond to the cells of an unbalanced factorial design. To
judge the size and significance of the various main and interaction effects from an inspection of a table of means and standard
deviations can be a nontrivial task.

aovsum is a command that can compute the ANOVA summary table corresponding to a series of sample sizes, means, and
standard deviations (or, standard errors). aovsum capitalizes upon some simple facts:

1. Any one-way ANOVA for independent groups can be computed from the values of n, �y, and s in the various groups.

2. Any multifactor design having only fixed factors can, without loss, be construed as a one-way design with K groups, where
K is the total number of cells in the design. This tactic is the basis of the cell means approach to analyzing data from
factorial designs.

3. Finally, let n > 0, �y, and s > 0 be given. Then a dataset consisting of n� 1 copies of the value �y + s=

p
n and one copy

of �y � (n� 1)s=
p
n will have mean equal to �y and standard deviation equal to s.

aovsum uses (3) to synthesize a dataset with the correct mean, standard deviation, and sample size in each of the various
groups. aovsum then invokes oneway to present the one-way ANOVA for that synthetic dataset, in accord with (1). But aovsum
can optionally save the synthetic data, and the user can then create variables that encode the factors of the underlying experimental
design; the inverse of the tactic described in (2). The ANOVA command can then be used to examine the various main and
interaction effects, as desired. The process is entirely accurate, subject only to limits imposed by the precision to which the
means and standard deviations (or standard errors) have been reported. The only requirement is that the appropriate ANOVA

model specify a single random term, as in fixed-effects, between-subject designs. For the sake of illustration, the examples below

Stata Technical Bulletin 43

are situations where the raw data are in fact available; in practice, of course, aovsum is useful only when the raw data are not
available.

Syntax

There are two forms of syntax:

aovsum , n(nlist) mean(mlist) f sd(SDlist) j se(SElist) g �names(yname
�
grpname

�
freqname

��
)

keep onewayopt
�

aovsum ?

Description

In the first form, nlist is a list of sample sizes and mlist is a list of the associated sample means. SDlist and SElist are lists
of sample standard deviations and standard errors, respectively; exactly one of SDlist and SElist is required.

The second form displays a terse reminder of the first form, by issuing the command which aovsum.

Options

onewayopt is a string containing any of the options of the oneway command.

keep causes the synthetic data to be saved to three variables named (by default) y , cond , and freq . Without the keep option,
the synthetic data are discarded after oneway finishes its work.

names provides alternatives for the three variable names to receive the synthetic data if the keep option is specified.

Example 1

Consider an example having K = 4 groups with means and standard deviations given to three digit accuracy:

. aovsum, n(12 11 9 9) m(18.1 28.2 48.3 70.2) sd(8.54 14.3 12.4 14.0)

Groups | Summary of Response variable

(cells) | Mean Std. Dev. Obs.

------------+------------------------------------

1 | 18.1 8.54 12

2 | 28.2 14.3 11

3 | 48.3 12.4 9

4 | 70.2 14 9

------------+------------------------------------

Total | 38.87561 23.29631 41

Analysis of Variance

Source SS df MS F Prob > F

--

Between groups 16063.4956 3 5354.49854 35.09 0.0000

Within groups 5645.2276 37 152.573719

--

Total 21708.7232 40 542.71808

Bartlett's test for equal variances: chi2(3) = 2.9876 Prob>chi2 = 0.394

Retaining the synthetic data with keep enables several other possibilities. Prefacing aovsum with quietly will suppress
the ANOVA output, useful when only the synthetic data are of interest.

. quietly aovsum, n(12 11 9 9) m(18.1 28.2 48.3 70.2) sd(8.54 14.3 12.4 14.0) keep

. list freq_ y_ cond_

freq_ y_ cond_

1. 11 20.565286 1

2. 10 32.511612 2

3. 8 52.433333 3

4. 8 74.866667 4

5. 1 -9.0181421 1

6. 1 -14.916122 2

7. 1 15.233333 3

8. 1 32.866667 4

Many standard analyses can be now performed by including the variable freq as an fweight. Suppose, for example, that
cond is a so-called continuous variable, and that we wish to investigate a linear trend in the mean of the response variable.

44 Stata Technical Bulletin STB-54

Either the regress or the anova command could be used for that purpose, but first make a copy of the variable cond to permit
a small trick with anova:

. gen byte Cond_ = cond_

. ** Test for linear trend and deviation from linear trend:

. anova y_ cond_ Cond_ [fw=freq_], cont(cond_) seq

Number of obs = 41 R-squared = 0.7400

Root MSE = 12.3521 Adj R-squared = 0.7189

Source | Seq. SS df MS F Prob > F

-----------+--

Model | 16063.4956 3 5354.49854 35.09 0.0000

|

cond_ | 15653.4326 1 15653.4326 102.60 0.0000

Cond_ | 410.063011 2 205.031506 1.34 0.2733

|

Residual | 5645.2276 37 152.573719

-----------+--

Total | 21708.7232 40 542.71808

The entry for cond provides the usual ANOVA test for the linear contrast in the means of the response variable, while the Cond

entry gives the ANOVA test for deviation from linear trend in the means.

The means and standard deviations for this example were computed from individual data given in Table 12.11.1 of Snedecor
and Cochran (1980); those data are included with this insert as ldose.dta. Their Table 12.11.2 gives the ANOVA summary
table, and their Table 12.11.3 gives the test for linear trend and deviation from linearity. The output from aovsum and anova

shown above may be compared with those tables. Alternatively, “exact” results for the trend analysis tests can be obtained thus:

. use ldose, clear

(Snedecor & Cochran Table 12.11.1)

. describe

Contains data from ldose.dta

obs: 41 Snedecor & Cochran Table 12.11.1

vars: 2 3 Jan 2000 13:32

size: 246 (95.5% of memory free)

1. ldose byte %8.0g Lethal dose (minus 50 units)

2. rate byte %8.0g Injection rate,

(mg/kg/min)/1045.75

Sorted by:

.

. ** Create a copy of the group variable, again:

. gen byte Rate = rate

.

. ** And run -anova-, again:

. anova ldose rate Rate, cont(rate) seq

Number of obs = 41 R-squared = 0.7402

Root MSE = 12.3574 Adj R-squared = 0.7191

Source | Seq. SS df MS F Prob > F

-----------+--

Model | 16094.2817 3 5364.76055 35.13 0.0000

|

rate | 15683.5493 1 15683.5493 102.70 0.0000

Rate | 410.732323 2 205.366162 1.34 0.2730

|

Residual | 5650.10859 37 152.705637

-----------+--

Total | 21744.3902 40 543.609756

Example 2

Here, aovsum will silently create three new variables, days, group, and freq :

. quietly aovsum, n(13 14 20 26 20 20 16 17) /*

> */ m(13.62 15.79 16.55 7.00 31.75 10.45 20.06 19.18) /*

> */ sd(12.07 17.49 14.75 6.11 22.07 10.68 14.22 17.90) /*

> */ keep names(days group)

Stata Technical Bulletin 45

There are eight groups of Australian children and the response variable is days absent from school. The means and standard
deviations were computed from Table 4 of Paul and Banerjee (1998), a set of data originally collected by Quine (1975). The
groups form a 2 (race) � 4 (grade in school) cross-classification. Variables encoding those two factors could be entered in Stata’s
data editor, or created with code resembling

. gen byte race = mod(group-1, 2)

. gen byte grade = int((group-1)/2)

Then, the usual two-way ANOVA of the response variable can be computed as

. anova days race grade race*grade [fw=freq_]

Number of obs = 146 R-squared = 0.2120

Root MSE = 14.8357 Adj R-squared = 0.1720

Source | Partial SS df MS F Prob > F

-----------+--

Model | 8169.29067 7 1167.04152 5.30 0.0000

|

race | 1907.27695 1 1907.27695 8.67 0.0038

grade | 2259.47976 3 753.159921 3.42 0.0191

race*grade | 2896.15272 3 965.384239 4.39 0.0056

|

Residual | 30373.3948 138 220.097064

-----------+--

Total | 38542.6855 145 265.811624

Quine’s (1975) raw data are included as absences.dta; the “exact” two-way ANOVA is thus:

. use absences, replace

(Quine's School Absences Data)

. describe

Contains data from absences.dta

obs: 146 Quine's School Absences Data

vars: 4 3 Jan 2000 12:42

size: 1,168 (95.2% of memory free) (_dta has notes)

1. days byte %8.0g Days absent from school

2. group byte %8.0g Race x Grade group

3. race byte %8.0g race Race of child

4. grade byte %9.0g grade Grade in school

Sorted by:

.

. ** And the ANOVA:

. anova days race grade race*grade

Number of obs = 146 R-squared = 0.2119

Root MSE = 14.8369 Adj R-squared = 0.1720

Source | Partial SS df MS F Prob > F

-----------+--

Model | 8169.67223 7 1167.09603 5.30 0.0000

|

race | 1908.01254 1 1908.01254 8.67 0.0038

grade | 2259.85192 3 753.283973 3.42 0.0191

race*grade | 2895.42955 3 965.143183 4.38 0.0056

|

Residual | 30378.4922 138 220.134001

-----------+--

Total | 38548.1644 145 265.84941

Saved Results

After a call to aovsum, the contents of r() will be the same as following a call to oneway with the options specified in
onewayopt.

References
Paul, S. R. and T. Banerjee. 1998. Analysis of two-way layout of count data involving multiple counts per cell. Journal of the American Statistical

Association 93: 1419–1429.

46 Stata Technical Bulletin STB-54

Quine, S. 1975. Unpublished Ph.D. thesis, Australian National University.

Snedecor, G. W. and W. G. Cochran. 1980. Statistical Methods. 7th ed. Ames, IA: Iowa State University Press.

sg133 Sequential and drop one term likelihood-ratio tests

Zhiqiang Wang, Menzies School of Health Research, Darwin, Australia, wang@menzies.edu.au

Abstract: Commands extending Stata’s lrtest command are given for likelihood-ratio tests after maximum likelihood estimation.

Keywords: Likelihood-ratio tests, Akaike information criterion, AIC.

Syntax

lrseq

�
, fp(format) fchi(format)

�
lrdrop1

�
, fp(format) fchi(format)

�

Description

This insert includes two commands: lrdrop1 and lrseq. Both commands perform likelihood-ratio tests after maximum
likelihood estimations such as those by stcox, logit, logistic, poisson, and so on. They are extensions of the Stata
command lrtest.

The lrseq command is designed to perform sequential pairwise likelihood-ratio tests. It starts with a null model. Explanatory
variables are added into the model sequentially. At each step, the current model is compared with the previous one. The lrdrop1
command performs likelihood ratio tests after dropping terms from the original model one at a time in turn, comparing each
new model with the original model. Both commands report the Akaike information criterion (AIC) developed by Akaike (1974).
For a model having r parameters,

AIC = �2 log(likelihood) + 2r

Analysts can use these two commands to select models interactively. Alternatively, the command swaic (see Wang 2000)
can be used for an automatic model selection using AIC. Another relevant command is lrtest2 introduced by Perez–Hoyos
and Tobias (1999).

Options

fp(format) specifies the output format for p-values with default value %9.4f.

fchi(format) specifies the output format for chi2 values, with default value %9.2f.

Examples

We begin with a call to logit:

. xi: logit outcome age sex i.expose hibp bmi, nolog

i.expose Iexpos_1-3 (naturally coded; Iexpos_1 omitted)

Logit estimates Number of obs = 399

LR chi2(6) = 42.13

Prob > chi2 = 0.0000

Log likelihood = -104.4184 Pseudo R2 = 0.1679

--

outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

age | .0349601 .0157084 2.226 0.026 .0041721 .065748

sex | .390423 .3878383 1.007 0.314 -.369726 1.150572

Iexpos_2 | 1.333849 .6090427 2.190 0.029 .1401477 2.527551

Iexpos_3 | 2.601842 .5930699 4.387 0.000 1.439446 3.764237

hibp | .0042039 .3858058 0.011 0.991 -.7519616 .7603694

bmi | -.1136088 .0425776 -2.668 0.008 -.1970594 -.0301582

_cons | -2.749143 1.460547 -1.882 0.060 -5.611763 .1134774

--

Stata Technical Bulletin 47

Now we use lrdrop1:

. lrdrop1

Likelihood Ratio Tests: drop 1 term

logit regression

number of obs = 399

--

outcome Df Chi2 P>Chi2 -2*log ll Res. Df AIC

--

Original Model 208.84 392 222.84

-age 1 5.12 0.0237 213.95 391 225.95

-sex 1 1.02 0.3123 209.86 391 221.86

-Iexpos* 2 27.67 0.0000 236.51 390 246.51

-hibp 1 0.00 0.9913 208.84 391 220.84

-bmi 1 8.11 0.0044 216.95 391 228.95

--

Terms dropped one at a time in turn.

and then lrseq:

. lrseq

Sequential Likelihood Ratio Tests

logit regression

number of obs = 399

--

outcome Df Chi2 P>Chi2 -2*log ll Res. Df AIC

--

Null Model 250.96 398 252.96

age 1 9.34 0.0022 241.62 397 245.62

sex 1 0.36 0.5480 241.26 396 247.26

Iexpos* 2 24.32 0.0000 216.95 394 226.95

hibp 1 0.00 0.9859 216.95 393 228.95

bmi 1 8.11 0.0044 208.84 392 222.84

--

Terms added sequentially (first to last)

One lrseq or lrdrop1 command in this example is equivalent to performing lrtest five times. The likelihood-ratio
test for variable sex in the lrseq output; for example, compares a model with age and sex against a model with only age.
Iexpos* is for the categorical variable expose with three categories and two degrees of freedom.

Acknowledgments

I thank Dr. John L. Moran, Queen Elizabeth Hospital, Adelaide, Australia for useful suggestions and Dr. Wendy Hoy,
Menzies School of Health Research, Darwin, Australia for providing the example data.

References
Akaike, H. 1974. A new look at statistical model identification. IEEE Transactions on Automatic Control AC–19: 716–723.

Perez-Hoyos, S. and A. Tobias. 1999. sg111: A modified likelihood-ratio test command. Stata Technical Bulletin 49: 24–25.

Wang, Z. 2000. sg134: Model selection using the Akaike information criterion. Stata Technical Bulletin 54: 47–49.

sg134 Model selection using the Akaike information criterion

Zhiqiang Wang, Menzies School of Health Research, Darwin, Australia, wang@menzies.edu.au

Abstract: A command for performing stepwise model selection using the Akaike information criterion is described and illustrated.

Keywords: Stepwise model selection, Akaike information criterion, AIC.

Syntax

swaic

�
, fp(format) fchi(format) back model

�

48 Stata Technical Bulletin STB-54

Description

The command swaic in this insert is designed to perform stepwise model selection using the Akaike Information Criterion
(AIC) developed by Akaike (1974) after maximum likelihood estimation. For a model having r parameters,

AIC = �2 log(likelihood) + 2r

It is an alternative approach to stepwise model selection in Stata. swaic starts with a null or full model. It takes a step by
adding or dropping a term that produces the minimum AIC. swaic reports likelihood ratio tests as well as AIC values for all
steps. With the model option, swaic reports the final model with the minimum AIC value. The current version of swaic works
with logit, logistic, stcox, poisson, probit, and streg.

Options

fp(format) specifies the output format for p-values, with default value %9.4f.

fchi(format) specifies the output format for chi2 values, with default value %9.2f.

back uses a backward method starting with a full model, the default is a forward method.

model reports a final model having the minimum AIC value.

Example

We illustrate swaic by first using logit and then using swaic with the model option:

. xi: logit outcome age sex i.expose hibp bmi, nolog

i.expose Iexpos_1-3 (naturally coded; Iexpos_1 omitted)

Logit estimates Number of obs = 399

LR chi2(6) = 42.13

Prob > chi2 = 0.0000

Log likelihood = -104.4184 Pseudo R2 = 0.1679

--

outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

age | .0349601 .0157084 2.226 0.026 .0041721 .065748

sex | .390423 .3878383 1.007 0.314 -.369726 1.150572

Iexpos_2 | 1.333849 .6090427 2.190 0.029 .1401477 2.527551

Iexpos_3 | 2.601842 .5930699 4.387 0.000 1.439446 3.764237

hibp | .0042039 .3858058 0.011 0.991 -.7519616 .7603694

bmi | -.1136088 .0425776 -2.668 0.008 -.1970594 -.0301582

_cons | -2.749143 1.460547 -1.882 0.060 -5.611763 .1134774

--

. swaic, model

Stepwise Model Selection by AIC

logit regression

number of obs = 399

--

outcome Df Chi2 P>Chi2 -2*ll Df Res. AIC

--

Null Model 250.96 398 252.96

Step 1: Iexpos* 2 22.91 0.0000 228.06 396 234.06

Step 2: bmi 1 13.27 0.0003 214.79 395 222.79

Step 3: age 1 4.85 0.0276 209.94 394 219.94

Step 4: sex 1 1.10 0.2934 208.84 393 220.84

Step 5: hibp 1 0.00 0.9913 208.84 392 222.84

--

Logit estimates Number of obs = 399

LR chi2(4) = 41.02

Prob > chi2 = 0.0000

Log likelihood = -104.97047 Pseudo R2 = 0.1635

--

outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

Iexpos_2 | 1.293822 .5981625 2.163 0.031 .1214446 2.466199

Iexpos_3 | 2.535178 .580218 4.369 0.000 1.397971 3.672384

bmi | -.1072528 .0412597 -2.599 0.009 -.1881203 -.0263853

age | .0338024 .0156032 2.166 0.030 .0032206 .0643842

_cons | -2.608527 1.449736 -1.799 0.072 -5.449958 .2329043

--

Stata Technical Bulletin 49

Then we use both the model and back options:

. swaic, model back

Stepwise Model Selection by AIC

logit regression

number of obs = 399

--

outcome Df Chi2 P>Chi2 -2*ll Df Res. AIC

--

Full Model 208.84 392 222.84

Step 1: -hibp 1 0.00 0.9913 208.84 393 220.84

Step 2: -sex 1 1.10 0.2934 209.94 394 219.94

Step 3: -age 1 4.85 0.0276 214.79 395 222.79

Step 4: -bmi 1 13.27 0.0003 228.06 396 234.06

Step 5: -Iexpos* 2 22.91 0.0000 250.96 398 252.96

--

Logit estimates Number of obs = 399

LR chi2(4) = 41.02

Prob > chi2 = 0.0000

Log likelihood = -104.97047 Pseudo R2 = 0.1635

--

outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

age | .0338024 .0156032 2.166 0.030 .0032206 .0643842

Iexpos_2 | 1.293822 .5981625 2.163 0.031 .1214446 2.466199

Iexpos_3 | 2.535178 .580218 4.369 0.000 1.397971 3.672384

bmi | -.1072528 .0412597 -2.599 0.009 -.1881203 -.0263853

_cons | -2.608527 1.449736 -1.799 0.072 -5.449958 .2329043

--

Both backward and forward methods produce the same results in this example. The AIC reaches a minimum of 219.94 when the
model only includes age, bmi and expose.

Acknowledgments

Thanks to Dr. John L. Moran, Queen Elizabeth Hospital, Adelaide, Australia for testing and comments and Dr. Wendy Hoy
of the Menzies School of Health Research in Darwin, Australia for providing examples.

Reference
Akaike, H. 1974. A new look at statistical model identification. IEEE Transactions on Automatic Control, AC–19: 716–723.

sxd1.2 Random allocation of treatments balanced in blocks: update

Philip Ryan, University of Adelaide, South Australia, pryan@medicine.adelaide.edu.au

Abstract: Allocation of treatments to subjects using a random method underpins the validity of a clinical trial. Blocking is a
technique that helps ensure a constant ratio of treatment allocations is maintained throughout the randomization period.
ralloc facilitates blocked randomization in a variety of experimental designs including stratified, factorial, and crossover
designs. Output may be configured in several ways to suit central or distributed randomization, and to facilitate the pharmacy
preparing blocks of treatments.

Keywords: Experimental design, randomized controlled trials, randomization, blocking.

Introduction

I have again updated the program ralloc, first described in Ryan (1998) and updated in Ryan (1999). The full syntax is

ralloc BlockIdvar BlockSizevar Treatmentvar , saving(filename)
� �

multif j nomultif 	
seed(#)

nsubj(#) ntreat(2j3j4) ratio(1j2j3) osize(1j2j3j4j5j6j7) init(#)
�

equal j noequal 	
strata(#) using(filename) countv(varname)

�
tables j notables 	

trtlab(label1
�
label2 : : :

�
)

matsiz(#) fratio(1 1 j 2 1 j 1 2 j 2 2) factor(2*2j2*3j3*2j3*3j2*4j4*2j3*4j4*3)
xover(

�
stand j switch j extra 	

) shape(

�
long j wide 	

)

�
ralloc ?

50 Stata Technical Bulletin STB-54

New Features

The version of ralloc accompanying this insert has the following new features:

1. The second syntax displays the first syntax on screen.

2. The program supports stratified randomization.

3. The program supports two-treatment factorial designs.

4. The program supports a 2 � 2 crossover design with or without either a “switchback” or “extra-period” of treatment in a
third period as described by Jones and Kenward (1989).

5. A new, more efficient treatment labeling option is used.

6. The display of informative tables is now optional.

New options

multif specifies that, for a stratified design, one file will be saved for the allocations in each stratum, in addition to a file
storing all allocations. The filename specified in the saving option will be used as a stub to name the files according to
the following schema

<filename> n1[n2 n3 ... nk]

for a trial with 1 to k stratification variables. n1 identifies the level of the stratum of the 1st stratification variable, n2
gives the level of the stratum of the 2nd stratification variable, and so on, each stratification variable’s set of suffixes
being preceded by an underscore character. Suffixes are padded with leading zeros to maintain alphanumeric sort order.
The default is nomultif.

strata(#) specifies the number of strata and may be calculated as the product, over all stratifying variables, of the number of
levels in each variable. A new variable, StratID, denoting the stratum identifier, is generated. The default is strata(1).
strata is overridden by the specification of a using file.

using(filename) names a file whose data define the stratification schema. The file must consist solely of variables defining strata
plus one other variable giving the number of subjects required to be randomized in each stratum (the countv variable, see
below). Each row (observation) of the file defines a stratum. Levels of a stratification variable must be coded as consecutive
positive integers (1; 2; 3; : : :). ralloc will check this and will also check that the product of levels over all stratification
variables equals the number of rows (strata). Whether strata are defined by strata or by the rows of a using file, the
number of strata cannot exceed 800.

countv(varname) specifies the variable in the using file whose values give the number of subjects requiring randomization in
each stratum. countv is specified if and only if a using file is specified. Values of countv override the value of nsubj

should this also be specified.

tables specifies that a frequency distribution of block sizes is displayed for all allocations and, where appropriate, for each
stratum. The default is notables.

trtlab(label1
�
label2 : : :

�
) allows specification of value labels for treatments. At most four labels may be specified for a

nonfactorial design. The number of labels that may be specified for a factorial design is equal to the sum of the number
of possible treatments in the two randomization axes. Labels are separated by spaces and so may not themselves contain
a space. A label will be truncated after the first eight characters. The default treatment labels are A, B, C and D (plus E,
F and G if required for a factorial design). An older form of the syntax for nonfactorial designs, requiring an option for
each label by tr1lab(label), tr2lab(label), and so on, is permitted but obsolete.

matsiz(#) sets the maximum size of a Stata matrix. This is a rarely used option, as ralloc chooses a matrix size appropriate
to the stratification schema specified.

fratio(string) specifies, in the case of a 2 � 2 factorial design, the ratio of allocations in each axis. The string must be one
of the choices given in the syntax diagram. For example, if we require a 1:2 ratio of treatments in the first randomization
axis and a 1:1 ratio of treatments in the second axis, fratio(2 1) would be specified.

factor(string) specifies that the trial has a factorial design with two “axes of randomization”. The string must be one of the
choices in the syntax diagram. Allocation combinations are balanced within blocks, unless fratio is specified in a 2 � 2
design. The names of the two treatment variables generated will be the name specified by Treatmentvar followed by a 1
and a 2.

Stata Technical Bulletin 51

xover(string) specifies the design as a 2 � 2 crossover. The argument may be one of stand for the standard 2 treatment, 2
period design, switch for the switchback design where each subject receives the treatment assigned for period 1 in period
3, or extra, for the extra period design, where each subject has the treatment assigned for period 2 replicated in period 3.
The names of the treatment variables generated will be that specified by Treatmentvar followed by a 1, 2, and if required,
a 3.

Example 1

To illustrate the new trtlab, strata and multif options, we have

. ralloc blknum blksiz Rx, ns(494) osiz(2) eq ntreat(2) sav(mywide)

> shap(wide) trtlab(Placebo Active) strata(4) multif

which results in the allocation of two treatments labeled “Placebo” and “Active” equally in two block sizes, 2 and 4, to 494
subjects in each of four strata (maybe a four-center trial). Data are saved in wide form to five files: mywide.dta holds all
allocations, and four additional files named mywide 1.dta, mywide 2.dta, mywide 3.dta and mywide 4.dta hold stratum
specific allocations.

. use mywide_4

. li in 1/7, noobs nodisp

StratID blknum blksiz Rx1 Rx2 Rx3 Rx4

4 498 2 Active Placebo . .

4 499 2 Placebo Active . .

4 500 2 Placebo Active . .

4 501 4 Placebo Placebo Active Active

4 502 2 Placebo Active . .

4 503 2 Placebo Active . .

4 504 2 Active Placebo . .

Example 2

To illustrate the using option, we have a file, raltest6.dta, defining strata for an RCT to be conducted in 3 centers. We
also seek to balance allocations within two age groups. The required numbers of allocations in each of the 3� 2 = 6 strata are
given by the variable freq.

. use raltest6

. list

centre freq agegrp

1. 1 50 1

2. 1 80 2

3. 2 140 1

4. 2 100 2

5. 3 70 1

6. 3 100 2

Note that ralloc does not care about the order of variables in the data, nor of the sort order of the observations, but it is easier
to check the completeness of the schema if levels are coherently nested. The command

. ralloc bID bsiz trt, sav(myrct) count(freq) using(raltest6)

> nsubj(80) seed(54109) multif

results in the generation of seven files. Note that the option nusbj(80) will be overridden by the values of freq in raltest.dta.
After some informative output (not shown here), the data are written to the appropriate stratum-specific files and the file with
all allocations, myrct.dta, is in memory. The stratum identifying variables have also been written to the datasets.

. li in 1/8, noob nodis

StratID centre agegrp bID bsiz SeqInBlk trt

1 1 1 1 2 1 A

1 1 1 1 2 2 B

1 1 1 2 8 1 A

1 1 1 2 8 2 B

1 1 1 2 8 3 B

1 1 1 2 8 4 B

1 1 1 2 8 5 A

1 1 1 2 8 6 A

52 Stata Technical Bulletin STB-54

Example 3

Consider a study that aims to test both the efficacy of a blood pressure lowering medication, called BPzap, versus a placebo,
and the utility of two weight reduction exercise programs, called GymSweat and JogaBit, versus normal activity, on a specified
cardiovascular endpoint. An efficient design might be a 2 � 3 factorial RCT. The command

. ralloc blknum size Rx, sav(rctfact) factor(2*3) osiz(2) eq

> seed(4512) trtlab(BPzap Placebo GymSweat JogaBit normact)

> nsubj(300)

will allocate two treatments, called Rx1 and Rx2, to each of 300 subjects in a single stratum using a 2 � 3 factorial design.
Blocks of size 6 and 12 with equal frequency will result.

. list in 1/10

StratID blknum size SeqInBlk Rx1 Rx2

1. 1 1 6 1 Placebo GymSweat

2. 1 1 6 2 BPzap normact

3. 1 1 6 3 BPzap GymSweat

4. 1 1 6 4 Placebo normact

5. 1 1 6 5 BPzap JogaBit

6. 1 1 6 6 Placebo JogaBit

7. 1 2 12 1 BPzap JogaBit

8. 1 2 12 2 BPzap GymSweat

9. 1 2 12 3 BPzap normact

10. 1 2 12 4 Placebo JogaBit

. tab Rx1 Rx2

| Rx2

Rx1 | GymSweat JogaBit normact | Total

-----------+---------------------------------+----------

BPzap | 50 50 50 | 150

Placebo | 50 50 50 | 150

-----------+---------------------------------+----------

Total | 100 100 100 | 300

and we note the balance in allocations in each axis of the study.

Example 4

We reformulate the preceding study as a 2 � 2 factorial design by excluding the JogaBit treatment. Let’s say we wish to
have twice as many on Placebo as BPzap, and also twice as many subjects on normal activity as on the GymSweat regimen.

. ralloc blknum size Rx, sav(rctfact2) factor(2*2) osiz(2) eq

> seed(1131) trtlab(BPzap Placebo GymSweat normact) fratio(2 2)

> nsubj(300)

This command will give blocks of sizes 9 (the minimum possible with 1:2 allocation ratios in each axis) and 18 (because
osize(2) was specified).

. tab Rx*

| Rx2

Rx1 | GymSweat normact | Total

-----------+----------------------+----------

BPzap | 34 68 | 102

Placebo | 68 136 | 204

-----------+----------------------+----------

Total | 102 204 | 306

Example 5

We have a 2 � 2 crossover design supplemented by a switchback in period 3. The trial compares a new antiarthritic drug
“HipLube” versus aspirin in chronic osteoarthritis of the hip.

. ralloc Bnum Bsize medic, saving(chronOA) ns(28) osiz(1) init(4)

> trtlab(HipLube aspirin) xover(switch) strata(2)

medic1, medic2, and medic3 store the treatments administered in periods 1, 2 and 3 respectively:

. li in 1/6, noobs nodisp

Stata Technical Bulletin 53

StratID Bnum Bsize SeqInBlk medic1 medic2 medic3

1 1 4 1 HipLube aspirin HipLube

1 1 4 2 aspirin HipLube aspirin

1 1 4 3 HipLube aspirin HipLube

1 1 4 4 aspirin HipLube aspirin

1 2 4 1 HipLube aspirin HipLube

1 2 4 2 HipLube aspirin HipLube

Acknowledgments

I thank Liddy Griffith, Senior Data Manager, Department of Public Health, University of Adelaide, for helpful comments.
John Gleason reminded me of the use of the second syntax.

References
Jones B. and M. G. Kenward. 1989. Design and Analysis of Crossover Trials. London: Chapman and Hall.

Ryan, P. 1998. Random allocation of treatments in blocks. Stata Technical Bulletin 41: 43–46. Reprinted in Stata Technical Bulletin Reprints, vol. 7,
pp. 297–300.

——. 1999. Update to random allocation of treatments in blocks. Stata Technical Bulletin 50: 36–37.

54 Stata Technical Bulletin STB-54

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (979–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever

Stata Technical Bulletin 55

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: IEM
Systems Consultants Address: P.O. Box 2222

Address: P.O. Box 1169 PRIMROSE 1416
17100 NAZERATH-ELLIT South Africa
Israel

Phone: +972 (0)6 6100101 Phone: +27-11-8286169
Fax: +972 (0)6 6554254 Fax: +27-11-8221377

Email: assc@netvision.net.il Email: iem@hot.co.za
Countries served: Israel Countries served: South Africa, Botswana,

Lesotho, Namibia, Mozambique,
Swaziland, Zimbabwe

Company: Axon Technology Company Ltd Company: MercoStat Consultores
Address: 9F, No. 259, Sec. 2 Address: 9 de junio 1389

Ho-Ping East Road CP 11400 MONTEVIDEO
TAIPEI 106 Uruguay
Taiwan

Phone: +886-(0)2-27045535 Phone: 598-2-613-7905
Fax: +886-(0)2-27541785 Fax: Same

Email: hank@axon.axon.com.tw Email: mercost@adinet.com.uy
Countries served: Taiwan Countries served: Uruguay, Argentina, Brazil,

Paraguay

Company: Chips Electronics Company: Metrika Consulting
Address: Lokasari Plaza 1st Floor Room 82 Address: Mosstorpsvagen 48

Jalan Mangga Besar Raya No. 82 183 30 Taby STOCKHOLM
JAKARTA Sweden
Indonesia

Phone: 62 - 21 - 600 66 47 Phone: +46-708-163128
Fax: 62 - 21 - 600 66 47 Fax: +46-8-7924747

Email: puyuh23@indo.net.id Email: sales@metrika.se
Countries served: Indonesia URL: http://www.metrika.se

Countries served: Sweden, Baltic States,
Denmark, Finland, Iceland,
Norway

Company: Dittrich & Partner Consulting Company: Ritme Informatique
Address: Kieler Strasse 17 Address: 34, boulevard Haussmann

5. floor 75009 Paris
D-42697 Solingen France
Germany

Phone: +49 2 12 / 26 066 - 0 Phone: +33 (0)1 42 46 00 42
Fax: +49 2 12 / 26 066 - 66 +33 (0)1 42 46 00 33

Email: sales@dpc.de Email: info@ritme.com
URL: http://www.dpc.de URL: http://www.ritme.com

Countries served: Germany, Austria, Italy Countries served: France, Belgium,
Luxembourg

(List continued on next page)

56 Stata Technical Bulletin STB-54

International Stata Distributors

(Continued from previous page)

Company: Scientific Solutions S.A. Company: Timberlake Consulting S.L.
Address: Avenue du Général Guisan, 5 Address: Calle Mendez Nunez, 1, 3

CH-1009 Pully/Lausanne 41011 Sevilla
Switzerland Spain

Phone: 41 (0)21 711 15 20 Phone: +34 (9) 5 422 0648
Fax: 41 (0)21 711 15 21 Fax: +34 (9) 5 422 0648

Email: info@scientific-solutions.ch Email: timberlake@zoom.es
Countries served: Switzerland Countries served: Spain

Company: Smit Consult Company: Timberlake Consultores, Lda.
Address: Doormanstraat 19 Address: Praceta Raúl Brandao, n�1, 1�E

5151 GM Drunen 2720 ALFRAGIDE
Netherlands Portugal

Phone: +31 416-378 125 Phone: +351 (0)1 471 73 47
Fax: +31 416-378 385 Fax: +351 (0)1 471 73 47

Email: info@smitconsult.nl Email: timberlake.co@mail.telepac.pt
URL: http://www.smitconsult.nl

Countries served: Netherlands Countries served: Portugal

Company: Survey Design & Analysis Company: Unidost A.S.
Services P/L Rihtim Cad. Polat Han D:38

Address: 249 Eramosa Road West Kadikoy
Moorooduc VIC 3933 81320 ISTANBUL
Australia Turkey

Phone: +61 (0)3 5978 8329 Phone: +90 (216) 414 19 58
Fax: +61 (0)3 5978 8623 Fax: +30 (216) 336 89 23

Email: sales@survey-design.com.au Email: info@unidost.com
URL: http://survey-design.com.au URL: http://abone.turk.net/unidost

Countries served: Australia, New Zealand Countries served: Turkey

Company: Timberlake Consultants Company: Vishvas Marketing-Mix Services
Address: Unit B3 Broomsleigh Bus. Park Address: CnO S. D. Wamorkar

Worsley Bridge Road “Prashant” Vishnu Nagar, Naupada
LONDON SE26 5BN THANE - 400602
United Kingdom India

Phone: +44 (0)208 697 3377 Phone: +91-251-440087
Fax: +44 (0)208 697 3388 Fax: +91-22-5378552

Email: info@timberlake.co.uk Email: vishvas@vsnl.com
URL: http://www.timberlake.co.uk

Countries served: United Kingdom, Eire Countries served: India

