Discovering Structural Equation Modeling Using Stata, Revised Edition 

Click to enlarge See the back cover 
$56.00 Print Buy now$42.00 VitalSource Buy now$41.50 Amazon Kindle Buy from Amazon
As an Amazon Associate, StataCorp earns a small referral credit from
qualifying purchases made from affiliate links on our site.

Author index Subject index Errata Download the datasets used in this book Review from the Stata Journal


Comment from the Stata technical groupDiscovering Structural Equation Modeling Using Stata, Revised Edition, by Alan Acock, successfully introduces both the statistical principles involved in structural equation modeling (SEM) and the use of Stata to fit these models. The book uses an applicationbased approach to teaching SEM. Acock demonstrates how to fit a wide variety of models that fall within the SEM framework and provides datasets that enable the reader to follow along with each example. As each type of model is discussed, concepts such as identification, handling of missing data, model evaluation, and interpretation are covered in detail. In Stata, structural equation models can be fit using the command language or the graphical user interface (GUI) for SEM, known as the SEM Builder. The book demonstrates both of these approaches. Throughout the text, the examples use the sem command. Each chapter also includes brief discussions on drawing the appropriate path diagram and performing estimation from within the SEM Builder. A more indepth coverage of the SEM Builder is given in one of the book’s appendixes. The first two chapters introduce the building blocks of SEM. Chapter 1 begins with overviews of Cronbach’s alpha as a measure of reliability and of exploratory factor analysis. Then, building on these concepts, Acock demonstrates how to perform confirmatory factor analysis, discusses a variety of statistics available for assessing the fit of the model, and shows a more general measurement of reliability that is based on confirmatory factor analysis. Chapter 2 focuses on using SEM to perform path analysis. It includes examples of mediation, moderation, crosslagged panel models, and nonrecursive models. Chapter 3 demonstrates how to combine the topics covered in the first two chapters to fit full structural equation models. The use of modification indices to guide model modification and computation of direct, indirect, and total effects for full structural equation models are also covered. Chapter 4 details the application of SEM to growth curve modeling. After introducing the basic linear latent growth curve model, Acock extends this to more complex cases such as the inclusion of quadratic terms, timevarying covariates, and timeinvariant covariates. In chapter 5, Acock discusses testing for differences across groups in SEM. He introduces the specialized sem syntax for multiplegroup models and discusses the intricacies of testing for group differences for the different types of models presented in the preceding chapters. The Revised Edition includes output, syntax, and instructions for fitting models with the SEM Builder that have been updated for Stata 13. Discovering Structural Equation Modeling Using Stata, Revised Edition is an excellent resource both for those who are new to SEM and for those who are familiar with SEM but new to fitting these models in Stata. It is useful as a text for courses covering SEM as well as for researchers performing SEM. 

About the authorAlan Acock is a sociologist and a University Distinguished Professor in the School of Social and Behavioral Health Sciences at Oregon State University. He was also recognized as the Alumni Distinguished Professor based on his work with students. He has published more than 130 articles in leading journals across the social and behavioral sciences, including Structural Equation Modeling, Psychological Bulletin, Multivariate Behavioral Research, Journal of Gerontology, Journal of Adolescence, American Journal of Public Health, American Sociological Review, Journal of Marriage and Family, Social Forces, Educational and Psychological Measurement, Journal of Politics, Prevention Science, American Journal of Preventive Medicine, and many others. He also authored the text A Gentle Introduction to Stata. 

Table of contentsView table of contents >> 